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This paper proposes three types of Bayesian CART (or BCART) models for aggregate claim amount, namely, 
frequency-severity models, sequential models and joint models. We propose a general framework for BCART 
models applicable to data with multivariate responses, which is particularly useful for the joint BCART models 
with a bivariate response: the number of claims and the aggregate claim amount. To facilitate frequency-severity 
modeling, we investigate BCART models for the right-skewed and heavy-tailed claim severity data using various 
distributions. We discover that the Weibull distribution is superior to gamma and lognormal distributions, 
due to its ability to capture different tail characteristics in tree models. Additionally, we find that sequential 
BCART models and joint BCART models, which can incorporate more complex dependence between the number 
of claims and severity, are beneficial and thus preferable to the frequency-severity BCART models in which 
independence is commonly assumed. The effectiveness of these models’ performance is illustrated by carefully 
designed simulations and real insurance data.

1. Introduction

Aggregate claim amount estimation in non-life insurance is an im

portant task of actuaries for the calculation of premiums, pricing of 
insurance contracts and management of risk. A common model for ag

gregate claim amount is the so-called collective risk model defined as

𝑆 =

{ ∑𝑁

𝑖=1 𝑌𝑖, if 𝑁 > 0
0, if 𝑁 = 0

, (1)

where 𝑁 is a nonnegative integer valued random variable for the num

ber of claims and {𝑌𝑖}∞𝑖=1 are positive random variables for the individual 
severity. Note that the above aggregate claim amount can also be ex

pressed as

𝑆 =𝑁𝑆̄, with 𝑆̄ =

{ 1 
𝑁

∑𝑁

𝑖=1 𝑌𝑖, if 𝑁 > 0

0, if 𝑁 = 0
, (2)

where 𝑆̄ is the so-called average severity. Following the convention in 
Oh et al. (2021), we call (𝑁,𝑌1,… , 𝑌𝑁 ) micro-level data and (𝑁, 𝑆̄) (or 
(𝑁,𝑆)) summarized data.

The classical theory in actuarial science is based on the full inde

pendence assumption between the number of claims and the individual 
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severities, i.e., 𝑁 is independent of {𝑌𝑖}∞𝑖=1 which is a sequence of in

dependent and identically distributed (IID) random variables. In a re

gression setting given risk factors (or covariates), the frequency-severity 
models treat these two components separately by using generalized lin

ear models (GLMs), assuming distributions from the exponential family; 
see e.g., Ohlsson and Johansson (2010). The frequency study focuses 
on the occurrences of claims, and the severity study �- provided that 
a claim has occurred �- investigates the claim amount. In the current 
literature, the severity component has been discussed from two perspec

tives: by modeling individual severity 𝑌𝑖 or by modeling the average 
severity 𝑆̄ , depending on the format of data available (micro-level or 
summarized). Under the full independence assumptions, the expected 
aggregate claim (or pure premium) can be determined by multiplying 
the estimated frequency with the estimated severity or conditional av

erage severity.

In recent years, a growing body of literature emphasizes the impor

tance of understanding the interrelated nature of claim occurrences and 
their associated claim amounts to improve model applicability. Since 
the scope of the current paper is on the regression setting, hereafter we 
review some of the relevant literature. We refer to e.g., Cossette et al. 
(2019); Blier-Wong et al. (2024) for recent developments on this topic 
under a non-regression setting where different aspects of the distribu
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tion of the aggregate claim 𝑆 are investigated. Research has shown that 
ignoring the dependence between number of claims and claim severities 
may lead to serious bias in inference and thus the evaluation of risks; 
see Oh et al. (2021); Shi and Zhao (2020) and references therein. There 
are mainly three strategies to address the dependence between (i) the 
number of claims and the individual severities (including dependence 
among individual severities) and (ii) the number of claims and the av

erage severity; namely, using a coupla, using shared random effects and 
using a two-part model where the severity component directly depends 
on the frequency.

Copula models for both micro-level data and summarized data have 
been discussed; see, e.g., Ahn et al. (2021); Shi et al. (2015); Czado et 
al. (2012); Krämer et al. (2013); Shi and Zhao (2020); Oh et al. (2021). 
Estimation of parameters in these models is usually obtained using a 
likelihood-based method which requires a tractable formulation of the 
likelihood. Working with micro-level data, (Oh et al., 2021) models 
the full dependence of number of claims and individual severities us

ing multivariate Gaussian and 𝑡-copula functions which is also extended 
to include a vine copula. In Shi and Zhao (2020), the authors assume 
conditional independence of the individual severities given the number 
of claims so that they only require a single bivariate copula to construct 
the likelihood function, by doing so a general class of copulas can be 
adopted and incomplete data due to censoring or truncation can also 
be accounted for. Working with summarized data, Czado et al. (2012); 
Krämer et al. (2013); Shi et al. (2015) analyze different copula mod

els for the number of claims and average severity, where the challenge 
persists in selecting the appropriate copula family. As noticed in Shi et 
al. (2015); Shi and Zhao (2020), for regression copula models, the as

sociation between the frequency and severity is introduced by both the 
covariates and the copula used; the dependence introduced by copula 
(interpreted as residual dependence) should be seen as an extra layer of 
association in addition to that introduced by the covariates. It has been 
noted that in all these copula models the dependence parameter in the 
copula is assumed to be constant and does not vary across covariates 
(i.e., portfolio-level dependence). To overcome this drawback, a regres

sion approach using shared random effects is introduced in Baumgartner 
et al. (2015) where the dependence between the number of claims and 
average severity is induced by shared random effects. By analyzing a 
German car insurance portfolio, they show that the proposed shared 
random effects model can reflect the varying dependence characteris

tics across different geographical regions.

The two-part models enable the severity component to depend on the 
frequency component more explicitly. Specifically, the number of claims 
is introduced as a covariate in the (average) severity modeling; see, e.g., 
Frees et al. (2011); Garrido et al. (2016); Gschlößl and Czado (2007); 
Shi et al. (2015). It is noted that when dealing with the average severity, 
Garrido et al. (2016); Gschlößl and Czado (2007) include the number of 
claims as weights as well as covariates assuming the individual severities 
are conditionally IID and from the exponential family. Whereas, Shi et 
al. (2015) imposes a generalized gamma distribution for the average 
severity where the number of claims is only included as a covariate. 
Under the classical Poisson-gamma risk model with full independence, 
there is an intrinsic dependence between the number of claims and the 
average severity, which can be difficultly modeled by any copula as 
illustrated in Oh et al. (2021) using a simulation example. This difficulty 
may suggest a preference for simple two-part models for summarized 
data. It is also noticed that in these two-part models the dependence 
introduced by the coefficient of the number of claims for the severity 
component can only interpret a portfolio-level dependence which has 
the same issue as pointed out above for the current copula models.

As a comparable alternative, the aggregate claim amount can be di

rectly modeled using Tweedie’s distribution which assumes a Poisson 
sum of gamma variables for the aggregate claim amount. This model

ing approach simplifies the analysis by accommodating discrete claim 
numbers and continuous claim amounts in one distribution; see, e.g., 
Jørgensen and Paes De Souza (1994). Concurrently, discussions regard

ing the suitability of GLMs for aggregate claim amount analysis have fo

cused on the trade-off between model complexity and predictive perfor

mance, emphasizing the benefits and contexts where Tweedie’s model 
excels and where alternative methodologies may be better; see, e.g., 
Quijano Xacur and Garrido (2015); Delong et al. (2021). Particularly, 
Delong et al. (2021) has investigated two parametrization approaches 
and provided theoretical evidence supporting the industry preference 
for the Poisson-gamma parametrization over the Tweedie’s compound 
Poisson parametrization. We refer to Zhou et al. (2022); Gao (2024); 
Lian et al. (2023) for recent developments of Tweedie’s model.

The above literature review seems to indicate that almost all the 
models rely on likelihood-based approaches for parameter estimation, 
assuming a linear additive structure when incorporating covariates. This 
makes it difficult for these models to achieve variable selection and 
interaction detection automatically. Moreover, the above discussions 
show that there is no simple answer to the question on the associa

tion/dependence between number of claims and severities, because it 
can be introduced by the covariates or model dependence or a combi

nation of them.

More recently, machine learning methods have been introduced in 
the context of insurance by adopting actuarial loss distributions to cap

ture the characteristics of insurance claims. We refer to Blier-Wong et al. 
(2020); Denuit and Trufin (2019); Wuthrich and Merz (2022); Wuthrich 
and Buser (2022) for recent discussions. Insurance pricing models are 
heavily regulated and must meet specific requirements before being de

ployed in practice, which poses challenges for most machine learning 
methods. As discussed in Henckaerts et al. (2021); Zhang et al. (2024), 
tree-based models are considered appropriate for insurance rate-making 
due to their transparent nature. Furthermore, tree-based models are 
known to be able to capture nonlinearities and complex higher order 
interactions among covariates, and automatically implement variable 
selection. In our previous work (Zhang et al., 2024), we have demon

strated the superiority of Bayesian classification and regression tree 
(BCART) models in claim frequency analysis. In this sequel, working 
with summarized data (𝑁, 𝑆̄) (or (𝑁,𝑆)), we construct some novel 
insurance pricing models using BCART for both average severity and 
aggregate claim amount.

Specifically, inspired by the claim loss models discussed in the liter

ature, we introduce and investigate three types of BCART models. We 
first discuss a benchmark frequency-severity BCART model, where the 
number of claims and average severity are modeled separately using 
BCART. Furthermore, we propose two other types of BCART models, 
with an aim to better incorporate the underlying complex association 
between the number of claims and average severity. These are sequen

tial BCART models (motivated by Frees et al. (2011); Garrido et al. 
(2016); Gschlößl and Czado (2007)) and joint BCART models (moti

vated by Jørgensen and Paes De Souza (1994); Smyth and Jørgensen 
(2002); Delong et al. (2021)). In contrast to the frequency-severity and 
sequential BCART models which result in two separate trees for the num

ber of claims and average severity, the joint BCART models generate one 
joint tree for the bivariate response (𝑁,𝑆) which suggests a joint effect 
of covariates to both parts. In the real data analysis below, we observe 
that different cells of the resulting tree partition can exhibit varying 
(positive or negative) conditional dependencies between the number of 
claims and average severity, overcoming the drawback of most existing 
models which are only able to capture a unique portfolio-level depen

dence; see Remark 6.

The main contributions of this paper are as follows:

• We implement BCART models for average severity including 
gamma, lognormal and Weibull distributions and for aggregate 
claim amount including compound Poisson gamma (CPG) and zero

inflated compound Poisson gamma (ZICPG) distributions. These are 
not currently available in any R package.

• To explore the complex association between the number of claims 
and average severity, we propose novel sequential BCART models 
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that treat the number of claims (or its estimate) as a covariate in 
average severity modeling. For these models, the aggregate claim 
amount cannot be obtained analytically due to the assumed depen

dence, for which a Monte Carlo method will be used. The effective

ness is illustrated using simulated and real insurance data.

• We present a general framework for the BCART models applicable 
for multivariate responses, extending the MCMC algorithms dis

cussed in Zhang et al. (2024). To the best of our knowledge, there 
have been very few discussions on Bayesian tree models with multi

variate responses in the current literature, with the only exception 
(Um et al., 2023). As a particular application, we propose novel 
joint BCART models with a bivariate response to simultaneously 
model the number of claims and aggregate claim amount. In doing 
so, we employ the commonly used distributions such as CPG and 
ZICPG. The potential advantages of information sharing using one 
joint tree compared with two separate trees are also illustrated by 
simulated and real insurance data.

• For the comparison of one joint tree (generated from the joint 
BCART models) with two separate trees (generated from the 
frequency-severity or sequential BCART models), we propose some 
evaluation metrics which involve a combination of trees using an 
idea of Rocková et al. (2020). We also propose an application of 
the adjusted Rand Index (ARI) in assessing the similarity between 
trees. Although ARI is widely used in cluster analysis, its applica

tion to tree comparisons seems to be a novel idea. The use of ARI 
enhances the understanding of the necessity of information shar

ing, an aspect not covered in relevant literature; see, e.g., Linero et 
al. (2020).

Outline of the rest of the paper: In Section 2, we briefly review 
the BCART framework, introducing a more general MCMC algorithm 
for BCART models with multivariate responses. Section 3 introduces 
the notation for insurance claim data and investigates three types of 
BCART models for the aggregate claim amount. Section 4 develops a 
performance assessment of the proposed aggregate claim models us

ing simulation examples. In Section 5, we present a detailed analysis 
of real insurance data using the proposed models. Section 6 concludes 
the paper. Some of the technical details are included in an online Sup

plementary Material.

2. Bayesian CART: a general framework

The BCART models, as introduced in the seminal papers (Chipman et 
al., 1998; Denison et al., 1998), provide a Bayesian perspective on CART 
models. In this section, we give a brief review of the BCART model using 
a more general framework that applies to multivariate response data; see 
Zhang et al. (2024) for the univariate case.

2.1. Data, model and training algorithm

Consider a matrix-form dataset (𝑿,𝒀 ) =
(
(𝒙1,𝒚1), (𝒙2,𝒚2),… , 

(𝒙𝑛,𝒚𝑛)
)⊤

with 𝑛 independent observations. For the 𝑖-th observation, 
𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑝) is a vector of 𝑝 explanatory variables (or covari

ates) sampled from a space  , while 𝒚𝑖 = (𝑦𝑖1, 𝑦𝑖2,… , 𝑦𝑖𝑞) is a vector 
of 𝑞 response variables sampled from a space  . For the severity (or 
frequency) modeling,  is a space of real positive (or integer) values. 
For aggregate claim modeling,  is a space of 2-dimensional vectors 
with two components: an integer number of claims and a real valued 
aggregate claim amount.

A CART has two main components: a binary tree  with 𝑏 terminal 
nodes which induces a partition of the covariate space  , denoted by {1,… ,𝑏

}
, and a parameter 𝜽 =

(
𝜽1,𝜽2,… ,𝜽𝑏

)
which associates the 

parameter value 𝜽𝑡 with the 𝑡-th terminal node. Note that here we do not 
specify the dimension and range of the parameter 𝜽𝑡 which should be 
clear from the context. If 𝒙𝒊 is located in the 𝑡-th terminal node (i.e., 𝒙𝑖 ∈𝑡), then 𝒚𝑖 has a (joint) distribution 𝑓

(
𝒚𝑖 ∣ 𝜽𝑡

)
, where 𝑓 represents a 

parametric family indexed by 𝜽𝑡. By associating observations with the 
𝑏 terminal nodes in the tree  , we can re-order the 𝑛 observations such 
that

(𝑿,𝒀 ) =
(
(𝑿1,𝒀 1), (𝑿2,𝒀 2)… , (𝑿𝑏,𝒀 𝑏)

)⊤
,

where 𝒀 𝑡 =
(
𝒚𝑡1,…𝒚𝑡𝑛𝑡

)⊤

is an 𝑛𝑡 × 𝑞 matrix with 𝑛𝑡 denoting the num

ber of observations and 𝒚𝑡𝑖 denoting the 𝑖-th observed response in the 
𝑡-th terminal node, and 𝑿𝑡 is an analogously defined 𝑛𝑡×𝑝 design matrix. 
We make the typical assumption that conditionally on (𝜽, ), response 
variables are independent and identically distributed (IID). The CART 
model likelihood is then

𝑝(𝒀 ∣𝑿,𝜽, ) =
𝑏 ∏

𝑡=1 
𝑓
(
𝒀 𝑡 ∣ 𝜽𝑡

)
=

𝑏 ∏
𝑡=1 

𝑛𝑡∏
𝑖=1 

𝑓
(
𝒚𝑡𝑖 ∣ 𝜽𝑡

)
. (3)

Given (𝜽, ), a Bayesian analysis involves specifying a prior distribu

tion 𝑝(𝜽, ), and inference about 𝜽 and  is based on the joint posterior 
𝑝(𝜽, |𝒀 ,𝑿) using a suitable MCMC algorithm. Since 𝜽 indexes the 
parametric model whose dimension depends on the number of termi

nal nodes of the tree, it is usually convenient to apply the relationship 
𝑝(𝜽, ) = 𝑝(𝜽 ∣  )𝑝( ), and specify the tree prior distribution 𝑝( ) and 
the terminal node parameter prior distribution 𝑝(𝜽 ∣  ), respectively.

