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Abstract

Mature plant leaves are a composite of distinct cell types, including epidermal, mesophyll, and vascular cells. Notably, the pro-
portion of these cells and the relative transcript concentrations within different cell types may change over time. While gene 
expression data at a single-cell level can provide cell-type-specific expression values, it is often too expensive to obtain these 
data for high-resolution time series. Although bulk RNA-seq can be performed in a high-resolution time series, RNA-seq using 
whole leaves measures average gene expression values across all cell types in each sample. In this study, we combined single-cell 
RNA-seq data with time-series data from whole leaves to assemble an atlas of cell-type-specific changes in gene expression over 
time for Arabidopsis (Arabidopsis thaliana). We inferred how the relative transcript concentrations of different cell types vary 
across diurnal and developmental timescales. Importantly, this analysis revealed 3 subgroups of mesophyll cells with distinct 
temporal profiles of expression. Finally, we developed tissue-specific gene networks that form a community resource: an 
Arabidopsis Leaf Time-dependent Atlas (AraLeTa). This allows users to extract gene networks that are confirmed by transcrip-
tion factor–binding data and specific to certain cell types at certain times of day and at certain developmental stages. AraLeTa 
is available at https://regulatorynet.shinyapps.io/araleta/.
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Introduction

The coordination of spatial and temporal gene expression dy-

namics is fundamental to plant development and response 

to environmental stimuli. Organisms have distinct gene regu-

latory programs within different cell types, which regulate 

the changes in gene expression over diurnal (Yakir et al. 

2011) and developmental timescales (Ma et al. 2005). Each 

of these regulatory programs coordinates the changes in 

gene expression over time to respond to both intrinsic 

(time of day and maturity) and extrinsic factors (environ-

mental stimuli) (Sheen 1994). It is the coordination of tran-

scriptional patterns in discrete cell types that provides 

determinate capacity for cell function in a context of its tis-

sue and organ.

Multiple approaches have been used to measure gene ex-
pression over space and time, but each has its drawbacks. 
Through live image–based assays, it is possible to track 
gene expression of a small number of genes over both time 
and space (Shav-Tal et al. 2004). For instance, Gould et al. 
(2018) identified waves of circadian gene expression originat-
ing from the meristems. In contrast, RNA-seq enables re-
searchers to measure gene expression of all mRNAs at 
once. Many researchers perform high temporal resolution 
RNA-seq time-series experiments to infer how gene expres-
sion changes over time (e.g. Krouk et al. 2010; Cortijo et al. 
2017; Ezer and Keir 2019; Balcerowicz et al. 2021). However, 
these studies do not capture the cell-type-specific changes 
in gene expression. Additionally, over 80% of leaf expression 
in a bulk RNA-seq sample originates from mesophyll cells, 
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which will mask gene expression patterns from other cell 
types, such as in the vasculature and epidermis tissues 
(Endo et al. 2014). Bulk RNA-seq also masks heterogeneity 
within mesophyll cell populations (Procko et al. 2022). 
Increasingly, single-cell and tissue-specific RNA-seq have 
been used to characterize cell-type-specific gene expression 
patterns in leaf (Liu et al. 2020; Kim et al. 2021; 
Lopez-Anido et al. 2021), root (Shahan et al. 2022), and meri-
stem (Neumann et al. 2022) tissue, but it is prohibitively ex-
pensive to perform these in a high-resolution time series. Lee 
et al. (2023) have developed a developmental single-cell atlas, 
but it covers only 5 vegetative stages and is therefore not at a 
similar temporal resolution as existing bulk RNA-seq re-
sources and would be too expensive to replicate under a 
wide range of experimental conditions. Recent efforts are un-
derway to construct further Plant Cell Atlases based on 
single-cell analysis (Plant Cell Atlas Consortium et al. 2021), 
and it is important to find methods to best utilize these kinds 
of resources, especially when investigating processes that oc-
cur over time.

Our work here demonstrates the potential of integrating 
single-cell RNA-seq data and high-resolution time-series 
data to unravel cell-type-specific gene networks in 
Arabidopsis (Arabidopsis thaliana). Drawing inspiration 
from cancer cell dynamics research (Newman et al. 2019), 
we used CIBERSORTx, a powerful technique that combines 
single-cell RNA-seq and bulk RNA-seq data (Newman et al. 
2019) and that outperforms other deconvolution methods 
in a large benchmarking study (Sutton et al. 2022). We in-
ferred relative expression in various cell types across samples 
and estimated cell-type-specific gene expression values. By 
applying these techniques, we gained insights into the dy-
namics of expression within different cell types across varying 
temporal scales. Although Procko et al. (2022) identified 4 
subpopulations of mesophyll with unclear distinguishing 
markers, our analysis revealed changes in their relative ex-
pression levels over diurnal and developmental scales, raising 
questions about cell-state changes and activity-level varia-
tions over time, as well as the relative light sensitivity of dif-
ferent mesophyll cell states. Moreover, differences in the 
relative expression of mesophyll subgroups between bolted 
and unbolted plants were observed. By incorporating tran-
scription factor–binding data (O’Malley et al. 2016), we 
have provided a valuable resource for the Arabidopsis com-
munity: a leaf cell–type network available at https:// 
regulatorynet.shinyapps.io/araleta/. We also highlight rele-
vant portions of this network during diurnal and develop-
mental timescales.

