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Driver-Net: Multi-Camera Fusion for Assessing

Driver Take-Over Readiness in Automated Vehicles∗

Mahdi Rezaei1,† and Mohsen Azarmi1

Abstract— Ensuring safe transition of control in automated
vehicles requires an accurate and timely assessment of driver
readiness. This paper introduces Driver-Net, a novel deep
learning framework that fuses multi-camera inputs to estimate
driver take-over readiness. Unlike conventional vision-based
driver monitoring systems that focus on head pose or eye
gaze, Driver-Net captures synchronised visual cues from the
driver’s head, hands, and body posture through a triple-
camera setup. The model integrates spatio-temporal data using
a dual-path architecture, comprising a Context Block and a
Feature Block, followed by a cross-modal fusion strategy to
enhance prediction accuracy. Evaluated on a diverse dataset
collected from the University of Leeds Driving Simulator, the
proposed method achieves an accuracy of up to 95.8% in
driver readiness classification. This performance significantly
enhances existing approaches and highlights the importance
of multimodal and multi-view fusion. As a real-time, non-
intrusive solution, Driver-Net contributes meaningfully to the
development of safer and more reliable automated vehicles
and aligns with new regulatory mandates and upcoming safety
standards.

I. INTRODUCTION

Driver monitoring systems (DMS) are considered a crit-

ical part of new vehicles due to their role in enhancing

the broader adoption of Autonomous Vehicles (AV) [1].

Such complex systems aim to monitor the driver’s level of

readiness by detecting signs of distraction, fatigue, or driver

impairments that can affect road safety.

The importance of DMS technology is constantly increas-

ing, particularly as the safety regulatory organisations, such

as the European New Car Assessment Programme (Euro

NCAP), have defined a new set of mandatory tests and

benchmarks for the inclusion of advanced driver assistance

systems (ADAS), including DMS, to gain high safety ratings.

Since 2020, Euro NCAP has considered awarding points

for vehicles equipped with systems capable of detecting

driver inattention, distraction, or drowsiness. According to

the European Union’s General Safety Regulation (GSR),

every new vehicle manufactured from 7 July 2024 must

be equipped with Driver Drowsiness and Attention Warning

(DDAW) systems. By 7 July 2026, Advanced Driver Dis-

traction Warning (ADDW) systems will also be mandatory

[2]. The objective is not only to reduce accidents caused
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Fig. 1. Proposed Cross-Modal fusion strategy for assessing driver situa-
tional awareness and readiness in response to critical take-over requests for
Level-3 automated vehicles.

by human error, which accounts for over 90% of road

crashes globally [3], but also to prepare the automotive

industry for future roads dominated by semi-autonomous and

autonomous vehicles.

The United States regulatory bodies, such as the Na-

tional Highway Traffic Safety Administration (NHTSA), and

Asian safety organisations try to align with such new safety

requirements and standards which further emphasises the

global importance of DMS technologies [4]. State-of-the-

art research in DMS incorporates the latest developments

in sensor technologies and utilises computer vision and

machine learning techniques to achieve a robust and accurate

driver state estimation. While advancements in autonomous

vehicle technology have led to the deployment of robotaxis

such as Waymo, in geofenced roads like San Francisco and

Los Angeles, the primary focus of car manufacturers and

academic researchers remains on enhancing the reliability

of SAE Level 2 (L2) and Level 3 (L3) vehicles on public

roads. According to the SAE automation levels [27], drivers

in L2 vehicles with partial automation must continuously

monitor the driving environment and retain full responsibility

for vehicle control. In contrast, L3 vehicles, with conditional

automation, allow drivers to disengage from active driving

and engage in non-driving-related tasks (NDRTs) [28]. How-

ever, this modal shift can diminish the driver’s vigilance,

lower their situational awareness, and pose potential chal-

lenges during critical take-over requests (TOR) [29], [30]. To

address such challenges, DMS is tasked with continuously

assessing the driver’s state in L3 vehicles to ensure safe and

timely transitions from automated to manual control. This

transition must safely occur within a few seconds, without

worsening the complexity of the situation. If the DMS detects



that the driver is not adequately prepared for the take-over,

the system will initiate a minimum risk manoeuvre [31], to

stop the car in a safe location.

