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Pedestrian Intention Prediction via Vision-Language Foundation Models

Mohsen Azarmi1, Mahdi Rezaei1,†, and He Wang2

Abstract— Prediction of pedestrian crossing intention is a
critical function in autonomous vehicles. Conventional vision-
based methods of crossing intention prediction often struggle
with generalizability, context understanding, and causal rea-
soning. This study explores the potential of vision-language
foundation models (VLFMs) for predicting pedestrian crossing
intentions by integrating multimodal data through hierarchical
prompt templates. The methodology incorporates contextual in-
formation, including visual frames, physical cues observations,
and ego-vehicle dynamics, into systematically refined prompts
to guide VLFMs effectively in intention prediction. Experi-
ments were conducted on three common datasets—JAAD, PIE,
and FU-PIP. Results demonstrate that incorporating vehicle
speed, its variations over time, and time-conscious prompts
significantly enhances the prediction accuracy up to 19.8%.
Additionally, optimised prompts generated via an automatic
prompt engineering framework yielded 12.5% further accuracy
gains. These findings highlight the superior performance of
VLFMs compared to conventional vision-based models, offer-
ing enhanced generalisation and contextual understanding for
autonomous driving applications.

I. INTRODUCTION

The safe and efficient operation of autonomous vehicles

(AVs) relies on understanding pedestrian crossing intentions.

Accurate intention prediction enhances safety by enabling

AVs to anticipate actions and adjust their speed and trajectory

accordingly. However, this task remains challenging due

to the complexity of pedestrian behaviour, influenced by

individual attributes, social interactions, and environmental

factors [1].

Conventional computer vision-based models for crossing

intention prediction often use deep learning techniques,

such as CNNs [2]–[4], RNNs [5]–[7], GCNs [8], [9], and

Transformers [10]–[12], focusing on visual features like

body pose [13], [14], spatio-temporal relationships [15], [16],

and pedestrian-vehicle dynamics [17]. While effective, these

models struggle with generalizability, context understanding,

and causal reasoning in dynamic traffic environments [18].

Vision-language foundation models (VLFMs) are large-

scale, pre-trained machine learning models that integrate

visual and textual modalities to achieve a unified under-

standing of multimodal data. By combining multimodal data,

VLFMs address some limitations of conventional vision-

based models, improving cross-modal comprehension tasks
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Fig. 1. Overview of vision-language crossing intention prediction model.
Automatic Prompt Engineer (APE) generates hierarchical prompts based
on task role, pedestrian behaviour, and dynamic motion cues (e.g., vehicle
speed).

[19]. While some recent works have explored the use of

VLFMs for pedestrian intention prediction tasks [20]–[22],

they exhibit key limitations. Firstly, these approaches often

fail to effectively capture temporal dependencies critical for

dynamic pedestrian behaviour, relying instead on static or

limited contextual cues. Secondly, their performance is sen-

sitive to prompt variations, as prompts are often designed in

an arbitrary or ad hoc manner, lacking a systematic structure.

Finally, these studies frequently overlook the significant role

of vehicle dynamics—such as speed and acceleration—on

pedestrian intent, which are crucial for understanding traffic

scenes [10], [23], [24].

This study explores the use of four state-of-the-art VLFMs

for pedestrian crossing intention prediction, with a particular

focus on prompt engineering and the integration of vehicle

speed variations and time-conscious prompts into the intent-

predictive framework.

This research introduces structured hierarchical templates

for prompt development. The hierarchy progresses from

simpler to more complex prompts, each designed to capture

different levels of contextual information. This progressive

approach reflects human reasoning, which often builds on

foundational knowledge before addressing more intricate

details [25]. These prompts are subsequently optimised using

the Automatic Prompt Engineer (APE) framework [26],

which iteratively refines them to identify the high-score

prompts. The study also investigates how varying levels of

contextual information influence crossing intention predic-

tion performance against three task-specific datasets. Then



our contributions can be summarised as follows:

• VLFMs Adaptation: We integrate vehicle speed vari-

ations and refine prompts to improve the understanding

of temporal and physical cues in pedestrian intention

prediction.

• Hierarchical Prompt Design: We propose a structured

series of progressively complex prompts to evaluate

VLFMs’ predictive capabilities.

• Prompt Optimisation: We employ the APE framework

to systematically optimise prompt templates, balancing

accuracy and confidence, and improving the overall per-

formance of the VLFMs in pedestrian crossing intention

prediction.