Results

Detection of cell-type transcriptional activity in bulk 
RNA-seq by utilizing single-cell RNA-seq data
First, we wish to confirm that we can accurately predict 
proportions of cell types in bulk RNA-seq samples using 
single-cell RNA-seq data from A. thaliana by training 

CIBERSORTx on a training set of single-cell RNA-seq cells 
and then testing its accuracy on deconvolving simulated 
bulk RNA-seq samples constructed from subsets of the re-
maining cells (Fig. 1A). When we simulated bulk RNA sam-
ples containing a single-cell type, we correctly identified all 
tissue types, except for hydathodes, as these were often mis-
classified as mesophyll cells (Supplementary Fig. S1, A and B). 
We chose to use Procko et al. (2022) because it had a larger 
number of leaf cells than many other single-cell datasets, 
and therefore, we were able to include rarer cell types. 
Moreover, the authors did not artificially enrich their selec-
tion of specific cell types, and therefore the ratio of cell types 
would be roughly similar to that found in natural leaves. 
In this paper, we named the 3 mesophyll cell clusters (specif-
ically, Clusters 1, 3, and 4) from Procko et al. (2022) as 
mesophyll Groups 1, 2, and 3, respectively. We also named 
the 3 clusters of unknown type (termed Clusters 10, 11, 
and 16) as unknown Groups 1, 2, and 3, respectively 
(Supplementary Fig. S1A).

Next, we simulated bulk RNA-seq samples with mixed cell 
types. We accurately predicted the relative abundance of si-
mulated cell types between these samples (Supplementary 
Table S1), with Pearson’s R >0.8 for all cell types except for 
2 unidentified cell types and sieve cells (Supplementary 
Fig. S2, Fig. 1B). However, we note that CIBERSORTx is best 
at predicting the relative amounts of cell types between sam-
ples, rather than the relative proportions of cell types within 
a sample—a known issue with gene expression deconvolu-
tion algorithms (Sutton et al. 2022). It consistently overesti-
mated the proportion of stressed cells and underestimated 
the proportion of other cell types (Fig. 1C). These results con-
firm that CIBERSORTx, a technique initially developed for 
mammalian research (Newman et al. 2019), can be applied 
to plant systems.

CIBERSORTx was also successful at predicting the tissue 
composition of simulated bulk RNA-seq samples generated 
from other single-cell RNA-seq experiments (Fig. 1D, 
Supplementary Fig. S3). We chose to test our model on cells 
in Xia et al. (2022) as these were isolated using microdissec-
tion, so that we would be able to know the spatial localiza-
tion of these cells. In contrast, in marker-based selection, 
there is always a risk that the marker is also expressed in 
an off-target cell type. Interestingly, microdissected spongy 
mesophyll cells from Xia et al. (2022) tended to be classified 
as mesophyll cells from Group 1, while the palisade cells were 
more evenly split among the 3 mesophyll groups that Procko 
et al. (2022) previously reported (Fig. 1D). This suggested that 
atlases of single-cell RNA-seq expression can serve as reusable 
resources in the community for estimating cell-type compo-
sitions of bulk samples.

Next, we explored the parameters of the signature 
matrix constructed from the training set to help with decon-
volving the bulk RNA-seq samples. CIBERSORTx selected 
4950 genes for use in predicting the cell-type proportion 
(Supplementary Fig. S4), and these have significant enrich-
ment (P < 0.01) for Gene Ontology (GO) terms associated 
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with ion binding, catalytic activity, structural constituents 
of chromatin, transmembrane transporter activity, response 
to stimulus/stress, and amino acid metabolic processes 
(see Supplementary Table S2 [signature matrix] and 
Supplementary Table S3 [gProfiler outputs]). These cell-type- 
specific processes appear to be capable of distinguishing cell- 
type proportions.

Across developmental scales, transcriptional activity 
shifts from epidermal to vascular cell types
We next sought to identify how cell-type transcriptional ac-
tivities changed over different temporal scales. For this, we 
applied the signature matrices that we previously inferred 
from single-cell RNA-seq data to interpret bulk RNA-seq 
time-series datasets. It is important to note that deconvolu-
tion algorithms like CIBERSORTx do not find the proportion 
of cells of each type but rather the proportion of transcripts 
that is attributable to different cell types. Changes in cell- 
type proportion over time could be attributable to changes 

in the total number of cells at a certain time, increased activ-
ity of certain cell types, or cells changing their expression pro-
file to mimic the expression of a different cell type. For 
conciseness, we will refer to the output of CIBERSORTx as 
the “activity” of specific cell types.