The prior distribution 𝑝( ) has two components: a tree topology and 
a decision rule for each of the internal nodes. We follow (Chipman et 
al., 1998), in which a draw of the tree is obtained by generating, for 
each node at depth 𝑑 (with 𝑑 = 0 for the root node), two child nodes 
with probability

𝑝(𝑑) = 𝛾 (1 + 𝑑)−𝜌 , (4)

where 𝛾 ∈ (0,1], 𝜌 ≥ 0 are parameters controlling the structure and size 
of the tree. This process iterates for 𝑑 = 0,1,… until we reach a depth 
at which all the nodes cease growing. After the tree topology is gener

ated, each internal node is associated with a decision rule which will be 
drawn uniformly among all the possible decision rules for that node. We 
refer to Zhang et al. (2024) for detailed discussion on the choice of the 
prior distribution 𝑝( ). It is important to choose the form 𝑝(𝜽 ∣  ) for 
which it is possible to analytically margin out 𝜽 to obtain the integrated 
likelihood

𝑝(𝒀 ∣𝑿, ) = ∫ 𝑝(𝒀 ∣𝑿,𝜽, )𝑝(𝜽 ∣  )𝑑𝜽 =
𝑏 ∏

𝑡=1 ∫
𝑓
(
𝒀 𝑡 ∣ 𝜽𝑡

)
𝑝(𝜽𝑡)𝑑𝜽𝑡

=
𝑏 ∏

𝑡=1 ∫
𝑛𝑡∏
𝑖=1 

𝑓
(
𝒚𝑡𝑖 ∣ 𝜽𝑡

)
𝑝(𝜽𝑡)𝑑𝜽𝑡, (5)

where in the second equality we assume that conditional on the tree 
with 𝑏 terminal nodes as above, the parameters 𝜽𝑡, 𝑡 = 1,2,… , 𝑏, have 
IID priors 𝑝(𝜽𝑡), which is a common assumption. Examples where this 
integration has a closed-form expression can be found in, e.g., Chipman 
et al. (1998); Linero (2017).

When there is no obvious prior distribution 𝑝(𝜽𝑡) such that the in

tegration in (5) is of closed-form, particularly, for non-Gaussian dis

tributed data 𝒀 , a data augmentation method is usually utilized in the 
literature, e.g., Murray (2021); Zhang et al. (2024). Here, we present 
a general framework in which apart from including a data augmenta

tion, some components of 𝜽𝑡 are assumed to be known a priori, but 
some others are assumed to be unknown. More precisely, we assume 
𝜽𝑡 = (𝜽𝑡,𝑀 ,𝜽𝑡,𝐵), where 𝜽𝑡,𝑀 are the parameters that are treated as 
known and computed using Method of Moments Estimation (MME), 
or Maximum Likelihood Estimation (MLE), and 𝜽𝑡,𝐵 are the unknown 
parameters that need to be estimated in the Bayesian framework. This 
newly proposed framework aims to reduce the overall computational 
time of the algorithm and overcome the difficulty of finding an appro

priate prior for some parameters even with the data augmentation (that 
is why 𝜽𝑡,𝑀 is assumed known a priori). Under this framework, we aug

ment the data 𝒀 by introducing a latent variable 𝒁 = (𝒛1,𝒛2,… ,𝒛𝑛)⊤ so 
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that the integration in (6) is computable for the augmented data (𝒀 ,𝒁). 
The integrated likelihood is given as

𝑝(𝒀 ∣𝑿,𝜽𝑀, ) = ∫ 𝑝(𝒀 ,𝒁 ∣𝑿,𝜽𝑀, )𝑑𝒁,

where

𝑝(𝒀 ,𝒁 ∣𝑿,𝜽𝑀, ) = ∫ 𝑝(𝒀 ,𝒁 ∣𝑿,𝜽𝑀,𝜽𝐵, )𝑝(𝜽𝐵 ∣  )𝑑𝜽𝐵 (6)

=
𝑏 ∏

𝑡=1 ∫
𝑛𝑡∏
𝑖=1 

𝑓
(
𝒚𝑡𝑖,𝒛𝑡𝑖 ∣ 𝜽𝑡,𝑀 ,𝜽𝑡,𝐵

)
𝑝(𝜽𝑡,𝐵)𝑑𝜽𝑡,𝐵,

with 𝒁 𝑡 = (𝒛𝑡1,𝒛𝑡2,… ,𝒛𝑡𝑛𝑡 )
⊤ defined according to the partition of  .

Combining the augmented integrated likelihood 𝑝(𝒀 ,𝒁 ∣𝑿,𝜽𝑀, )
with tree prior 𝑝( ), allows us to calculate the posterior of 
𝑝( ∣𝑿,𝒀 ,𝜽𝑀,𝒁) ∝ 𝑝(𝒀 ,𝒁 ∣𝑿,𝜽𝑀, )𝑝( ). (7)

When using MCMC to conduct Bayesian inference,  can be updated 
using a Metropolis-Hastings (MH) algorithm with the right-hand side of 
(7) used to compute the acceptance ratio. Starting from the root node, 
the MCMC algorithm for simulating a Markov chain sequence of pairs 
(𝜽(1), (1)), (𝜽(2), (2)),…, using the posterior given in (7), is given in 
Algorithm 1 in which commonly used proposals (or transitions) for 𝑞(⋅, ⋅)
include grow, prune, change and swap (see Chipman et al. (1998)). See 
Zhang et al. (2024) for further details.

Algorithm 1 One step of the MCMC algorithm for the BCART models pa

rameterized by (𝜽𝑀,𝜽𝐵, ) using data augmentation with both known 
and unknown parameters.

Input: Data (𝑿,𝒀 ) and current values (𝜽̂(𝑚)
𝑀

,𝜽
(𝑚)
𝐵

,𝒁 (𝑚), (𝑚))
1: Generate a candidate value  ∗ with probability distribution 𝑞( (𝑚), ∗)
2: Estimate 𝜽̂(𝑚+1)

𝑀
, using MME (or MLE) 

3: Sample 𝒁 (𝑚+1) ∼ 𝑝(𝒁 ∣𝑿,𝒀 , 𝜽̂
(𝑚+1)
𝑀

,𝜽
(𝑚)
𝐵

, (𝑚))
4: Set the acceptance ratio

𝛼( (𝑚), ∗) = min
⎧⎪⎨⎪⎩
𝑞( ∗, (𝑚))𝑝(𝒀 ,𝒁 (𝑚+1) ∣𝑿, 𝜽̂

(𝑚+1)
𝑀

, ∗)𝑝( ∗)

𝑞( (𝑚), ∗)𝑝(𝒀 ,𝒁(𝑚) ∣𝑿, 𝜽̂
(𝑚)
𝑀

, (𝑚))𝑝( (𝑚)) 
,1
⎫⎪⎬⎪⎭

5: Update  (𝑚+1) =  ∗ with probability 𝛼( (𝑚), ∗), otherwise, set  (𝑚+1) =
 (𝑚)

6: Sample 𝜽(𝑚+1)
𝐵

∼ 𝑝(𝜽𝐵 ∣𝑿,𝒀 , 𝜽̂
(𝑚+1)
𝑀

,𝒁(𝑚+1), (𝑚+1))
Output: New values (𝜽̂(𝑚+1)

𝑀
,𝜽

(𝑚+1)
𝐵

,𝒁(𝑚+1), (𝑚+1))

Remark 1. 

(a). In Algorithm 1, the sampling steps should be done only as required. 
For example, in Step 2, 𝜽̂(𝑚+1)

𝑀
needs to be estimated only for those 

nodes that were involved in the proposed move from  (𝑚) to  ∗.

(b). Algorithm 1 is a general algorithm from which we can retrieve all 
the algorithms discussed in Zhang et al. (2024), e.g., the algorithm 
for the zero-inflated Poisson model therein can be retrieved by as

suming there is no component 𝜽𝑀 .

(c). The proposed parameter separation framework 𝜽𝑡 = (𝜽𝑡,𝑀 ,𝜽𝑡,𝐵) is 
designed for simplicity. While general non-conjugate priors could 
offer greater flexibility in modeling complex data, they would re

quire computationally intensive methods in approximating the pos

teriors, which significantly increases computational cost. Exploring 
non-conjugate priors, using, e.g., Laplace approximation as in Chip

man et al. (2003), may be a direction for future research.

2.2. Model selection and prediction

The MCMC algorithm described in Algorithm 1 can be used to search 
for desirable trees, and we use the three-step approach proposed in 

Zhang et al. (2024) based on deviance information criterion (DIC) to se

lect an ``optimal'' tree among those visited trees; see Table 1. Note that in 
the following sections, we introduce the DIC for different models based 
on the idea that DIC=``goodness of fit''+``complexity''. See Spiegelhal

ter et al. (2002); Celeux et al. (2006) for discussion on DIC in a general 
Bayesian framework.

Suppose  , with 𝑏 terminal nodes and parameter 𝜽, is the selected 
tree from the above approach. For new 𝒙 the predicted 𝒚̂ is defined as

𝒚̂ ∣ 𝒙 =
𝑏 ∑

𝑡=1 
𝐸(𝒚 ∣ 𝜽̄𝑡)𝐼(𝒙∈𝑡), (8)

where 𝐼(⋅) denotes the indicator function and {𝑡}𝑏𝑡=1 is the partition of 
 by  .

3. Aggregate claim amount modeling with Bayesian CART

This section introduces the BCART models for aggregate claim 
amount by specifying the response distribution within the framework 
outlined in Section 2. We begin by introducing the type of insurance 
claim data that will be discussed in this paper. A claim dataset with 𝑛
policyholders can be described by (𝑿,𝒗,𝑵 ,𝑺) =

(
(𝒙1, 𝑣1,𝑁1, 𝑆1),… , 

(𝒙𝑛, 𝑣𝑛,𝑁𝑛,𝑆𝑛)
)⊤

, where 𝒙𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝑝) ∈  represents rating vari

ables (e.g., driver age, age of the car and car brand in car insurance); 
𝑣𝑖 ∈ (0,1] is the exposure in yearly units, quantifying the duration the 
policyholder 𝑖 is exposed to risk; 𝑁𝑖 is the number of claims reported 
during exposure time of the policyholder, and 𝑆𝑖 is the aggregate (total) 
claim amount. Following the convention in Oh et al. (2021), we have a 
summarized dataset as the individual severities are not accessible.

Before describing our BCART models, we briefly recall some basics 
on the aggregate claim amount (1)-(2); see, e.g., Wuthrich (2022); Gar

rido et al. (2016); Frees et al. (2016) for discussions. Consider a given 
(generic) policyholder, and assume unit exposure (i.e., 𝑣 = 1), for sim

plicity. We are primarily interested in estimating the pure premium 
defined as 𝔼(𝑆) (we remark that generally the pure premium should 
be defined as 𝔼(𝑆)∕𝑣, i.e., the expected claim amount per year). Under 
the classical collective risk model with full independence between 𝑁
and {𝑌𝑖}𝑖≥1, we have

𝔼(𝑆) = 𝔼(𝑁)𝔼(𝑆̄|𝑁 > 0). (9)

When a vector 𝒙 = (𝑥1,… , 𝑥𝑝) of covariates for this policyholder is avail

able, it can be incorporated into separate GLMs for frequency 𝑁 and 
(conditional) average severity 𝑆̄|𝑁 > 0, this is the classical frequency

severity model. In particular, a distribution from exponential distribu

tion family (EDF) with 𝑁 as a weight is used for the average severity 
𝑆̄|𝑁 > 0; see e.g., Garrido et al. (2016); Gschlößl and Czado (2007). 
More specifically, assuming 𝑌𝑗 ∼ EDF(𝜇,𝜙), with mean 𝜇 and disper

sion 𝜙, in (1), we have, 𝑆̄|𝑁 = 𝑛 ∼ EDF(𝜇,𝜙∕𝑛) due to the convolution 
property, which means that modeling individual severity is equivalent 
to modeling the average severity where 𝑁 is included as a weight. A 
common distribution for 𝑌𝑗 is the gamma distribution. This approach 
introduces an intrinsic functional dependence of the distribution of av

erage severity on 𝑁 and can be used for summarized data. The pure 
premium can then be calculated by multiplying the estimations for the 
two parts by (9). Another approach when dealing with summarized data 
(𝑁, 𝑆̄) is to use only the first formulation of (2), imposing a distribu

tion (independent of 𝑁) directly for the average severity 𝑆̄|𝑁 > 0; see 
e.g., Czado et al. (2012); Baumgartner et al. (2015); Shi et al. (2015); 
Krämer et al. (2013). In Baumgartner et al. (2015) a shared random ef

fects model is used to induce a conditional independence between the 
number of claims and average severity. In Shi et al. (2015); Czado et 
al. (2012) copulas are used to model the dependence between the two 
parts, and the performance of these models is compared with the inde

pendence case, that is, technically speaking, 𝑁 independent of 𝑆̄ given 
𝑁 > 0. It is clear that for this independence case the pure premium can 
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still be estimated based on the product form (9). However, for the gen

eral dependence case, the product form as in (9) is not valid any more, 
and instead we apply a Monte Carlo method for pure premium estima

tion.

Based on these discussions, we shall introduce the frequency-severity 
BCART models as a benchmark, where the frequency part and severity 
part are dealt with independently; see Subsection 3.1. In order to explore 
methods to capture the association between 𝑆̄ and 𝑁 more comprehen

sively, we propose two other types of BCART models. First, following 
the idea of Frees et al. (2011); Garrido et al. (2016) we introduce the se
quential BCART models by including 𝑁 (or its estimate 𝑁̂) as a covariate 
when modeling the average severity. Second, motivated by Jørgensen 
and Paes De Souza (1994); Smyth and Jørgensen (2002); Delong et al. 
(2021), we introduce joint BCART models by considering (𝑁,𝑆) as a bi

variate response. In this framework, association between the number of 
claims and average severity induced by potentially shared information 
(through covariates) is naturally incorporated within a selected single 
tree structure. These BCART models will be discussed in detail in Sub

sections 3.2 and 3.3, respectively.

3.1. Frequency-severity BCART models

Recall that the BCART models for the frequency component 𝔼(𝑁) of 
(9) have been discussed in Zhang et al. (2024). Here we shall focus on 
the BCART modeling of the average severity component 𝔼(𝑆̄|𝑁 > 0) of 
(9). More precisely, we will discuss a gamma distribution (as an example 
in the EDF) with 𝑁 included as a weight, and three other distributions 
to directly model the average severity without including 𝑁 as a weight, 
namely, gamma, lognormal, and Weibull. For this purpose, we will only 
consider a data subset with 𝑁𝑖 > 0, and denote by 𝑛̄ (≤ 𝑛) the size 
of this subset. The subset of average severity data will be denoted by 
(𝑿,𝑵 , 𝑺̄) =

(
(𝒙1,𝑁1, 𝑆̄1),… , (𝒙𝑛̄,𝑁𝑛̄, 𝑆̄𝑛̄)

)⊤
.