II. METHODOLOGY

This section describes our approach to pedestrian cross-

ing intention prediction using vision-language foundation

models (VLFMs). We integrate vehicle dynamics into the

prompt structure through hierarchical templates and optimise

prompts to enhance VLFMs’ effectiveness for the task.

A. Input Data Preparation

The data we utilised to input to the VLFMs comprises

both visual and textual components as detailed below.

1) Visual Data: The visual data consists of a series of

frames, Vi = frame1, frame2, . . . , frameN , with N =
16 frames captured at a rate of 30 fps. Following the same

framework employed by other conventional vision-based

benchmark models for performance evaluation, the model

is configured to analyse information from the previous 16

frames and generate predictions for the next 16 frames [27].

To guide the model in understanding temporal sequences,

each frame includes annotations with timestamps and a red

bounding box highlighting the target (i-th) pedestrian (as

illustrated in Figure 1).

2) Textual Data: The textual data consists of a set of

prompt templates P = {ρ1, ρ2, . . . , ρn}. These prompts di-

rect the VLFMs to predict the pedestrian’s crossing intention

based on visual frames and prompts, which are detailed

below.

B. Hierarchical Prompt Templates

To systematically evaluate the impact of contextual rich-

ness on the performance of VLFMs in pedestrian crossing

intention prediction, we propose a series of progressively

complex prompt templates as suggested by [25]. Each level

of these templates builds upon the previous one, incre-

mentally incorporating additional information to guide the

model more effectively. This hierarchical structure ensures a

comprehensive analysis of how varying degrees of context

affect the model’s understanding of the scene.

1) Role Templates (PR): The system role initially is

based on definitions suggested in the study [21], where the

model acts as an autonomous vehicle equipped with a front-

view dashboard camera capturing traffic scenes, including

pedestrians and vehicles. The task requires predicting a

pedestrian’s behaviour 16 frames into the future based on

visual inputs and ego-vehicle speed information. The defined

role helps the VLFM focus on the task effectively, as

supported by [28].

The baseline prompt poses a simple question to establish

a control for performance evaluation: ”Does the pedestrian

in the red bounding box intend to cross the street?”. This

minimal template serves as a benchmark for comparison

with more contextually rich prompts. Moreover, referring

to the bounding box in the prompt reduces ambiguity by

ensuring the model targets the correct individual. Providing

this localised visual reference enables the model to focus

on the pedestrian more accurately, avoiding inaccuracies

that may arise from textual descriptions of bounding box

coordinates [29].

2) Physical Cues Observation (PB): This adds a layer of

behavioural insight by specifying ”Observe the pedestrian’s

posture, limb positions, and body orientation”. By explicitly

focusing on these micro-level features, this template provides

critical insights into the pedestrian’s readiness and intent to

cross [30].

3) Vehicle Dynamics Aware: The template integrates ego-

vehicle dynamics, incorporating vehicle speed as a key

contextual element in pedestrian intention prediction [24].

Three different representations of vehicle speeds are designed

to evaluate the effect of varying levels of detail in dynamic

information on intention prediction. The first representation

(PDs) provides a straightforward numeric value, offering the

model a precise but contextually limited input. The second

representation (PDd) adds interpretability by describing the

vehicle’s motion state qualitatively, helping the model infer

broader situational awareness, as used by [21]. Finally,

the third representation (PDt) introduces a time-conscious

element, enabling the model to consider dynamic changes in

vehicle speed over a given time interval, which closely aligns

with real-world traffic scenarios. For example: ”Over the

past {time interval} seconds, the vehicle’s speed {increased

/ decreased} from {initial speed} mph to {final speed} mph.”

C. Prompt Optimization

To optimise prompt templates, we use the Automatic

Prompt Engineer (APE) framework [26], which systemati-

cally generates and evaluates prompts. Each prompt ρj is

scored using:

fscore(ρj) = αfexec(ρj) + (1− α)flogprob(ρj),

where:

• Execution Accuracy:

fexec(ρj) =
1

M

M∑

i=1

I(ŷi = yi),

measures the proportion of correct predictions, where

I(·) is the indicator function, yi is the ground-truth

label, ŷi is the predicted label, and M is the number

of samples.