Next, we investigated whether the proportion of cell type 
expression levels varied across a developmental timescale 
(Fig. 2A, Supplementary Fig. S5A and Table S4), utilizing a 
leaf developmental time-series RNA-seq dataset (Woo et al. 
2016). The reference single-cell RNA-seq experiment 
was performed on the first true leaves at 17 d postgermina-
tion, and therefore, it only captures cell-type-specific 
transcriptional activity at a single snapshot. During the 
growth-to-senescence transition, we detected a decrease in 
epidermal expression and an increase in vascular expression. 
Rarer cell types, like guard cells and hydathodes, seemed to 
have a higher proportion early in development, possibly be-
cause these cell types get diluted as the leaf expands 
(Ietswaart et al. 2017) or because these rarer cell types 
have gene expression profiles that mimic other cell types 

Figure 1. CIBERSORTx predictions for simulated bulk RNA-seq samples. A) Seventy-five percent of cells per cluster were used to train a CIBERSORTx 

model, while the remaining 25% of cells were repeatedly subsampled to generate 500 simulated bulk RNA-seq samples with mixed cell types (see the 

Materials and methods section). B) Pearson’s correlation between the true cell-type proportions in the simulated bulk RNA-seq sample and the 

tissue proportions predicted by CIBERSORTx. All the correlations were statistically significant (P < 0.05), with Pearson’s correlations >0.8 highlighted 

by the horizontal bar. C) The slope of the line of best fit for a comparison between the predicted and the true cell-type proportions (scatterplots in 

Supplementary Fig. S2). Values close to 1 (horizontal line) are most accurate. Taken together, these results suggest that CIBERSORTx can predict the 

relative proportions within the same cell type between RNA-seq samples, but that it consistently overpredicts or underpredicts certain cell types 

within an RNA-seq sample. D) Predicted cell-type proportions in microdissected leaf samples, with each row representing a leaf and each column 

representing a different predicted cell type. Note that phloem is short for phloem parenchyma.
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when mature, as previously shown for guard cells (Adrian 
et al. 2015). Phloem parenchyma expression and stressed 
mesophyll expression were maximized in the senescing leaves 
compared with other developmental stages. This is consist-
ent with phloem parenchyma cells contributing to nutrient 
redistribution in the senescing leaf and with the transform-
ation of neighboring cell types into phloem cells during sen-
escence (Hunziker et al. 2019). Although there is currently no 
leaf-specific developmental single-cell atlas to compare our 
results with, Lee et al. (2023) performed a whole rosette 
single-cell RNA-seq in 3 developmental timepoints. Both 
this dataset and CIBERSORTx show a decline in bundle 
sheath and vascular cells from Day 17 onward. Lee et al. 
(2023) showed that the proportion of epidermal cells stays 
stable, as the plant transitions to senescence, suggesting 
that our observed decline in epidermal cells may reflect a 
change in transcriptional activity, rather than a decline in 
cell count. Our results contradict Lee et al. (2023) in terms 
of phloem parenchyma and companion cell expression, 
which we predict increase and Lee et al. (2023) predict de-
cline. These discrepancies may result from the activity of 
phloem parenchyma cells in nonleaf tissue in the Lee et al. 
(2023) dataset, as it includes whole rosettes. Moreover, Lee 
et al. (2023) appeared to have a larger proportion of senes-
cing cell types in Day 17 rosettes than at older ages, and 
therefore, the sampled rosettes at this timepoint may have 
been stressed, making direct comparisons challenging.

Intriguingly, the 3 groups of nonstressed mesophyll cells 
also displayed distinct temporal patterns. Group 3 meso-
phylls had peak expression during the growth phase, 

Group 1 mesophylls had peak expression at the mature 
leaf phase, and Group 2 mesophylls had peak expression dur-
ing the mature-leaf-to-senescence transition period. Group 1 
cells were found most frequently in the leaves, as in Procko 
et al. (2022), which is consistent with their sample collection 
timepoint of 17 d. This analysis suggests that mesophyll- 
specific expression profiles transition among the 3 different 
states identified by Procko et al. (2022) over developmental 
timescales.

Diurnal oscillations of mesophyll, epidermal, vascular, 
and phloem transcriptional activity
Additionally, we were interested in how the cell-type-specific 
gene expression patterns varied across diurnal timescales, as 
measured in a leaf diurnal time-series RNA-seq dataset 
(Hickman et al. 2017; see Fig. 2B, Supplementary Figs. S5B, 
S6, and Table S5). Procko et al. (2022) grew their leaves under 
continuous light to minimize the impacts of the clock, but 
plant clocks are synchronized by the initial seed imbibement 
and so they will still experience consistent daily oscillations 
(Zhong et al. 1998). Even if averages of transcripts appear “ar-
rhythmic” after prolonged plant acclimation to constant 
conditions, the cells that pattern tissues are still robustly 
rhythmic, although asynchronous from each other (Yakir 
et al. 2011; Gould et al. 2018). Thus, the individual cells 
sampled by Procko et al. (2022) will each be in an unknown 
phase of the circadian clock.

