
This is a repository copy of Colour Equivalence Patterns and Groups on Rubik's Cubes.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/229635/

Version: Accepted Version

Article:

Hollerbach, R. orcid.org/0000-0001-8639-0967 (Accepted: 2025) Colour Equivalence 
Patterns and Groups on Rubik's Cubes. The Mathematics Student. ISSN: 0025-5742 (In 
Press)

This item is protected by copyright. This is an author produced version of an article 
accepted for publication in The Mathematics Student. Uploaded with permission from the 
publisher.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/229635/
https://eprints.whiterose.ac.uk/


Colour Equivalence Patterns and Groups

on Rubik’s Cubes

July 24, 2025

Rainer Hollerbach

School of Mathematics

University of Leeds

Leeds LS2 9JT

United Kingdom

R.Hollerbach@leeds.ac.uk

Abstract

We introduce the concept of colour equivalence patterns on Rubik’s cubes. These are patterns

where: (a) the six colours are first split into two sets of three, (b) within each set those three

colours must be distributed equally, and (c) the distributions of the two sets must be mirror

images of one another. The complete set of such patterns is first obtained by computer programs.

The patterns are then analysed from both geometrical and group theoretical perspectives, which

can differ significantly. The group theory results are presented at a level appropriate for students

just learning the subject.
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1 Introduction

It is 50 years now since the Rubik’s cube was invented, with several 100 million cubes sold since

then. Mathematicians immediately realised that it is far more than just a puzzle though, and has

a deep underlying group theoretical structure [1, 2, 3, 4]. This reveals, for example, that it is not

possible to exchange two side pieces while leaving everything else in place. This property is very

familiar to anyone who has ever played around with cubes for any length of time, but to provide a

rigorous proof that it could never be done requires some rather sophisticated group theory. Another

interesting question is the maximum number of turns needed to solve an arbitrary position. Direct

computer searches show this to be 11 for the 2× 2× 2 cube, and 20 for the 3× 3× 3 cube [8]. For

the general n× n× n cube this so-called group diameter scales as n2/ log n [5].

There are also enthusiasts who are simply interested in a variety of pretty patterns that can be

constructed, without regard to any special mathematical properties they might have. An online

search easily yields several dozen such patterns, many of them very intricate, but typically presented

without any associated mathematical analysis. One recent attempt to bridge this gap between very

abstract mathematics on the one hand versus pretty patterns on the other introduced the concept of

colour equality patterns [6, 7], which were defined to be patterns where all six colours are distributed

exactly equally. That is, if you had two identically arranged cubes, you could rotate them with

respect to one another such that any given colour on the first cube and any other colour on the

second cube would coincide in all of their positions.

Figure 1a shows an example of such a colour equality pattern. We begin by arbitrarily choosing

the colours red/yellow/blue (r/y/b) to constitute the front, and orange/white/green (o/w/g) the

back. Then take the three side pieces around the r/y/b front corner and the three side pieces

around the o/w/g back corner – which will together be known as the ‘3+3’ side pieces – and

rotate each set clockwise as shown. All six colours are clearly distributed in exactly the same way.

The study of colour equality patterns as a whole is then concerned with finding all such patterns,

systematically classifying them according to their various symmetries, etc. One discovery is that

there are patterns having different symmetries, so different that they are mutually incompatible.

That is, two patterns might each separately satisfy colour equality, but if you try to combine them,

colour equality is violated. This is certainly an interesting result, but it does also mean that the

set of all colour equality patterns does not constitute a group.

Next, suppose we arrange those same ‘3+3’ side pieces around the front and back corners as in

Figure 1b. The r/y/b front pieces are still rotated clockwise, but now the o/w/g back pieces are

rotated counter-clockwise. Strict colour equality, between all six colours, is then no longer satisfied.

However, we can observe two things: First, within each {r,y,b} and {o,w,g} set separately, colour

equality is still satisfied. Second, the patterns formed by red and orange, say, are not the same,

but they are mirror images of each other. And since yellow and blue were already seen to be equal

to red, and white and green equal to orange, we realise that we still have a nice, symmetrical

equivalence between the two colour sets.
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(a) (b)

Figure 1: (a) A colour equality pattern. (b) A colour equivalence pattern. In each case the left

panel shows the three faces on the front, and the right panel the three faces on the back, after the

cube has been turned over. Supplementary Material at the end also includes templates to cut out

and tape together to form actual three-dimensional cubes, which can then be rotated as desired to

see the equality/equivalence relations between the different colours even more clearly.