3.1.1. Average severity modeling using gamma distribution with 𝑁 as a 
weight

Assume the generic average severity 𝑆̄|𝑁 > 0 follows a gamma 
distribution with parameters being multipliers of 𝑁 , i.e., 𝑆̄|𝑁 > 0 ∼
Gamma (𝑁𝛼,𝑁𝛽), with 𝛼, 𝛽 > 0. Note that this is equivalent to assum

ing that the individual severity 𝑌𝑗 follows Gamma(𝛼, 𝛽) distribution, due 
to the convolution property. Recall that the probability density function 
(pdf) of the Gamma(𝛼, 𝛽) distribution and its mean and variance are 
given as

𝑓𝐺(𝑥) =
𝛽𝛼𝑥𝛼−1

Γ(𝛼) 
𝑒−𝛽𝑥, 𝑥 > 0, 𝜇𝐺 = 𝛼

𝛽
, 𝜎2

𝐺
= 𝛼

𝛽2
, (10)

where Γ(⋅) is the gamma function. It is known that gamma distribution 
is right-skewed and relatively light-tailed.

According to the general BCART framework in Section 2, con

sidering a tree  with 𝑏 terminal nodes and 𝜽𝑡 = (𝛼𝑡, 𝛽𝑡) the two

dimensional parameter for the 𝑡-th terminal node, we assume 𝑆̄𝑖|𝒙𝑖,𝑁𝑖 ∼
Gamma

(
𝑁𝑖𝛼(𝒙𝑖),𝑁𝑖𝛽(𝒙𝑖)

)
for the 𝑖-th observation, where 𝛼(𝒙𝑖) =∑𝑏

𝑡=1 𝛼𝑡𝐼(𝒙𝑖∈𝑡) and 𝛽(𝒙𝑖) =
∑𝑏

𝑡=1 𝛽𝑡𝐼(𝒙𝑖∈𝑡), with {𝑡}𝑏𝑡=1 being the cor

responding partition of  . Specifically, for 𝑖-th observation such that 
𝒙𝑖 ∈𝑡, we have (with 𝑁𝑖 compressed in 𝑓𝐺)

𝑓G

(
𝑆̄𝑖|𝛼𝑡, 𝛽𝑡) = (𝑁𝑖𝛽𝑡)𝑁𝑖𝛼𝑡 𝑆̄

𝑁𝑖𝛼𝑡−1
𝑖

Γ(𝑁𝑖𝛼𝑡) 
𝑒−𝑁𝑖𝛽𝑡𝑆̄𝑖 .

The mean and variance of 𝑆̄𝑖 are thus given by 𝛼𝑡∕𝛽𝑡 and 𝛼𝑡∕(𝑁𝑖𝛽
2
𝑡
), 

respectively.

For each terminal node 𝑡, we treat 𝛼𝑡 as known and 𝛽𝑡 as unknown 
and shall not apply any data augmentation. According to the notation 
used in Section 2 this means 𝜽𝑡,𝑀 = 𝛼𝑡 and 𝜽𝑡,𝐵 = 𝛽𝑡. Here 𝛼𝑡 will be 
estimated using MME, i.e.,

𝛼̂𝑡 =
(𝑆̄)2

𝑡

Var(𝑆̄)𝑡𝑁̄𝑡

, (11)

where (𝑆̄)𝑡 and Var(𝑆̄)𝑡 are the empirical mean and variance of the 
average severity, respectively, and 𝑁̄𝑡 is the average claim number of 
the data in the 𝑡-th terminal node. We treat 𝛽𝑡 as uncertain and use a 
conjugate gamma prior with hyper-parameters 𝛼𝜋, 𝛽𝜋 > 0. Denote the 
associated data in terminal node 𝑡 as 

(
𝑿𝑡,𝑵 𝑡, 𝑺̄ 𝑡) = ((𝑋𝑡1,𝑁𝑡1, 𝑆̄𝑡1),… , 

(𝑋𝑡𝑛̄𝑡
,𝑁𝑡𝑛̄𝑡

, 𝑆̄𝑡𝑛̄𝑡
)
)⊤

. The integrated likelihood for the terminal node 𝑡 can 
then be obtained as

𝑝G(𝑺̄ 𝑡 ∣𝑿𝑡,𝑵 𝑡, 𝛼̂𝑡)

=

∞ 

∫
0 

𝑓G(𝑺̄ 𝑡 ∣𝑵 𝑡, 𝛼̂𝑡, 𝛽𝑡)𝑝(𝛽𝑡)𝑑𝛽𝑡

=

∞ 

∫
0 

𝑛̄𝑡∏
𝑖=1 

(
(𝑁𝑡𝑖𝛽𝑡)𝑁𝑡𝑖𝛼̂𝑡 𝑆̄

𝑁𝑡𝑖𝛼̂𝑡−1
𝑡𝑖

𝑒−𝑁𝑡𝑖𝛽𝑡𝑆̄𝑡𝑖

Γ(𝑁𝑡𝑖𝛼̂𝑡) 

)
𝛽
𝛼𝜋
𝜋 𝛽𝑡

𝛼𝜋−1𝑒−𝛽𝜋𝛽𝑡

Γ(𝛼𝜋) 
𝑑𝛽𝑡 (12)

=
𝛽
𝛼𝜋
𝜋

∏𝑛̄𝑡
𝑖=1

(
𝑁

𝑁𝑡𝑖𝛼̂𝑡
𝑡𝑖

𝑆̄
𝑁𝑡𝑖𝛼̂𝑡−1
𝑡𝑖

)
Γ(𝛼𝜋)

∏𝑛̄𝑡
𝑖=1 Γ(𝑁𝑡𝑖𝛼̂𝑡) 

Γ(
∑𝑛̄𝑡

𝑖=1𝑁𝑡𝑖𝛼̂𝑡 + 𝛼𝜋) 

(
∑𝑛̄𝑡

𝑖=1𝑁𝑡𝑖𝑆̄𝑡𝑖 + 𝛽𝜋)
∑𝑛̄𝑡

𝑖=1 𝑁𝑡𝑖𝛼̂𝑡+𝛼𝜋

.

Clearly, from (12), we see that the posterior distribution of 𝛽𝑡 condi

tional on data (𝑵 𝑡, 𝑺̄ 𝑡) and the estimated parameter 𝛼̂𝑡, is given by

𝛽𝑡 ∣𝑵 𝑡, 𝑺̄ 𝑡, 𝛼̂𝑡 ∼ Gamma

(
𝑛̄𝑡∑
𝑖=1 

𝑁𝑡𝑖𝛼̂𝑡 + 𝛼𝜋,

𝑛̄𝑡∑
𝑖=1 

𝑁𝑡𝑖𝑆̄𝑡𝑖 + 𝛽𝜋

)
.

The integrated likelihood for the tree  is thus given by

𝑝G

(
𝑺̄ ∣𝑿,𝑵 , 𝜶̂, )

=
𝑏 ∏

𝑡=1 
𝑝G

(
𝑺̄ 𝑡 ∣𝑿𝑡,𝑵 𝑡, 𝛼̂𝑡

)
.

Next, we discuss the DIC for this tree. Following (Zhang et al., 2024), a 
DIC𝑡 for terminal node 𝑡 can be defined as DIC𝑡 =𝐷(𝛽𝑡) + 2𝑝𝐷𝑡, where 
the posterior mean of 𝛽𝑡 is given by

𝛽𝑡 =
∑𝑛̄𝑡

𝑖=1𝑁𝑡𝑖𝛼̂𝑡 + 𝛼𝜋∑𝑛̄𝑡
𝑖=1𝑁𝑡𝑖𝑆̄𝑡𝑖 + 𝛽𝜋

; (13)

the goodness-offit is given as

𝐷(𝛽𝑡) = −2
𝑛̄𝑡∑
𝑖=1 

log𝑓G(𝑆̄𝑡𝑖 ∣𝑁𝑖, 𝛼̂𝑡, 𝛽𝑡)

= −2
𝑛̄𝑡∑
𝑖=1 

[
𝑁𝑡𝑖𝛼̂𝑡 log(𝑁𝑡𝑖𝛽𝑡) + (𝑁𝑡𝑖𝛼̂𝑡 − 1) log(𝑆̄𝑡𝑖)

− 𝛽𝑡𝑁𝑡𝑖𝑆̄𝑡𝑖 − log
(
Γ(𝑁𝑡𝑖𝛼̂𝑡)

)]
,

and the effective number of parameters 𝑝𝐷𝑡 is defined by

𝑝𝐷𝑡 = 1 +𝐷(𝛽𝑡) −𝐷(𝛽𝑡)

= 1 + 2
𝑛̄𝑡∑
𝑖=1 

{
log

(
𝑓G(𝑆̄𝑡𝑖 ∣ 𝛼̂𝑡, 𝛽𝑡)

)
− 𝔼post

(
log(𝑓G

(
𝑆̄𝑡𝑖 ∣ 𝛼̂𝑡, 𝛽𝑡)

))}
,

(14)

where 1 is added for the parameter 𝛼𝑡 which was estimated upfront, and 
the difference of the last two terms on the right-hand side of the first 
line is the effective number for the unknown parameter 𝛽𝑡 . Some direct 
calculations yield that

𝑝𝐷𝑡 = 1 + 2

(
log

(
𝑛̄𝑡∑
𝑖=1 

𝑁𝑡𝑖𝛼̂𝑡 + 𝛼𝜋

)
−𝜓

(
𝑛̄𝑡∑
𝑖=1 

𝑁𝑡𝑖𝛼̂𝑡 + 𝛼𝜋

))
𝑛̄𝑡∑
𝑖=1 

𝑁𝑡𝑖𝛼̂𝑡,

with 𝜓(𝑥) = Γ′(𝑥)∕Γ(𝑥) being the digamma function, and thus DIC𝑡 can 
be derived. Consequently, the DIC of the whole tree  is obtained as

Insurance Mathematics and Economics 125 (2025) 103136 

5 



Y. Zhang, L. Ji, G. Aivaliotis et al. 

Table 1
Estimations for average severity in terminal node 𝑡. Here (𝑆̄)𝑡 and Var(𝑆̄)𝑡 denote the 
empirical mean and variance of the average severity in the 𝑡-th node, respectively. See 
Supplementary Material SM.A for details.

Distribution Gamma(𝛼𝑡, 𝛽𝑡) LN(𝜇𝑡, 𝜎𝑡) Weib(𝛼𝑡, 𝛽𝑡)

Prediction ̂̄𝑆𝑡 𝛼̂𝑡∕𝛽𝑡 exp(𝜇̄𝑡 + 𝜎̂2
𝑡
∕2) 𝛽

1∕𝛼̂𝑡

𝑡
Γ(1 + 1∕𝛼̂𝑡)

Parameter 𝛼̂𝑡 =
(𝑆̄)2

𝑡

Var(𝑆̄)𝑡
𝜎̂𝑡 obtained using MME 𝛼̂𝑡 obtained using MME

estimation 𝛽𝑡 =
𝑛̄𝑡 𝛼̂𝑡+𝛼𝜋∑𝑛̄𝑡
𝑖=1 𝑆̄𝑡𝑖+𝛽𝜋

𝜇̄𝑡 =
𝜎̂2
𝑡
𝜎2
𝜋

𝑛̄𝑡𝜎
2
𝜋
+𝜎̂2

𝑡

(
𝜇𝜋

𝜎2
𝜋

+
∑𝑛̄𝑡

𝑖=1 log(𝑆̄𝑡𝑖 )
𝜎̂2
𝑡

)
𝛽𝑡 =

∑𝑛̄𝑡
𝑖=1 𝑆̄

𝛼̂𝑡
𝑡𝑖
+𝛽𝜋

𝑛̄𝑡+𝛼𝜋−1 

DIC =
𝑏 ∑

𝑡=1 
DIC𝑡. (15)

With the above formulas derived for the gamma case, we can use 
the approach presented in Table 1 of Zhang et al. (2024), together with 
Algorithm 1, to search for an optimal tree which can then be used to 
predict new data such that the estimated average severity 𝛼̂𝑡∕𝛽𝑡 in each 
terminal node 𝑡 can be determined using (11) and (13).

3.1.2. Average severity modeling using distributions without 𝑁 as a weight

Three distributions (gamma, lognormal and Weibull) will be used to 
model the average severity 𝑆̄|𝑁 > 0. Selecting among these three distri

butions for certain data may pose a considerable challenge, and scholars 
have extensively explored this topic; see, e.g., Siswadi and Quesenberry 
(1982). In average severity modeling, insurers want to gain more in

sights into the right tail. The gamma distribution would be a suitable 
model for losses that are not catastrophic, such as auto insurance. The 
lognormal distribution is more suitable for fire insurance, which may ex

hibit more extreme values than auto insurance. Moreover, the Weibull 
distribution has the ability to handle different scenarios by tuning the 
shape parameter to adapt to different tail characteristics.

We demonstrate how to apply these distributions in BCART models 
for the average severity data. The idea, as in the previous section, is to 
specify the distributions/parameters in the general BCART framework 
of Section 2. We only give some key information below, and defer some 
detailed calculations to Section SM.A of the Supplementary Material.

Consider a tree  with 𝑏 terminal nodes for the average severity 
data. In gamma and Weibull models, we respectively assume 𝑆̄𝑖 ∣ 𝒙𝑖 ∼
Gamma

(
𝛼(𝒙𝑖), 𝛽(𝒙𝑖)

)
, and 𝑆̄𝑖 ∣ 𝒙𝑖 ∼ Weib

(
𝛼(𝒙𝑖), 𝛽(𝒙𝑖)

)
, where 𝛼(𝒙𝑖) =∑𝑏

𝑡=1 𝛼𝑡𝐼(𝒙𝑖∈𝑡), 𝛽(𝒙𝑖) =
∑𝑏

𝑡=1 𝛽𝑡𝐼(𝒙𝑖∈𝑡). In a lognormal model, we as

sume that 𝑆̄𝑖 ∣ 𝒙𝑖 ∼ LN
(
𝜇(𝒙𝑖), 𝜎(𝒙𝑖)

)
, where 𝜇(𝒙𝑖) =

∑𝑏

𝑡=1 𝜇𝑡𝐼(𝒙𝑖∈𝑡), 
and 𝜎(𝒙𝑖) =

∑𝑏

𝑡=1 𝜎𝑡𝐼(𝒙𝑖∈𝑡).
For each terminal node 𝑡, we treat one parameter as known and the 

other as unknown, that is, according to the notation in Section 2, 𝜽𝑡,𝑀

is 𝛼𝑡 for the gamma and Weibull models and is 𝜎𝑡 for the lognormal 
model, and 𝜽𝑡,𝐵 is 𝛽𝑡 for the gamma and Weibull models and is 𝜇𝑡 for 
the lognormal model. Furthermore, we apply a conjugate prior for 𝛽𝑡
and 𝜇𝑡, namely, a Gamma(𝛼𝜋, 𝛽𝜋 ) prior for the 𝛽𝑡 in the gamma model, 
a Normal(𝜇𝜋, 𝜎𝜋 ) prior for the 𝜇𝑡 in the lognormal model, and an inverse

Gamma(𝛼𝜋, 𝛽𝜋 ) prior for the 𝛽𝑡 in the Weibull model, i.e.,

𝑝(𝛽𝑡) =
𝛽
𝛼𝜋
𝜋

Γ(𝛼𝜋)
𝛽
−𝛼𝜋−1
𝑡

exp(−𝛽𝜋∕𝛽𝑡), (16)

with 𝛼𝜋, 𝛽𝜋 > 0. Estimates for the unknown parameters, calculations of 
the integrated likelihood and DIC𝑡 for these three models are given in 
Section SM.A of the Supplementary Material. We can then use the above 
procedure leading to the predictions obtained using (8) from different 
models, as displayed in Table 1.

Remark 2. 

(a). There are different ways to parameterize the Weibull distribution, 
either with two or three parameters; see, e.g., Rinne (2008). For 
simplicity, we adopt the common parameterization with two pa

rameters; see, e.g., Fink (1997).