Epidermal expression is maximized in the morning. 
Meanwhile, vascular expression peaks in the afternoon. We 

Figure 2. Shifts in cell-type proportions over developmental and diurnal time series. We predicted the proportion of cell types in a A) developmental 

time series (Woo et al. 2016) and B) diurnal time series (Hickman et al. 2017), utilizing a reference leaf scRNA-seq dataset (Procko et al. 2022). In A), 

each row represents a different RNA-Seq sample, with the proportions normalized using z-scores. The developmental stage and the biological rep-

licate are indicated by the colored bars. In B), the proportions of cell types were predicted independently for each of the 4 biological replicates, and 

then these were averaged for each row and normalized by z-scores. The times are relative to dawn.
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hypothesize that this is when the plant is most water- 
stressed, due to the tendency for this time of day to have a 
higher temperature. Phloem parenchyma expression peaks 
at the end of the night when passive loading of sugars 
through plasmodesmata is replaced with active apoplasmic 
loading (Wei et al. 2021). Interestingly, epidermal stress cell 
expression peaks during the ZT1 dawn burst of expression 
(Balcerowicz et al. 2021), while mesophyll stress expression 
peaks a few hours afterward (ZT2-4). One hypothesis is 
that epidermal cells become stressed by the lights suddenly 
turning on within the growth cabinet, while mesophyll cells 
become stressed because of reactive oxygen species accumu-
lation as a result of photosynthesis.

The 3 nonstressed mesophyll groups primarily have peak 
expression at different times of the day. The mesophyll cells 
that are predicted to be active during early development 
(Group 3) are also predicted to be active late at night. The 
mesophyll cells that were active in mature leaves (Group 1) 
were also active in the morning. A comparison with Xia 
et al. (2022) suggests that this mesophyll group may be en-
riched for spongy mesophyll cells. The mesophyll group 
that was most active during the transition to senescence 
(Group 2) was also active during the afternoon and early 
evening. The mesophyll subgroups each appear to have dis-
tinct temporal transcriptional profiles, both on a diurnal 
scale and on developmental scale.

Expression of time-of-day–dependent light-sensitive 
genes across cell types
Next, we evaluated whether the cell types had different levels 
of expression of light-responsive genes. We hypothesized 
that Group 1 mesophyll cells may include more of the genes 
that are induced by light exposure at the end of the night, as 
these cells are most active in the morning. To evaluate this 
hypothesis, we analyzed the expression of light-induced 
genes (Rugnone et al. 2013) in the Procko et al. (2022) single- 
cell dataset. Consistent with our hypothesis, genes that are 
induced by light exposure at night (Fig. 3A) tended to 
be found in mesophyll Group 1 (morning/mature phase 
mesophyll group). This set of mesophyll Group 1 genes 
included genes encoding NIGHT LIGHT–INDUCIBLE AND 
CLOCK-REGULATED1,3 (LNK1, LNK3), which help entrain 
the circadian clock in response to light in the morning (Xie 
et al. 2014), SALT TOLERANCE (STO), which is a BBX family 
protein involved in the morning dawn burst of expression 
(Balcerowicz et al. 2021), and members of the light- 
harvesting complex in photosynthesis (LHCB2.4, LHCA4). 
Thus, mesophyll clusters indeed harbored notable light- 
induced genes.

A different set of genes that are light-sensitive at night 
were more highly expressed in stressed mesophyll cells. 
These included genes encoding DNAJ, a heat shock protein 
(Pulido and Leister 2017), SERINE/ARGININE RICH-LIKE 
PROTEIN 45A (SR45a), a stress-induced splicing factor that 
regulates anthocyanin accumulation (Gulledge et al. 2012; 

Albaqami 2023), and MULTIPROTEIN BRIDGING FACTOR 
1C (MBF1C), whose expression is elevated in response to a 
wide range of stresses (Lee and Bailey-Serres 2019). These re-
sults suggest that light exposure earlier than anticipated may 
induce a light stress response, in addition to activating morn-
ing mesophyll expression, and that these 2 responses impact 
the activity of 2 different sets of genes in 2 different cell types. 
In contrast, genes that are induced by light exposure after an 
extended night (Fig. 3B) are primarily expressed either in the 
mesophyll or in stressed epidermal cells.

Despite the plants in Procko et al. (2022) being exposed to 
continuous light, some cell types continue to express genes 
that are repressed under light exposure. Specifically, un-
known Groups 2 and 3 contain genes that have decreased ex-
pression under light exposure at night like SENESCENCE1 
(SEN1), DARK INDUCIBLE 10 (DIN10), and GLUTAMINE- 
DEPENDENT ASPARAGINE SYNTHASE 1 (ASN1), which are 
all also induced by senescence (Fujiki et al. 2001). Coupled 
with our previous observations that their activity peaks dur-
ing late senescence (Fig. 2A), we propose that these cell types 
are associated with senescence. Stressed epidermal cells also 
contain high levels of light-repressed genes. Genes that have 
reduced expression under light exposure are not expressed 
highly in the cell types that are predominantly found en-
riched during the night (phloem, mesophyll Group 3, and 
companion cells, Fig. 2B), but this may be because the 
scRNA-seq was performed in plants under continuous light 
(Fig. 3, C and D). This suggests that it may be wise to perform 
scRNA-seq on more realistic diurnal conditions, sampling 
multiple times a day, to adequately capture the cell-specific 
transcription over the course of a day.