Let us therefore define colour equivalence patterns to be patterns of this type, with {r,y,b} and

{o,w,g} satisfying equality within each set, and being mirror images between the two sets. As

before, we would then like to find all such patterns, systematically classify them in various ways,

etc. One difference that will become apparent below is that the equivalence patterns are far more

regular than the equality patterns were, with every pattern having the same symmetries, and thus

being mutually compatible. From the point of view of studying different symmetries, this makes the

equality patterns the more interesting set. On the other hand, precisely this mutual compatibility

means that the set of all colour equivalence patterns does constitute a group.

The purpose of this article is then to derive the full set of equivalence patterns, and analyse

them from both geometrical and group theoretical perspectives. At the end I also outline how the

2 × 2 × 2 equality patterns can be split into two (partially overlapping) sets that do satisfy the

requirements to be groups, with the details left as an exercise for readers. My hope is that both

types of patterns might not only be interesting in their own right, in terms of symmetries of three-

dimensional patterns, but that the resulting groups could serve as useful examples for students

encountering group theory for the first time.

2 The Corners

We start with the 2× 2× 2 cube consisting only of corners. The corners of all larger cubes follow

exactly the same rules. The number of possible configurations, 7! · 36 ≈ 4 · 106, is sufficiently small

that we can scan through them all with a computer and pick out the ones that satisfy the colour

equivalence criterion. There turn out to be 18 such patterns, shown in Figure 2. The representation

is as before, with three faces that constitute the front, then the cube is flipped over to show the

three faces on the back. The mirror symmetry between red versus orange, yellow versus white, and

blue versus green is again easily recognisable. The three-fold symmetry among {r,y,b} and {o,w,g}

also shows the equality within the given set. Once again though, to fully appreciate the patterns it

is best to construct actual 3D cubes, using the templates provided in the Supplementary Material

at the end.
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Figure 2: The 18 corner patterns, labeled according to how they are constructed from the basic

actions {X,Y,Z}.

The labels in Figure 2 indicate the group structure. First, the standard solved configuration I

is the identity element. Let’s focus next on the three patterns X, Y , and Z, since these allow us to

generate the entire group. X is easiest to describe; it simply rotates the r/y/b front corner one twist

clockwise, and the o/w/g back corner one twist counter-clockwise. Y is slightly more complicated,

but just like X it also leaves all eight corners in their original positions. The r/y/b front and

o/w/g back pieces also retain their original orientation. The three corners around the r/y/b front

piece each rotate one twist clockwise, the three corners around the o/w/g back piece one twist

counter-clockwise. From these geometrical definitions we can immediately see that X3 = Y 3 = I

and XY = Y X, that is, X and Y commute.

The third pattern Z has the most complicated geometrical action, but even it is relatively

straightforward to understand. The front and back corners again remain in their original positions,

and with their original orientation. The other six pieces switch places with their diagonally opposite

partners, while maintaining the same relative orientation to one another. That is, they undergo

a 180◦ flip as if they were a single connected object. From this definition we can again easily see

that Z2 = I and also XZ = ZX. The commutation relation between Y and Z is less obvious,

and indeed they don’t commute. By directly carrying out the various steps involved, you should

be able to convince yourself that ZY = Y 2Z and similarly ZY 2 = Y Z.
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At this point, make sure also that you fully understand what combinations of this type mean.

Think of {X,Y,Z} not just as static patterns that are whatever they happen to be, but also think

of them as instructions telling you what to do next. That is, a combination such as XY Z tells you:

First start with the instructions Z, which when applied to the original configuration gives you just

the pattern called Z. Next apply the instructions Y to this pattern Z, which gives you something

else. Finally apply the instructions X to whatever you just produced, and that is the final pattern

called XY Z. Interpreting {X,Y,Z} as instructions and not just as static patterns is precisely why

it was so important to first clarify what exactly it is that they actually do, in terms of rotating

and/or moving the various corners. You will probably find it useful also to construct actual cubes,

including filling in some colours yourself on the blank templates provided, to really see how the

different corners move around under combined actions like these.