Among various driver state monitoring solutions, computer

vision-based models are proven to be a promising solution

in Level 3 vehicles to estimate driver readiness in response

to take-over requests [19], particularly when the AV reaches

the end of its operational design domain (ODD) or fails to

operate in a complex scenario such as a road maintenance

or lane blockage due to an accident. In the next section, we

provide a literature review of the latest research in the field

using in-cabin cameras and vision-based models.

II. LITERATURE REVIEW

Modern DMS consider hybrid solutions, by using facial

feature analysis [5], eye-tracking [6], and head pose esti-

mation [7], to extract signs of driver distraction or fatigue.

Convolutional Neural Networks (CNNs) [9] and Recurrent

Neural Networks (RNNs) [8] have been extensively used

for real-time video analysis to monitor yawning frequency

or eyelid closures as key indicators of drowsiness. For

example, Qu et al. developed a CNN-based spatio-temporal

model to classify drivers’ level of distraction, for a 10-class

non-driving related task [20]. Similarly, Deo and Trivedi

[22], along with Kazemi et al. [23], used Long Short-

Term Memory (LSTM) networks to estimate driver take-

over readiness, by utilising in-cabin visual cues and expert-

labelled Observable Readiness Index (ORI).

To overcome the limitations of single-modality input,

multimodal frameworks have been proposed. These systems

extract various data types from wearable sensors, in-cabin

cameras, and vehicle dynamics to provide a comprehensive

perspective of the driver’s state [14]. For example, Abbas

et al. [21] combined multi-view cameras and physiological

sensors within a CNN-RNN hybrid to detect driver inatten-

tion. Deng et al. [47] explored physiological responses such

as heart rate (HR), skin conductance level (SCL), and men-

tal workload (MWL), under simulated take-over conditions

to quantify readiness delays. The ”DeepTake” framework

[26] extended this approach by predicting response time,

intention, and take-over quality using a comprehensive set

of vehicle and biometric features, although such wearable

sensor-based systems face real-world scalability issues.

Some recent DMS research works have focused on near-

infrared imaging and high-resolution cameras to detect

micro-expressions and improve their robustness to light-

ing variations [10]. Deep learning models with attention

mechanisms [11] and explainable architectures [12] are also

being developed to improve the accuracy and interpretability

of DMS. Furthermore, federated learning [17], [18] has

emerged to address in-cabin privacy concerns while main-

taining high model performance across diverse user datasets.

Several studies have focused on facial features and the

driver’s eye gaze. A recent study presented techniques for

simultaneously detecting fatigue and distracted driving by

utilising facial alignment networks to identify facial feature

points and calculate distances to detect eye and mouth

Fig. 2. The University of Leeds Driving Simulator (top) with a
Triple-camera setup for driver state monitoring (bottom) in a real Jaguar
car inside the simulator dome.

states, achieving improved accuracy and computation time

compared to previous approaches [24]. Bonyani et al. [32]

propose the DIPNet model to predict driver intention that

can be used as a sign of the driver’s state in response to a

TOR. Braunagel [45] explores an in-depth analysis of driver

readiness in critical TOR via eye-on-the-road and gaze shift

tracking in a simulator environment. Lui et. al. [48] propose

the ACTNet model to predict minimum anticipated collision

time (min ACT), as an indicator of drivers’ readiness and

performance for a take-over. The proposed CNN model

mainly relies on eye-tracker data with a focus on eye fixation,

blink rate, and pupil diameters as the main input features

to determine driver readiness. However, reliance on eye-

tracking data alone may not fully capture the multidimen-

sional nature of readiness.