(b). In the above BCART models for average severity we have assumed 
that one parameter of the distribution is treated as known and 
the other is treated as unknown which is given a conjugate prior. 
We note that this is not the only way to implement the BCART 
algorithms. There are other ways to treat the parameters. For ex

ample, for the gamma distribution, the following two alternative 
approaches can be considered:

• Treat the parameter 𝛽𝑡 as known and use a prior for 𝛼𝑡, i.e., 𝑝(𝛼𝑡) ∝
𝑎
𝛼𝑡−1
0 𝛽

𝛼𝑡𝑐0
𝑡

∕Γ(𝛼𝑡)𝑏0 where 𝑎0, 𝑏0, 𝑐0 are prior hyper-parameters.

• Treat both 𝛼𝑡 and 𝛽𝑡 as unknown and use a joint prior for them, 
i.e., 𝑝(𝛼𝑡, 𝛽𝑡) ∝ 1∕(Γ(𝛼𝑡)𝑐0𝛽

−𝛼𝑡𝑑0
𝑡

) 𝑎0
𝛼𝑡−1𝑒−𝛽𝑡𝑏0 where 𝑎0, 𝑏0, 𝑐0, 𝑑0

are prior hyper-parameters; see, e.g., Fink (1997).

Although the joint prior can be used to obtain estimators for 𝛼𝑡 and 
𝛽𝑡 simultaneously in the Bayesian framework, it is not formulated 
as an exact distribution, leading to less accurate estimators. The 
first way also has this shortcoming. For the lognormal distribution, 
a normal and inverse-gamma joint prior can be used for the param

eters 𝜇 and 𝜎2; see, e.g., Fink (1997). These more complicated cases 
are not considered in our current implementation.

(c). Many other distributions can also be used to model average sever

ity, such as Pareto, generalized gamma, generalized Pareto distri

butions, and so on. However, they either have too many parameters 
or are challenging to make explicit calculations in the Bayesian 
framework. We believe further research into the selection of these 
distributions is worth exploring; see, e.g., Shi et al. (2015); Mehmet 
and Saykan (2005); Farkas et al. (2021) for some insights on the ap

plication of these distributions to insurance pricing.

In the frequency-severity BCART models, we obtain two trees for 
frequency and average severity respectively. The pure premium can be 
calculated using the predictions from these two trees together with the 
pricing formula (9). There can be many different combinations of pre

dictions for the frequency-severity models, i.e., any model discussed in 
Zhang et al. (2024) for frequency and any model introduced above for 
average severity can be adopted.

One benefit of modeling frequency and average severity separately 
using two trees is that the important risk factors associated with each 
component can be discovered separately. However, it can be challenging 
to interpret two trees as a whole, since several policyholders may be 
classified in one cell by the frequency tree but in a different cell by the 
average severity tree. In the next section, we discuss the combination of 
two trees for prediction and interpretation.

3.1.3. Evaluation metrics for frequency-severity BCART models

In this section, we begin by exploring some performance evaluation 
metrics for average severity BCART models, then we introduce the idea 
of combining two trees to derive evaluation metrics for the frequency

severity BCART models. Application of these evaluation metrics will be 
discussed in Sections 4 and 5.

Evaluation metrics for average severity trees

We use the same performance measures that were introduced in 
Zhang et al. (2024). Suppose we have obtained a tree with 𝑏 terminal 
nodes and the corresponding predictions ̂̄𝑆𝑡 (𝑡 = 1,… , 𝑏) given in Ta

ble 1. Consider a test dataset with 𝑚̄ observations. Denote the number 
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Table 2
Variance (𝑉𝑡) of the average severity distribution in terminal node 𝑡 using the BCART es

timations. Below GammaN means the gamma model with 𝑁 as a weight, while Gamma 
means the gamma model without 𝑁 as a weight.

Dist. GammaN Gamma Lognormal Weibull

𝑉𝑡 𝛼̂𝑡∕(𝑁̄𝑡𝛽
2
𝑡
) 𝛼̂𝑡∕𝛽2

𝑡

(
𝑒𝜎̂

2
𝑡 − 1

)
𝑒2𝜇̄𝑡+𝜎̂2

𝑡 𝛽
2∕𝛼̂𝑡

𝑡

[
Γ
(
1 + 2∕𝛼̂𝑡

)
−
(
Γ
(
1 + 1∕𝛼̂𝑡

))2]
of test data in terminal node 𝑡 by 𝑚̄𝑡, and denote the associated data in 

terminal node 𝑡 as 
(
𝑿𝑡,𝑵 𝑡, 𝑺̄ 𝑡) = ((𝒙𝑡1,𝑁𝑡1, 𝑆̄𝑡1),… , (𝒙𝑡𝑚̄𝑡

,𝑁𝑡𝑚̄𝑡
, 𝑆̄𝑡𝑚̄𝑡

)
)⊤

(𝑡 = 1,… , 𝑏). The evaluation metrics are listed below.

M1: The residual sum of squares (RSS) is given by RSS(𝑺̄) = ∑𝑏

𝑡=1
∑𝑚̄𝑡

𝑖=1(𝑆̄𝑡𝑖 − ̂̄𝑆𝑡𝑖)2.

M2: The squared error (SE), based on a sub-portfolio (i.e., those in

stances in the same terminal node) level, is defined by SE(𝑺̄) =∑𝑏

𝑡=1

(∑𝑚̄𝑡

𝑖=1 𝑆𝑡𝑖∕
∑𝑚̄𝑡

𝑖=1𝑁𝑡𝑖 − ̂̄𝑆𝑡

)2
.

M3: Discrepancy statistic (DS) is defined as a weighted version of SE, 

given by DS(𝑺̄) =
∑𝑏

𝑡=1

(∑𝑚̄𝑡

𝑖=1 𝑆𝑡𝑖∕
∑𝑚̄𝑡

𝑖=1𝑁𝑡𝑖 − ̂̄𝑆𝑡

)2
∕𝑉𝑡, where 𝑉𝑡

for different models are given in Table 2.

M4: Model Lift indicates the ability to differentiate between cells of 
policyholders with low and high risks (average severity here), 
and is defined by using the data and their predicted values in the 
most and least risky cells. We use a similar approach as in Zhang 
et al. (2024) to calculate Lift for the average severity tree models; 
more details on these calculations can be found in Zhang (2024).

Evaluation metrics for two trees fromthe frequency-severity𝐦𝐨𝐝𝐞𝐥
The frequency-severity BCART model yields two trees. We now ex

plain how to combine these two trees to evaluate model performance 
based on the aggregate claim amount (or pure premium) prediction 𝑆̂
for a test dataset with 𝑚 observations. The idea is natural -- individual 
tree partitions are superimposed to form a joint partition of the covari

ate space  . This process evolves by merging all the splitting rules from 
both trees. The splits of each tree contribute to a refined segmentation 
of the covariate space, resulting in a joint partition that represents the 
collective behavior of the original two tree partitions; see Rocková et al. 
(2020).

Suppose we have obtained a joint partition with 𝑐 cells. The corre

sponding prediction 𝑆̂𝑡 for cell 𝑡 (𝑡 = 1,… , 𝑐) is obtained by (9),

𝑆̂𝑡 = 𝑁̂𝑠(𝑡)
̂̄𝑆𝑙(𝑡), (17)

where 𝑠(𝑡) is the corresponding node index of 𝑡 in the frequency tree and 
𝑙(𝑡) is the corresponding one in the severity tree, and 𝑁̂𝑠(𝑡) and ̂̄𝑆𝑙(𝑡) are 
the corresponding estimates from these two individual trees. We further 
denote 𝑚𝑡 as the number of observations in cell 𝑡. Using the notation 
above we have

M1’: The residual sum of squares RSS(𝑺) =
∑𝑐

𝑡=1
∑𝑚𝑡

𝑖=1(𝑆𝑡𝑖 − 𝑆̂𝑡𝑖)2.

M2’: The squared error SE(𝑺) =
∑𝑐

𝑡=1
(∑𝑚𝑡

𝑖=1 𝑆𝑡𝑖∕
∑𝑚𝑡

𝑖=1 𝑣𝑡𝑖 − 𝑆̂𝑡

)2
.

M3’: The discrepancy statistic DS(𝑺) =
∑𝑐

𝑡=1
(∑𝑚𝑡

𝑖=1 𝑆𝑡𝑖∕
∑𝑚𝑡

𝑖=1 𝑣𝑡𝑖 − 𝑆̂𝑡

)2 ∕ 
𝑉𝑡, where 𝑉𝑡 is the estimated model variance of 𝑆 in the 𝑡-th cell 
which is derived using the model specific assumptions and its pa

rameter estimates. More specifically, if the average severity model 
is as in Subsection 3.1.1, we can rewrite 𝑆 =

∑𝑁

𝑗=1 𝑌𝑗 with 𝑌𝑗 fol

lowing independent gamma distribution with parameters 𝛼, 𝛽 as 
in (10). Thus, we use Var(𝑆) = 𝔼(𝑁)Var(𝑌 ) + (𝔼(𝑌 ))2 Var(𝑁) to 
derive an estimate of 𝑉𝑡 for the 𝑡-th cell, together with corre

sponding estimated parameters for 𝛼, 𝛽 given in Subsection 3.1.1

and for different frequency models in Zhang et al. (2024). Fur

ther, if the average severity model is as in Subsection 3.1.2, 
assuming 𝑁 and 𝑆̄|𝑁 > 0 are independent, we use Var(𝑆) =

(
Var(𝑁) + (𝔼(𝑁))2

)
Var(𝑆̄|𝑁 > 0) + Var(𝑁)(𝔼(𝑆̄|𝑁 > 0))2 to de

rive an estimate for 𝑉𝑡 for the 𝑡-th cell, together with correspond

ing estimated parameters for different average severity models 
in Tables 1-2 and for different frequency models in Zhang et al. 
(2024).

M4’: Model Lift - similarly defined as M4 and Zhang et al. (2024).

Remark 3. We remark that for each of the BCART models, we apply 
the three-step approach in Table 1 of Zhang et al. (2024) to select a 
tree model. The above evaluation metrics are then used to evaluate the 
performance of these tree models on test data, based on which we can 
select a best tree model among different types of BCART models. As 
observed in Zhang et al. (2024) when discussing different types of fre

quency BCART models, all four metrics yield the same type of tree model 
choice based on their performance on test data. It is worth pointing out 
that within a certain type of BCART model, the test data performance 
using SE and DS aligns with the tree model selected using the three-step 
approach and thus they are deemed to be preferred metrics for compar

ison. See also Sections 4 and 5 for further discussion.

3.2. Sequential BCART models

In this section, we introduce the sequential model to better capture 
the potential association between the number of claims and average 
severity. One popular approach in the literature, e.g., Frees et al. (2011); 
Garrido et al. (2016); Gschlößl and Czado (2007), is to treat the number 
of claims 𝑁 as a covariate for the average severity modeling. Following 
this idea, our sequential BCART model consists of two steps: 1) model 
the frequency component of (9) using the BCART models developed in 
Zhang et al. (2024); 2) treat the number of claims 𝑁 as a covariate (also 
treated as a model weight in the GammaN model) for the average sever

ity component in (9) using the BCART models introduced in Subsection 
3.1.1 or 3.1.2.

When modeling average severity with 𝑁 as a covariate, there are 
usually two ways to treat 𝑁 , namely, either use 𝑁 as a numeric covari

ate (see Garrido et al. (2016)) or treat 𝑁 as a factor (see Gschlößl and 
Czado (2007)). In this paper, we propose including the information of 
claim count for the average severity modeling, using the estimation of 
claim count 𝑁̂ from the frequency BCART model as a numeric covari

ate. The underlying ideas for this proposal are as follows. First, for a 
new observation we do not know 𝑁 but can only obtain its estimate 𝑁̂
through frequency model. Second, the frequency tree will classify the 
policyholders with similar risk (in terms of claim frequency) into the 
same cell and assign similar estimations 𝑁̂ (the value of them depends 
also on their exposure). If the claim count information is highly corre

lated to the average severity, then the estimated value 𝑁̂ will be chosen 
as the splitting covariate and the policyholders in the same frequency 
cell will be more likely (than using 𝑁) to be classified into the same cell 
by the average severity tree. In doing so, we expect the sequential model 
would be able to better capture the potential dependence between the 
number of claims and average severity. This is demonstrated to be true 
by our simulated and real data below.

The sequential BCART models will also result in two trees, one for 
frequency and the other for average severity. If the resulting severity tree 
does not include the number of claims 𝑁 (or 𝑁̂) as its splitting variable, 
then the evaluation metrics and estimates introduced in Subsection 3.1.3

can still be employed. Otherwise, the aggregate claim amount 𝑆̂ cannot 
be estimated directly by multiplying the estimates from these two trees 
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due to lack of independence, for which we will apply a Monte Carlo 
method following the idea in Gschlößl and Czado (2007). In this case, 
there are also challenges involved in combining two trees to form a joint 
partition of the covariate space  , since now the average severity tree 
does not only involve splitting variables 𝒙 but also involve 𝑁 (or 𝑁̂). 
To overcome this, we propose to construct a joint partition using only 
the splitting rules introduced by 𝒙 in these two trees, ignoring any ones 
based on 𝑁 (or 𝑁̂). As a result, some changes for M1’-M4’ are necessary, 
which are as follows. Assume the joint partition has 𝑐 cells.

• M1’: we will use RSS(𝑺) =
∑𝑚

𝑖=1(𝑆𝑖 − 𝑆̂𝑖)2, where the prediction 𝑆̂𝑖

is obtained using Monte Carlo simulation for the 𝑖-th test data given 
(𝒙𝑖, 𝑣𝑖). The simulation algorithm is included in Section SM.B of the 
Supplementary Material; see Algorithm SM.1.

• M2’-M4’: we need estimates for 𝑆̂𝑡, 𝑉𝑡 (𝑡 = 1,… , 𝑐) which can be 
obtained using similar Monte Carlo method as for M1’. Specifically, 
we consider a generic data in node 𝑡, denoted by 𝒙 with an exposure 
𝑣 = 1. Inputting this data (𝒙, 𝑣 = 1) into the Algorithm SM.1, we 
obtain a sequence of realizations 𝑆1

𝑡
, 𝑆2

𝑡
,… , 𝑆𝑅

𝑡
, from which we 

can obtain 𝑆̂𝑡 and 𝑉𝑡 using their empirical mean and variance.

Remark 4. In Quan et al. (2023), a hybrid approach is used for insur

ance pricing where the terminal nodes of a frequency tree serve as the 
partition of  and a regression model is used in each terminal node for 
claim severity. In contrast, our approach for partition incorporates in

formation from both frequency tree and severity tree. We have validated 
the effectiveness and superiority of our method (over a partition using 
only frequency tree) in both simulated and real data analysis.

3.3. Joint BCART models

Different from the previous two types of BCART models where sep

arate tree models are used for the frequency and average severity, in 
this section we introduce the third type of BCART models, called joint 
BCART models, where we consider (𝑁,𝑆) as a bivariate response; see 
Jørgensen and Paes De Souza (1994); Smyth and Jørgensen (2002) for a 
similar treatment in GLMs. We discuss two commonly used distributions 
for aggregate claim amount 𝑆 , namely, CPG and ZICPG distributions. 
The presence of a discrete mass at zero makes them suitable for modeling 
aggregate claim amount; see, e.g., Quijano Xacur and Garrido (2015); 
Yang et al. (2018); Denuit et al. (2021). As in Zhang et al. (2024), for the 
ZICPG models we need to employ a data augmentation technique. We 
also explore different ways to embed exposure. The advantage of mod

eling frequency and (average) severity components separately has been 
recognized in the literature; see, e.g., Quijano Xacur and Garrido (2015); 
Frees et al. (2016). In particular, this separate treatment can reflect the 
situation when the covariates that affect the frequency and severity are 
very different. However, one disadvantage is that it takes more effort 
to combine the two resulting tree models, as we have already seen in 
Subsection 3.1.3. Compared to the use of two separate tree models, the 
advantage of joint modeling is that the resulting single tree is easier to 
interpret as it simultaneously gives estimates for frequency, pure pre

mium and thus average severity. Additionally, for the situation where 
frequency and average severity are linked through shared covariates, 
using a parsimonious joint tree model might be advantageous; this will 
be illustrated in the examples in Section 4.