Given the results X3 = Y 3 = Z2 = I and the various commutation relations, it is straight-

forward to work out that the 18 elements XmY n and XmY nZ, with m,n = 0, 1, 2, are the only

possibilities. Any other combinations of these three elements could always be reduced to one of

these 18 elements. And sure enough, Figure 2 consists of exactly these 18 elements. Furthermore,

from the basic definitions we see that X and X−1 = X2 should be mirror images in terms of which

corners rotate which way, and similarly Y and Y −1 = Y 2 should be mirror images. In contrast,

Z is its own inverse, and correspondingly has no handedness. If you carefully compare various

pairs of patterns, you find that this handedness of X and Y then also exactly carries over to all

the combinations; for example XY 2Z and X2Y Z are mirror image partners, as we would expect if

their X versus X2 and Y 2 versus Y parts separately are mirror images.

There is one further twist to these patterns and how best to represent them: Suppose we define

W = XZ. From a geometrical perspective this combination is needlessly complicated compared

with the relative simplicity of X and Z separately. However, from the group theoretical perspective

something rather interesting happens. Using our previous results thatXZ = ZX andX3 = Z2 = I,

it is straightforward to obtain W 2 = X2, W 3 = Z, W 4 = X, W 5 = X2Z, and finally W 6 = I. The

important ones here are X = W 4 and Z = W 3. That is, X and Z can both be reconstructed from

the single element W . From an abstract group theoretical perspective, we recognise therefore that

we don’t need three generators {X,Y,Z}; we can also obtain the entire group from just the two

generators {W,Y }.

It is important to emphasise also that this entire geometrical and group theoretical labeling

and analysis was done only after the patterns had originally been obtained by the computer search.

The computer program conducted its search based entirely on the original geometrical definition

of colour equivalence, and simply produced the 18 patterns here. It was only afterwards that a

careful examination revealed them to be a group, geometrically best described by the three elements

{X,Y,Z}, but group theoretically most compactly defined by just the two elements {W,Y }.
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(a) (b)

(c) (d)

Figure 3: The centre and corner labelings for these patterns are: (a) IcX, (b) C Y , (c) C2 Z,

(d) IcXY Z. As noted also in the text, the labels (Ic, C, C
2, Ic) refer to the arrangements of the

centres only, and constitute rotations about the r/y/b – o/w/g preferred axis. X and Y apply

to the corners only, exactly as before. Z applies to the corners as before, but additionally the

arrangement of the side pieces in (c,d) is part of the new definition of Z.

3 Adding the Centres

Moving on to 3×3×3 cubes, the first step is to consider how these corner patterns fit together with

the centres. The centres form a rigid lattice, so there are only 24 ways it can be oriented with respect

to the corner patterns. Three of these are compatible with colour equivalence, corresponding to

successive rotations about the r/y/b – o/w/g preferred axis, as shown in Figure 3. In the language

of group theory the Figure 3a orientation is the identity element Ic, then 3b is the generator C, 3c

has the orientation C2, and finally 3d is back to C3 = Ic.

If we next examine the side pieces in Figure 3, in 3a and 3b they are all in their original

positions. In 3c and 3d though, the same ‘3+3’ side pieces as in Figure 1 have each been exchanged

with their diagonally opposite partners. This exchange is not a side piece action though, which we

will get to below. Instead, it is required by the corner element Z, which is present in both 3c and

3d. This requirement to diagonally exchange these ‘3+3’ side pieces for the nine corner patterns

containing Z comes about because of the point noted in the introduction, that two side pieces

cannot be exchanged while leaving everything else in place. In particular, if you try to construct

any corner pattern containing Z along with the side pieces as in 3a or 3b, the last two side pieces

will be in the wrong positions. Adding these three diagonal exchanges gets you back to an even

number of side piece switches, which can be done.

That is, the nine corner patterns that do not contain Z must have their standard side piece

arrangement as in Figures 3a and 3b, whereas the nine corner patterns that do contain Z must

have their standard side piece arrangement as in Figures 3c and 3d. The only remaining question

is, how to describe this in the language of group theory? It’s quite simple: we just extend the

definition of the element Z (or equivalently W , if we want to use the {W,Y } representation). That

is, X and Y remain as before, and act only on the corners, exactly as before. In contrast, Z now
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acts on the corners exactly as before, but in addition also does this diagonal exchange of the ‘3+3’

side pieces (which very conveniently is also still consistent with colour equivalence).