Cell-type-specific regulatory program during bolting
We have observed that there are differences in the transcrip-
tional activity of cell types across a developmental and a di-
urnal timescale. Next, we decided to focus on the changes 
that happen during a rapid developmental transition, specif-
ically bolting, which coincides with the start of senescence 
(Redmond et al. 2023). Mimicking the pattern observed dur-
ing the developmental time series (Fig. 2A), the relative ex-
pression of mesophyll Group 3 (the growth-phase 
mesophyll) went down, while the expression of mesophyll 
Groups 1 and 2 (the mature phase and senescence meso-
phyll) went up over pseudotime (Fig. 4A, Supplementary 
Fig. S7, A and B and Table S6), where pseudotime refers to 
the predicted ordering of individual plants in Redmond 
et al. (2023) over a developmental trajectory on the basis 
of bulk RNA-seq data (Fig. 4B, Supplementary Table S6). 
Also consistent with the developmental time series, we ob-
serve a decrease in epidermal and sieve cell activity. The con-
sistency between these cell-type activity predictions between 
the developmental atlas (Woo et al. 2016) and the bolting 
pseudotime (Redmond et al. 2023) suggests that these devel-
opmental shifts in cell activity are robust and confirms that 
the pseudotime is effectively ordered by a developmental 
trajectory.
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We were curious whether the changes in cell types over 
time were associated more with the plant’s development 
or with its other traits such as biomass or leaf size. For 
each cell type, the Spearman’s correlation coefficient was cal-
culated between the proportion of that cell type in each 
plant and that plant’s pseudotime, wet biomass, or leaf 
area (Fig. 4C, Supplementary Fig. S8). The proportion of vas-
cular cells, bundle sheath, and sieve cells were more strongly 
correlated with biomass than with pseudotime, suggesting 
that the size of the plant may be associated with water 
and sugar transport. On the other hand, mesophyll, epider-
mal, and companion cells were more associated with the 
pseudotime and and therefore may be more closely asso-
ciated with development.

Next, we investigated the cell-type-specific processes 
taking place during bolting, utilizing the capacity of 
CIBERSORTx to impute cell-type-specific expression from 
bulk RNA-seq data. The cell-type-specific genes increased 
or decreased their expression at different points in the 
pseudotime using the bulk RNA-seq data from Redmond 
et al. (2023) (Fig. 5A, Supplementary Fig. S9A), suggesting 
that at least part of the differences in the timings of ex-
pression of genes across pseudotime could be a result of 
different activity levels of different cell types. Most of 

the genes were identified as being associated with meso-
phyll Group 2 (Fig. 5B, Supplementary Fig. S9B). There 
are some consistencies with the mean expression levels 
of these genes in the scRNA-seq dataset (Procko et al. 
2022), specifically among mesophyll Group 2 cells and 
companion cells for genes that increase with pseudotime 
and with mesophyll Group 2/3 and sieve cells for genes 
that decrease with pseudotime (Fig. 5C, Supplementary 
Fig. S9C). However, there are also some inconsistencies, 
such as being unable to reconstitute the epidermal expres-
sion pattern. Over all genes, the imputed expressions are 
relatively consistent with the known gene expression va-
lues (Supplementary Fig. S10).

First, we analyzed the GO terms of cell-type-specific genes 
whose expression increased over pseudotime (Supplementary 
Table S7). Those associated with mesophyll Group 2 tended 
to be found in membranes and involved in adenosine 
triphosphate, guanine triphosphate, and nicotinamide 
adenine dinucleotide+ binding (GO:0005524, GO:0005096, 
and GO:0003953) and the regulation of endocytosis 
(KEGG:04144). Genes found in the epidermis were enriched 
via vesicle-mediated transport (GO:0016192). Vascular genes 
were associated with sulfur metabolism (KEGG:00920) and 
response to nutrient levels (GO:0031669).

Figure 3. The expression of light-sensitive genes in single-cell leaf data. Sets of genes were selected that are light-induced A) and B) or light-repressed 

C) and D) during either a nocturnal light treatment A) and C) or a light treatment after an extended night B) and D), based on Rugnone et al. (2013). 

The mean expression of these genes in cells in each cluster in Procko et al. (2022) was calculated, and z-scores were calculated for each column.
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Among genes that reduced their expression over pseudo-
time (Supplementary Table S8), there was enrichment in 
chloroplast and photosynthesis-related GO terms in 
epidermal and mesophyll cell types. Epidermal cells were 
also enriched in porphyrin (a pigment) metabolism 
(KEGG:00860) and amino acid metabolism–related processes 
(KEGG:00300). Mesophyll Group 3 was associated with the 
cell cycle (GO:0007049) and DNA replication initiation 
(GO:0006270), while both Groups 2 and 3 were enriched 
for components of the ribosome (GO:0005840) compared 
with other cell types. We noted that mesophyll Group 3 
was also expressed in early development and at night, and 
therefore, potentially this cell type was in a dividing and 
growing state.

AraLeTA: an Arabidopsis Leaf Time-dependent Atlas
Our previous results have demonstrated that there are dif-
ferent regulatory programs that are active at different times 

of day, different developmental stages, and different cell 
types. As a resource for the community, we have developed 
AraLeTA (Arabidopsis Leaf Time-dependent Atlas; https:// 
regulatorynet.shinyapps.io/araleta/), which can be used to 
identify the portions of the Arabidopsis gene regulatory net-
work that are active in different contexts, by filtering based 
on expression values (Fig. 6). As its basis, it utilizes the DNA 
affinity purification sequencing (DAP-seq) network devel-
oped by O’Malley et al. (2016), but it enables the user to fil-
ter the network by the age, time of day, and cell types of 
interest, highlighting edges in which both the source and 
the target are expressed above a threshold value under 
the relevant conditions. This kind of thresholding approach 
uses similar criteria for filtering the gene regulatory network 
as what was used by Ferrari et al. (2022) and has been shown 
to enrich the gene network for true edges. The AraLeTA 
network can be downloaded or visualized as a heatmap or 
graph.