• Log Probability:

flogprob(ρj) =
1

M

M∑

i=1

logPVLFM(yi | ρj ,Vi),



computes the average confidence of the VLFM for the

correct label yi, given the sequence of images Vi and

the prompt ρj .

The weighting parameter α ∈ [0, 1] balances accuracy and

confidence.

The employed Monte Carlo search in the framework

iteratively refines prompts:

1) Initialisation: Start with the initial set of templates (P).

2) Perturbation: Generate new candidate prompts (via

ChatGPT [31]) by modifying existing ones, such as

rephrasing, or using synonyms.

3) Evaluation: Score the new prompts using fscore(ρj) to

identify high-performing candidates.

4) Selection: Retain the top K prompts for the next

iteration.

This process repeats for T iterations or until convergence,

yielding the optimized prompt ρ∗:

ρ∗ = argmax
ρj

fscore(ρj).

The optimised prompt ρ∗, which is both linguistically

diverse and contextually relevant, is used as the input query

for the VLFM to predict pedestrian crossing intentions

effectively.

III. EXPERIMENT

This section details the experimental results of assess-

ing the impact of hierarchical prompt templates and the

incorporation of vehicle speed variations on the performance

of VLFMs using the APE framework. Then, it provides

comparative results on three task-specific datasets using four

state-of-the-art VLFMs and conventional vision-based intent-

predictive models.

A. Datasets

Our study utilizes three benchmark datasets: JAAD [32],

PIE [33], and Frontal Urban-PIP (FU-PIP) [4], each provid-

ing diverse pedestrian scenarios for intention prediction. For

all datasets, both test and validation sets are fully annotated

with pedestrian intention labels.

JAAD consists of 126 test samples and 32 validation

samples, including behavioural annotations essential for

pedestrian intention prediction. The dataset captures varied

weather conditions (sunny, rainy, snowy) and unpredictable

pedestrian movements, such as sudden stops or changes in

direction, increasing task complexity.

PIE includes 719 test samples and 243 validation samples,

covering diverse urban environments like motorways, park-

ing lots, and intersections. Frequent occlusions and dynamic

interactions with vehicles introduce additional challenges for

intention prediction models.

Frontal Urban-PIP (FU-PIP) contains 94 test samples and

90 validation samples, featuring complex traffic interactions

at intersections with high vehicle flow. The dataset evaluates

the model’s ability to recognise subtle pedestrian intent cues

in busy urban settings.

All datasets consist of RGB video sequences recorded

from frontal vehicle-mounted cameras, annotated with pedes-

trian bounding boxes, ego-vehicle speeds, and binary inten-

tion labels (”Crossing” or ”Not Crossing”).

B. Hierarchical Optimization

To explore the effectiveness of the hierarchical prompt

templates, we utilize five distinct language instruction pools,

which include two pools for Role Templates (PR) and

Physical Cues Observation Templates (PB), and three for

Vehicle Dynamics (PDs, PDd, PDt). Each of these pools

contains placeholders for speed information to guide the

VLFMs in predicting pedestrians’ crossing intentions.

Each instruction pool initially includes 13 manually

crafted templates, inspired by [20]–[22] prompts. These

templates are modified and developed to ensure diversity in

grammar, structure, and lexical richness while maintaining

the original semantic meaning. This diversity ensures the

prompts effectively probe the capabilities of the models

under varied linguistic constructions.

We employ the APE framework using GPT-4V for task

evaluation and leverage ChatGPT-4 [34] to refine and opti-

mise these templates. The optimisation process is conducted

with M = 365 (number of samples) and T = 40 (number

of iterations) across the validation sets of all three datasets.

Optimising the prompt templates across these three datasets

ensures that the prompts are effective and well-tuned for

diverse scenarios, covering various environments, pedestrian

behaviours, and levels of complexity.

The optimisation procedure involves the following stages:

1) Role Templates (PR): Using the validation samples,

we first run APE on the Role Templates to identify

the most effective template for guiding the VLFMs.

From this step, we select the top 5 (K=5) high-score

prompts for further analysis.

2) Physical Cues Observation Templates (PB): Building

upon the top 5 prompts from PR, we evaluate the

observation templates (PB). This step incorporates

behavioural cues into the prompts to enhance the

contextual understanding of pedestrian actions. The

optimisation process yields the most effective prompt

for this pool.