4 The Side Pieces

The number of possible configurations for the side pieces is 12! · 210 ≈ 5 · 1011, far greater than

the 4 · 106 possibilities for the corner pieces. Nevertheless, even a number as large as this is

still manageable by the direct computational approach, requiring only a few days on a reasonably

powerful workstation. The results show that the 12 side pieces can be arranged in 144 different ways

that are consistent with colour equivalence. The equivalent of Figure 2, that is, explicitly showing

all 144 patterns, would then be rather unwieldy. However, just as the 18 patterns in Figure 2 could

be constructed out of a much smaller number of generators, for the side pieces also the 144 patterns

can be constructed out of a relatively small number of geometrically simple actions.

Indeed, we have already seen one of these actions before, namely the clockwise/counter-clockwise

rotation of the ‘3+3’ side pieces in Figure 1b. This clearly contributes a factor of three to our target

of 144. Another action we can do is to flip these same ‘3+3’ side pieces in place. Alternatively,

we can take the other six side pieces, constituting a ‘ring’ that separates the front and back halves

of the cube, and flip those in place. At this point we thus have 3 · 2 · 2 = 12 possibilities. The

remaining factor of 12 that we need to achieve our target of 144 comes from two further geometrical

actions, one yielding a factor of two, and the other a factor of six. Can you think what they are?

Solutions are provided in the Supplementary Material, but perhaps you can already discover these

two geometrical actions yourself.

Another interesting point comes about when we consider the associated group structure. For

the corners we already saw that geometrically the patterns are best described by the three actions

{X,Y,Z}, but that group theoretically we can actually specify things more compactly in terms

of just two generators {W,Y }. For the side pieces we will similarly find that geometrically these

144 patterns are best described by the three actions already mentioned here, plus the further two

actions in the Supplementary Material. However, from the group theoretical perspective, we again

do not need five generators. There is a certain redundancy among the geometrical actions, with the

result that any one of them can be constructed from suitable combinations of the others. The entire

group can ultimately be constructed from only three generators. Full details are again presented in

the Supplementary Material. Any readers though who have deduced the missing two geometrical

actions can further think about which actions might then be constructible from some of the others.

5 Conclusion

Starting from the previous concept of colour equality patterns on Rubik’s cubes [6, 7], we con-

structed the new category of colour equivalence patterns. By direct computational searches, we

found that there are 18 corner patterns and 144 side piece patterns. Together also with three
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possible arrangements of the centres, there are therefore 18 · 144 · 3 = 7776 different equivalence

patterns. For the 18 corner patterns we analysed the group structure in full detail, and showed that

it can be obtained from just three generators {X,Y,Z}, corresponding to relatively simple geomet-

rical actions, or even from just two generators {W,Y }, if we are willing to accept that W = XZ

is geometrically more complicated than either X or Z alone. For the 144 side piece patterns we

left most of the details for the Supplementary Material, but here also there are relatively simple

geometrical actions, and ultimately just three generators are needed to create the entire group.

Let us return also to our starting point, the colour equality patterns. As already noted in

the introduction, equality patterns cannot constitute one single group, since there are mutually

incompatible patterns. However, it turns out that the 2 × 2 × 2 corner patterns can be suitably

split up into two separate groups. The Supplementary Material includes two sets {x, y, z} and

{U, V } that allow you to construct the entire groups. We then compare the {X,Y,Z} equivalence

group with the {x, y, z} equality group, and show that the underlying group structure is the same,

although curiously enough the way the elements have to be matched up is not quite as simple as

X ↔ x, Y ↔ y, Z ↔ z.