Figure 4. Cell activity changes during bolting. A) We predicted the proportion of cell types in plants immediately before and after bolting (Redmond 

et al. 2023), utilizing a reference leaf scRNA-seq dataset (Procko et al. 2022). Each row represents a different RNA-seq sample (representing a single 

plant), with the proportions normalized using z-scores. B) The plants in A) are ordered by pseudotime, which was calculated by Redmond et al. 

(2023) as an arrangement of 65 individual plants sampled along a developmental trajectory. C) For each cell type, the Spearman ranked correlation 

was calculated between the proportion of that cell type in each plant versus another trait of the plant (biomass, leaf size, or pseudotime).
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As it is often difficult to make sense of large “hairball” net-
works, we have incorporated PAFway additionally, a program 
for identifying the relationships between functional terms 
within the topology of the network (Mahjoub and Ezer 
2020). This allows us to find patterns in the rewiring of the 
network over time, within specific cell types.

To highlight the utility of AraLeTA, we focused on 4 con-
ditions: (i) young (4 to 14 d postgermination) mesophyll 
(Groups 1, 2, and 3) cells, (ii) old (20 to 30 d postgermination) 
mesophyll cells, (iii) young vascular (bundle sheath, phloem, 
vascular, companion, guard, and sieve) cells, and (iv) old vas-
cular cells (Fig. 6A). To select thresholds for our networks, we 
varied the single-cell and bulk RNA-seq threshold parameters 
and evaluated their impact on the number of significant 
functional edges (P < 0.05) selected by the PAFway network, 
choosing thresholds that generated either local maxima or 
inflection points in the size of the PAFway network 
(Supplementary Fig. S11). As expected, young mesophyll cells 
included many associations with light response (Fig. 6B). 
Interestingly, there were more defense-, jasmonic acid–, 
and salicylic acid (SA)-related edges in vascular cells, reflect-
ing the transport mechanism of these plant hormones 
(Supplementary Fig. S12, A and B). The old plant networks 
were centered on SA, a senescence-associated plant 

hormone, and defense (Fig. 6C). Many of the genes with 
GO terms related to defense are also involved in senescence, 
especially in response to necrotrophic pathogens (Woo et al. 
2016). Redmond et al. (2023) also demonstrated that pro-
cesses such as ubiquitination, endocytosis, cell cycle, transla-
tion, and response to redox are all perturbed at the onset of 
senescence, and these terms all appear in the network asso-
ciated with older plants. These general trends confirm that 
the filtering criteria are adequately selecting relevant por-
tions of the DAP-seq network.

Discussion

Cell-type-specific transcriptional activity: what does 
it mean?
In this study, we illustrated how we used CIBERSORTx to in-
fer the transcriptional activity of different cell types within a 
bulk RNA-seq sample. One must be nuanced in our inter-
pretation of what a change in transcriptional activity means 
from a biological standpoint (Supplementary Fig. S13). When 
one cell type is predicted to have a higher proportion than 
another cell type, there are many alternative explanations: 
(i) there may be a higher proportion of one cell type in the 
sample relative to the other (Supplementary Fig. S13A). (ii) 

Figure 5. Cell-type-specific gene expression of bolting-related genes. Using the high-resolution imputing function in CIBERSORTx, we predicted 

cell-type-specific expression of genes that were differentially expressed in bolted/unbolted plants. In this study, we show the results for the genes 

that have higher expression levels in bolted plants, with the inverse gene set shown in Supplementary Fig. S9. A) The z-score of the expression of 

these genes in the bulk RNA-seq experiment (Redmond et al. 2023), grouped by the cell type in which they were predicted to be expressed and 

ordered by pseudotime. B) The cell-type assignment, with red indicating that a gene is expected to be found in that cell type. C) The z-score of 

the mean expression of these genes in the scRNA-seq dataset (Procko et al. 2022).
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One cell type may have a higher overall transcription rate 
than the other (Supplementary Fig. S13B). (iii) There may 
be only one cell type that fluctuates between transcriptional 
states. For instance, it is unclear whether it is possible for cells 
that belong to a particular mesophyll group to transition into 
a cell from a different mesophyll group (Supplementary Fig. 
S13C); (iv) cells may express a transcriptional pattern that 
is similar to other cell types at certain timepoints, and the al-
gorithm may be misassigning the transcriptional activity to 
these cell-type categories (Supplementary Fig. S13D). To 
make this latter point more concrete: while most photosyn-
thesis in Arabidopsis takes place in mesophyll cells, other 
cell types also contain some low density of chloroplasts 
(Ishikawa et al. 2020). The increased transcriptional activity 
of photosynthetic processes in these other cell types at 
certain times of day may lead to an overestimation of 
mesophyll transcriptional activity by CIBERSORTx, as 
photosynthesis-related processes are used as markers for 
mesophyll transcriptional activity. We choose to use the 
term “cell-type-specific transcriptional activity” to highlight 
the fact that we are analyzing the relative frequency of 

cell-type-specific patterns of transcription. Despite the mul-
tiple different underlying processes that can lead to changes 
in cell-type-specific transcriptional activity, as we define 
here, this concept is still very useful, because it provides 
us with a summary of the distinct transcriptional programs 
that are occurring in samples that contain mixes of different 
cell types.