Since the ZICPG model is an extension of the CPG model and ac

counts for the high proportion of zero claims in practice, we focus 
primarily on the ZICPG model and refer to Section SM.C of the Sup

plementary Material for details of the CPG model.

3.3.1. Zero-inflated compound Poisson gamma model

We consider a response (𝑁,𝑆) with exposure 𝑣 = 1, where 𝑁
is zero-inflated Poisson distributed with parameters 𝜇 and 𝜆, and 
𝑆 =

∑𝑁

𝑗=1 𝑌𝑗 with individual severity 𝑌𝑗 following independent gamma 
distribution with parameters 𝛼, 𝛽 > 0. In the following, 𝑆 is called 

a zero-inflated compound Poisson gamma random variable, denoted 
by ZICPG(𝜇,𝜆, 𝛼, 𝛽). According to the general BCART framework in 
Section 2, considering a tree  with 𝑏 terminal nodes and 𝜽𝑡 =
(𝜇𝑡, 𝜆𝑡, 𝛼𝑡, 𝛽𝑡) (𝑡 = 1,… , 𝑏), we assume 𝑁𝑖|𝒙𝑖 ∼ ZIP

(
𝜇(𝒙𝑖), 𝜆(𝒙𝑖)

)
, and 

𝑆𝑖|𝒙𝑖,𝑁𝑖 > 0 ∼ Gamma
(
𝑁𝑖𝛼(𝒙𝑖), 𝛽(𝒙𝑖)

)
for the 𝑖-th observation, where 

𝜇(𝑥𝑖) =
∑𝑏

𝑡=1 𝜇𝑡𝐼(𝒙𝑖∈𝑡), 𝜆(𝒙𝒊) =
∑𝑏

𝑡=1 𝜆𝑡𝐼(𝒙𝑖∈𝑡), 𝛼(𝒙𝒊) =
∑𝑏

𝑡=1 𝛼𝑡𝐼(𝒙𝑖∈𝑡)

and 𝛽(𝒙𝒊) =
∑𝑏

𝑡=1 𝛽𝑡𝐼(𝒙𝑖∈𝑡).
For ZICPG models, we need to introduce a data augmentation strat

egy as in Zhang et al. (2024) to obtain a closed form expression for the 
integrated likelihood; see (20) below. Motivated by the discussion on 
the ZIP-BCART models in Zhang et al. (2024), we construct three ZICPG 
models according to how the exposure is embedded into the model

ing. We try to cover all three ZICPG models in a general set-up, which 
requires some general notation for exposure. Specifically, for 𝑖-th obser

vation such that 𝒙𝑖 ∈𝑡, we have the joint distribution (recalling that 
the associated data for terminal node 𝑡 is denoted by (𝑿𝑡,𝒗𝑡,𝑵 𝑡,𝑺 𝑡))

𝑓ZICPG(𝑁𝑡𝑖,𝑆𝑡𝑖 ∣ 𝜇𝑡, 𝜆𝑡, 𝛼𝑡, 𝛽𝑡) = 𝑓ZIP(𝑁𝑡𝑖 ∣ 𝜇𝑡, 𝜆𝑡)𝑓G(𝑆𝑡𝑖 ∣𝑁𝑡𝑖, 𝛼𝑡, 𝛽𝑡)

=
⎧⎪⎨⎪⎩

1 
1+𝜇𝑡𝑤𝑡𝑖

+ 𝜇𝑡𝑤𝑡𝑖

1+𝜇𝑡𝑤𝑡𝑖
𝑒−𝜆𝑡𝑢𝑡𝑖 (𝑁𝑡𝑖,𝑆𝑡𝑖) = (0,0),

𝜇𝑡𝑤𝑡𝑖

1+𝜇𝑡𝑤𝑡𝑖

(𝜆𝑡𝑢𝑡𝑖)𝑁𝑡𝑖 𝑒−𝜆𝑡𝑢𝑡𝑖

𝑁𝑡𝑖! 
𝛽
𝑁𝑡𝑖𝛼𝑡
𝑡

𝑆
𝑁𝑡𝑖𝛼𝑡−1
𝑡𝑖

𝑒−𝛽𝑡𝑆𝑡𝑖

Γ(𝑁𝑡𝑖𝛼𝑡) (𝑁𝑡𝑖,𝑆𝑡𝑖) ∈ (ℕ ×ℝ+),

(18)

where we use 𝑤𝑡𝑖 to denote the ``exposure'' for the zero mass part and 
𝑢𝑡𝑖 to denote the ``exposure'' for the Poisson part. The above general 
formulation can cover three different models as special cases. Namely, 
1) setting 𝑤𝑡𝑖 = 1 and 𝑢𝑡𝑖 = 𝑣𝑡𝑖, then the exposure is only embedded in the 
Poisson part, yielding the ZICPG1 model; 2) setting 𝑤𝑡𝑖 = 𝑣𝑡𝑖 and 𝑢𝑡𝑖 = 1
then the exposure is only embedded in the zero mass part, yielding the 
ZICPG2 model; 3) setting 𝑤𝑡𝑖 = 𝑢𝑡𝑖 = 𝑣𝑡𝑖 means the exposure is embedded 
in both parts, yielding the ZICPG3 model. Note that 1∕(1+𝜇𝑡𝑤𝑡𝑖) ∈ (0,1)
is the probability that zero is due to the point mass component.

For computational convenience, a data augmentation scheme is 
used. To this end, we introduce two latent variables 𝝓𝑡 = (𝜙𝑡1, 𝜙𝑡2,… , 
𝜙𝑡𝑛𝑡

) ∈ (0,∞)𝑛𝑡 and 𝜹𝑡 = (𝛿𝑡1, 𝛿𝑡2,… , 𝛿𝑡𝑛𝑡
) ∈ {0,1}𝑛𝑡 , and define the data 

augmented likelihood for the 𝑖-th data instance in terminal node 𝑡 as

𝑓ZICPG(𝑁𝑡𝑖,𝑆𝑡𝑖, 𝛿𝑡𝑖, 𝜙𝑡𝑖 ∣ 𝜇𝑡, 𝜆𝑡, 𝛼𝑡, 𝛽𝑡)

=𝑒−𝜙𝑡𝑖(1+𝜇𝑡𝑤𝑡𝑖)

(
𝜇𝑡𝑤𝑡𝑖

(
𝜆𝑡𝑢𝑡𝑖

)𝑁𝑡𝑖

𝑁𝑡𝑖! 
𝑒−𝜆𝑡𝑢𝑡𝑖

)𝛿𝑡𝑖

×

((
𝛽
𝑁𝑡𝑖𝛼𝑡
𝑡

𝑆
𝑁𝑡𝑖𝛼𝑡−1
𝑡𝑖

𝑒−𝛽𝑡𝑆𝑡𝑖

Γ(𝑁𝑡𝑖𝛼𝑡) 
− 1

)
𝐼(𝑁𝑡𝑖>0) + 1

)
,

(19)

where the support of the function 𝑓ZICPG is ({0} × {0} × {0,1} × (0,∞))∪(
ℕ ×ℝ+ × {1} × (0,∞)

)
. It can be shown that (18) is the marginal dis

tribution of the above augmented distribution; see Section SM.D of the 
Supplementary Material for more details.

By conditional arguments, we can also check that 𝛿𝑡𝑖 , given data 
𝑁𝑡𝑖 = 𝑆𝑡𝑖 = 0 and parameters (𝜇𝑡 and 𝜆𝑡), has a Bernoulli distribution, 
i.e., 𝛿𝑡𝑖 ∣ 𝑁𝑡𝑖 = 0, 𝜇𝑡, 𝜆𝑡 ∼ Bern

(
𝜇𝑡𝑤𝑡𝑖𝑒

−𝜆𝑡𝑢𝑡𝑖

1+𝜇𝑡𝑤𝑡𝑖𝑒
−𝜆𝑡𝑢𝑡𝑖

)
, and 𝛿𝑡𝑖 = 1 if 𝑁𝑡𝑖 > 0. 

Furthermore, 𝜙𝑡𝑖 ∣ 𝜇𝑡 ∼ Exp
(
1 + 𝜇𝑡𝑤𝑡𝑖

)
.

For each terminal node 𝑡, we treat 𝛼𝑡 as known, 𝜇𝑡, 𝜆𝑡 and 𝛽𝑡 as 
unknown and apply the above data augmentation. According to the 
notation used in Section 2 this means 𝜽𝑡,𝑀 = 𝛼𝑡 and 𝜽𝑡,𝐵 = (𝜇𝑡, 𝜆𝑡, 𝛽𝑡). 
Here 𝛼𝑡 will be estimated as in (11) using a subset of data with 𝑁 > 0. 
We treat 𝜇𝑡, 𝜆𝑡 and 𝛽𝑡 as uncertain and use independent conjugate 
gamma priors, i.e., 𝜇𝑡 ∼ Gamma(𝛼(𝜇), 𝛽(𝜇)), 𝜆𝑡 ∼ Gamma(𝛼(𝜆), 𝛽(𝜆)), 𝛽𝑡 ∼
Gamma(𝛼(𝛽), 𝛽(𝛽)), where the superscript (𝜇) (or (𝜆) and (𝛽)) indicates 
this hyper-parameter is assigned for the parameter 𝜇𝑡 (or 𝜆𝑡 and 𝛽𝑡). 
Then, given the estimated parameter 𝛼̂𝑡 , the integrated augmented like

lihood for terminal node 𝑡 can be obtained as

𝑝ZICPG

(
𝑵 𝑡,𝑺 𝑡,𝜹𝑡,𝝓𝑡 ∣𝑿𝑡, 𝛼̂𝑡

)
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=

∞ 

∫
0 

∞ 

∫
0 

∞ 

∫
0 

𝑓ZICPG

(
𝑵 𝑡,𝑺 𝑡,𝜹𝑡,𝝓𝑡 ∣ 𝜇𝑡, 𝜆𝑡, 𝛼̂𝑡, 𝛽𝑡

)
𝑝(𝜇𝑡)𝑝(𝜆𝑡)𝑝(𝛽𝑡)𝑑𝜇𝑡𝑑𝜆𝑡𝑑𝛽𝑡

=∭
𝑛𝑡∏
𝑖=1 

⎛⎜⎜⎝𝑒−𝜙𝑡𝑖(1+𝜇𝑡𝑤𝑡𝑖)

(
𝜇𝑡𝑤𝑡𝑖

(
𝜆𝑡𝑢𝑡𝑖

)𝑁𝑡𝑖

𝑁𝑡𝑖! 
𝑒−𝜆𝑡𝑢𝑡𝑖

)𝛿𝑡𝑖⎞⎟⎟⎠
×

∏
𝑖∶𝑁𝑡𝑖>0

𝛽
𝑁𝑡𝑖𝛼̂𝑡
𝑡

𝑆
𝑁𝑡𝑖𝛼̂𝑡−1
𝑡𝑖

𝑒−𝛽𝑡𝑆𝑡𝑖

Γ(𝑁𝑡𝑖𝛼̂𝑡) 

×
𝛽(𝜇)𝛼

(𝜇)
𝜇𝛼(𝜇)−1
𝑡

𝑒−𝛽(𝜇)𝜇𝑡

Γ
(
𝛼(𝜇)

) 𝛽(𝜆)𝛼
(𝜆)
𝜆𝑡

𝛼(𝜆)−1𝑒−𝛽(𝜆)𝜆𝑡

Γ
(
𝛼(𝜆)

)
×

𝛽(𝛽)𝛼
(𝛽)
𝛽𝑡

𝛼(𝛽)−1𝑒−𝛽(𝛽)𝛽𝑡

Γ
(
𝛼(𝛽)

) 𝑑𝜇𝑡𝑑𝜆𝑡𝑑𝛽𝑡

= 𝛽(𝜇)𝛼
(𝜇)

Γ
(
𝛼(𝜇)

) 𝛽(𝜆)𝛼
(𝜆)

Γ
(
𝛼(𝜆)

) 𝛽(𝛽)𝛼
(𝛽)

Γ
(
𝛼(𝛽)

) 𝑛𝑡∏
𝑖=1 

(
𝑒−𝜙𝑡𝑖𝑤

𝛿𝑡𝑖
𝑡𝑖
𝑢
𝛿𝑡𝑖𝑁𝑡𝑖

𝑡𝑖

(
𝑁𝑡𝑖!

)−𝛿𝑡𝑖
)

×
∏

𝑖∶𝑁𝑡𝑖>0

𝑆
𝑁𝑡𝑖𝛼̂𝑡−1
𝑡𝑖

Γ(𝑁𝑡𝑖𝛼̂𝑡)

×
Γ
(∑𝑛𝑡

𝑖=1 𝛿𝑡𝑖 + 𝛼(𝜇)
)

(∑𝑛𝑡
𝑖=1 𝜙𝑡𝑖𝑤𝑡𝑖 + 𝛽(𝜇)

)∑𝑛𝑡
𝑖=1 𝛿𝑡𝑖+𝛼(𝜇)

Γ
(∑𝑛𝑡

𝑖=1 𝛿𝑡𝑖𝑁𝑡𝑖 + 𝛼(𝜆)
)

(∑𝑛𝑡
𝑖=1 𝛿𝑡𝑖𝑢𝑡𝑖 + 𝛽(𝜆)

)∑𝑛𝑡
𝑖=1 𝛿𝑡𝑖𝑁𝑡𝑖+𝛼(𝜆)

×
Γ(

∑
𝑖∶𝑁𝑡𝑖>0𝑁𝑡𝑖𝛼̂𝑡 + 𝛼(𝛽)) 

(
∑

𝑖∶𝑁𝑡𝑖>0 𝑆𝑡𝑖 + 𝛽(𝛽))
∑

𝑖∶𝑁𝑡𝑖>0 𝑁𝑡𝑖𝛼̂𝑡+𝛼(𝛽)
. (20)

The integrated augmented likelihood for the tree  is thus given by

𝑝ZICPG (𝑵 ,𝑺,𝜹,𝝓 ∣𝑿, 𝜶̂, ) =
𝑏 ∏

𝑡=1 
𝑝ZICPG

(
𝑵 𝑡,𝑺 𝑡,𝜹𝑡,𝝓𝑡 ∣𝑿𝑡, 𝛼̂𝑡

)
.

We now discuss DIC which can be derived similarly as in Subsection 
3.1.1 with a three-dimensional unknown parameter (𝜇𝑡, 𝜆𝑡, 𝛽𝑡). We first 
focus on DIC𝑡 of terminal node 𝑡. It follows that

𝐷
(
𝜇̄𝑡, 𝜆̄𝑡, 𝛽𝑡

)
= −2 log𝑓ZICPG

(
𝑵 𝑡,𝑺 𝑡 ∣ 𝜇̄𝑡, 𝜆̄𝑡, 𝛼̂𝑡, 𝛽𝑡

)
= −2

𝑛𝑡∑
𝑖=1 

log

(
1 

1 + 𝜇̄𝑡𝑤𝑡𝑖

𝐼(𝑁𝑡𝑖=0
) + 𝜇̄𝑡𝑤𝑡𝑖

1 + 𝜇̄𝑡𝑤𝑡𝑖

(
𝜆̄𝑡𝑢𝑡𝑖

)𝑁𝑡𝑖 𝑒−𝜆̄𝑡𝑢𝑡𝑖

𝑁𝑡𝑖! 