Finally, it is interesting to note how colour equality is simpler than colour equivalence, in

terms of the original geometrical definitions, but in terms of the group structures, equivalence

is simpler than equality. For equivalence all of the patterns nicely constitute one single group,

whereas for equality they require this somewhat awkward splitting into separate groups. Is there

some underlying reason for this? I don’t know, but if anyone can discover something here, I would

certainly be very interested to hear about it!
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Supplementary Material

As noted in the main article, there are several reasons for including supplementary material:

First, to properly understand the different patterns, and how they satisfy the colour equivalence

condition, it is best to see and handle actual three-dimensional cubes. This is especially true if

you want to think of the various results not just as static patterns, but as actions that tell you

how to move the different pieces around. By carefully studying actual cubes it is possible to far

better understand how pieces have moved around than if you were viewing only the two-dimensional

figures in the article. For every figure in the article there are therefore templates provided below

that can be cut out and folded together into three-dimensional cubes.

Second, to fully describe the side piece results in the article itself would probably have made it

somewhat longer than appropriate. The article therefore just briefly mentioned the three simplest

side piece actions, then encouraged readers to think about what other actions there might be, and

promised the full details in this supplementary material section.

Third, as noted in the article, it is possible to apply a group theoretical analysis to the 2×2×2

colour equality patterns as well, as long as they are split up into two different groups.

And finally, as also noted in the article, it is possible to make some comparisons between different

groups and show that the underlying group structure is the same, even if the best geometrical

descriptions of each group separately don’t make that immediately obvious.

The following pages therefore consist of:

1. Eight pages (and two further figures) describing the colour equivalence side piece results in

full detail, from both the geometrical and group theoretical perspectives.

2. Four pages (and two further figures) outlining how to do the group theoretical analysis of the

2× 2× 2 colour equality patterns.

3. Four pages on comparisons between different groups.

4. Eighteen pages with templates for the three figures in the article plus the two additional

figures in item Nr. 1.

5. One page with completely blank 2× 2× 2 templates, to fill in yourself when constructing the

various combinations such as Y Z, Y 2Z, ZY , ZY 2, etc.

6. Nine pages with the 18 possible equivalence corner patterns already filled in on 3 × 3 × 3

cubes, but the other slots left blank. The corner pattern I template could be a useful starting

point if you want to explore various combinations of side piece actions. In general all of them

could be useful if you want to try out for yourself what particular arrangements of centres

and sides look like together with a given corner pattern.

7. Finally, there are five pages with templates for the two figures in item Nr. 2.
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Geometrical and Group Theoretical Analysis of the Side Pieces

The main article already noted three geometrical actions that preserve colour equivalence. The

first row in Figure 4 shows these three actions. The first one, r, is the same as Figure 1b in the

article. It rotates the three side pieces around the r/y/b front corner in a clockwise direction, and

the three side pieces around the o/w/g back corner in a counter-clockwise direction. These six

pieces are again collectively referred to as the ‘3+3’ pieces. The next action, f , takes these same

‘3+3’ pieces and flips them in place. Finally, F takes the other six side pieces, which constitute a

‘ring of six’ separating the front and back halves, and flips those in place. It is straightforward to

verify that all three of r, f and F do indeed satisfy colour equivalence.

The article then asserted that there are two further geometrical actions, one yielding a factor

of two and the other a factor of six to the total number of patterns, and challenged readers to try

to come up with these actions themselves. The first of these, yielding the factor of two, is simply a

r f F

s
a

s
b

s
a
s

b

R

1

2

34

5

6 3

2

16

5

4

Figure 4: The top row shows the three actions r, f and F . The second row shows the two possible

ways of switching the ‘3+3’ and ‘ring of six’ pieces, sa and sb, as well as the combination sasb. The

thick lines superimposed on sa and sb indicate precisely which pieces are being switched. The final

row shows the action R, with the circles indicating how the ‘ring of six’ rotates, clockwise as seen

from the front and counter-clockwise as seen from the back.
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switch between the ‘3+3’ and the ‘ring of six’ pieces. There are actually several ways to accomplish

this switch, none of them obviously preferable as a simplest, ‘standard’ action. The second row in

Figure 4 shows two possible switches, the mirror image pair sa and sb. The thick line segments

superimposed on the cube faces indicate which pieces are being exchanged. The third entry in

the second row also shows the combination sasb, that is, the combined action of first switching

according to sb, then switching back again according to sa. We will see below why it might be

interesting to consider this combination.