Shifts in cell transcriptional activity over different 
timescales
We show that the transcriptional activity of several different 
cell types varies both diurnally and developmentally, as sum-
marized in Fig. 7, A and B. This suggests that waves of expres-
sion in bulk RNA-seq time series may represent waves of 
transcriptional activities of different cell types, rather than 
waves of regulatory activity—an assumption that is often 
held when inferring gene regulatory networks based on 
bulk RNA-seq data (Huynh-Thu and Geurts 2018). 
Time-series single-nucleus RNA-seq (Lee et al. 2023) and spa-
tial transcriptomics (Giacomello 2021) in plants promise to 
better distinguish temporal and spatial waves.

Figure 6. PAFway networks across different tissue types at different ages. Using PAFway, we generated networks of functional terms to assess 

changes in function between tissue types as they age. A) Mesophyll (Groups 1, 2, and 3) and vascular-associated (bundle sheath, phloem, vascular, 

companion, guard, and sieve) cells showed a large overlap in functional edges across age groups, with some network edges that are unique to specific 

tissues and ages. B) A network of functional terms that are associated with young mesophyll and vascular cells. C) A network of functional terms 

associated with old mesophyll and vascular cells. Together, these show the changing network over time, suggesting that these cells perform different 

physiological functions as they age. The colors of the edges in B) and C) correspond to the associated colored sections of the Venn diagram in A).
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Patterns of mesophyll transcriptional states
Single-cell RNA-seq and single-nucleus RNA-seq have con-
sistently identified subclustering of mesophyll cells, both 
in Arabidopsis and in rice (Kim et al. 2021; Wang et al. 
2021; Procko et al. 2022; Tenorio Berrío et al. 2022; Xia 
et al. 2022). These studies have enabled the identification 
of cell-type-specific markers for different subgroups of 
mesophyll; however, the main roles of these subclusters 
have not been fully characterized, and the mesophyll 
groups do not have obvious physical differences. Our ana-
lysis augments Procko et al.’s (2022) analysis of the 3 
mesophyll groups (as summarized in Table 1), by reveal-
ing the time in which each group is most likely transcrip-
tionally active, both on a diurnal scale and on a 
developmental scale.

It is important to remember that different parts of the 
same individual plant may perceive time in different ways, 
a form of intraorganismal heterochrony. Gould et al. 
(2018) found that there are waves of circadian expression 
that spread spatially from the meristem and root tips to 
the remainder of the plant, which could result in circadian 
asynchrony between cells in the leaf under free-running 
conditions. Asynchrony of the clock may also arise between 
cells in the leaf due to the entrainment of the clock in the 
morning through exogenous sugars (Haydon et al. 2013). 
There is also intraorganismal heterochrony in relation to 
biological age. Different leaves will be at different stages 
of development at the same chronological time (Efroni 
et al. 2008; Redmond et al. 2023). It may even be possible 
for different parts of the same leaf to have different bio-
logical ages at the same chronological age, due to localized 
stresses. The individual transcriptional profiles sampled 
using a single-cell or single-nucleus RNA-seq method 
may represent not only heterogeneous cell types but also 
heterogeneous biological times. By combining single-cell 
RNA-seq data with high temporal resolution bulk RNA-seq, 
we may be able to begin to dissect this kind of temporal 
heterogeneity too.

CIBERSORTx enables greater exploitation of RNA-seq 
datasets
While single-cell RNA-seq is becoming increasingly common 
in plants, it is still too expensive and cumbersome to perform 
these experiments over high-resolution time series, under a 
wide range of environmental conditions and under a wide 
range of genotypes. In addition, there are tens of thousands 
of existing bulk RNA-seq datasets available that could vary in 
their cell-type proportion (Zhang et al. 2020). In this study, 
we show that plant scRNA-seq datasets can be used to train 
a CIBERSORTx model that can be used to algorithmically dis-
sect the bulk RNA-seq samples by their cell types. This will 
confer Arabidopsis researchers who do not have the capacity 
to do scRNA-seq the ability to exploit these data for enhan-
cing their research. Additionally, this kind of analysis could be 
used to help decide which timepoints would be most inform-
ative for performing single-cell RNA-seq, using a similar com-
putational approach as in Ezer and Keir (2019). Moreover, 
AraLeTA is a useful platform for utilizing existing bulk 
RNA-seq time-series data, single-cell RNA-seq data, and tran-
scription factor–binding data to isolate spatial and temporal 
regulatory processes of interest. Together, CIBERSORTx and 
AraLeTA provide us with an atlas of leaf expression in 
Arabidopsis over cell type and over time.

