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Abstract
Antimicrobial resistance to drugs (AMR), a global threat to human and animal
health, is often regarded as resulting from cooperative behaviour. Moreover,
microbes generally evolve in volatile environments that, together with demo-
graphic fluctuations (birth and death events), drastically alter population size
and strain survival. Motivated by the need to better understand the evolution of
AMR, we study a population of time-varying size consisting of two compet-
ing strains, one drug-resistant and one drug-sensitive, subject to demographic
and environmental variability. This is modelled by a binary carrying capacity
randomly switching between mild and harsh environmental conditions, and
driving the fluctuating volume (total amount of nutrients and antimicrobials
at fixed concentration), and thus the size of the community (number of resist-
ant and sensitive cells). We assume that AMR is a shared public good when
the concentration of resistant cells exceeds a fixed concentration cooperation
threshold, above which the sensitive strain has a growth advantage, whereas
resistant cells dominate below it. Using computational means, and devising
an analytical treatment (built on suitable quenched and annealed averaging
procedures), we fully characterise the influence of fluctuations on the eco-
evolutionary dynamics of AMR, and notably obtain specific strain fixation
and long-lasting coexistence probabilities as a function of the environmental
variation rate and cooperation threshold. We find that microbial strains tend
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to coexistence, but demographic fluctuations eventually lead to the extinction
of resistant or sensitive cells for small or large values of the concentration
cooperation threshold, respectively. This also holds for dynamic environments,
whose specific properties determine the extinction timescale.

Keywords: eco-evolutionary dynamics, fluctuations, coexistence,
antimicrobial resistance, cooperation, environmental variability

1. Introduction

The evolution of natural populations is often strongly influenced by environmental variability
(EV), characterised by endlessly changing conditions, such as temperature, light, pH, toxins,
and nutrients [1–6]. In particular, microbial populations generally evolve in volatile environ-
ments, subject to conditions fluctuating between harsh and mild. For instance, the abundance
of nutrients in a community can undergo cycles of feast and famine and the amount of toxin
can suddenly and radically change [3, 7–13]. Exogenous changes thus cause environmental
fluctuations that shape the population evolution [14–19], and in particular the ability of spe-
cies to coexist [1, 2, 4, 13, 20–26] and to act cooperatively [12, 27–32]. Demographic noise
(DN) stemming from random birth and death events is another source of fluctuations. These
are negligible in large communities and strong in small communities, where DN can lead to
the fixation of one species, when it takes over the entire population, and the extinction of the
others [33–36]. The dynamics of the make-up and size of a population are often coupled [37],
resulting in its eco-evolutionary dynamics [12, 38–41]. The joint effect of EV and DN is cru-
cial in microbial communities where it can lead to population bottlenecks, resulting in colonies
prone to fluctuations [27–30], and hence can greatly influence the eco-evolutionary dynamics
of antimicrobial resistance (AMR) [13, 42, 43]. It is also worth mentioning the considerable
recent efforts dedicated to researching the mechanisms underpinning the coexistence of com-
peting species under various scenarios, see e.g. [44–47]. Moreover, the influence of different
kinds of variability (e.g. quenched disorder, heterogeneous rates) on species coexistence has
notably been investigated in ecosystems exhibiting cyclic dominance, see e.g. [48, 49] and
references therein.

AMR, whose rise is a major societal threat [50, 51], can often be interpreted as resulting
from a cooperative behaviour. This occurs when antimicrobial drugs are inactivated by an
enzyme produced, at a metabolic cost, by resistant cells [13, 52–56]. When the concentration
of resistant microbes exceeds a fixed ‘concentration cooperation threshold’ there are enough
drug-inactivating enzymes for the protection against the toxin to be shared with sensitive cells
at no metabolic cost. However, when the concentration of resistant cells is below the cooper-
ation threshold, only resistant microbes benefit from the protection of the enzymes. In this
scenario, AMR is mediated by drug-inactivating enzymes that act as a public good only above
the cooperation threshold. This yields the spread of the resistant strain below the threshold,
where the drug limits the growth of (or kills) sensitive microbes, while these thrive above the
cooperative threshold where the drug-inactivating enzyme concentration is high [13, 52–54].
In a large population and static environment, sensitive and resistant strains thus coexist [54, 55,
57, 58]. However, this picture can be greatly altered by fluctuations arising in finite population
subject to EV [13, 27–30, 42, 59, 60].

Motivated by the need to better understand the evolution of AMR, we study the influence of
EV and DN on the eco-evolutionary dynamics of a population of time-varying size consisting
of two competing species, an antimicrobial-resistant strain and another sensitive to antimicro-
bial drugs. Here, EV is modelled by a binary carrying capacity that randomly switches between
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states corresponding to mild and harsh conditions (high and low values, respectively), with the
antimicrobial drug’s concentration kept constant. This choice of EV, that allows us to model
population bottlenecks, is responsible for the fluctuating size of the community. This encom-
passes the time-variation of the number of cells of each strain, and the amount of nutrients
and toxins in the community at fixed concentration (varying volume). Hence, this EV mimics
naturalistic settings subject to sudden floods/drainage events that greatly alter their volume
(such as in rivers, sewerage, and natural ponds) in the context of antimicrobial-polluted envir-
onments [61], as well as in microdroplet chemostat lab setups of time-varying volume [62,
63]. Complementarily, in [13, 32] EV was modelled by a binary carrying capacity switching
at constant volume, i.e. a form of EV with time-varying concentration of nutrients and toxins.
In what follows, we discuss the microbial behaviour under volume-fluctuating environments
and, by combining analytical and computational means, we determine the environmental con-
ditions for the long-lived coexistence of the species and the fixation properties of each strain.
We determine the fixation-coexistence diagrams of the model, and find the nontrivial environ-
mental conditions separating the phases of dominance/fixation and long-lived coexistence of
the species. We rationalise our findings by devising an analytical approach built on suitable
quenched and annealed averaging procedures, that allow us to capture the fixation-coexistence
diagrams, and to obtain the conditional probability that resistant cells prevail as a function of
the environmental variation rate and cooperation threshold.

The organisation of the paper is as follows: in the next section, we introduce the model
and our general methods. Section 3 is dedicated to the discussion of the model properties in
a static environment, first in an infinitely large population (mean-field analysis) and then in a
finite community. In section 4, we present the results of the eco-evolutionary dynamics in a
fluctuating environment, by focusing on the fixation-coexistence diagrams and their analysis in
sections 4.3 and 4.4. Our conclusions are presented in section 5, and some additional technical
details can be found in the appendices.

2. Model & methods

In this section, we introduce the idealisedmicrobial communitymodel whose eco-evolutionary
dynamics we study, and describe the modelling methods used in our analysis.

2.1. Model

We consider a well-mixed population of time-varying size N(t) = NR(t)+NS(t) consisting of
NR resistant (R) microbes andNS sensitive (S) microbes, which compete for the same resources
in the presence of a constant influx of antimicrobial drug. The strainR experiences a fixedmeta-
bolic cost (reduced reproduction rate) to constantly produce resistance enzymes1 that break
down the drug in their immediate vicinity, protecting them and also reducing the overall drug
concentration in the community. Microbes of strain S pay nometabolic cost associated to drug-
inactivating enzymes (of which they are not producers), but their growth is hampered by the
presence of the toxin. When the fraction of R in the population is sufficiently high, they pro-
duce enough resistance enzymes to bring the overall drug concentration below its minimum
inhibitory concentration (MIC) [52, 54, 58, 66]. When this happens, the drug is ineffective

1 As opposed to the case where R can regulate the production of resistance enzyme by quorum sensing [64, 65]. The
influence of this mechanism on the evolution of AMR is not addressed in this work.
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Figure 1. Model. (a) Top: when the fraction of R (blue microbes) is below the concen-
tration cooperation threshold xth, antimicrobial drug hinders the growth rate of S (red
microbes) andR has a growth advantage. Bottom: in a cooperative scenario arising above
the concentration cooperation threshold, resistance becomes shared (green shields) as
the fraction of R exceeds xth and these generate enough resistance enzymes (public good,
green shade) to break down the drug and set its concentration below the MIC for the
whole community. (b) Ecological dynamics as random extensive changes. The environ-
ment has a constant concentration of nutrients and antimicrobial drug, but switches from
high to low volume (i.e. from high to low carrying capacity) and vice-versa at rates ν+
and ν−, respectively. The number of microbes of each species,NR andNS, evolves in this
changing environment according to equation (6). (c) Temporal eco-evolutionary dynam-
ics of the microbial community for parameters xth = 0.37, s= 0.1, a= 0.25, K− = 100,
K+ = 1000, ν= 0.1, δ= 0.5, and for initial conditions K(t= 0) = K+, NR(t= 0) =
xthK+, andNS(t= 0) = (1− xth)K+; thick black line shows the sample path of the time-
switching carrying capacityK(t), thick solid coloured lines correspond to a realisation of
the piecewise deterministic Markov process that ignores demographic fluctuations and
is defined by equations (8) and (14) (see section 4.2), for the total population (N, green),
number of R (NR = xN, blue), and number of S (NS = (1− x)N, red); noisy lines are the
corresponding stochastic realisation of the full model under the joint effect of demo-
graphic and environmental fluctuations; dashed lines show the piecewise (meta-)stable
equilibrium NR = xthK(t) (blue) and NR = (1− xth)K(t) (red). (d) R fraction x= NR/N
for the same sample path of varying environment as in (c); line styles as in panel (c).
See text for more details.

everywhere and S benefits from the enzymes protection despite not having to pay any cost for
their production. The production of the resistance enzymes by Rmaking up a sufficiently high
fraction of the community can hence be regarded as cooperative behaviour, and their protection
against antimicrobials as a form of public good [54–56], see figure 1(a).