Other studies introduced large-scale datasets like the

Driver Monitoring Dataset (DMD) [25], designed for bench-

marking attention and drowsiness under various driving con-

texts. Transformer-based architectures [13], [15], [16] have

also been applied to improve temporal feature modelling and

cross-modal alignment.

In another study by Kim et al. [46], they propose a

fundamental model for driver state estimation and investigate

the influence of NDRTs on subjective driver readiness and

take-over performance in L3 vehicles.

Despite these advancements, the reviewed works suffer

from at least one of the following key limitations:

• Mono-modality: Many systems rely exclusively on fa-

cial or head-based inputs, and ignore critical cues from

body posture and hand activity, which are vital for

assessing true readiness.

• Sensor Practicality: High dependency on intrusive

biosensors limits deployment feasibility in the AVs.

• Spatio-Temporal Oversight: Few studies model readi-



ness as a gradual, temporally evolving process. Our

studies show that as the driver’s attention reorients

from non-driving tasks, the transition period typically

spans over 1.6 seconds, to encompass steering wheel ad-

justments, situational scanning, and posture correction,

which indicates the necessity of temporal modelling.

To address these gaps, we provide four key contributions as

follows:

1- Multi-Camera Cross-Modal Fusion Architecture: We

propose a first-of-its-kind triple-camera driver monitoring

system that combines front, side, and over-shoulder views.

The fusion of head pose, hand position, and body posture

significantly outperforms single-modality approaches in as-

sessing readiness.

2- Spatio-Temporal Feature Integration: Our method cap-

tures readiness as a dynamic, time-dependent process using

synchronised video inputs and attention-based temporal mod-

elling, moving beyond static indicators like gaze input.

3- High-Performance, Real-Time Readiness Classification:

Driver-Net achieves a very high accuracy, demonstrating

strong generalisation across diverse driver profiles and ac-

tivities. The system is also lightweight enough for real-time

deployment in modern vehicles.

4- Safety-Critical Advancement: By improving the

accuracy and timing of take-over readiness detection, the

proposed system supports safer transitions from automated

to manual control, aligning with Euro NCAP and EU GSR

2024–2026 safety mandates and reducing risks associated

with delayed driver responses.

III. METHODOLOGY

The proposed Driver-Net deep neural network architecture

processes N -frame temporal video sequences captured at 30

FPS from three synchronised HD cameras (1920 × 1080
pixels): front, side, and over-shoulder as depicted in Figure 3.

The Raw video frames are then converted to 720×480 pixels

and are processed using three pre-trained feature extraction

algorithms for hand detection, head-pose estimation, and

body joint/pose estimation before being fed into the second

layer of the model. The spatio-temporal video contents and

extracted features are processed by two parallel ‘Context’ and

‘Feature’ blocks, and their outputs are fused by the ‘Cross-

Modal Fusion’ block to finally predict the driver’s readiness

for a take-over request. Figure 3 illustrates the model inputs,

feature extractors, and the network architecture, including the

input-output sizes of each module.

A. Context Block

The Context Block is responsible for processing multi-

view spatio-temporal features from input video sequences

and aggregating them into a unified representation. A pre-

trained ResNet-18 3D [33] prepares the input of the Context

Block, which serves as a visual encoder to extract spatio-

temporal features from all three input videos. The input ten-

sor of the visual encoder has the shape R
B×V×N×C×W×H ,

where B is the batch size, V is the number of camera

Fig. 3. The block diagram of the Driver-Net architecture, including camera
input module and triple feature extractors, Visual encoder, Feature Block,
Context Block, and Cross-Modal Fusion block.

views (front, side, over shoulder), N is the temporal se-

quence length, C is the number of colour channels (RGB),

and W , H are the spatial dimensions. Since ResNet-18

3D requires input tensors of shape R
B×N×C×W×H , the

camera views are flattened into the batch size dimension,

resulting in input tensors with shape R
(B·V )×N×C×W×H .