Materials and methods

Running CIBERSORTx
Seurat was used to visualize and process the single-cell 
RNA-seq data (Hao et al. 2021). In the matrix provided to 
CIBERSORTx (Newman et al. 2019) to generate the signature 
matrix, genes that were very lowly or very highly expressed 
were filtered out, with ln(total read count) between 4 and 
10. For the purposes of testing CIBERSORTx on the simulated 
bulk RNA-seq data, a random sample of 75% of the cells was 
used to generate the signature matrix and a Pearson’s correl-
ation, and correlation tests were deployed on the remaining 
25% testing set. For the rest of the paper, all cells were used to 

Figure 7. A graphical abstract showing the cell-type-specific expression pattern. This refers to the relative changes in gene expression values across 

diurnal A) and developmental B) time series. The colors correspond to the color scale of the heatmaps in Fig. 2.
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generate the signature matrix. The cluster designations used 
in Procko et al. (2022) were used as the phenotype classes. In 
all cases, we disabled quantile normalization (which is recom-
mended for RNA-seq data) and used 100 runs for the permu-
tation tests. For imputing the gene expressions in each 
sample in the bolted plants, we used only the 9 most abun-
dant cell types and “other” and focused only on genes that 
were identified as upregulated or downregulated in bolted/ 
not bolted plants, according to Redmond et al. (2023).

Generating simulated bulk RNA-seq samples
To simulate bulk RNA-seq samples composed on a single cell 
type, the remaining cells from Procko et al. (2022) that were 
not used to generate the model were randomly partitioned 
into 2 equal groups for each cell type and summed together, 
forming Replicates 1 and 2 for each cell type. We also simu-
lated bulk RNA-seq samples from the single-cell microdis-
sected samples from Xia et al. (2022). In this case, we 
summed over the single-cell RNA-seq samples from each 
cell type associated with a specific leaf.

To simulate the mixed bulk RNA-seq samples, we not only 
wanted to have somewhat realistic cell-type proportions but 
also have a wide variation in cell types between samples. For 
each cell type, we first calculated the proportion of cells of 
that type in the single-cell RNA-seq dataset. Then, per cell 
type, we simulated the proportion of cells within the bulk 
RNA-seq sample according to a normal distribution pattern, 
with a mean and SD equal to the cell type proportion within 
the single-cell RNA-seq dataset. To calculate the final num-
ber of cells per cell type, we rounded up any negative values 
to 0 and multiplied this by the average number of cells we 
wanted per sample (600). We randomly selected the speci-
fied number of cells from each cell type and then calculated 
the sum of transcript counts per gene for the associated set 
of cells and considered that to be our simulated bulk 
RNA-seq sample.

Bioinformatics analysis
All clustering was performed using the default hierarchical clus-
tering parameters of the pheatmap package (Kolde 2019). GO 
enrichment analysis was performed using gProfiler (Kolberg 
et al. 2023). Networks were visualized using Gephi (Bastian 
et al. 2009) and iGraph (Csárdi et al. 2023). PAFway 
(Mahjoub and Ezer 2020) was used to generate a graph of 
the related functional annotations of the basis of the text ana-
lysis of the GO Slim annotations provided by Berardini et al. 
(2015) and the topology of the DAP-seq gene network 
(O’Malley et al. 2016). AraLeTA was developed as a Shiny 

App (Chang et al. 2023). The PAFway networks were visualized 
using Gephi (Bastian et al. 2009). All codes for generating the 
figures are available at https://github.com/stressedplants/ 
AraletaScripting/. All codes for the Shiny app are available at 
https://github.com/stressedplants/AraLeTA/.

Accession numbers
The data underlying this article are available in the NCBI’s 
Gene Expression Omnibus under data libraries under acces-
sion numbers GSE43616, GSE182414, and GSE184511 and in 
the NCBI’s Sequence Read Archive under PRJNA668247, 
PRJNA224133, and PRJNA395645. All TAIR IDs are found in 
Supplementary Tables S2, S4 to S6.
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The following materials are available in the online version of 
this article.

Supplementary Figure S1. The ability of CIBERSORTx to 
detect “mock” bulk RNA-seq samples, consisting of a single 
cell type.

Supplementary Figure S2. The ability of CIBERSORTx to 
predict the relative composition of “mock” bulk RNA-seq 
samples with mixed tissues.

Supplementary Figure S3. The assignment of cell type to 
microdissected tissues.

Supplementary Figure S4. The analysis of a signature 
matrix.

Supplementary Figure S5. Unscaled heatmaps from Fig. 2.
Supplementary Figure S6. The impact of methyl jasmo-

nate (MeJA) on cell-type proportions.
Supplementary Figure S7. Unscaled heatmaps from Fig. 4.
Supplementary Figure S8. Scatterplots underlying Fig. 4C.

Table 1. A summary of the properties of mesophyll cell types

Mesophyll Period of development Time of day Light-sensitive genes Impact of bolting on relative expression

1 Mature Morning LNK1, LNK3, STO, LHCB2, LHCA4 Increase

2 Senescence Afternoon to early evening Increase

3 Growth Night Decrease

Stressed Late senescence 2 to 4 h after dawn DNAJ, SR45a, MBF1C N/A
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Supplementary Figure S9. Cell-type-specific gene expres-
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