For concreteness, we assume a biostatic antimicrobial that only affects the growth rate of
S2. The metabolic cost for R to produce the enzymes is denoted by s and the growth hindrance

2 The case where the drug increases the death rate of the S microbes corresponds to a biocidal antimicrobial, and
is not directly considered here. This is a stringent limitation, since a given drug may act as a biocidal or biostatic
antimicrobial depending on its concentration [67].
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experienced by S microbes in the presence of the drug (above the MIC) is denoted by a.
In this setting, the fraction of R in the population, given by x≡ NR/N, determines whether
the enzymes offer a public good protection to S. If xth is the fraction of R necessary for the
enzymes to share their protection across the community, S is protected when x⩾ xth, whereas
it is affected by the drug when x< xth. Accordingly, the growth fitnesses fR/S of the R and S
microbes are

fR = 1− s and fS = 1− aθ [xth − x] , (1)

where θ[z] is the Heaviside step function, defined as θ[z] = 1 if (z> 0) and θ[z] = 0 otherwise,
s is the resistance metabolic cost, and a is the drug-driven growth hindrance [67–71]. The
average population fitness is f̄= fRNR/N+ fSNS/N. It is worth noting that the concentration
threshold xth is constant in this setting, while it varied in [32]where the populationwas assumed
to vary at constant volume.

The population thus evolves according to the multivariate birth–death process [33, 72, 73]
defined by

NR/S
T+R/S−−→ NR/S+ 1,

NR/S
T−R/S−−→ NR/S− 1, (2)

with transition rates [11, 12, 40, 46]

T+R =
fR
f̄
NR =

(1− s)x
1− aθ [xth − x] + (aθ [xth − x]− s)x

N, T−R =
N2

K
x and

T+S =
fS
f̄
NS =

(1− aθ [xth − x]) (1− x)
1− aθ [xth − x] + (aθ [xth − x]− s)x

N, T−S =
N2

K
(1− x) , (3)

where the growth is limited by the logistic death rateN/K, andwhereK is the carrying capacity,
that is here assumed to be a time-fluctuating quantity, see below. This choice ensures that N
obeys the standard logistic dynamics in themean field limit, see equation (7). In the expressions
of T+R/S, without loss of generality and for mathematical convenience, we have normalised fR/S
by the average fitness f̄ [32]. The growth rate of each strain is thus given by its fitness relative
to the average population’s fitness, which is a common assumption for many biological and
evolutionary processes [1, 33, 74]. This allows us to establish a neat relationship with the
classical Moran process, the reference birth–death-like process used to model the evolution of
idealised populations of constant total size [33, 35, 75–77].

2.2. Environmental fluctuations & master equation

Here, we model EV by allowing the carrying capacity K to randomly switch between two
values, where this represents changes in the volume (and therefore population size) of the
system. This allows us to capture sudden extreme environmental changes, as often used
in laboratory experiments [11, 15, 16, 18, 27–30, 32, 78], with a simple mathematical
setup. Concretely, EV is driven by a dichotomous Markov noise (DMN) [79–81], with the
transition

ξ −→−ξ (4)

occurring at rate (1− δξ)ν, where ν is the (average) switching rate and δ denotes the asym-
metry in the DMN switching (−1< δ < 1, see below), and we refer to the value of ξ as the
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environmental state (ξ= 1 for the mild state, and ξ =−1 for the harsh). Here, the DMN is
always at stationarity, implying that we have ξ =±1 with probability (1± δ)/2. The sta-
tionary DMN ensemble average is thus ⟨ξ(t)⟩= δ and its auto-covariance is ⟨ξ(t)ξ(t ′)⟩−
⟨ξ(t)⟩⟨ξ(t ′)⟩= (1− δ2)e−2ν|t−t ′|, which, up to a constant, coincides with the DMN auto-
correlation. We note that ν is the average switching rate, and 1/(2ν) is the DMN correla-
tion time. Since we introduce the fluctuations in the environmental volume by changes in the
carrying capacity, we model the binary switching carrying capacity by [11–13, 32, 40, 82]

K(t) =
1
2
[K+ +K− + ξ (t)(K+ −K−)] . (5)

Accordingly,K(t) switches between a state of high volume (ξ= 1), where resources are abund-
ant (K+), to another state of low volume (ξ =−1), where they are scarce (K− < K+), with
rates ν+ ≡ ν(1− δ) and ν− ≡ ν(1+ δ) according to

K−
ν−⇌
ν+

K+.

This reflects the fact that variations of K(t) are accompanied by those of the volume (amount
of nutrients and toxins) at fixed concentration, see figure 1(b).

Then, EV can be characterised by the mean switching rate ν ≡ (ν− + ν+)/2 and the envir-
onmental switching bias δ ≡ (ν− − ν+)/(ν− + ν+), where δ > 0 corresponds to ξ= 1 being
more likely than ξ =−1 (and hence more time spent, on average, in the environmental state
with a high carrying capacity K(t) = K+), with δ= 0 for symmetric DMN switching. The
time-fluctuating carrying capacity (5) modelling environmental fluctuations captures the time-
variation of the population volume and size, and is coupled with the birth-and-death process
defined by equations (2) and (3).

Therefore, the master equation (ME) for the probability P(NR,NS, ξ, t) that at time t the
population consists of NR and NS microbes and is in the environmental state ξ is [72]:

∂P(NR,NS, ξ, t)
∂t

=
(
E−
R − 1

)[
T+R P(NR,NS, ξ, t)

]
+
(
E−
S − 1

)[
T+S P(NR,NS, ξ, t)

]
+
(
E+
R − 1

)[
T−R P(NR,NS, ξ, t)

]
+
(
E+
S − 1

)[
T−S P(NR,NS, ξ, t)

]
+ ν−ξP(NR,NS,−ξ, t)− νξ P(NR,NS, ξ, t) , (6)

where E±
R/S are shift operators such that E±

R/S f(NR/S,NS/R, t) = f(NR/S± 1,NS/R, t), and the
probabilities are set toP(NR,NS, ξ, t) = 0wheneverNR < 0 orNS < 0. The last line on the right-
hand-side of equation (6) stems from random environmental switching and is thus responsible
for the coupling of EV and DN.

Since T±R/S = 0whenNR/S = 0, there is extinction ofR and fixation of S (NS = N), or fixation
of R (NR = N) and extinction of S. Here, the fixation of one strain is therefore accompanied by
the extinction of the other, and when this occurs the population composition no longer varies
(even though its size continues to fluctuate)3. The multivariateME (6) can be simulated exactly
using standard stochastic methods [32, 84–86], and encodes the eco-evolutionary dynamics of
the model. In all our simulations, ξ is at stationarity, and we thus initially have ξ(0) =±1 and

3 The final state of this is the absorbing state NR = NS = 0, which corresponds to the eventual collapse and extinction
of the population. This occurs after a time growing exponentially with the size of the system [11, 12, 40, 83]. Here,
where K(t)≫ 1, this phenomenon is practically unobservable and will therefore not be considered.
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hence K(0) = K± with probability (1± δ)/2, see appendix A. For convenience and without
loss of generality, the initial population size is chosen to coincide with the value of the carrying
capacity at t= 0, i.e. N(0) = K(0). We have checked that this choice has no influence on the
quasi-stationary distribution of N, and therefore on the discussion that follows.

3. Static environment

To gain an insight into the model’s eco-evolutionary dynamics, it is instructive to analyse its
properties in a static environment. In this section, we thus consider that there is no EV, with
the carrying capacity kept constant, K(t) = K0. Below we show that the proportion of resistant
microbes always tends to the fixed cooperation threshold xth in static environments. However,
when the microbial population is scarce, fluctuations due to birth–death events are significant,
and demographic noise can thus be responsible for the extinction or fixation of the resistant
strain.

3.1. Mean-field: the absence of fluctuations promotes coexistence

It is useful to start with the case of a very large population and carrying capacity K(t) =
K0 ≫ 1. In this mean-field setting, we ignore demographic and environmental fluctuations,
and the population’s dynamics is aptly described by the mean-field (deterministic) differential
equations [11, 12]

Ṅ=
∑

α=R,S

(
T+α −T−α

)
= N

(
1− N

K0

)
, (7)

and

ẋ=
d
dt
NR
N

=
T+R −T−R

N
− x

Ṅ
N

=
(aθ [xth − x]− s)x(1− x)

(1− aθ [xth − x])+ (aθ [xth − x]− s)x
, (8)

where the dot indicates the time derivative. It is clear from (7) and (8) that the dynamics of N
and x are decoupled at the mean-field level. This stems from having a constant concentration
cooperation threshold xth. According to the logistic equation (7), the population size reaches
its equilibrium, N= K0, on a time scale t∼O(1), while equation (8) implies that the popula-
tion composition has a stable equilibrium x= xth that is reached on a time scale t∼O(1/s)
when x⩾ xth and t∼O(1/(a− s)) when x< xth. Moreover, when s< a≪ 1, the metabolic
cost s and growth hindrance a are small and there is a timescale separation: N relaxes to K0

much faster than x reaches xth. We note that the coexistence equilibrium in terms of R and
S is NR = xthK0 and NS = (1− xth)K0. This stable coexistence arises from sensitive microbes
out-competing resistant ones in the presence of antimicrobial drug, but only if the resistance
is shared, which requires a minimum fraction of resistant cells in the population.