After processing by the encoder, the output feature maps

have shape R
(B·V )×N×256, following global average pooling

across the spatial dimensions (W ×H). These feature maps

are then reshaped to R
B×V×N×256 for the subsequent layers.

A multi-head self-attention layer Aview operates on the

dimension V , to capture inter-camera dependencies at each

time step N while preserving the spatial and temporal

structure. The self-attention layer with h = 4 heads can be

formulated as:

Aview(X) = (Att1 ⊕ Att2 ⊕ · · · ⊕ Atth)WO (1)

where ⊕ denotes the concatenation operator, The input

X which is processed by the visual encoder with shape

R
B×V×N×256, and WO ∈ R

(h·dv)×256 is a learnable weight

matrix that projects the concatenated attention heads back to

the original feature dimension of 256. Here, dv = 256/h,

and the attention mechanism for h-th head, Atth, is defined

as follows:

Atth(Qh,Kh, Vh) = softmax

(

QhK
T
h√

dk

)

Vh, (2)

where the query, key, and value projections for the h-th head

are given by:

Qh,Kh, Vh = XWQ
h , XWK

h , XWV
h (3)



WQ
h ∈ R

256×dk ,WK
h ∈ R

256×dk ,WV
h ∈ R

256×dv are the

learnable projection matrices for queries, keys, and values,

respectively. The input X is reshaped from R
B×V×N×256

into R
(B·N)×V×256 to compute the attention over the V

dimension. We also set dk = dv = 256/h to ensure

consistency when concatenating the outputs of all heads.

To stabilise training and preserve gradient flow, a residual

connection ‘R’ adds the input to the output of the attention

layer (see dashed line arrow), followed by a layer normal-

isation [38]. The result is then passed to an aggregation

module Gview that summarises the multi-view camera in-

formation across the dimension V , producing outputs of

shape R
B×N×256. The following three common aggregation

methods were evaluated to find the most suitable for the task:

1) Global Average Pooling (GAP): Computes the av-

erage features across the entire dimension V at each

time step in the input sequence with the length N ,

reducing feature complexity while preserving temporal

dependencies.

G
GAP
view(Xnr) =

1

V

V
∑

v=1

Xnr,v (4)

where Xnr ∈ R
B·N×256 is the normalised input to the

aggregation module after the residual connection and

layer normalisation.

2) Weighted Sum: Applies a set of learnable weights wv

to each camera view’s features and sums them up.

G
WS
view(Xnr) =

V
∑

v=1

wv ·Xnr,v (5)

where wv ∈ R
V are learned parameters which

are normalised to satisfy ΣV
v=1wv = 1, ensuring

interpretability and stability.

3) 1D Convolution: A 1D convolution is applied across

the dimension V , producing a summarised output over

the V camera views.

G
Conv1D
view (Xnr) = Conv1D(Xnr) (6)

where Conv1D uses convolutional filters of shape

(k, 256), with the kernel size k with stride one. This

method allows for learning spatial patterns across

multiple camera inputs.

The Context Block’s final output is a tensor Xcontext ∈
R

B×N×256 containing the processed spatio-temporal feature

maps of the driver from three different camera views. The

Xcontext is one of two inputs of the Cross-Modal Fusion

block.

B. Feature Block

The Feature Block processes the input videos and extracts

driver-centric features (see Figure 4) using three computer

vision algorithms as follows:

• Head Pose Estimator: The 3-D direction of driver

head attention, including Yaw, Pitch, and Roll angles,

is estimated using 3DDFA [34] from the frontal view

camera. The collected features will be stored in the

angles’ tensor Xhd ∈ R
B×N×3, to be used later in the

Feature Block.

• Body Pose Estimator: Body joint features and their

coordinates tensor Xbp ∈ R
B×N×34 are extracted

using YOLO7-Pose [35] from the side-view camera.