3) Vehicle Dynamics Templates (PDs, PDd, PDt): Fi-

nally, using the top 5 high-score prompts from PB ,

we evaluate the three representations of ego-vehicle

speed to determine their contribution to the overall

performance. However, due to the limitations of the

JAAD dataset, which only provides descriptive speed

information, the experiments on this dataset are re-

stricted to descriptive speed templates (PDd).

Figure 2 shows the optimisation process of prompt tem-

plates, with stability achieved after iteration 34, indicating

convergence on the validation sets and the identification of

the best-performing templates for pedestrian crossing inten-

tion prediction across three task-specific datasets. Notably,

including the ego-vehicle’s speed value alone resulted in a

+2% improvement in validation performance. In contrast,



Fig. 2. The measured performance of GPT-4V during the prompt
optimisation process of hierarchical prompt templates on validation sets of
JAAD, PIE, and FU-PIP datasets.

both descriptive speed and time-conscious descriptive speed

showed a similar trend prior to iteration 20, with subse-

quent refinements yielding accuracy improvements of +8%

and +10%, respectively. This emphasises the importance of

temporal and dynamic context in scene understanding.

Table I represents the evaluation of the best-performing

prompt in each template pool using accuracy, F1 score, and

log probability. As the complexity of the templates increases,

both accuracy and F1 scores improve, while log probabilities

decrease, indicating more confident predictions. The PDt

template, which includes time-conscious vehicle dynamics,

performs best with an accuracy of 0.72, F1 score of 0.71,

and a log probability of -1.52. In contrast, the PR template,

with minimal context, performs the worst with an accuracy

of 0.54, an F1 score of 0.51, and a log probability of -2.05.

To address potential bias toward GPT-4V, we extended the

TABLE I

PERFORMANCE EVALUATION FOR DIFFERENT PROMPT TEMPLATES.

Prompt Template Accuracy ↑ F1 Score ↑ Log Probability ↓

PR 0.54 0.51 -2.05
PB 0.62 0.60 -1.92
PDs 0.64 0.62 -1.60
PDd 0.70 0.69 -1.54
PDt 0.72 0.71 -1.52

optimisation process to other VLFMs, including GPT-4 mini

[35], LLaVA-Next (7B) [36], and LLaVA-Next (3B) [36].

Specifically, we continued refining the optimised prompt

templates on these models for an additional 10 iterations.

However, this extended tuning process did not yield any

improvements on the top-10 high-scoring prompts, indicating

that the optimised templates were already well-aligned with

the models’ capabilities. This suggests that the observed

performance differences across models stem from inherent

variations in their architectures rather than any prompt-

specific bias favouring GPT-4V.

C. Effectiveness of Prompts and Structures

We evaluate the utility and relevance of high-performing

and low-performing keywords, phrases, and grammar struc-

tures based on experimental results.

1) High-Performing Keywords and Phrases: Our analysis

reveals that prompts incorporating specific behavioural, con-

textual, and temporal keywords consistently achieve higher

prompt scores. For example, keywords such as “posture”,

“movement”, and “orientation” were instrumental in direct-

ing the model’s attention to observable pedestrian features.

Similarly, terms like “road”, “crosswalk”, “traffic light”,

and “proximity to the” effectively framed the spatial re-

lationships between the pedestrian and their environment,

providing crucial context for intention prediction.

Temporal references, such as “over the last {X} seconds”

and “in the {X} frames”, enabled the model to analyse

dynamic changes in behaviour, enhancing its ability to

predict intentions accurately. Additionally, phrases that ex-

plicitly described vehicle dynamics, including “ego-vehicle

speed”, “slowing down”, and “deceleration”, facilitated a

better understanding of interactions between the vehicle and

the pedestrian. For instance, prompts like “given the ego-

vehicle’s deceleration, consider the pedestrian’s movement

and proximity to the crosswalk” consistently yielded high

performance, specifically on the FU-PIP dataset, which over

presents the designated intersection scenarios.

From a grammatical perspective, direct and concise ques-

tion structures proved to be ineffective. On the other hand,

the integration of sub-problems seems to provide chain-of-

thought reasoning, standing as the most effective template.

For instance, a prompt such as “First, observe the pedestrian

in the red bounding box and their proximity to the road over

the sequence of 16 given frames. Then, consider pedestrian’s

movements and posture across frames, and determine if there

is enough evidence for the pedestrian to cross the road”. This

stepwise breakdown encourages the model to focus on key

factors sequentially. This aligns with [25], where breaking

the task into sub-problems helps the VLFM focus on granular

aspects of behaviour before forming a conclusion. In the

second place, comparative structures such as “Compare

the pedestrian’s movements in the first and last frames”

encouraged the model to analyse temporal dependencies,

further improving prediction accuracy in JAAD and PIE

datasets.