3.2. The fate of a large population in a static environment is determined by the cooperation
threshold

We now consider that the population size is large but finite, and the environment is static, with a
constant carrying capacity K(t) = K0. In this setting, the long-time dynamics is characterised
by the eventual fixation of one of the strains due to birth–death demographic fluctuations.

7
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Below, we show that for large concentration cooperation thresholds (0≪ xth < 1) the resistant
strain fixates the population quickly, whereas sensitive cells rapidly take over under smaller
thresholds (0< xth ≪ 1). Moreover, we find the cooperation threshold x∗th at which both strains
have the same fixation probability, and obtain a simple expression for the coexistence duration
that increases exponentially with the total population size.

As discussed in the previous section, in a large population the community composition rap-
idly approaches the coexistence equilibrium, which coincides with the cooperation concentra-
tion threshold, i.e. x→ xth, see equation (8), and the total population reaches its steady state
N→ K0 before any fixation/extinction events likely occur, see equation (7). We can therefore
analyse the fate of a large finite population in a static environment by assuming a constant total
population size coinciding with the carrying capacity, N= K0, and that any fixation/extinction
events occur from the population coexistence equilibrium xth.

When the fixed total population N≈ K0 is neither too small nor too large (1≪ K0 ∼ K− ≪
K+ in our examples), demographic fluctuations are significant (of order

√
K0) and can thus

prevent long-lived coexistence by leading to the fast fixation of one strain. Here, we are inter-
ested in characterising these scenarios of dominance by one strain or coexistence. For this, the
evolutionary dynamics is modelled in terms of the analytically tractable Moran process [11,
12, 33, 35, 75, 77]. In the Moran stochastic dynamics, each birth/death of one R is balanced
by the simultaneous death/birth of one S. This ensures that the overall population size in the
Moran model remains constant at each update of its composition, asN= K0. The simultaneous
Moran birth/death events thus occur according to the reactions

NR+NS
T̃+R−−→ (NR+ 1)+ (NS− 1) ,

and

NR+NS
T̃−R−−→ (NR− 1)+ (NS+ 1) ,

with the effective transition rates T̃±R ≡ T±R T
∓
S /N= T±R T

∓
S /K0 obtained from (3) [11, 12]:

T̃+R =
(1− s)x(1− x)

1− aθ [xth − x] + (aθ [xth − x]− s)x
N, and

T̃−R =
(1− aθ [xth − x])x(1− x)

1− aθ [xth − x] + (aθ [xth − x]− s)x
N, (9)

where x≡ NR/N and where we used N= K0 (constant population size). Therefore, the
stochastic dynamics of x, when the total microbial population size is kept constant (static envir-
onment), is well described by the above one-dimensional effective birth–death reactions.

Fixation probability. We are interested in the probability that a strain takes over the entire
population starting from a given initial number of microbes, a quantity referred to as fixation
probability [33–35, 76]. Here, the fixation probability of the strain R when the population
initially consists of N0

R resistant individuals (and N0
S = N−N0

R sensitive cells) is denoted by
ϕN (x0), where x0 ≡ N0

R/N is the initial fraction of resistant microbes, and where the subscript
signifies that the expression is for a population of constant size N. Since the fixation of R
coincides with the extinction of S, ϕN (x0) also gives the extinction probability of the strain S.

For the one-dimensional Moran model (e.g. two microbial strains at a fixed total population
N), the exact general expression of the fixation probability ϕN (x0) is well known [33, 72–74,
76], see equation (S1). According to equation (8), the make-up of a large population in a static
environment rapidly reaches its coexistence equilibrium from any moderate initial R fraction

8
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Figure 2. R fixation probability and mean coexistence time (MCT) in static environ-
ments. (a) R fixation probability ϕN in terms of the concentration cooperation threshold
xth for s= 0.1, a= 0.25, and for five examples of total population size, from N= 25
(yellow green) to 200 (dark green); the starting microbial composition is set at the coex-
istence equilibrium x0 = xth; dotted and dashed lines show the exact and approximated
Moran predictions of equations (S2) and (10), respectively, which are only distinguish-
able for the smallest population size; noisy solid lines are from simulation data (103

realisations for each data point) and match with dotted lines. The vertical black dashed
line shows the value of x∗th for which each strain has a probability 1/2 to fixate when
N≫ 1. (b) Mean coexistence time ⟨τN⟩ vs xth in log-linear scale; the simplified formula
of equation (11) (dashed lines), approximates well (for ⟨τN⟩> 50) the exact MCT (S3)
(dotted lines) and simulation results for the MCT (solid lines); legend and line styles as
in panel (a).

(0≪ x0 ≪ 1), i.e. x0 → xth, and lingers about xth until fixation/extinction occurs. When x0 is
not too close to 0 or 1, we can thus assume ϕN(x0)≃ ϕN (x0 = xth), yielding the following
approximate expression for the fixation probability of R in a population of large constant size
N [32]:

ϕN (xth)≃
1

1+
(

1
1−a

)−N(xth−x∗th)
, with x∗th ≡

ln(1− s)
ln(1− a)

+
1
N

ln
(
s(1−a)
a−s

)
ln(1− a)

; (10)

see appendix B, where the exact expression of ϕN(xth) is given by equation (S2). Here x∗th is
defined as the critical value of the cooperation concentration threshold for which both strains
have probability 1/2 of fixation, i.e. ϕN (x∗th) = 1/2.We have found that, for biologically plaus-
ible values of 0< s< a≲ 10−1 and N> 25, equation (10) is a good approximation for the
fixation probability and this simplified compact expression matches up well with the exact
solution and simulation data; see figure 2(a). Remarkably, equation (10) reveals that strain R
is the most likely to go extinct (and S to fixate) when the cooperation threshold is below the
critical value x∗th: ϕN(xth)≪ 1 if xth < x∗th. On the other hand, when the cooperation threshold
exceeds x∗th, a large concentration of R is thus needed to inactivate the drug, and R is likely to
fixate and S to go extinct, since equation (10) predicts ϕN(xth)≈ 1 if xth > x∗th. As an intriguing
feature of the cooperative resistance, we notice that the more efficient in producing resistance
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enzymes (public good) R is, the lower xth is, and the more likely R is to go extinct. Similarly,
the less efficient in producing the public good R is, the more likely it is to fixate (high xth).

Mean coexistence time. Another quantity of great interest is the mean time until one of the
strain fixates and the other is wiped out. Since the strains here coexist until fixation/extinction
of one of them, this (unconditional) mean fixation time coincides with the mean coexistence
time (MCT) of the strains ⟨τN (x0)⟩. For the Moran model in a population of fixed size N, the
exact expression of the MCT is well-known [33, 72–74, 76], see equation (S3). As discussed
previously, we can assume that fixation/extinction arises from the coexistence equilibrium
x0 = xth, and then obtain the simplified approximate MCT expression

⟨τN (xth)⟩ ≃
a(1− s)
s2 (a− s)

ϕN (xth)
xth

(
1

1−s

)(1−xth)N
− 1

(1− xth)N
,

(11)

whose derivation is given in section C of the appendix. This expression of the MCT closely
reproduces the exact prediction (S3) and simulation data of figure 2(b) for ⟨τN⟩> 50.We notice
that ⟨τN(xth)⟩ ≪ ⟨τN(x∗th)⟩ when xth is much below or above x∗th. This means that, for given
s,a and N, the MCT is maximum for xth ≃ x∗th, and it decreases exponentially as xth deviates
from x∗th. This can be interpreted as follows: strongly and weakly cooperative R (low/high xth,
respectively) favour the rapid dominance of one strain, whereas Rwith a cooperative threshold
about x∗th promotes long-lived coexistence, and in this case the MCT greatly exceeds the pop-
ulation size [13, 76, 87–91].

Coexistence probability. In section 3.1, we have seen that the mean-field dynamics of an
infinitely large population leads to a stable coexistence of the strains. However, coexistence
cannot be stable in a finite population since demographic fluctuations unavoidably cause the
fixation of one stain and the extinction of the other [13, 87, 92]. In fact, while we are guaranteed
that only one of the strains will finally survive, its fixation can occur after a very long-lived
coexistence of the strains.When this happens, themean-field coexistence equilibrium becomes
metastable. The population is thus at quasi-stationarity, and the MCT generally scales super-
linearly with the population size N, with a fixation/extinction time, here denoted by τN , that
is generally exponentially distributed with a cumulative distribution 1− exp(−τN/⟨τN⟩), see
e.g. [13, 87, 88, 92, 93]. This is in stark contrast with the MCT scaling sublinearly with N
when one species dominates over the other [13, 76, 87–91]. The scenarios of dominance and
long-lived coexistence are hence separated by a regime where theMCT scales linearly with the
population size [13, 32, 89–91]. This leads us to consider that there is long-lived coexistence
of R and S strains whenever the coexistence time exceeds 2N (where the conservative factor
2 is chosen for convenience as in [13, 32]), and otherwise one of the strains dominates and
fixates in a time τN less than 2N. Here, we will therefore consider that the probability to have
long-lived coexistence in a population of size N is ηN = Prob.(τN > 2N), the probability that
coexistence time exceeds 2N, which is obtained from its cumulative distribution:

ηN ≡ Prob.(τN > 2N) = exp(−2N/⟨τN⟩) . (12)

Assuming that the probability of fixation of a given strain and the probability of long-lived
coexistence are independent, with (10), (11) and (12), we thus estimate that the probabilities
of fast fixation of R and S by time 2N in a population of constant size N are, respectively,

ϕN (xth)(1− ηN) and (1−ϕN (xth))(1− ηN) . (13)

The quantities (12) and (13) can be used to obtain fixation-coexistence diagrams and visu-
alise the long-time eco-evolutionary properties of the model in static environments [13, 32].