×

((
𝛽
𝑁𝑡𝑖𝛼̂𝑡
𝑡

𝑆
𝑁𝑡𝑖𝛼̂𝑡−1
𝑡𝑖

𝑒−𝛽𝑡𝑆𝑡𝑖

Γ
(
𝑁𝑡𝑖𝛼̂𝑡

) − 1

)
𝐼(𝑁𝑡𝑖>0

) + 1

)
, (21)

where

𝜇̄𝑡 =
∑𝑛𝑡

𝑖=1 𝛿𝑡𝑖 + 𝛼(𝜇)∑𝑛𝑡
𝑖=1 𝜙𝑡𝑖𝑤𝑡𝑖 + 𝛽(𝜇)

, 𝜆̄𝑡 =
∑𝑛𝑡

𝑖=1 𝛿𝑡𝑖𝑁𝑡𝑖 + 𝛼(𝜆)∑𝑛𝑡
𝑖=1 𝛿𝑡𝑖𝑢𝑡𝑖 + 𝛽(𝜆)

,

𝛽𝑡 =
∑

𝑖∶𝑁𝑡𝑖>0𝑁𝑡𝑖𝛼̂𝑡 + 𝛼(𝛽)∑
𝑖∶𝑁𝑡𝑖>0 𝑆𝑡𝑖 + 𝛽(𝛽)

. (22)

Furthermore, direct calculations yield the effective number of parame

ters for terminal node 𝑡 given by

𝑝𝐷𝑡 = 1 − 2𝔼post

(
log𝑓ZICPG(𝑵 𝑡,𝑺 𝑡,𝜹𝑡,𝝓𝑡 ∣ 𝜇𝑡, 𝜆𝑡, 𝛼̂𝑡, 𝛽𝑡)

)
+ 2 log𝑓ZICPG(𝑵 𝑡,𝑺 𝑡,𝜹𝑡,𝝓𝑡 ∣ 𝜇̄𝑡, 𝜆̄𝑡, 𝛼̂𝑡, 𝛽𝑡)

= 1 + 2

(
log

(
𝑛𝑡∑
𝑖=1 

𝛿𝑡𝑖 + 𝛼(𝜇)

)
−𝜓

(
𝑛𝑡∑
𝑖=1 

𝛿𝑡𝑖 + 𝛼(𝜇)

))
𝑛𝑡∑
𝑖=1 

𝛿𝑡𝑖

+ 2

(
log

(
𝑛𝑡∑
𝑖=1 

𝛿𝑡𝑖𝑁𝑡𝑖 + 𝛼(𝜆)

)
−𝜓

(
𝑛𝑡∑
𝑖=1 

𝛿𝑡𝑖𝑁𝑡𝑖 + 𝛼(𝜆)

))
𝑛𝑡∑
𝑖=1 

𝛿𝑡𝑖𝑁𝑡𝑖

+ 2

(
log

( ∑
𝑖∶𝑁𝑡𝑖>0

𝑁𝑡𝑖𝛼̂𝑡 + 𝛼(𝛽)

)
−𝜓

( ∑
𝑖∶𝑁𝑡𝑖>0

𝑁𝑡𝑖𝛼̂𝑡 + 𝛼(𝛽)

))
×

∑
𝑖∶𝑁𝑡𝑖>0

𝑁𝑡𝑖𝛼̂𝑡,

and thus DIC =
∑𝑏

𝑡=1 DIC𝑡 =
∑𝑏

𝑡=1
(
𝐷(𝜇̄𝑡, 𝜆̄𝑡, 𝛽𝑡) + 2𝑝𝐷𝑡

)
.

Using these formulas for ZICPG, we can follow the approach pre

sented in Table 1 of Zhang et al. (2024), together with Algorithm 1
(here 𝒛𝑡 = (𝜹𝑡,𝝓𝑡)), to search for a tree which can then be used for pre

diction with (8). Given a tree, the estimated pure premium per year in 
terminal node 𝑡 is given as

𝑆̄𝑡 =
𝜇̄𝑡𝜆̄𝑡𝛼̂𝑡

𝛽𝑡(1 + 𝜇̄𝑡)
, (23)

which can be determined using (11) and (22).

Remark 5. We observe that the effective number of parameters does 
not depend on exposures 𝑤𝑡𝑖 and 𝑢𝑡𝑖, illustrating that the way to embed 
the exposure does not affect the effective number of parameters. This 
is intuitively reasonable and is in line with the observations for NB and 
ZIP models in Zhang et al. (2024).

3.3.2. Evaluation metrics for joint models

Note that the ultimate goal in insurance rate-making is to set the 
pure premium based on the estimate of the aggregate claim amount 𝑆 . 
Thus, for joint models, we focus on evaluation metrics defined via the 
second component 𝑆 in the bivariate response (𝑁,𝑆). We follow the 
definitions of M1’–M4’ in Subsection 3.1.3; here the number of cells 𝑐 is 
the number of terminal nodes 𝑏.

Suppose we have obtained a tree with 𝑏 terminal nodes and cor

responding predictions 𝑆̂𝑡 (𝑡 = 1,… , 𝑏) given in (23). Consider a test 
dataset with 𝑚 observations. Denote the test data in terminal node 
𝑡 by 

(
𝑿𝑡,𝒗𝑡,𝑵 𝑡,𝑺 𝑡) = ((𝒙𝑡1, 𝑣𝑡1,𝑁𝑡1, 𝑆𝑡1),… , (𝒙𝑡𝑚𝑡

, 𝑣𝑡𝑚𝑡
,𝑁𝑡𝑚𝑡

,𝑆𝑡𝑚𝑡
)
)⊤

. 
The RSS, SE and Lift are defined by M1’, M2’ and M4’ respectively, 
with 𝑐 replaced by 𝑏. The DS is also similarly defined by M3’, but with 
𝑉𝑡 being equal to 𝜆̄𝑡𝛼̂𝑡(1+ 𝛼̂𝑡)∕𝛽2𝑡 for the CPG model, and 𝜇̄𝑡𝜆̄𝑡𝛼̂𝑡(1+ 𝛼̂𝑡 +
𝜇̄𝑡 + 𝛼̂𝑡𝜇̄𝑡 + 𝛼̂𝑡𝜆̄𝑡)∕

(
(1 + 𝜇̄𝑡)𝛽2𝑡

)
for the ZICPG model.

3.4. Two separate trees versus one joint tree: adjusted rand index

In this section, we extend our focus to examine the similarity be

tween the BCART generated optimal trees. This exploration will give 
us confidence and valuable insights into whether information sharing 
through one joint tree is essential for model accuracy and effectiveness, 
compared to separate trees.

Measuring the similarity of two trees is generally challenging, partic

ularly when there are variations in the number of terminal nodes or the 
structure (balanced/unbalanced) of the two trees; see Nye et al. (2006) 
and the references therein. We propose to explore one simple index com

monly employed in cluster analysis comparison, namely, the adjusted 
Rand Index (ARI) which is a widely recognized metric for assessing the 
similarity of different clusterings; see, e.g., Rand (1971); Hubert and 
Arabie (1985); Gates and Ahn (2017). We extend its application to eval

uate the similarity of two trees. This is a natural application since a tree 
generates a partition of the covariate space which automatically induces 
clusters (i.e. observations belonging to the same leaf) of policyholders 
in the insurance context.

The ARI measures the similarity between two data partitions by com

paring the number of pairwise agreements and disagreements, adjusting 
for the possibility of random clustering to ensure that the index values 
are corrected for chance. This results in a score ranging from −1 to 1, 
where 1 indicates perfect agreement, 0 suggests a similarity no better 
than random chance, and negative values imply less agreement than ex

pected by chance. The ARI is particularly valued for its ability to account 
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for different cluster sizes and number of clusters, making it a robust met

ric. Our results use the adj.rand.index function in the R package 
fossil (see more details in Vavrek (2020)).

4. Simulation examples

In this section, we investigate the performance of the BCART mod

els introduced in Section 3 by using simulated data. In Scenario 1, the 
effectiveness of sequential BCART models in capturing the dependence 
between the number of claims and average severity is examined, along 
with their performance when using claims count 𝑁 treated as a numeric 
variable (or its estimate 𝑁̂ ). Full details can be found in Section SM.E 
of the Supplementary Material; below we only present the simulation 
framework and conclusion for the sake of brevity. Scenario 2 focuses on 
the influence of shared information between the number of claims and 
average severity.

In the sequel, we use the abbreviation Gamma-CART to denote CART 
for the Gamma model, and other abbreviations can be similarly under

stood (e.g., ZICPG1-BCART denotes the BCART for ZICPG1 model).

4.1. Scenario 1: varying dependence between the number of claims and 
average severity

We simulate 
{
(𝒙𝑖, 𝑣𝑖,𝑁𝑖, 𝑆̄𝑖)

}𝑛

𝑖=1 with 𝑛 = 5,000 independent ob

servations. Here 𝒙𝑖 =
(
𝑥𝑖1, 𝑥𝑖2

)
, with independent components 𝑥𝑖𝑘 ∼

𝑁(0,1) for 𝑘 = 1,2. We assume exposure 𝑣𝑖 ≡ 1 for simplicity. More

over, 𝑁𝑖 ∼ Poi(𝜆(𝑥𝑖1, 𝑥𝑖2)), where

𝜆
(
𝑥1, 𝑥2

)
=
{

1 if 𝑥1𝑥2 ≤ 0,
7 if 𝑥1𝑥2 > 0. (24)

We obtained 𝑁𝑖 = 0 for 901 occurrences, for which we set 𝑆̄𝑖 = 0. For 
the remaining 4099 cases, 𝑆̄𝑖 is generated from a gamma distribution 
with a pre-specified and varying dependence parameter 𝜁 , i.e., 𝑆̄𝑖 ∣𝑁𝑖 ∼
Gamma

(
1,0.001 + 𝜁𝑁𝑖

)
, in which the shape (fixed as 1 for simplicity) 

and rate parameters are chosen to maintain the empirical average claim 
amount 𝑆̄𝑖 to be around 500, aligning with real-world scenarios. The 
data is split into two subsets: a training set with 𝑛−𝑚 = 4,000 observa

tions and a test set with 𝑚 = 1,000 observations. In this case, our goal is 
to investigate how the dependence modulated by 𝜁 influences the per

formance of both frequency-severity models and sequential models, and 
the performance of incorporating 𝑁 (or 𝑁̂) into the sequential models. 
If 𝑁 (or 𝑁̂) is selected as a splitting covariate, it would indicate that 
the claim count plays an important role in average severity modeling, 
and thus sequential models should be preferred. As 𝜁 changes, the con

ditional correlation between the number of claims and average severity 
varies. Stronger dependence (e.g., 𝜁=0.001) is expected to favor se

quential models, while weaker dependence (e.g., 𝜁=0.00001) makes 
both model types perform similarly, as 𝑁 (or 𝑁̂) is less likely to be 
used in the sequential model tree.

The observed relatively large DIC differences in training data be

tween the Gamma model without claim count (or its estimate) as a 
covariate (i.e., Gamma-BCART) and those with it (i.e., Gamma1-BCART 
or Gamma2-BCART) suggests that incorporating claim count (or its es

timate) as a covariate improves performance in the presence of stronger 
inherent dependence in the data, where Gamma2-BCART (with DIC = 
2618) performs best. On test data, Gamma2-BCART also outperforms 
other models across all evaluation metrics. Additional experiments, re

peated with new training and test datasets, confirm the robustness of 
these results.

Further simulations with different pairs of values for 𝜁 and 𝜆 in 
(24) reveal that: 1) Weak dependence between the number of claims 
and average severity results in similar performance between frequency

severity and sequential models, in this case the former is preferred for 
computational efficiency; 2) Strong dependence allows sequential mod

els to perform better by incorporating the number of claims (or its 

Fig. 1. Covariate space partition for a CPG-distributed simulation. The values 
of parameters 𝜆 and 𝛽 are provided in each region.

estimate) as a covariate; 3) Gamma2-BCART consistently outperforms 
Gamma1-BCART, validating our discussion in Section 3.2.

4.2. Scenario 2: covariates sharing between the number of claims and 
average severity

In this scenario, we consider two simulations where common covari

ates are used for parameters representing the number of claims and av

erage severity. The objective is to assess the effectiveness of frequency

severity BCART models and joint BCART models, that is, whether it 
is preferred to share information using one joint tree. To this end, we 
consider CPG distribution in joint BCART models, and correspondingly, 
Poisson distribution and gamma distribution involving 𝑁 as a model 
weight in the frequency-severity BCART models to keep consistency for 
comparison. We first explain these two simulations and then present 
some findings and suggestions.

Simulation 2.1: We simulate a dataset 
{
(𝒙𝑖, 𝑣𝑖,𝑁𝑖, 𝑆̄𝑖)

}𝑛

𝑖=1 with 𝑛 =
5,000 independent observations. Here 𝒙𝑖 =

(
𝑥𝑖1,… , 𝑥𝑖5

)
, with indepen

dent components 𝑥𝑖1 ∼ 𝑁(0,1), 𝑥𝑖2 ∼ 𝑈 (−1,1), 𝑥𝑖3 ∼ 𝑈 (−5,5), 𝑥𝑖4 ∼
𝑁(0,5), 𝑥𝑖5 ∼ 𝑈{1,2,3,4} and 𝑣𝑖 ∼ 𝑈 (0,1), where 𝑈 (⋅, ⋅) (or 𝑈{⋅, ⋅})
stands for continuous (or discrete-type) uniform distribution. Moreover, 
𝑁𝑖 ∼ Poi(𝜆(𝑥𝑖1, 𝑥𝑖2)𝑣𝑖), where

𝜆
(
𝑥1, 𝑥2

)
=
⎧⎪⎨⎪⎩
0.1 if 𝑥1 ≤ 0.47, 𝑥2 > 0.52,
0.2 if 𝑥1 > 0.47, 𝑥2 > 0.52,
0.3 if 𝑥1 > 0.47, 𝑥2 ≤ 0.52,
0.15 if 𝑥1 ≤ 0.47, 𝑥2 ≤ 0.52.

If 𝑁𝑖 = 0 then 𝑆̄𝑖 = 0, otherwise 𝑆̄𝑖 ∼ Gamma
(
𝑁𝑖𝛼,𝑁𝑖𝛽

(
𝑥𝑖1, 𝑥𝑖2

))
, 

where

𝛽
(
𝑥1, 𝑥2

)
=
⎧⎪⎨⎪⎩
0.005 if 𝑥1 ≤ 0.53, 𝑥2 > 0.48,
0.01 if 𝑥1 > 0.53, 𝑥2 > 0.48,
0.004 if 𝑥1 > 0.53, 𝑥2 ≤ 0.48,
0.008 if 𝑥1 ≤ 0.53, 𝑥2 ≤ 0.48.

For simplicity, we assume 𝛼 = 1, and the values of 𝛽 are selected such 
that the average claim amount 𝑆̄𝑖 is around 200, which is close to the 
situation in real-world scenarios. See Fig. 1 for an illustration of the true 
covariate space partition and corresponding values of parameters.

Simulation 2.2: We keep most simulation settings as in Simulation 2.1, 
except the partition of the covariate space; see Fig. 2. Specifically,
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Fig. 2. Covariate space partition for a CPG-distributed simulation. The values of 
parameters 𝜆 and 𝛽 are provided in each region, which has been labeled with 
names.

Table 3
Hyper-parameters, 𝑝𝐷 and DIC on training data for 
Simulation 2.1. The number in brackets after the ab

breviation of the model indicates the number of termi

nal nodes for that tree. Bold font indicates DIC selected 
model.