Additionally, a YOLOv7 module detects objects within

the region of the driver’s hand, represented by the

tensor O ∈ R
B×N×M×2×2, where M is the number

of detected objects per frame, and 2× 2 represents the

dimension of the bounding box coordinates: top left

corner (xt, yt) and bottom right corner (xb, yb).

• Hand Detector: A YOLO7-based hand detection model

[35] re-trained on the EgoHands dataset [36], and used

to identify the position of the driver’s hands relative

to the steering wheel from the rear-view (over shoul-

der) camera. The hand detector generates a tensor of

bounding box coordinates for the left Xhl ∈ R
B×N×4

and right Xhr ∈ R
B×N×4 hand. These will be then

concatenated to Xhp ∈ R
B×N×8

A fully connected layer (FCL) independently transforms

these tensors into higher-dimensional spaces while preserv-

ing temporal structure. For the input feature tensor Xf ∈
R

(B·N)×din , which is flattened to the batch size (B) and the

sequence length (N ) dimension, the FCL uses a learnable

weight matrix W ∈ R
(B·N)×dout and a vector b ∈ R

dout ,

producing the transformed output:

FCL(Y ) = ReLU(XfW + b) (7)

where Y ∈ R
(B·N)×dout is the higher-dimensional represen-

tation of the input features, ReLU is a non-linear activation

function [39], and din, dout are the input and output feature

dimensions, respectively. The din → dout transformation is

34 → 64, 3 → 16, and 8 → 16, for the body pose, head

pose; and hand status, respectively. (See Figure 3).

Once FCL units process the body, head, and hand fea-

ture vectors, a Gated Recurrent Unit (GRU) [37] captures

temporal dependencies across the sequence of each tensor.

Then, a concatenation operator combines the multiple GRU-

processed tensors along with feature dimension, creating a

new tensor of RB×N×192.

A feature-wise self-attention layer Afeature then operates on

the feature dimension (i.e. 192), and dynamically identifies

the most relevant features while de-prioritising redundant

ones. Residual connections and layer normalisation ensure

stable gradient propagation. An additional FCL processes the

output tensor to align feature dimensions for next modules.

The Feature Block’s final output is a tensor Xfeature ∈
R

B×N×256 containing the processed temporal feature maps

of the driver’s body pose, head angles, and hand position.



Fig. 4. Left: Hands/steering wheel positioning and activity recognition. Middle: Head-pose estimation (Yaw, Pitch, Roll → head on/off the road).
Right: Body pose estimation: normal, leaning/rotating, texting, and object detection.

C. Cross-Modal Fusion Block

The Cross-Modal Fusion block integrates all spatio-

temporal features from the Context and Feature blocks.

Three widely used fusion methods in neural networks were

evaluated:

1) Concatenation Fusion (CF): Xcontext and Xfeature are

concatenated along the feature dimension, yielding

R
B×N×512. An FCL is then applied to process

and reduce the input’s feature dimensionality from

R
B×(N ·512) to R

B×256. The FCL processes both the

temporal and feature dimensions along the batches. CF

is widely used in multimodal fusion for its simplicity

and ability to preserve modality-specific features [41].

2) Additive Fusion (AF): This technique applies an

element-wise summation of Xcontext and Xfeature

across the feature dimension, which results in a tensor

R
B×N×256, followed by global average pooling across

the temporal dimension N , producing a tensor with

the shape R
B×256. AF emphasises shared information

and balances contributions of both modalities [42].

3) Cross-Attention Fusion (CAF): A cross-attention

module, as defined in Eq. (1), computes the weights for

both Feature and Context blocks, with Xcontext as the

query and Xfeature as the key and value. This enables

the model to focus on the most relevant features

and maximise the accuracy [43]. The outcome tensor

is a fused representation of shape R
B×256. CAF is

particularly known for its effectiveness in fine-grained

interaction modelling and has been widely applied in

recent multimodal systems [44].

The output tensor of the fusion block is then processed

and reduced to R
B×32 via an FCL with a 50% dropout rate

to prevent overfitting [40].