10
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Based on these results, and assuming min(xth,1− xth)≲ 1/
√
N (so that demographic fluc-

tuations about the concentration cooperation threshold are strong enough to cause fast fix-
ation/extinction events), the long-time behaviour of a finite population of size N in a static
environment (with sN≫ 1 and (a− s)N≫ 1) can be summarised in terms of the value of xth
relative to x∗th. This is, if xth < x∗th, the sensitive strain S dominates, while R most probably
fixate when xth > x∗th; whereas long-lived coexistence of the strains is expected when xth is
about x∗th. When min(xth,1− xth)≫ 1/

√
N, demographic fluctuations are too weak to ensure

fast fixation/extinction, and long-lived coexistence is always expected. The above approach
and quantities (12) and (13) are generalised to a dynamic environment in section 4.3 to obtain
the corresponding fixation-coexistence diagrams, see equations (17) and (22) and figure 4.

4. Dynamic environment

Environments are often dynamic and endlessly change through time. Having character-
ised how the system evolves when the environment is static, we now look to include the
biologically-motivated environmental changes driven by the binary switching of the carrying
capacity (5). These environmental switches can produce population bottlenecks, where the
community size shrinks significantly and is subject to strong demographic fluctuations, hence
moulding the fixation/coexistence properties of the population. In this section, we derive gen-
eral analytical and numerical methods to assess the impact of EV on population dynamics. In
particular, we show that, in a dynamic environment, fast fixation of either strain is also possible
when xth ≈ x∗th, and long-lived coexistence can also occur when xth ≈ 0 or 1, see section 4.2.

4.1. Large population driven by a switching carrying capacity: sample paths &
quasi-stationary distribution

Here we show how the EV shapes the total microbial population size irrespective of composi-
tion dynamics. On the one hand we show that slow-switching environments (with small mean
switching frequency ν) yield a bimodal distribution of microbial populations, narrowly peaked
about either the low (K−) or high (K+) carrying capacity. On the other hand, fast-switching
EV (high ν) leads to a unimodal distribution of the total population size peaked at an effect-
ive, intermediate carrying capacity K. The intermediate-switching regime is characterised by
a mixed behaviour and a wider variability of the population distribution.

When the population is large enough for demographic fluctuations to be negligible, and
randomness only arises from the time-fluctuating environment, via the random switches of
the carrying capacity (5), the dynamics is well described by a so-called piecewise determin-
istic Markov process (PDMP) [94]. In the PDMP, the total population dynamics between each
environmental switch is deterministic and given by equation (7), with K0 now replaced by K±
when ξ =±1. Since equations (7) and (8) are decoupled, the PDMP does not affect the mean-
field dynamics of the population composition x (and vice versa), which is still given by (8).
Here, the PDMP for the population size N (N-PDMP) is therefore defined by

Ṅ= N

(
1− N

K(t)

)
=

N
(
1− N

K−

)
, if ξ =−1

N
(
1− N

K+

)
, if ξ = 1

, (14)

where the time-varying carrying capacity K(t) ∈ {K−,K+} is given by equation (5). Sample
paths of this N-PDMP are shown as solid black lines in figures 1(c) and 3(e)–(h). These real-
isations illustrate how N(t) tracks the switching carrying capacity K(t) for low and intermedi-
ate/low switching rates ν, while it fluctuates about an effective valueK for very high switching

11



J. Phys. A: Math. Theor. 57 (2024) 265003 L Hernández-Navarro et al

Figure 3. Eco-evolutionary dynamics sample paths. (a)–(d) Examples of R fraction
sample paths in silico (blue lines) for four concentration cooperation thresholds xth
(dashed black lines), three average switching rates ν, and two environmental biases δ,
for s= 0.1, a= 0.25, K− = 100, and K+ = 1000, with initial conditions NR(t= 0) =
xthK(t= 0) and NS(t= 0) = (1− xth)K(t= 0). Shaded and white areas in panels (b)–
(c) encode periods of abundance (K(t) = K+) and scarcity (K−), respectively. Note the
larger amplitude of demographic fluctuations for the latter since N→ K− ≪ K+. (e)–
(h) Same example paths as in the corresponding panels (a)–(d) for the population size
N (green lines); black lines show example paths for the carrying capacity K. The very
high environmental switching rate ν in panel (h) provides the effectively constant car-
rying capacity K (black dashed line); see section 4.1. (i)–(l) Same example paths as in
the previous panels for the number of R (blue lines) and S (red lines). Dashed lines
show the corresponding (meta-)stable coexistence equilibrium NR = xthK (blue) and
NS = (1− xth)K (red); see section 3. The demographic noise (DN) and the low value
of xth = 0.1 in panels (a), (e), (i) lead to fast extinction of R, whereas the high threshold
xth = 0.9 and DN in panels (d), (h), (l) lead to an early fixation of R and extinction of S.

rates, see figure 3(h). The population composition x(t) always tends towards the coexistence
equilibrium x→ xth; see figures 3(a)–(d). The dynamics of K(t) leads us to identify two lim-
iting regimes. When EV is slow, ν → 0, the environmental state switches very rarely, and N
thus essentially coincides with K(0) giving N= K± with probability (1± δ)/2. In this slow
EV regime, the population dynamics is the same as in static environments with a constant car-
rying capacity set by the initial condition. When the environment switches very frequently,
ν →∞, N cannot keep track of the changes of K(t), which approaches an effective value
K(t)→K obtained by self-averaging the environmental noise, yielding K = 1/⟨1/K(t)⟩=
2K+K−/ [(1− δ)K+ +(1+ δ)K−] [11–13, 32, 40, 41, 46, 82]. Under very high switching
rate, the population size thus approaches this effective constant carrying capacity N≈K, see
figure 3(h).

The (marginal) stationary probability density function (pdf) of the N-PDMP (ignoring
demographic fluctuations) for fixed {ν,δ} is [11–13, 40, 79–81, 95]

pν,δ (N) =
Z
N2

(
K+ −N
N

)ν(1−δ)−1(N−K−

N

)ν(1+δ)−1

, (15)
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whereZ is a normalisation constant and N ∈ [K−,K+] is a continuous variable. Despite ignor-
ing demographic fluctuations, the above equation provides a useful approximation of the actual
quasi-stationary population size distribution, and captures well the underlying total population
dynamics [11–13, 40, 82]. When ν ≪ 1 the pdf is bimodal and sharply peaked at N= K− and
N= K+. The probability density pν,δ(N) begins to flatten out as ν ∼ 1. When the switch-
ing rate ν is increased further, the pdf becomes unimodal and sharply peaked about a value
approachingK, and eventuallyN≈K, when ν ≫ 1. The actualN quasi-stationary distribution
shows slightly broader peaks, due to demographic noise, but is otherwise well described by
the PDMP approximation [11, 12, 40, 41]. In particular, the average of N over the N-PDMP
pdf given by

⟨N⟩ν,δ =
ˆ K+

K−

Npν,δ (N) dN, (16)

is an accurate approximation of ⟨N⟩, the actual stationary mean population size [11–13, 40],
with ⟨N⟩ ≈ ⟨N⟩ν,δ ≈ [(1+ δ)K+ +(1− δ)K−]/2 when ν ≪ 1 and ⟨N⟩ ≈ ⟨N⟩ν,δ ≈K when
ν ≫ 1. As shown in [11–13, 40], equation (16) correctly captures that, at fixed δ, the aver-
age population size ⟨N⟩ is a decreasing function of ν.

4.2. Insight into fixation and coexistence properties via eco-evolutionary dynamics sample
paths

It is useful to consider the trajectories of figure 3 to gain some insights into the dynamics
in fluctuating environments. We first notice the strong dependence of fixation or coexistence
(and which strain prevails) on xth, as in static environments; see section 3.2. It is indeed clear
from figure 3 that, for fixation to occur in a time of order ⟨N⟩, xth must be sufficiently close
to 0 or 1 such that demographic fluctuations are able to drive the system away from coex-
istence. As in section 3.2, which strain fixates is chiefly determined by whether xth > x∗th
or xth < x∗th, see figure 2(a), and fixation occurs in a finite time when min(xth,1− xth)≲
1/
√

⟨N⟩ ≈ 1/
√
⟨N⟩ν,δ , see figure 2(b). Since xth = 0.1< x∗th ≈ 0.37 in figures 3(a), (e) and

(i), it illustrates the fixation of S, whereas figures 3(d), (h) and (l), where xth = 0.9> x∗th, exem-
plifies the fixation of R. In these two sets of panels, we also see the impact of small/large ν: in
figures 3(a), (e) and (i) the population’s initial size is N= K− = 100 and ν is so small that no
switches occur before S fixation occurs. In figures 3(d), (h) and (l), K(t) switches so quickly
and frequently that N≈K ≈ 308, see section 4.1, well before R fixation occurs. In the cases
where xth is close to x∗th and far from 0 and 1, as in figures 3(b), (f), (j) and (c), (g), (k), we
observe a long-lived coexistence of the strains.