Model 𝛾 𝜌 𝑝𝐷 DIC

Poisson-BCART (3) 0.95 15 2.98 3697

Poisson-BCART (4) 0.99 13 3.98 3572

Poisson-BCART (5) 0.99 10 4.97 3616

Gamma-BCART (3) 0.95 10 5.97 30586

Gamma-BCART (4) 0.99 10 7.97 30319

Gamma-BCART (5) 0.99 8 9.96 30414

CPG-BCART (3) 0.99 5 8.92 34017

CPG-BCART (4) 0.99 4 11.90 33582

CPG-BCART (5) 0.99 3 14.89 33711

𝜆
(
𝑥1, 𝑥2

)
=
⎧⎪⎨⎪⎩
0.1 if 𝑥1 ≤ 0.1, 𝑥2 > 0.8,
0.2 if 𝑥1 > 0.1, 𝑥2 > 0.8,
0.3 if 𝑥1 > 0.1, 𝑥2 ≤ 0.8,
0.15 if 𝑥1 ≤ 0.1, 𝑥2 ≤ 0.8,

and for non-zero 𝑁𝑖, generate 𝑆̄𝑖 ∼ Gamma
(
𝑁𝑖,𝑁𝑖𝛽(𝑥𝑖1, 𝑥𝑖2)

)
, where

𝛽
(
𝑥1, 𝑥2

)
=
⎧⎪⎨⎪⎩
0.005 if 𝑥1 ≤ 0.9, 𝑥2 > 0.2,
0.01 if 𝑥1 > 0.9, 𝑥2 > 0.2,
0.004 if 𝑥1 > 0.9, 𝑥2 ≤ 0.2,
0.008 if 𝑥1 ≤ 0.9, 𝑥2 ≤ 0.2.

The specific design here is that both components of the response vari

able (𝑁 , 𝑆̄) are affected by the same covariates 𝑥1 and 𝑥2. In Simulation 
2.1 they share similar split points, while for Simulation 2.2 they have 
quite different split points. The variables 𝑥𝑘, 𝑘 = 3,4,5 are all noise vari

ables. We aim to compare separate BCART trees versus one joint BCART 
tree.

Each simulation dataset is split into a training set with 𝑛−𝑚 = 4,000
observations and a test set with 𝑚 = 1,000 observations. The outputs 
from training data and test data for the BCART models are presented in 
Tables 3-4 for Simulation 2.1 and Tables 5-6 for Simulation 2.2.

We start by looking at the DICs on training data in Tables 3 and 5. For 
Simulations 2.1 and 2.2, both Poisson-BCART and Gamma-BCART can 
find the optimal tree with the correct 4 terminal nodes. However, the 
selected joint CPG-BCART tree for Simulation 2.1 has only 4 terminal 

Table 4
Model performance on test data with bold entries determined by 
DIC (see Table 3). FPSG denotes the frequency-severity models by 
using Poisson and gamma distributions separately. The number in 
brackets after the abbreviation of the model indicates the number 
of terminal nodes for those trees.

Model RSS(𝑺) ×10−8 SE DS Lift

FPSG-BCART (3/3) 3.03 0.1324 0.0833 2.13

FPSG-BCART (4/4) 2.89 0.1245 0.0791 2.21

FPSG-BCART (5/5) 2.81 0.1273 0.0812 2.23

CPG-BCART (3) 3.01 0.1319 0.0820 2.15

CPG-BCART (4) 2.84 0.1211 0.0769 2.27

CPG-BCART (5) 2.78 0.1254 0.0795 2.29

Table 5
Hyper-parameters, 𝑝𝐷 and DIC on training data for 
Simulation 2.2. The number in brackets after the ab

breviation of the model indicates the number of termi

nal nodes for that tree. Bold font indicates DIC selected 
model.

Model 𝛾 𝜌 𝑝𝐷 DIC

Poisson-BCART (3) 0.95 15 2.97 3875

Poisson-BCART (4) 0.99 12 3.97 3669

Poisson-BCART (5) 0.99 10 4.96 3724

Gamma-BCART (3) 0.95 10 5.97 32156

Gamma-BCART (4) 0.99 10 7.96 31798

Gamma-BCART (5) 0.99 8 9.96 31904

CPG-BCART (8) 0.99 5 23.85 36174

CPG-BCART (9) 0.99 3 26.81 35622

CPG-BCART (10) 0.99 2 29.79 35781

Table 6
Model performance on test data with bold entries determined 
by DIC (see Table 5). FPSG denotes the frequency-severity mod

els by using Poisson and gamma distributions separately. The 
number in brackets after the abbreviation of the model indi

cates the number of terminal nodes for those trees.

Model RSS(𝑺)×10−8 SE DS Lift

FPSG-BCART (3/3) 3.21 0.152 0.091 2.18

FPSG-BCART (4/4) 3.04 0.140 0.073 2.30

FPSG-BCART (5/5) 2.95 0.141 0.079 2.32

CPG-BCART (8) 3.23 0.160 0.097 2.15

CPG-BCART (9) 3.08 0.142 0.088 2.24

CPG-BCART (10) 3.01 0.146 0.090 2.25

nodes which is different from its simulation scheme that should result 
in a covariate space partition with 9 cells. In contrast, the selected joint 
CPG-BCART tree for Simulation 2.2 has 9 terminal nodes which is con

sistent with its simulation scheme. This result for the frequency-severity 
BCART models is expected, based on our earlier discussion of the sep

arated frequency and average severity models. Now we look into the 
details of the selected joint tree to explore the reason. For Simulation 
2.1, we see that both 𝑥1 and 𝑥2 are used in the tree and the split points 
for them are close to 0.5 which is the mean of 0.47 and 0.53 for 𝑥1 , 
and also the mean of 0.52 and 0.48 for 𝑥2. Since these split values are 
very close, it is reasonable for the joint BCART model to select a split 
value around their mean, resulting in a selected joint tree with 4 termi

nal nodes. For Simulation 2.2 the selected joint tree includes 9 terminal 
nodes, which is also reasonable because the split values for both vari

ables are far apart.

The results for test data are shown in Tables 4 and 6. For Simulation 
2.1 we see that the joint model performs better than the frequency

severity model, while for Simulation 2.2 the opposite is observed.

In the above, we focused on using evaluation metrics to assess model 
performance. We now calculate the ARI for these three trees, using the 
test data. First, for Simulation 2.1 we have

ARI(Poisson-BCART (4), Gamma-BCART (4)) = 0.87,
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Table 7
Description of variables (dataCar).

Variable Description Type

numclaims (𝑁) number of claims numeric

exposure (𝑣) in yearly units, between 0 and 1 numeric

claimscst0 (𝑆) total claim amount for each policyholder numeric

veh_value vehicle value, in $10,000s numeric

veh_age vehicle age category, 1 (youngest), 2, 3, 4 numeric

agecat driver age category, 1 (youngest), 2, 3, 4, 5, 6 numeric

veh_body vehicle body, one of: HBACK, UTE, STNWG, HDTOP, PANVN, SEDAN, 
TRUCK, COUPE, MIBUS, MCARA, BUS, CONVT, RDSTR

character

gender Female or Male character

area coded as A B C D E F character

Table 8
Numerical summary of the average severity in dataCar.

Statistics Min Mean Max Standard Deviation Skewness Kurtosis

Average severity 200 1916 55922 3461 5 48

ARI(Poisson-BCART (4), CPG-BCART (4)) = 0.94,

ARI(Gamma-BCART (4), CPG-BCART (4)) = 0.92.

This confirms the preference of joint models in Simulation 2.1, as the 
ARI values indicate strong similarity. This suggests that information 
sharing can avoid redundant use of similar information, which is evi

dent in the similarities between the two trees. Next, for Simulation 2.2 
we have

ARI(Poisson-BCART (4), Gamma-BCART (4)) = 0.28,

ARI(Poisson-BCART (4), CPG-BCART (9)) = 0.77,

ARI(Gamma-BCART (4), CPG-BCART (9)) = 0.73.

This indicates that the frequency-severity model should be preferred in 
Simulation 2.2 as the ARI values are smaller, especially the first. It is 
not obvious how to determine a specific ARI threshold that indicates 
when sharing information becomes worthwhile. This requires further 
research.

Building on the above findings in Simulation 2.2, our investigation 
shows that both the frequency-severity model and joint model iden

tify the optimal trees as expected, indicating that information sharing 
may not be necessary. Further exploration reveals that the parameter 
estimates of the joint tree are not as accurate as those for the frequency

severity trees. This discrepancy arises because the joint tree uses less 
data for the estimates in some of the 9 terminal notes, compared to 
the separate two trees, each of which only has 4 terminal nodes. We 
suspect that, with fewer observations the differences will increase, and 
vice versa. To investigate this intuition, we use the same data genera

tion scheme with different sample sizes (ranging from 1,000 to 50,000) 
to conduct 10 repeated experiments for each size. We find that as the 
amount of data increases, the differences between the two model es

timates become smaller (see Supplementary Material SM.F for details). 
This investigation suggests if less data is available the frequency-severity 
models may be preferred as they produce more accurate parameter es

timates than the joint models, while if more data is available the joint 
models may be preferred to save computation time.

We also run several other simulation examples which are not shown 
here. From our results, we conclude that: when two trees have similar 
splitting rules (high ARI), one joint tree is more effective through infor

mation sharing. Conversely, if all covariates affecting claim frequency 
and average severity are different (ARI is close to −1), two trees outper

form one joint tree. This conclusion aligns with our intuition and can be 
generalized to a wider field; see also Linero et al. (2020).

5. Real data analysis

We illustrate our methodology with the insurance dataset dataCar, 
available from the library insuranceData in R; see Wolny–Dominiak 

and Trzesiok (2014) for details. This dataset is based on one-year ve

hicle insurance policies taken out in 2004 or 2005. There are 67,856 
policies of which 93.19% made no claims. A description of the variables 
is given in Table 7. We split this dataset into training (80%) and test 
(20%) datasets such that the proportion of non-zero claims remains the 
same in both training and test datasets.

5.1. Average severity modeling

For average severity modeling, we consider a subset of the data 
with 𝑁 > 0. Among all 67,856 policies, 4,624 policies satisfy this re

quirement (3,699 in the training data, and 925 in the test data). We 
calculate the average severity by dividing the total claim amount by the 
number of claims for each policyholder. A numerical summary of the 
average severity data is displayed in Table 8, indicating that the aver

age severity data exhibit right-skewness and heavy tails. We start with 
some exploratory analysis, fitting gamma, lognormal and Weibull dis

tributions to the whole data. From the histogram and Q-Q plots (see 
Supplementary Material SM.G), we find that all distributions can cap

ture the right-skewed feature, however, none of them correctly captures 
the heavy right tail of the distribution. It appears that the lognormal dis

tribution fits slightly better when the data are treated as IID. However, 
as we will see below the lognormal distribution is not the best choice in 
the BCART models for this data.

For comparison, we first run some benchmark CART models. We 
have tried to fit the ANOVA-CART using both the original and log

transformed training data. Neither of them gives us any reasonable 
result since no split is identified, resulting in only a root node tree. We 
use the R package distRforest (cf. Henckaerts (2020)) to fit Gamma

CART and LN-CART and both of the trees, after cost-complexity pruning, 
have 5 terminal nodes. As far as we are aware there is no R package with 
the Weibull distribution implemented for regression trees.

We then apply the proposed Gamma-BCART, LN-BCART, and Weib

BCART to the same data. The DICs in Table 9 indicate that all these 
BCART models choose a tree with 4 terminal nodes.

We also examine the splitting rules used in each tree. Gamma-CART 
uses both ``agecat'' and ``veh_value'' twice, with the first one being ``age

cat''. In contrast, LN-CART uses three different variables, ``veh_value'' 
first, followed by ``veh_body'' and ``area''. All trees from BCART mod

els, i.e., Gamma-BCART, LN-BCART, and Weib-BCART, have the same 
tree structure and splitting variables (``agecat'', ``veh_value'', and ``area''), 
while the split values/categories are slightly different. Weib-BCART, in 
particular, can identify a more risky cell (i.e., the one with estimated 
average severity equal to 2743.41); see Fig. 3. This may be because, 
as discussed in Subsection 3.1.2, Weib-BCART can flexibly control the 
shape parameter to adapt to data with different tail characteristics, al

lowing it to handle cases where some cells (terminal nodes) have lighter 
tails, and others have heavier tails. We generate Q-Q plots of the opti
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Table 9
Hyper-parameters, 𝑝𝐷 and DIC on training data (dataCar), and model performance on test data for 
average severity models with bold entries determined by DIC. The number in brackets after the 
abbreviation of the model indicates the number of terminal nodes for this tree.

Training data Test data

Model 𝛾 𝜌 𝑝𝐷 DIC RSS(𝑺) ×10−10 SE DS Lift

Gamma-GLM - - - - 1.4335 - - -

Gamma-CART (5) - - - - 1.4173 464 0.00171 1.625

LN-CART (5) - - - - 1.4168 458 0.00168 1.629

Gamma-BCART (3) 0.99 4 5.97 78061 1.4201 486 0.00181 1.567

Gamma-BCART (4) 0.99 3.5 7.97 77779 1.4176 457 0.00154 1.615

Gamma-BCART (5) 0.99 2 9.95 77982 1.4158 472 0.00167 1.643

LN-BCART (3) 0.99 5 5.97 78022 1.4193 483 0.00178 1.570

LN-BCART (4) 0.99 4 7.97 77741 1.4171 449 0.00149 1.628

LN-BCART (5) 0.99 3 9.96 77893 1.4153 456 0.00161 1.649

Weib-BCART (3) 0.99 7 5.98 77932 1.4177 473 0.00164 1.604

Weib-BCART (4) 0.99 5 7.98 77646 1.4154 433 0.00131 1.661

Weib-BCART (5) 0.99 4 9.98 77821 1.4136 446 0.00144 1.693

Fig. 3. Optimal tree from Weib-BCART. Numbers at each node give the esti

mated average severity and the percentage of observations.

mal Weib-BCART tree for average severity data in each terminal node 
(see Supplementary Material SM.G). The plots reveal that although all 
shape parameters are smaller than one, indicating heavy tails for aver

age severity data within each terminal node, the selected Weib-BCART 
tree shows improved data fitting compared to the initial model where 
covariates are not taken into account. Similar improvements are ob

tained from Gamma-BCART and LN-BCART. We also use a standard 
Gamma-GLM for this dataset. We find that only the variable ``gender'' 
is significant, and thus no interaction is considered in the Gamma-GLM. 
Interestingly, ``gender'' does not appear in any of the CART and BCART 
models. In summary, though the variables used for different models may 
differ, there seems to be a consensus that ``agecat'' is still significantly im

portant for average severity modeling, as Gamma-CART and all BCART 
models use it in the first split, and ``veh_value'' is another relatively im

portant variable. This observation aligns, to some extent, with our initial 
analysis of the relationship between covariates and average severity; see 
Table 12 below. Particularly, in comparison to CARTs, BCART models 
reveal another important variable, ``area''.

The performance on the test data of the selected tree models above 
is given in Table 9. It is evident that the Gamma-GLM is not as good as 
the tree models, as reflected in RSS(𝑺). The study yields the following 
model ranking: Weib-BCART, LN-BCART, Gamma-BCART, LN-CART, 
Gamma-CART. This ranking is consistent with our expectations. First, 
it is common that average severity data is heavy-tailed. Second, the 
Weibull distribution is advantageous, because it can effectively handle 
varying tail characteristics in different tree nodes.