Ultimately, the last FCL is used for the final classification

to predict binary labels (“ready” or “not-ready”) for the

driver state in response to a TOR request.

IV. EXPERIMENTS

This section details the test environment, dataset, training

and testing procedures, and the outcomes.

A. Test Environment:

We conducted a series of experiments to assess the impact

of each module variation on the overall performance of the

proposed model. These experiments involved training and

testing various components — namely, the Context Block,

Feature Block, and Cross-Modal Fusion block — using the

University of Leeds Driving Simulator (UoLDS), currently

the most advanced driving simulator in the UK. The

simulator dome includes a real Jaguar car and offers almost

equal degrees of movement freedom with an immersive

feeling of driving in the real world. The Jaguar cabin is

equipped with a triple-camera module, positioned to capture

comprehensive in-cabin driver behaviour, as illustrated in

Figure 4:

• Frontal Camera: Positioned flexibly around the central

dashboard, this camera faces the driver’s head and

feeds into the “Head Pose Estimator”, which infers

the driver’s visual attention using yaw, pitch, and roll

angles, as shown in Fig. 4. It also tracks the duration of

attention diversion, for example, by detecting sequences

of N consecutive frames where the head orientation is

off-road.

• Over-Shoulder Camera: Mounted to capture a rear view

of the driver, this camera supports the “Hand Detector”

module in identifying the position and activity of both

hands. It determines whether one or both hands are on



the steering wheel, and if not, identifies their alternative

locations and duration of disengagement—e.g., a hand

on the gear lever or infotainment knob for t seconds

before returning to the wheel.

• Side Camera (Passenger-Side A-Pillar): This camera

captures the driver’s full-body posture and can identify

contextual cues, such as interactions with handheld

devices. The Body Pose Estimator uses this input to

assess seating alignment (e.g., upright vs. leaning or

reaching postures). Additionally, this side view provides

redundancy in hand localisation, particularly valuable

when occlusion affects the over-shoulder view, such as

with tall drivers or those with larger body mass.

B. Dataset:

We recruited 30 licensed drivers of various ages and sexes,

all holding valid UK driving licences. The experiment was

conducted in the University of Leeds Driving Simulator and

encompassed both automated and manual driving modes on

simulated multi-lane urban roads. During automated driving,

participants were permitted to engage in NDRTs, such as

using a tablet. In specific scenarios, participants received

phone calls from the simulator control room and engaged in

conversation while manually driving. Additionally, activities

such as texting or browsing on a smartphone were intention-

ally introduced to simulate common distractions.

The UoLDS dataset consists of a selection of 540 video

clips from each of the three in-cabin cameras, totalling 1620

videos. Clip durations range from 10 to 25 seconds, reflecting

various driver behaviours across both automated and manual

driving modes. The driver’s readiness status may change

multiple times over time in the selected video cuts. However,

only the last frame of each video clip was subjectively

annotated by two expert reviewers as either “ready” or “not

ready” in relation to a take-over request (TOR) initiated

approximately two seconds earlier. These annotations were

suggested by a thorough review of the synchronised triple-

camera recordings, taking into account the driver’s overall in-

cabin behaviour and situational context in the critical seconds

preceding the TOR.

From the total of 1,620 annotated video samples, 654

instances (40.37%) were labelled as ready, and 966 instances

(59.63%) were marked as not ready. These expert labels

were subsequently used as ground truth for evaluating the

model’s key performance indicators (KPIs). We used 1222

videos for training and 398 videos for testing. For the

training phase, 50.16% of selected samples were labelled as

ready, and 49.84% as not ready, demonstrating a balanced

distribution of each label.

C. Training and Test:

The model was trained and evaluated on a CUDA-enabled

parallel computing platform equipped with an NVIDIA RTX

A6000 GPU, 64GB of RAM, and an Intel Core i9-13900K

24-core processor.