In figures 3(b) and (c), where xth = 0.37 and xth = 0.63 with ν = 10−1, we notice large
demographic fluctuations when the population experiences bottlenecks at N≈ K− (periods
in white background). We also note in figures 3(f) and (g) that for an intermediate switching
rate ν= 0.1, the population size N manages to track the switches of K and its distribution is
expected to be well approximated by the pdf (15).

These features are essentially in line with the discussion of section 3.2, and hence similar to
the behaviour found in static environments. In the next section, we will see that, in a dynamic
environment, fixation of either strain is also possible when xth ≈ x∗th and that there can be long-
lived coexistence also when xth ≈ 0,1. These are distinctive effects of EV that are analysed in
detail in what follows, see figure 4.
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Figure 4. Characterisation of the long-time eco-evolutionary dynamics by the fixation-
coexistence diagrams. (a)–(d) Fixation type and fast fixation joint probability in silico for
EV parameters ν (average environmental switching rate) and δ (environmental switch-
ing bias), s= 0.1, a= 0.25, K− = 100, K+ = 1000, and the concentration coopera-
tion thresholds xth = 0.1, 0.37, 0.63, and 0.9. Here, x∗th ≈ 0.366, and the total popula-
tion is initialised at quasi-stationarity (assumed to coincide with equation (15)), with
NR(t= 0) = xthK(t= 0) and NS(0) = (1− xth)K(0), see appendix A. Stronger blue
(red) corresponds to a higher fixation probability of R (S). Darker colour indicates a
higher long-coexistence probability, defined as the probability to have no fixation event
by time 2⟨N⟩ν,δ , where we take twice the average total population in its stationary state
(average across 103 realisations). The green/yellow lines separate the environmental
regimesQ andA (respectively on the left and right of the lines), see section 4.3. Thewhite
asterisks in (a)–(d) refer to the values of ν and δ used for each of the panel columns (I-IV)
in figure 3. (e)–(h) Theoretical fixation-coexistence diagrams: same as in panels (a)–(d)
for the theoretical predictions of the fixation-coexistence joint probability given by (23)
and (24), where 2⟨N⟩ν,δ is computed as twice the average over the distribution (15).
Analytical results reproduce remarkably the features of those from simulations.

4.3. Theory for the fixation-coexistence diagrams in fluctuating environments

In this section we develop the analytical methods for fluctuating environments allowing us
to predict when, in our simulations, one of the strains will fixate or go extinct, and when
both strains will coexist for long-periods. The theory that we have devised and discuss here
is used to analytically reproduce, see figures 4(e)–(h), the fixation-coexistence diagrams of
figures 4(a)–(d) obtained from extensive computer simulations. Here, we show that microbial
populations in time-varying environments can exhibit two qualitatively distinct behavioural
regimes, depending on whether the environment has switched at least once. If this is the case,
microbes experience a mixture of the two possible environments, and dynamics is effectively
captured by averaging fixation/extinction probability fluxes over the total population distribu-
tion. When switches are unlikely to occur, the environment is essentially static and the popu-
lation can be assumed to coincide with the initial value of the carrying capacity.

We first define long-lived coexistence in fluctuating environments by direct extension of
what has been discussed in static environments; see section 3.2. For given EV defined by the
environmental mean switching rate and bias parameters {ν,δ}, there is long-lived coexistence
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of the strain R and S if the fixation time, here denoted by τ , exceeds 2⟨N⟩ [13, 32]. Note that the
mean fixation/extinction time, denoted by ⟨τ⟩, coincides with the mean coexistence time, as in
the environment-static case of section 3.2. We will thus say that, for given {ν,δ}, there is long-
lived coexistence in the population of fluctuating size and volume, if τ > 2⟨N⟩ ≈ 2⟨N⟩ν,δ . The
rationale for this definition is the same as in the case of static environment, see section 3.2 and
[13, 32, 89–91], with the difference that the constant population is now replaced by the average
stationary population size ⟨N⟩ that we analytically approximate by ⟨N⟩ν,δ obtained from the
N-PDMP according to equation (16). Therefore, we will say that, for given environmental
parameters {ν,δ}, there is fast fixation or, equivalently, early extinction of a strain, if R or S
fixates in a time τ that is less than 2⟨N⟩ ≈ 2⟨N⟩ν,δ .

Secondly, we distinguish two fluctuating environment regimes in which the fixation and
long-lived coexistence probability are evaluated by distinct suitable approaches. We refer to
these different behaviours as the quenched (Q) and annealed (A) regimes. Dynamic environ-
ments in the regime Q are so slow, ν ≪ 1, and/or so biased, δ ≈±1, that the environment is
unlikely to experience any switch by time 2⟨N⟩ν,δ regardless of the initial condition; whereas,
in the same time, environments in regime A experience at least one environmental switch.
SimilarQ and A environmental regimes have been identified elsewhere, see e.g. [96, 97]4. The
border between Q and A regimes is determined by

max(1/ν±)≡ 1/(ν (1− |δ|)) = 2⟨N⟩ν,δ,

which splits the fixation-coexistence ν− δ diagrams of figure 4 in two regions separated by
green/yellow lines: where 1/(ν(1− |δ|))> 2⟨N⟩ν,δ , the average time for an environmental
switch to occur exceeds the reference time for long-lived coexistence. This means that in this
region K is unlikely to experience any switch by time 2⟨N⟩ν,δ , and the previous inequality
hence delineates theQ regime. Here, the A regime is thus defined by 1/(ν(1− |δ|))< 2⟨N⟩ν,δ ,
where, on average, K switches at least once by time 2⟨N⟩ν,δ .

Quenched environmental regime. In regime Q (on the left of green/yellow lines of figure 4),
the carrying capacity remains at initial value,K(t) = K(0), at least until time 2⟨N⟩ν,δ . Since the
environment is already in its quasi-stationary state, this initial value is either K(0) = K+, with
probability (1+ δ)/2, or K(0) = K−, with probability (1− δ)/2. Hence, the joint probability
of R fixating and that fixation/extinction occurs in a time τ < 2⟨N⟩ν,δ (fast fixation) in the
regime Q, denoted by ΦQ, is

ΦQ ≡ Prob.(R fixation, τ < 2⟨N⟩ν,δ | regime Q)

=
1+ δ

2
ϕK+

(
1− ηQK+

)
+

1− δ

2
ϕK−

(
1− ηQK−

)
,

(17)

where ϕN is the R fixation probability in a population of fixed size N, given by equation (10),
and

ηQN ≡ Prob.(τ > 2⟨N⟩ν,δ) = exp

(
−2⟨N⟩ν,δ

⟨τN⟩

)
(18)

is the probability of long-lived coexistence in theQ regime, starting (and staying) at a total pop-
ulation N, with mean coexistence time (MCT) ⟨τN⟩, where ηQN is defined as the environmental-
dynamic counterpart of the environmental-static equation (12).

4 It is worth noting that the annealed regime often corresponds to the limit ν →∞ where the environmental noise ξ
self averages [11, 12, 40, 41, 96, 97]. Here, the case of intermediate switching with a finite number of switches prior
to fixation/extinction is qualitatively similar to the case ν →∞, and for simplicity we here refer to it as the annealed
regime A.
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Annealed environmental regime. In regime A (on the right of green/yellow lines of figure 4),
the environment switches at least once prior to time 2⟨N⟩ν,δ regardless of the initial condition.
In this regime,N therefore experiences a broad range of values in sampling its quasi-stationary
distribution, here approximated by pν,δ(N) of equation (15), before a fixation/extinction event
or long-lived coexistence occurs. In the vein of [11, 12], we thus assume that when a fixation
event occurs, it arises in a population of size N ponderated by the probabilistic weight pν,δ(N).
Following [87, 92], we know that theMCT ⟨τN⟩ in a population of constant sizeN is the inverse
of the probability flux towards the absorbing boundaries, and the fixation probability ϕN is
given by the relative flux into the absorbing state NR = N [87]. Hence, ϕN/⟨τN⟩ is defined as
the ‘rate to R fixation’ in a population of size N, and similarly we define (1−ϕN)/⟨τN⟩ as
the ‘rate to R extinction’ or, equivalently, as the ‘rate to S fixation’. In regime A, we assume
that any fixation/extinction events occur while N is at quasi-stationarity and, by analogy with
the N-constant case, experiences a rate to R fixation/extinction ϕN/⟨τN⟩ and (1−ϕN)/⟨τN⟩,
respectively; but we now average these over pν,δ(N) to account for the varying population
size in fluctuating environments. We thus obtain the effective rates of R fixation/extinction in
regime A, respectively given by

TF =
ˆ K+

K−

ϕN
⟨τN⟩

pν,δ (N) dN and TE =
ˆ K+

K−

1−ϕN
⟨τN⟩

pν,δ (N) dN. (19)

Since ⟨τK+
⟩ ≫ ⟨τK−⟩, the main contributions to TF/E, and hence to fixation/extinction, arise

from N≈ K−. With TF/E, we obtain the R fixation probability and mean coexistence time, ϕA

and ⟨τA⟩, respectively, in formal analogy with the environmental-static case [87, 92]:

ϕA =
TF

TF+ TE
and ⟨τA⟩= 1

TF+ TE
. (20)

Moreover, for a dynamic environment of mean switching rate and bias parameters {ν,δ}, fol-
lowing the reasoning leading to equation (12), the long-lived coexistence probability in regime
A is

ηA = exp

(
−2⟨N⟩ν,δ

⟨τA⟩

)
. (21)

Results (20) and (21) allow us to find the joint probability of R fixation and fast fixation in a
time τ < 2⟨N⟩ν,δ in the regime A, denoted by ΦA, as

ΦA ≡ Prob.(R fixation, τ < 2⟨N⟩ν,δ| regime A) = ϕA
(
1− ηA

)
, (22)

where we have again assumed that strain fixation type and long-lived coexistence are com-
pletely uncorrelated (assumption to be assessed by means of simulations).