2) Low-Performing Keywords and Phrases: Prompts con-

taining vague or ambiguous keywords demonstrated sig-

nificantly lower prompt scores. Terms like “acting” and

“behaving”, lacked the specificity needed to guide the

model effectively. Similarly, abstract descriptors such as

“tendency”, “desire”, and ”feel” introduce uncertainty, as

they imply a degree of probability rather than a definitive

observation, which hinders the model’s ability to generate

accurate predictions.

Redundant or irrelevant keywords, such as “background

elements” and “objects around”, diluted the model’s focus

on pedestrian behaviour, negatively impacting the prompt

score. Furthermore, non-actionable temporal references like

“in the past” failed to provide sufficient temporal context,

reducing their utility in dynamic scenes.

In terms of grammar structures, overly complex sentences

were found to hinder the model’s comprehension. For in-



stance, a prompt like “Analyse the pedestrian’s movements,

body pose, and posture to determine whether they are likely

to cross, but also take into account the vehicle is moving

fast” overloaded the model with information and reduced

prediction accuracy. Similarly, the use of passive voice, as

in “The intention to cross is being assessed”, was less ef-

fective than active constructions. Open-ended or unstructured

prompts, such as “What do you think about the pedestrian’s

behaviour?”, also performed poorly due to their lack of focus

on the task.

D. Comparison Results

Using the optimized prompts, we evaluate four VLFMs,

including GPT-4V (1.8T) [34], GPT-4 mini (8B) [35],

LLaVA-Next (7B) [36], and LLaVA-Next (3B) [36], against

the test sets of the three datasets. Each dataset presents a

variety of real-world scenarios, ranging from urban streets to

residential areas, with varying levels of complexity in terms

of pedestrian behaviour and environmental factors.

The average results of the top 5 highest-scoring optimized

prompts are presented in Table II, using task-specific metrics

proposed by [27], such as Accuracy (Acc), Area Under the

Curve (AUC), F1-score (F1), Precision (Pr), and Recall (Re),

for each model and dataset.

Vision-based models, such as MultiRNN, SingleRNN, and

StakedRNN, show strong performance on the PIE dataset,

with MultiRNN achieving the highest precision and recall

on JAAD (0.64 and 0.86, respectively). However, these

models show relatively poor results on the FU-PIP dataset,

indicating their limited ability to handle more complex or

diverse pedestrian behaviours. PCPA and GraphPlus, while

performing well on PIE (0.87 Acc, 0.86 AUC, 0.77 F1 for

PCPA), struggle on FU-PIP, where their accuracy drops to

around 0.62 and F1 remains low. PIP-Net outperforms other

vision-based models, achieving the highest accuracy and F1

score on PIE (0.91 Acc, 0.84 F1) and FU-PIP (0.73 Acc,

0.69 F1), highlighting its robustness across datasets.

In contrast, the VLFMs, particularly the larger mod-

els, consistently outperform their vision-based counterparts.

GPT-4V (1.8T) demonstrates superior performance across

all datasets, achieving the highest accuracy (0.74 on JAAD,

0.81 on PIE, 0.74 on FU-PIP) and F1 scores (0.66 on

JAAD, 0.73 on PIE, 0.68 on FU-PIP). This suggests that

the incorporation of vision and language processing enables

better contextual understanding and prediction, enhancing

model effectiveness. GPT-4 mini (8B) and LLaVA-Next (7B)

also show competitive performance, particularly on PIE, with

GPT-4 mini achieving a high F1 score of 0.73. However,

smaller models like LLaVA-Next (3 billion parameters) show

lower performance, especially on the JAAD dataset, where

it struggles with accuracy (0.65) and F1 (0.54), highlighting

the limitations of smaller models in pedestrian intention

prediction tasks.

In scenarios involving complex pedestrian behaviour, such

as at designated environments like traffic lights and cross-

walks, partial occlusion at intersections, or hesitation in

parking lots, most VLFMs, particularly GPT-4V, demonstrate

TABLE II

COMPARISON OF VLFMS ON TEST SETS OF JAAD, PIE, AND FU-PIP.