The Context and Feature blocks were trained indepen-

dently, each with a randomly initialised fully connected clas-

sification layer (FCL) to learn distinct representations. For

the Cross-Modal Fusion block, we removed the classification

heads from the pre-trained Context and Feature blocks, froze

their learned parameters, and then only trained the Cross-

Modal Fusion block with a randomly initialised classification

head. Further implementation details are provided below.

TABLE I

PERFORMANCE OF DIFFERENT AGGREGATION MODULES (GVIEW ) FOR

THE ‘CONTEXT BLOCK’ AGAINST ACCURACY (A), PRECISION (P), AND

RECALL-RATE (R) METRICS.

# Parameters Aggregation A(%) P(%) R(%)

αGAP 270,338 GAP 85.1 84.7 85.0
αWS 270,341 WS 84.5 84.2 84.4
αC1D 466,946 Conv1D 88.0 87.4 87.7

1) Context Block Training: The Context Block is aimed

at learning a compact and discriminative representation of

the driver’s behaviour from the last 1.6-second multi-view

spatio-temporal features. The Xcontext tensor was flattened

over the temporal dimension and connected directly to the

classification head (final Fully Connected Layer, FCL) to

predict driver readiness. Our experiments show that with a

temporal dimension of N = 16 (10 fps sampling), we can

gain pretty much the same accuracy as the full-frame video

input (30 fps). We evaluated three aggregation modules–

Global Average Pooling (GAP), Weighted Sum (WS), and

1D Convolution (Conv1d) to aggregate the temporal features

before classification. The Context block variants and their

performance metrics on the test set are presented in Table I.

TABLE II

PERFORMANCE OF EVERY SINGLE FEATURE AND ALL FEATURES

COMBINED, THE ‘FEATURE BLOCK’ AGAINST ACCURACY (A),

PRECISION (P), AND RECALL-RATE (R) METRICS.

# Parameters Feature set A(%) P(%) R(%)

βP 32,634 Body Pose 71.1 70.56 70.8
βA 21,370 Head Angles 43.2 42.68 43.1
βH 19,450 Hand Position 69.3 69.01 68.7

βall 184,978 All Features 86.94 86.30 86.50

2) Feature Block Training: We trained the Feature Block

aimed at the temporal learning of the driver’s state by

integrating head pose, body pose, and hand position features

extracted from a triple-camera setup. Similar to the Context

Block, and in order to reduce the computation cost, the

Xfeature tensor was flattened over the dimension of N = 16
and connected directly to the classification head to estimate

the driver readiness state. We evaluated the performance of

each feature set and the combined feature sets. The results

are summarised in Table II, which proves the critical role of

a triple-camera setup with a dramatic increase in the model

performance in estimating driver readiness state.

3) Cross-Modal Fusion Block: Finally, we trained and

evaluated the Cross-Modal Fusion block by combining the

pre-trained Context and Feature Blocks. Three different



TABLE III

PERFORMANCE OF DIFFERENT FUSION STRATEGIES FOR THE

CROSS-MODAL FUSION BLOCK.

Model Parameters Fusion A(%) P(%) R(%) Cost

αGAP , βall

2,536,592 CF 88.4 88.1 88.3 52ms
447,152 AF 90.8 91.8 90.7 22ms

1,036,976 CAF 92.8 93.1 91.8 35ms

αWS , βall

2,536,595 CF 87.9 87.3 87.4 52ms
447,155 AF 89.1 88.8 89.0 22ms

1,036,979 CAF 90.8 91.8 90.8 35ms

αC1D , βall

2,741,394 CF 95.1 95.6 95.1 62ms
651,954 AF 91.2 91.9 92.0 24ms

1,241,778 CAF 93.2 93.7 91.5 37ms

fusion strategies were trained: Concatenation Fusion (CF),

Additive Fusion (AF), and Cross-Attention Fusion (CAF).

The results are presented in Table III.