Crossover regime and general results. Having obtained the fixation and coexistence prob-
abilities in regimes Q and A, we can suitably superpose their expressions to obtain predic-
tions applicable in the crossover regime (about the green/yellow line in figure 4), as well as in
regimes Q and A. This provides us with general results, that are valid for then entire range of
environmental parameters {ν,δ}. Since the probability that no switches occur by time 2⟨N⟩ν,δ
(regime Q) is

Π≡ exp [−2⟨N⟩ν,δ ν (1− |δ|)] ,

and the probability that at least one switch has occurred by 2⟨N⟩ν,δ (regime A) is 1−Π, the
overall joint probability of R fixation and fast fixation is

Φ =ΠΦQ+(1−Π)ΦA. (23)
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The overall probability of long-lived coexistence is obtained by a similar superposition
of ηQ,A:

η =ΠηQ+(1−Π)ηA. (24)

Equations (23) and (24) are expressions used in the theoretical predictions of figures 4 and 5.

4.4. Long-time eco-evolutionary dynamics in a fluctuating environment: comparison of theory
and simulations

In this section, we compare the results of extensive computer simulations and theoretical pre-
dictions of section 4.3, fully characterising the long-time eco-evolutionary dynamics of the
population in a fluctuating environment.

The fixation-coexistence diagrams in figures 4(a)–(d) show simulation results for the prob-
ability of fast R fixation (blue), fast S fixation (red), or long-lived coexistence (black), see
appendix A, for different values of the concentration cooperation threshold xth when N is at
quasi-stationarity. The main features of these diagrams can be understood in terms of the
analysis carried in section 3.2 and by referring to the critical cooperation threshold value
x∗th ≈ [ln(1− s)]/[ln(1− a)] 5: when xth < x∗th (and xth ≲ 1/

√
⟨N⟩ν,δ for significant demo-

graphic fluctuations), the most likely outcome is the fast fixation of S (i.e. early extinction of
R); while fast fixation of R (early extinction of S) is the most probable outcome when xth > x∗th
(and 1− xth ≲ 1/

√
⟨N⟩ν,δ); and long-lived coexistence of R and S is expected when xth is close

to x∗th (and/or when min(xth,1− xth)≫ 1/
√

⟨N⟩ν,δ so that demographic fluctuations are negli-
gible). For the parameters of figure 4, x∗th ≈ 0.366, and we indeed notice that most of figure 4(a)
appears in red, panels (c) and (d) of figure 4 are mostly coded in blue, and most of figure 4(b)
appears in black.

We notice however that in the presence of EV each panel of figure 4 is coded in two colours,
indicating a phase of fast fixation/extinction and another of long-lived coexistence. In fact, due
to EV, long-lived coexistence is possible even when fast fixation of S and R is most likely. In
figures 4(a) and (d) this leads to the red and blue dominated diagrams to also contain a dark/-
black area for δ close to 1 (bias ofK towardsK+). This can be qualitatively explained by noting
that, as K is biased towards K+, the population size is essentially constant and large, N≈ K+,
implying that demographic fluctuations are weak, which prevents fast fixation of either strain.
Similarly, EV can allow for fast fixation even when long-lived coexistence is expected, as
found in figure 4(b), where the black-dominated diagram (due to xth ≈ x∗th) contains a coloured
‘cloud’. Here, fast fixation events occur for low values of ν and δ ⩽ 0, when N≈ K− for long
periods, and the small population size (K− = 100) enforces large demographic fluctuations
that facilitate early extinction of either R or S, see figure 5.

In general, the colour-coding of the fixation-coexistence ν− δ diagrams of figure 4 can be
qualitatively understood by noting on the one hand that, as δ is increased from −1 to 1 (at
fixed ν), the EV bias moves from K− (small community) to K+ (large population), and hence
favours long-lived coexistence. On the other hand, increasing the environmental switching

5 In principle, a suitable environment-dynamic counterpart of x∗th, given by equation (10), in a population of average

size ⟨N⟩ν,δ is x∗th,ν,δ ≡ ln(1−s)
ln(1−a)

+ 1
⟨N⟩ν,δ

ln
(

s(1−a)
a−s

)
ln(1−a)

. However, when ⟨N⟩ ≫ 1 and a is not too close to 1, as in our

examples, x∗th,ν,δ is well approximated by the leading contribution to x∗th, and hence we can consider x∗th,ν,δ ≈ x∗th ≈
ln(1−s)
ln(1−a)

.
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Figure 5. Eco-evolutionary probabilities of long-coexistence and fast R fixation. (a)
Long coexistence probability at quasi-stationarity P(τ > 2⟨N⟩ν,δ), defined as no fix-
ation occurring before 2⟨N⟩ν,δ , as a function of the average environmental switching
rate ν for a concentration cooperation threshold of xth = 0.1 and different values of
the environmental bias δ. By t= 2⟨N⟩ν,δ , we assume that N has already reached its
quasi-stationary distribution, which we approximate as equation (15) in the theoretical
predictions. Dotted lines (downward triangles), solid lines (circles), and dashed lines
(upward triangles) show results for δ =−0.5, 0, and 0.5, respectively. Lines are theor-
etical predictions from η in equation (24), andmarkers are simulation data; error bars are
smaller than markers (not shown). Other parameters are: s= 0.1, a= 0.25, K− = 100
and K+ = 1000, as in figure 4. Inset: R fixation probability conditioned on fast fixation
P(R|τ < 2⟨N⟩ν,δ) as function of ν; lines are theoretical predictions from Φ/(1− η),
see equations (23)–(24); all three theoretical lines for each δ are indistinguishable. Error
bars show the binomial standard error of the mean. (b)–(d) Same as in (a) for xth = 0.37,
0.63, and 0.9. Note that simulation data presents larger error bars for ν > 10−1 in the
inset of panel (c) due to the limited proportion of fast fixations in this regime.

rate from slow (ν ≪ 1) to intermediate (ν ∼ 1) hinders strain coexistence since, in interme-
diate switching, irrespective of the starting environment, the microbial community experi-
ences long population bottlenecks (N≈ K−) that enhance demographic fluctuations and thus
favour fast fixation. However, further increasing the rate to fast switching (ν ≫ 1) increases
the probability of long-lasting coexistence. Namely, the duration of population bottlenecks is
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reduced, and the community effectively experiences a higher carrying capacity K > K−, with
lower demographic fluctuations and enhanced coexistence. Note that, for extreme values of
xth, which are closer to extinction/fixation of one strain (x= 0,1), the latter does not hold, as
weak fluctuations suffice to prevent coexistence.

In the aim of understanding the evolution of AMR, we are particularly interested in find-
ing the conditions favouring the early extinction of R, and hence the fast fixation of S, since
this corresponds to the most favourable environmental conditions for the early eradication of
AMR [32]. Here, the best conditions for AMR eradication appear as red areas in the diagrams
of figure 4: these are low values of xth and δ not too close to 1, see figure 4(a). Moreover, as a
signature of the influence of EV, discussed above, we find that AMR eradication is also possible
for intermediate values of xth ≳ x∗th, see reddish area in figure 4(b) and inset of figure 5(b).

In summary, a high EV bias δ (at fixed ν) and a moderate cooperation threshold (xth ≈ x∗th)
favour long-lived coexistence; while intermediate EV switching rates ν (at fixed δ), and more
extreme cooperation thresholds, favour fast fixation of either R (for xth ≫ x∗th) or S (when xth ≪
x∗th). This qualitatively explains the boundaries between the coloured and black regions in the
fixation-coexistence diagrams of figure 4; and, notably, it captures the long-lived coexistence in
the top/right-half and fastR fixation in the bottom/left-half of figure 4(c). Critically, the location
of the boundaries between the phases of long-lived and fast fixation are accurately predicted by
the theory presented in section 4.3, as shown in figures 4(e)–(h) where the fixation-coexistence
diagrams are reproduced remarkably well by the predictions of (23) and (24).