5.2. Aggregate claim modeling

5.2.1. Model fitting and comparison

We now fit the three BCART models with aggregate claim data, 
namely, frequency-severity models, sequential models, and joint mod

els. For frequency-severity models, numerous combinations of claim 
frequency and average severity models are possible; see Zhang et al. 
(2024) for the frequency models and Section 5.1 for average severity 
models. Here, we choose ZIP2-BCART and Weib-BCART as the opti

mal tree models for frequency-severity models (see Zhang et al. (2024) 
and Section 5.1). Note that although ZIP2-BCART and Weib-BCART are 
identified as the best for claim frequency and average severity sepa

rately, it is unclear whether they remain optimal when combined. This 
will be examined and discussed below. For joint models, we discuss 
the CPG-BCART model and three types of ZICPG-BART models. Because 
of these choices, we also include the frequency-severity BCART model 
with Poisson and gamma distributions for comparison. For sequential 
BCART models, we consider Poisson-BCART (or called P-BCART) and 
ZIP2-BCART for claim frequency. Subsequently, we treat the claim count 
𝑁 (or 𝑁̂) as a covariate in the corresponding Gamma-BCART and Weib

BCART for average severity. The resulting models are called Gamma1

BCART (or Gamma2-BCART, with 𝑁̂ from P-BCART) and Weib1-BCART 
(or Weib2-BCART, with 𝑁̂ from ZIP2-BCART).

Table 10 presents the DICs for the average severity part in the se

quential models and for the joint models. We see that in the average 
severity modeling with 𝑁 (or 𝑁̂) as a covariate, all of them choose an 
optimal tree with 4 terminal nodes. Upon inspecting the tree structure, 
𝑁 (or 𝑁̂) is indeed used in the first step in all those optimal trees. All 
of them replace the previously used variable ``agecat'' by the covariate 
𝑁 (or 𝑁̂). We suspect this may be due to a strong relationship between 
the covariates 𝑁 and ``agecat'', as verified in the claim frequency analy

sis (see Zhang et al. (2024) and also Table 12 below). Furthermore, by 
comparing the DICs of all Gamma-BCART and Weib-BCART models in 
Tables 9 and 10 (with/without 𝑁 or 𝑁̂ as a covariate), we find that the 
model performance improves when considering 𝑁 (or 𝑁̂) as a covari

ate, especially when using 𝑁̂ .

For joint models, i.e., CPG-BCART and three ZICPG-BCART mod

els, all of them choose optimal trees with 5 terminal nodes. Among 
them, ZICPG3-BCART, with the smallest DIC (= 102120), is deemed to 
be the best. We again examine the splitting rules used in the selected 
trees among joint models. All trees use the same splitting variables 
(``agecat'', ``veh_value'', ``veh_body'', and ``area''), but the order of use and 
the tree structures vary. Notably, ``agecat'' is consistently the first vari

able. Among them, ZICPG3-BCART demonstrates the ability to identify 
a riskier cell (i.e., the one with an estimated pure premium equal to 
657.45; see Fig. 4), possibly due to the same reason as discussed in Zhang 
et al. (2024) for the outstanding performance of ZIP2-BCART for claim 
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Table 10

Hyper-parameters, 𝑝𝐷 and DIC on training data (dataCar) 
for aggregate claim models. The number in brackets af

ter the abbreviation of the model indicates the number 
of terminal nodes for this tree. The Gamma1/Weib1 and 
Gamma2/Weib2 models treat the claim count 𝑁 and 𝑁̂
as a covariate respectively, where 𝑁̂ for Gamma2 comes 
from P-BCART and that for Weib2 comes from ZIP2

BCART. Bold font indicates DIC selected model.

Model 𝛾 𝜌 𝑝𝐷 DIC

Gamma1-BCART (3) 0.99 4 5.97 78032

Gamma1-BCART (4) 0.99 3.5 7.97 77750

Gamma1-BCART (5) 0.99 2 9.96 77854

Gamma2-BCART (3) 0.99 4 5.98 78024

Gamma2-BCART (4) 0.99 3.5 7.97 77743

Gamma2-BCART (5) 0.99 2 9.97 77849

Weib1-BCART (3) 0.99 7 5.98 77911

Weib1-BCART (4) 0.99 5 7.98 77619

Weib1-BCART (5) 0.99 4 9.98 77804

Weib2-BCART (3) 0.99 7 5.98 77893

Weib2-BCART (4) 0.99 5 7.98 77608

Weib2-BCART (5) 0.99 4 9.98 77787

CPG-BCART (4) 0.99 10 11.96 105710

CPG-BCART (5) 0.99 8 14.93 105626

CPG-BCART (6) 0.99 7 17.92 105643

ZICPG1-BCART (4) 0.99 11 15.97 102314

ZICPG1-BCART (5) 0.99 10 19.95 102198

ZICPG1-BCART (6) 0.99 7.5 23.92 102225

ZICPG2-BCART (4) 0.99 12 15.95 102265

ZICPG2-BCART (5) 0.99 11 19.94 102134

ZICPG2-BCART (6) 0.99 8 23.92 102167

ZICPG3-BCART (4) 0.99 14 15.94 102247

ZICPG3-BCART (5) 0.99 12 19.93 102120

ZICPG3-BCART (6) 0.99 9 23.90 102158

Fig. 4. Optimal tree from ZICPG3-BCART. Numbers at each node give the esti

mated premium and the percentage of observations.

frequency. Besides, we observe that the tree structure of ZICPG3-BCART 
is quite similar to ZIP2-BCART. However, ZICPG3-BCART identifies an

other important variable ``area'', which was recognized as important for 
average severity before (see Section 5.1). We also fit a CPG-GLM to the 
data. We find that only the variable ``agecat'' is significant, aligning with 
its consistent selection as the first splitting variable in almost all the 
BCART models. It is also worth mentioning that CART is not included 
in this analysis due to the absence of R packages that can directly use 
CPG (or ZICPG) to process the data.

The performance of the selected trees for the test data is given in 
Table 11. As before, GLM exhibits poorer performance compared to tree 
models, as evidenced by RSS(𝑺). Below we discuss the three types of 

Table 11

Model performance on test data (dataCar) for aggregate claim mod

els with bold entries determined by DIC (see Table 10). FPSG denotes 
frequency-severity models using Poisson and gamma distributions sep

arately; other abbreviations can be explained similarly referring to Ta

ble 10. The number in brackets after the abbreviation of the model indi

cates the number of terminal nodes for those trees.

Model RSS (𝑺)×10−10 SE DS ×104 Lift

CPG-GLM 1.5187 - - -

FPSG-BCART (5/4) 1.4874 242.12 8.32 2.532

FPSG1-BCART (5/4) 1.4796 237.51 8.17 2.540

FPSG2-BCART (5/4) 1.4792 237.44 8.16 2.541

FZIP2SWeib-BCART (5/4) 1.4844 240.89 8.27 2.534

FZIP2SWeib1-BCART (5/4) 1.4783 236.03 8.01 2.545

FZIP2SWeib2-BCART (5/4) 1.4770 235.83 7.92 2.549

CPG-BCART (4) 1.4791 237.42 8.15 2.542

CPG-BCART (5) 1.4781 235.98 7.93 2.547

CPG-BCART (6) 1.4778 236.29 8.02 2.549

ZICPG1-BCART (4) 1.4670 232.87 7.85 2.560

ZICPG1-BCART (5) 1.4497 229.73 7.56 2.584

ZICPG1-BCART (6) 1.4478 231.35 7.79 2.587

ZICPG2-BCART (4) 1.4612 232.15 7.81 2.563

ZICPG2-BCART (5) 1.4434 229.41 7.52 2.595

ZICPG2-BCART (6) 1.4417 231.10 7.77 2.597

ZICPG3-BCART (4) 1.4598 231.24 7.79 2.570

ZICPG3-BCART (5) 1.4415 228.88 7.45 2.601

ZICPG3-BCART (6) 1.4409 229.53 7.69 2.604

aggregate claim models from various perspectives. The meaning of the 
abbreviations can be found in the captions of Tables 10-11.

1. A comparison of our frequency-severity models suggests using 
the combination of two best models for claim frequency and av

erage severity respectively based on all evaluation metrics, i.e., 
FZIP2SWeib-BCART > FPSG-BCART. In the sequential models, the 
same conclusion as in Section 4.1 is reached: using the estimate of 
the claim count 𝑁̂ is superior to using 𝑁 itself when treating them 
as a covariate in the average severity tree. Regarding joint models, 
ZICPG models outperform the CPG model, with ZICPG3-BCART be

ing the best.

2. When comparing frequency-severity models and sequential models, 
it is evident that adding 𝑁 (or 𝑁̂) as a covariate improves per

formance, as shown by all evaluation metrics, i.e., FPSG2-BCART 
> FPSG1-BCART > FPSG-BCART. The same ranking is observed for 
another combination, i.e., FZIP2SWeib2-BCART > FZIP2SWeib1-BCART 
> FZIP2SWeib-BCART. This is reasonable, as real data often exhibit 
some correlation between the number of claims and average sever

ity, favoring sequential models that consider this feature directly 
over frequency-severity models assuming independence.

3. In comparing frequency-severity models and joint models, all eval

uation metrics indicate that the optimal CPG-BCART (or ZICPG

BCART) chosen by DIC consistently outperforms frequency-severity 
models, suggesting that sharing information is beneficial for this 
dataset, i.e., one joint tree exhibits better performance. Exploration 
of the reasons is provided below.

4. As for sequential models and joint models, they address dependence 
in different ways. The former uses two trees, treating the number 
of claims (or its estimate) as a covariate in average severity model

ing to address the dependence. In contrast, the latter uses one joint 
tree, potentially hiding some dependence in the common variables 
used to split the nodes and incorporating the number of claims as 
a model weight in the aggregate claim amount distribution. Joint 
models employing ZICPG distributions perform better than all the 
sequential models as demonstrated by all evaluation metrics, pos

sibly due to a small negative conditional correlation between the 
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Table 12

Correlation coefficients between covariates (numerical ones and transformed categor

ical ones) and claim frequency and average severity. Bold font indicates the strongest 
correlation (though generally small) in each row.

veh_value veh_age agecat veh_body gender area

Claim frequency −0.0047 0.0013 −𝟎.𝟎𝟏𝟑𝟏 0.0022 0.0008 −0.0021
Average severity 0.0135 −0.0059 −𝟎.𝟎𝟐𝟕𝟒 −0.0035 0.0003 −0.0034

Table 13

Values of ARI between different trees. The number in brackets after the abbreviation of the model indicates the number of terminal nodes.

Poisson-BCART (5) ZIP2-BCART (5) Gamma-BCART (4) Weib-BCART (4) CPG-BCART (5) ZICPG3-BCART (5)

Poisson-BCART (5) 1 0.7396 0.5398 0.5163 0.8585 0.7823

ZIP2-BCART (5) - 1 0.5599 0.5179 0.8587 0.8152

Gamma-BCART (4) - - 1 0.7430 0.6921 0.6423

Weib-BCART (4) - - - 1 0.6491 0.6022

CPG-BCART (5) - - - - 1 0.6351

ZICPG3-BCART (5) - - - - - 1

number of claims and average severity (−0.0336) and the dataset 
involving a high proportion of zeros (93.19%).

Remark 6. Our primary motivation for the joint models was to incorpo

rate the association between the number of claims and average severity 
through splitting variables. To evaluate its effectiveness, we examine 
the conditional dependence within each terminal node of the selected 
joint tree from ZICPG3-BCART. We identify two cells of positive con

ditional correlation (out of a partition consisting of 5 cells), occurring 
when the estimated premium is at its minimum and maximum levels, 
respectively. This finding reveals the nuanced dependence between the 
number of claims and average severity, emphasizing the role of covari

ates, and provides valuable implications for insurance pricing and risk 
management.

5.2.2. Information sharing - why is it beneficial?

From the above data analysis, we have seen the advantages of be

ing able to share information between claim frequency and severity 
(through common covariates in the tree) in the joint modeling of this 
dataset. In this section, we will further investigate the superior per

formance of the joint models by looking at the correlation between 
covariates and claim frequency and average severity.

The correlation coefficients are displayed in Table 12. Note that 
some of the covariates are categorical, for which we use some trans

formations to replace them with numerical values for the correlation 
calculation; see Supplementary Material SM.H for further details. For 
claim frequency, variables with the strongest correlation coefficients in

clude ``agecat'' and ``veh_value'' which are used in the tree selected by 
the frequency BCART models in Zhang et al. (2024). For average sever

ity, we observe the same two variables exhibit the strongest correlation. 
Furthermore,``veh_age'' has the third strongest correlation, but the se

lected average severity tree (cf. Fig. 3) does not include it. We suspect 
this is due to a strong relationship between covariates ``veh_age'' and 
“veh_value'' (see Supplementary Material SM.H) and thus one of them is 
dropped to avoid multicollinearity. Additionally, both claim frequency 
and average severity show the strongest correlation with ``agecat'' which 
is the first splitting variable in the selected optimal frequency, average 
severity and joint trees, illustrating the effectiveness of BCART models 
for variable selection. The above discussion suggests that some com

mon covariates exhibit strong relationships with both claim frequency 
and average severity, it is thus beneficial to share this information using 
joint modeling. This validates the conclusion of Subsection 5.2.1.

Next, we consider ARI (see Section 3.4) to assess the similarity be

tween different trees and determine whether information sharing is 
necessary; see Table 13. As discussed in Section 4.2, although a spe

cific threshold of ARI for making a direct judgment about the necessity 

for information sharing is unknown, it is evident that ARI values be

tween all claim frequency and average severity trees are greater than 
0.5. This suggests that significant intrinsic similarities of these models 
cannot be ignored. This also validates the preference of adopting a joint 
model from Subsection 5.2.1.

After conducting a thorough analysis of this dataset, we suggest that 
insurers need to pay more attention to policyholders who are younger 
and have vehicles with higher values since they are more likely to have 
higher risks.

Remark 7. We have also applied the proposed BCART models to other 
datasets (dataOhlsson included in the library insuranceData in R, 
freMTPL2freq and freMTPL2sev included in the library CASdatasets; 
see more details in Charpentier (2014)). Due to the similarity in analysis 
methods and the consistency of conclusions, we omit the details.

6. Summary

This work develops BCART models for insurance pricing, building 
upon the foundation of previous claim frequency analysis (see Zhang et 
al. (2024)). In particular, for average severity, we incorporated BCART 
models with gamma, lognormal, and Weibull distributions, which have 
different abilities to handle data with varying tail characteristics. We 
found that the Weib-BCART performs better than Gamma-BCART or 
LN-BCART since it can deal with cases where some cells have lighter 
tails, while others have heavier tails. Besides, in the comparison be

tween Gamma-BCART and LN-BCART, the former is preferable for data 
with a lighter tail and the latter is more suitable for data with a heavier 
tail. This finding provides us with a practical strategy for choosing mod

els. Concerning aggregate claim modeling, we proposed three types of 
models. First, we found that the sequential models treating the number 
of claims (or its estimate) as a covariate in the average severity mod

eling perform better than the standard frequency-severity models when 
the underlying true dependence between the number of claims and aver

age severity is stronger. Second, we explored the choice between using 
two trees or one joint tree. In particular, when there are indeed common 
covariates affecting claim frequency and average severity and there is a 
relatively large amount of data available, it may be beneficial to use one 
joint tree, which supports the conclusion in Linero et al. (2020) by illu

minating the benefits of information sharing. Third, we provided details 
of evaluation metrics in the case of two trees and proposed the use of 
ARI to quantify the similarity between two trees, which can assist in ex

plaining the necessity of information sharing. Finally, in the analysis 
of various joint models, especially the three ZICPG models employ

ing different ways to embed exposure, we found that ZICPG3-BCART, 
which embeds exposure in both the zero mass component and Poisson 
component, delivers the most favorable results in real insurance data. 
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We address their similarities to the analysis of ZIP models discussed in 
Zhang et al. (2024). Furthermore, we introduced a more general MCMC 
algorithm for BCART models. These enhancements extend the applica

bility of BCART models to a broader range of applications. Although 
this paper does not fully resolve the challenge of dependence modeling 
between the number of claims and average severity, it highlights the im

portance and a need for further research, with copula-based approaches 
emerging as a promising direction.
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