Table III shows that Concatenation Fusion and Cross-

Attention Fusion perform best and second best, respectively,

with the 1D convolution (in the Context block) and utilisation

of all features (from the Feature block). Furthermore, the

computational cost column ranging from 22ms to 62ms

shows that the proposed model can process the input videos,

ranging from 16 to 45 fps, which is fast enough for the

intended real-world application of TOR.

To evaluate the generalisation capability of the proposed

models, we performed 5-fold cross-validation (k = 5) on

the entire dataset (Table IV). Two training strategies were

examined: Tall, where the entire model including Context

Block (αC1D), Feature Block (βall), and Fusion Block were

trained end-to-end and from scratch; and Tfusion, where the

Context block and Feature Block were frozen after pre-

training, and only the Fusion Block was trained. As shown

in Table IV, Tall consistently outperforms Tfusion in terms of

accuracy, precision, and recall in line with the results ob-

tained in Table III. Similarly, the Concatenation Fusion (CF)

strategy performed best; however, Additive Fusion (AF) took

the second-best place, despite a significantly smaller number

of parameters. While these confirm the critical role of Fusion

Block in the model’s overall performance, it may indicate

that AF’s simplicity allows a more effective generalisation

across multiple folds when the model is trained from scratch,

while CF and CAF’s complexity might lead to overfitting

within individual folds of cross-validation.

TABLE IV

PERFORMANCE EVALUATION USING 5-FOLD CROSS-VALIDATION (K=5).

Train Fusion A ±σ (%) P ±σ (%) R ±σ (%)

Tall CF 95.4 ± 0.3 95.8 ± 0.4 95.3 ± 0.3
Tall AF 93.9 ± 0.4 94.3 ± 0.5 93.2 ± 0.4
Tall CAF 93.5± 0.5 94.0± 0.6 91.8 ± 0.5

Tfusion CF 93.1± 0.4 93.6± 0.5 92.9± 0.6

Tfusion AF 92.3± 0.4 92.7± 0.5 91.6± 0.4

Tfusion CAF 91.7± 0.6 92.3± 0.6 91.0± 0.5

V. CONCLUSION AND FUTURE DIRECTIONS

This study presented a novel framework for estimating

driver readiness in response to take-over requests (TOR)

by leveraging multi-view spatio-temporal features extracted

from a triple-camera setup and a quasi-naturalistic dataset

collected from the University of Leeds Driving Simulator

(UoLDS). The proposed model integrated a Context Block,

Feature Block, and Cross-Modal Fusion block to capture

and fuse in-cabin behavioural cues, to enhance take-over

readiness estimation.

Experimental results highlighted the effectiveness of each

model component and the overall fused approach. The

Context Block, which extracts multi-view contextual fea-

tures, achieved the highest performance when using a 1D

convolutional aggregation strategy, reaching an accuracy of

88.0%. The Feature Block, which utilises body pose, head

angles, and hand position features, demonstrated signifi-

cant improvements when combining all three modalities,

achieving an accuracy of 86.94%. Finally, the Cross-Modal

Fusion Block, responsible for merging contextual and feature

representations, led to noticeable improvement and achieved

the highest overall accuracy of 95.8% using a concatenation-

based fusion strategy with Conv1D-driven context extraction.

These findings suggest that the proposed approach offers a

promising direction for driver monitoring systems, partic-

ularly in Level 3 conditionally automated vehicles, where

accurate estimation of take-over readiness is critical for

safety and performance.

While Driver-Net demonstrated strong performance and

generalisation in estimating driver readiness using a multi-

camera fusion strategy, the system is evaluated primarily

within a high-fidelity simulator environment, which may not

fully capture the variability and unpredictability of real-world

driving conditions. Future work can focus on validating

the model in real-world driving scenarios with a broader

demographic pool. Incorporating non-intrusive physiological

indicators and investigating continuous readiness scoring

rather than binary classification may also enhance practical

deployment and improve robustness and scalability.
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