Figure 5 provides a more quantitative comparison between the fixation-coexistence dia-
grams obtained from simulations in figure 4 (top row) and from the theory of section 4.3
(bottom row), for three different values of environmental bias (high/low δ and δ= 0). In each
panel we find that the ν-dependence of the long-lived coexistence probability, that is, the prob-
ability that τ > 2⟨N⟩ν,δ in simulations, is well captured by the theoretical prediction of η given
by (24). The agreement between simulations and η is quantitatively remarkable at low and high
values of ν. For intermediate values of ν, the predictions of η are able to reproduce the main
features of the simulation data, including the non-monotonic behaviour arising in figures 5(a)
and (c). The values of ν for which the probability of long-lived coexistence is low correspond
to regions coloured in red/blue in figure 4. The main deviations between theory and simula-
tions arise in the regime of intermediate ν and high δ. We attribute these deviations to the
assumptions made in the annealed regime (approximation of the actual fixation and extinc-
tion rates), leading to an underestimate of the long-lived coexistence probability. The inset
of each panel of figure 5 illustrates the R fixation probability, conditioned on fast fixation
(τ < 2⟨N⟩ν,δ), which determines the relative red-to-blue colour levels in figure 4. Consistently
with the fixation-coexistence diagrams of figure 4, fast R fixation is found to be essentially
independent of switching rate ν and bias δ, a feature that is well reproduced by the theoretical
predictions (lines in figure 5), obtained from equations (23) and (24) as

Φ/(1− η)≡ P(R|τ < 2⟨N⟩ν,δ) .

The inset of figure 5(b) indicates that the probability of fast S fixation is more likely than fast
R fixation (whose probability is less than 1/2), which explains that reddish ‘coloured cloud’
in figure 4(b).

5. Conclusions

Microorganisms live in endlessly changing environments, and experience conditions that often
fluctuate between mild and harsh. This EV often affects the amount of nutrients and toxins in
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a community, and thus shapes the eco-evolutionary dynamics of microbial communities. EV
often crucially influences the ability of species to coexist and cooperate, a feature that is key to
better understand the evolution of AMR, whose rise is a global societal threat [50, 51]. In this
context, a central question concerns how EV affects the coexistence of microbes resistant and
sensitive to antimicrobial drugs. It is well established that certain resistant cells are able to inac-
tivate antimicrobials and, under certain conditions, share the protection against the drugs with
the entire microbial community. This form of AMR can be regarded as cooperative behaviour.
In this work, we have studied an idealised model of cooperative AMR where sensitive and
resistant cells compete for the same resources in a microbial community of fluctuating size, in
the presence of a biostatic drug, and subject to demographic fluctuations and EV. The latter is
modelled by a binary carrying capacity randomly switching between high and low values (mild
and harsh conditions, respectively), and is responsible for the time-variation of the community
volume and size: the total amount of nutrients and toxin in the community fluctuates, but
their concentration is kept fixed (time-changing volume). When the concentration of resistant
microbes exceeds a fixed concentration cooperation threshold, their protection, provided by
drug-inactivating enzymes, is shared with sensitive cells at no metabolic cost. However, when
the resistant cells concentration is below the cooperation threshold, only resistant microbes
benefit from the protection offered by the enzymes. In this setting, the evolutionary dynamics
of AMR can be viewed as the eco-evolutionary dynamics of a public good game in a fluctuating
environment for a microbial community of time-varying volume. In a large population under
static environment, fluctuations are negligible and both strains always coexist. Moreover, in
the absence of EV, the fate of a community of finite size is chiefly determined by the value
of the concentration cooperation threshold xth relative to a critical value x∗th that we have ana-
lytically determined. In particular, when the concentration cooperation threshold is close to 0,
whichmeans that resistant microbes are very efficient at generating drug-inactivating enzymes,
resistant cells are likely to become extinct. On the other hand, when resistant microbes are inef-
ficient at inactivating the drug, the cooperation threshold is close to 1, and the resistant strain
takes over the entire microbial population. Otherwise, when the cooperation threshold is close
to the critical value x∗th, a long-lived coexistence of the strains is expected to set in.

Here, we show that this picture is drastically altered by the joint effect of EV and demo-
graphic fluctuations in a dynamic environment. Using computational and analytical tools, we
show that, for a range of different values of the cooperation threshold, both coexistence and
fixation of one of the strains is possible. By computing the fixation-coexistence diagrams of
the model, we have determined the nontrivial environmental conditions (switching rate and
bias) separating the phase of dominance/fixation of one strain from that of long-lived coexist-
ence of both species. We have therefore shown that, in the presence of EV, the long-time eco-
evolutionary dynamics cannot be predicted only from the value of the concentration cooper-
ation threshold xth: in the presence of EV, long-lived coexistence of the strains is possible
even when fast fixation/extinction is likely (for xth close to 0 or 1), and there can be early
extinction/fixation of a strain even when long-lived coexistence is expected (for xth close to
x∗th). Our results show that increasing the EV bias (at fixed switching rate) favours long-lived
coexistence, while intermediate EV switching rates (at fixed EV bias) favour fast fixation of
one of the strains. We have rationalised our findings by devising an analytical approach, built
on the combination of suitable quenched and annealed averaging procedures in different EV
regimes, allowing us to reproduce qualitatively and quantitatively the diagrams and fixation-
coexistence properties obtained from simulations. This has allowed us to analytically charac-
terise and reproduce the full two-phase fixation-coexistence diagrams, and to obtain the long-
lived coexistence probability of the strains, as well as the conditional probability that resistant
cells rapidly take over the microbial population, as a function of the environmental variation
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rate and cooperation threshold. Importantly in the context of modelling the evolution of AMR,
our findings allow us to identify the most favourable environmental conditions for the early
eradication of AMR, which correspond to an early extinction of resistant cells.

It is worth noticing that in [32] we considered a related model with environmental fluctu-
ations arising at constant volume, i.e. a form of EVwith time-varying concentration of nutrients
and toxins, which is characterised by fixation-coexistence diagrams of three phases (fixation
of each strain and long-lived coexistence), and a fluctuation-driven AMR eradication mechan-
ism. Hence, the findings reported in this work complement those of [32] and give us a broader
perspective on the joint influence of environmental and demographic fluctuations on the evolu-
tion of cooperative AMR, paving the way for numerous possible applications. We also believe
that the analytical methods devised in this work, and their generalisations, shall be applicable
to describe the eco-evolutionary dynamics of a broad class of systems.
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Rucklidge, and M Swailem for useful discussions. This work was undertaken on ARC4, part
of the High Performance Computing facilities at the University of Leeds, UK.

Author Contributions

Lluís Hernández-Navarro: Conceptualisation (lead), Methodology (lead), Formal Analysis,
Software, Writing—Original Draft, Writing—Review & Editing, Visualisation, Investigation,
Validation. Matthew Asker: Formal Analysis, Software, Writing—Original Draft,
Writing—Review & Editing, Visualisation, Investigation, Validation. Mauro Mobilia:
Conceptualisation, Methodology, Writing—Original Draft, Writing—Review & Editing,
Visualisation, Supervision, Project administration, Funding acquisition.

Contributor roles taxonomy by CRediT [98].

Conflict of interest

We declare we have no competing interests.

Funding

L H N and M M gratefully acknowledge funding from the U.K. Engineering and Physical
Sciences Research Council (EPSRC) under the grant No. EP/V014439/1 for the project ‘DMS-
EPSRC Eco-Evolutionary Dynamics of Fluctuating Populations’. The support of a PhD schol-
arship to M A by the EPSRC Grant No. EP/T517860/1 is also thankfully acknowledged.

21

https://doi.org/10.5518/1462


J. Phys. A: Math. Theor. 57 (2024) 265003 L Hernández-Navarro et al

Appendix A. Simulation methods

We have studied the full eco-evolutionary dynamics of the model by carrying out extensive
exact stochastic simulations following the next reaction method of [85, 86], and proceeding as
in [13, 32], where details and code are presented in the supplemental material [99]. The simu-
lation data and codes that we have generated are electronically available, alongside comments,
in [100].

The system is always initialised at stationarity, and allowed to evolve according to the reac-
tions and rates defined in section 2, which are summarised in the master equation (6). The start-
ing populations are always set atNR(t= 0) = xthN(0) andNS(t= 0) = (1− xth)N(0). For sim-
plicity, the initial total population follows N(0) = K(0), instead of sampling from the approx-
imate quasi-stationary distribution (15), since the observed results are virtually the same. All
simulation data points are averaged over 103 realisations, except in figures 1(c)–(d) and 3,
where single trajectories are shown. In figure 5, error bars are estimated as the binomial stand-
ard error of the mean

√
p̂(1− p̂)/n, where p̂ is the estimated average probability and n is the

number of realisations considered. For the main plot in each panel, error bars are smaller than
marker size, and thus not shown. The larger error bars observed in the inset of panel (b) at
ν > 10−1 arise from the low number of realisations showing fast fixation (τ < 2⟨N⟩ν.δ) in this
regime due to the high probability of long coexistence.