Model Dataset Acc AUC F1 Pr Re

Vision-Based Models

MultiRNN [7]
JAAD 0.61 0.50 0.74 0.64 0.86

PIE 0.83 0.80 0.71 0.69 0.73
FU-PIP 0.64 0.63 0.49 0.51 0.48

SingleRNN [6]
JAAD 0.58 0.54 0.67 0.67 0.68
PIE 0.81 0.75 0.64 0.67 0.61

FU-PIP 0.65 0.64 0.54 0.57 0.53

StakedRNN [5]
JAAD 0.58 0.54 0.69 0.67 0.61
PIE 0.82 0.79 0.69 0.67 0.70

FU-PIP 0.65 0.65 0.55 0.58 0.53

PCPA [27]
JAAD 0.58 0.50 0.71 0.61 0.58
PIE 0.87 0.86 0.77 0.75 0.79

FU-PIP 0.62 0.60 0.58 0.51 0.47

CAPformer [10]
PIE 0.88 0.80 0.71 0.69 0.74

FU-PIP 0.64 0.60 0.55 0.58 0.54

GraphPlus [8]
JAAD 0.70 0.70 0.76 0.77 0.75
PIE 0.89 0.90 0.81 0.83 0.79

FU-PIP 0.64 0.61 0.57 0.59 0.56

PIP-Net [4]
PIE 0.91 0.90 0.84 0.85 0.84

FU-PIP 0.73 0.71 0.69 0.70 0.68

Vision-Language Foundation Models

GPT4V-PBP [20] JAAD 0.57 0.61 0.65 0.82 0.54

GPT4V-PBP Skip [20] JAAD 0.55 0.59 0.64 0.81 0.53

OmniPredict [21] JAAD 0.67 0.65 0.65 0.66 0.65

LLaVA-Next (3B)
JAAD 0.65 0.55 0.54 0.56 0.53
PIE 0.72 0.62 0.61 0.63 0.60

FU-PIP 0.66 0.59 0.58 0.60 0.57

LLaVA-Next (7B)
JAAD 0.68 0.59 0.58 0.60 0.57
PIE 0.75 0.66 0.65 0.67 0.64

FU-PIP 0.68 0.62 0.61 0.63 0.60

GPT-4 mini (8B)
JAAD 0.70 0.62 0.61 0.63 0.60
PIE 0.77 0.69 0.68 0.70 0.67

FU-PIP 0.70 0.64 0.63 0.65 0.62

GPT-4V (1.8T)
JAAD 0.74 0.67 0.66 0.68 0.65

PIE 0.81 0.74 0.73 0.75 0.72

FU-PIP 0.74 0.69 0.68 0.70 0.67

Top values are indicated in bold and colour-coded as blue for JAAD, teal for PIE,

and purple for FU-PIP; second-top values are only colour-coded without bold style.

superior performance over conventional vision-based models.

These models can reason about the relationships between

traffic infrastructure, pedestrians, and surrounding vehicles,

providing a more comprehensive and context-aware under-

standing of pedestrian situations and their potential crossing

intentions.

IV. CONCLUSION

This study investigated the adaptation of vision-language

foundation models (VLFMs) for pedestrian crossing in-

tention prediction, focusing on the impact of context-rich

prompts and vehicle dynamics. Experimental results demon-

strated that integrating hierarchical prompts and vehicle

speed information significantly enhanced the prediction per-

formance. Specifically, time-conscious representations of ve-

hicle dynamics, which incorporate changes in speed over

time, resulted in a 12.5% increase in prediction accuracy

compared to the baseline templates with no vehicle speed

information. Body orientation- and pose-based prompts also

contributed to an 8.7% improvement, emphasising the im-

portance of physical cues in predicting pedestrian intentions.

The Automatic Prompt Engineer (APE) framework proved

to be effective in optimising prompt design, achieving an

additional 5.3% gain in execution accuracy by refining



linguistic and contextual diversity. To mitigate bias toward

GPT-4V, we extended optimisation to other VLFMs for 20

iterations but found no further improvements in the top-

10 prompts, suggesting performance differences stem from

model architecture. Overall, the combination of contextually

enriched prompts, vehicle dynamics, and systematic optimi-

sation techniques enabled VLFMs to outperform previous

works on VLFMs and most vision-based benchmark models

in task-specific metrics.
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