Appendix B. Fixation probability

For the Moran model and a population of constant size N, the exact general expression of the
R fixation probability depending on the initial number of R cells is [33, 72–74, 76]

ϕN
(
N0
R

)
=

1+
∑N0

R−1
k=1

∏k
i=1 γ (i,N)

1+
∑N−1

k=1

∏k
i=1 γ (i,N)

, with

γ (NR,N)≡
T̃−R (NR,N)

T̃+R (NR,N)
and N0

R = 1,2, . . . ,N, (S1)

where T̃±R (NR,N) are defined in the main equation (9) and the function γ (NR,N) fully determ-
ines the fixation probability. When N is sufficiently large, the initial fraction of resistant cells
x0 ≡ N0

R/N can be approximated to a continuous variable. The fixation probability can thus be
regarded as a continuous function of x0, and it is convenient to write ϕN

(
N0
R = Nx0

)
as ϕN (x0).

As discussed in main section 3.2, when x0 is not too close to 0 or 1, we can assume that the
fixation/extinction of a strain occurs from x0 = xth, i.e. ϕN(x0)≃ ϕN (x0 = xth). In this case, the
fixation probability can be simplified to the following exact expression [32]:

ϕN (xth) =
1−

(
1−a
1−s

)xthN
1−

(
1−a
1−s

)xthN
+ a−s

s(1−a)

(
1−a
1−s

)xthN [(
1

1−s

)(1−xth)N
− 1

] . (S2)

The compact approximation of main equation (10) has been obtained by neglecting (1−
a)xthN/(1− s)xthN ≪ 1 and (1− s)(1−xth)N ≪ 1.
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Appendix C. Mean coexistence time (MCT)

The exact expression of the MCT for the Moran model in a fixed population of fixed size N is
well-known [33, 72–74, 76], and can here be written as

⟨τN
(
N 0
R

)
⟩= ϕN

(
N 0
R

) N−1∑
k=N0

R

k∑
n=1

∏k
m=n+1 γ (m,N)

T̃+R (n,N)

−
[
1−ϕN

(
N 0
R

)]N0
R−1∑
k=1

k∑
n=1

∏k
m=n+1 γ (m,N)

T̃+R (n,N)
, (S3)

where the subscript indicates that the population size N is fixed (here N= K0). The function
ϕN(N 0

R) is the R fixation probability given by equation (S1), where the functions T̃+R (NR,N)
and γ (NR,N) are also defined.

Supported by the assumption x0 ≃ xth of section 3.2, we focus on the case N0
R = Nth ≡ xthN

to simplify equation (S3). Note that, in this case, the last double summation has powers of
γ = (1− a)/(1− s)< 1, while the first double summation also has additional summands with
high powers of γ = 1/(1− s)> 1. Hence, the last double summation is negligible with respect
to the first one. Furthermore, if we split the inner summation of the first double summation at
n= Nth we obtain

⟨τN (x0)⟩ ≃ ⟨τN (xth)⟩ ≃ ϕN (xth)
N−1∑
k=Nth

(
Nth−1∑
n=1

∏k
m=n+1 γ (m/N)

T̃+R (n/N)

+
k∑

n=Nth

∏k
m=n+1 γ (m/N)

T̃+R (n/N)

)
. (S4)

According to the definition in section 3.2, each summand reads

∏k
m=n+1 γ (m/N)

T̃+R (n/N)
=

(1− a)

[
(Nth−1+k)−|Nth−1−k|

2 − (Nth−1+n)−|Nth−1−n|
2

]

(1− s)k−n ·

[
1−s
N−n +

1−a·θ(Nth−n)
n

1− s

]
.

And thus,

⟨τN (xth)⟩ ≃
ϕN (xth)
1− s

N−1∑
k=Nth

[(
1

1− s

)k
(
(1− a)Nth−1

Nth−1∑
n=1

(
1− s
1− a

)n [ 1− s
N− n

+
1− a
n

]

+
k∑

n=Nth

(1− s)n
[
1− s
N− n

+
1
n

])]
. (S5)

We observe that the first summation over n in the previous equation is independent of k, and
therefore we can take it out as a common factor. Regarding the second summation over n, note
that only those sumswith highest upper index k are significant because they are weighted by the
prefactor (1− s)−k ≫ 1; furthermore, note that the summands’ magnitude rapidly decreases
with n. By combining these two features, we realise that we can substitute the upper index
of the summation k by N− 1 without incurring in a significant error, making the summation
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independent of k, and taking it out as a common factor as well. Hence, we can now compute
the remaining summation over k as a geometric progression. The above considerations yield

⟨τN (xth)⟩ ≃ ϕN (xth)

(
1

1−s

)N−Nth

− 1

s(1− s)Nth

(
(1− a)Nth−1

Nth−1∑
n=1

(
1− s
1− a

)n [ 1− s
N− n

+
1− a
n

]

+
N−1∑
n=Nth

(1− s)n
[
1− s
N− n

+
1
n

])
. (S6)

In the first summation over n, each summand is weighted by an exponentially increasing
factor ((1− s)/(1− a))n ≫ 1. Hence, only the last terms with highest n are significant. For
these summands we have n≲ Nth, and the fractions (1− s)/(N− n) and (1− a)/n evolve very
slowly with n compared to the exponential factor. Therefore, we can approximate n in the pre-
vious fractions by N th, and take them as a common factor out of the summation without adding
a significant error. As for the second summation, we can also substitute n by N th in the frac-
tions and take them out as a common factor. In this case, the rationale is that the summands
with lowest n (which corresponds to n≳ Nth) are the only significant terms due to the factor
(1− s)n ≪ 1. Finally, we can compute the two remaining geometric series over n, and simplify
the expression to that of main equation (11).

Appendix D. Numerical marginalisation of an arbitrary function over the
N-PDMP

In section 4.2, we show the stationary probability density (15) of the N-PDMP pν,δ(N), which
provides a useful proxy for the actual quasi-stationary distribution of the population size.
Our theoretical analysis requires the marginalisation, and hence the integration, over pν,δ(N),
see equations (16) and (19). Here, we describe how to efficiently integrate over pν,δ(N)
numerically.

The marginal stationary probability density function ofN-PDMP is [11–13, 40, 79–81, 95]

pν,δ (N) = Z ·

(
1− K−

N

)ν−−1(
K+

N − 1
)ν+−1

N2
, with the normalisation constant

Z ≡ (K+)
ν− (K−)

ν+ Γ(ν+ + ν−)

(K+ −K−)
ν++ν−−1

Γ(ν+)Γ(ν−)
, (S7)

where Γ(x)≡
´∞
0 tx−1e−t dt denotes the standard gamma function. The arrangement of this

equation (S7) is convenient to avoid numerical limitations, as it minimises the magnitudes of
the bases of the exponents. Numerical limitations in the above equation for Z at too high K±
can be sidestepped in the standard way, i.e. by directly computing the normalisation constant
as the inverse of

´ K+

K−
pν,δ(N)/Z dN.

The general form of the integration that we want to compute numerically in an efficient
manner is

ˆ K+

K−

f(N)pν,δ (N)dN,
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where f (N) can be any arbitrary function that is once-differentiable in the closed domain N ∈
[K−,K+]. This numerical computation can be ill-posed due to singularities at the limits, an
issue stemming from the factors |N−K±|ν±−1 in the expression of pν,δ(N) when ν± < 1.
To sidestep these numerical issues, we split the integration domain over three subdomains:
[K−,K− + 1), [K− + 1,K+ − 1], and (K+ − 1,K+]; and we then integrate by parts the first
and/or last subdomains to avoid any singularities. This is, first, we integrate the diverging factor
(N−K−)

ν−−1 in the first subdomain if ν− < 1, and/or the diverging factor (K+ −N)ν+−1 in
the last subdomain if ν+ < 1; and, second, we derive the remainder as it is standard when
integrating by parts. We thus obtain

ˆ K+

K−

f(N)pν,δ (N)dN= f(N) · pν,δ (N) ·
N−K−

ν−

]K−+1

K−

−
ˆ K−+1

K−

f ′ (N)− f(N)
(

ν+−1
K+−N + ν++ν−

N

)
ν−

(N−K−)pν,δ (N)dN

+

ˆ K+−1

K−+1
f(N)pν,δ (N)dN− f(N) · pν,δ (N) ·

K+ −N
ν+

]K+

K+−1

+

ˆ K+

K+−1

f ′ (N)+ f(N)
(

ν−−1
N−K−

− ν++ν−
N

)
ν+

(K+ −N)pν,δ (N)dN,

(S8)

where now pν,δ(N) is always multiplied by either (N−K−) or (K+ −N) when N= K− or
K+, respectively. Crucially, this transforms any singularities when ν± < 1 (for N= K±) into
removable singularities. Taking into account vanishing terms, this simplifies to

ˆ K+

K−

f(N)pν,δ (N)dN=−
ˆ K−+1

K−

f ′ (N)− f(N)
(

ν+−1
K+−N + ν++ν−

N

)
ν−

(N−K−)pν,δ (N)dN

+
f(K− + 1)pν,δ (K− + 1)

ν−

+

ˆ K+−1

K−+1
f(N)pν,δ (N)dN+

f(K+ − 1)pν,δ (K+ − 1)
ν+

+

ˆ K+

K+−1

f ′ (N)+ f(N)
(

ν−−1
N−K−

− ν++ν−
N

)
ν+

(K+ −N)pν,δ (N)dN,

(S9)

where f ′(N) can be computed analytically or by standard numerical methods, if needed.
Therefore, we have finally obtained an exact expression containing well-posed integrals that
can be computed numerically and efficiently.
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