The final geometrical action, R, is shown in the bottom row of Figure 4. It consists of a rotation

of the ‘ring of six’ pieces, with the numbers beside the pieces indicating how the rotation proceeds,

one position clockwise as seen from the front, and counter-clockwise as seen from the back. This

action R also has one additional complication, namely that the ‘3+3’ pieces must be exchanged

with their diagonally opposite partners, as indicated in the figure. This is exactly the same effect

as for the generator Z in the article, and for the same reason. Just the rotation of the ‘ring of

six’ alone is readily seen to correspond to an odd number of pairwise exchanges of side pieces,

namely 123456 → 123465 → 123645 → 126345 → 162345 → 612345. It is therefore not possible to

accomplish this alone, but if we add the ‘3+3’ pairwise exchanges we are back to an even number

of exchanges, which can be done.

To summarise, we have the five geometrical actions:

1. r rotates the ‘3+3’ pieces, yielding a factor of three.

2. f flips the ‘3+3’ pieces in place, yielding a factor of two.

3. F flips the ‘ring of six’ pieces in place, yielding a factor of two.

4. Either of sa or sb switches the ‘3+3’ and ‘ring of six’ pieces, yielding a factor of two.

5. R rotates the ‘ring of six’ pieces, and then necessarily also exchanges the ‘3+3’ pieces with their

diagonal opposites, yielding a factor of six.

The total number of colour equivalence side piece patterns is then indeed 3 · 2 · 2 · 2 · 6 = 144,

as noted in the article. Readers are further encouraged to use the templates below to construct

actual cubes, and thereby convince themselves that all of these actions really do satisfy the colour

equivalence criterion that red/yellow/blue and orange/white/green are distributed equally within

each set, and that red versus orange, yellow versus white, and blue versus green have mirror image

patterns.

In terms of combining these actions, the best way to think about how to systematically construct

all 144 patterns is then as follows: First decide whether you want to leave the ‘3+3’ and ‘ring of

six’ pieces in their original positions, or exchange them. If you choose to switch, either sa or sb

will accomplish that. That is, all 72 patterns where the ‘3+3’ and ‘ring of six’ pieces have switched

positions can be created by starting out with either sa or sb. (We will see below also how the

details after that differ slightly depending on whether you start with sa or sb.) Next, use r and R

to adjust the rotations of whichever pieces are now in the ‘3+3’ and ‘ring of six’ positions. Finally,

once both sets of pieces are in their desired positions, use f and F to fix whichever orientations

you want.
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Turning next to the group theoretical analysis, if we think of the set {r, f, F, sa, sb, R} as

elements of a group, it is immediately clear that we have r3 = f2 = F 2 = s2a = s2
b
= R6 = Is,

the side piece identity element. Which elements do or don’t commute with which other elements

is usually also clear from the geometrical meanings. For example, f commutes with r, since ‘flip

first, then rotate’ and ‘rotate first, then flip’ clearly yield the same final result. Or, for an even

simpler example, F commutes with r, since they affect completely different pieces, so it makes no

difference in which order the two actions are done. In contrast, the flips f or F do not commute

with the switches sa or sb.

Staying with the flips and switches, we recognise that they satisfy

f = saFsa, f = sbFsb, F = safsa, F = sbfsb. (1)

That is, whether we (a) flip either the ‘3+3’ or ‘ring of six’ pieces directly (f or F ), or (b) first

switch, then flip those same pieces, but now in the other positions, then switch back, clearly yields

the same result. In terms of fundamental generators, we therefore do not need both of f and F ,

but only one of them.

A similar result applies to r, which satisfies

r = saR
2sa, r = sbR

2sb. (2)

That is, whether we (a) rotate the ‘3+3’ pieces directly, or (b) first switch, then use R2 to rotate

those same pieces two positions along the ‘ring of six’, then switch back, yields the same result. So

again, in terms of fundamental generators, we do not need r.

The next result of this type we want to consider concerns the two switches sa and sb. In terms

of what they do, switching the ‘3+3’ and ‘ring of six’ pieces, we suspect we don’t really need both

of them. Unlike the above results for f , F , and r though, here it is not immediately clear how to

express sa or sb in terms of each other combined with the other actions. To address this question,

let’s return to the sasb result in the middle row of Figure 4. If we examine this carefully, we see

that its geometrical effect is the same as FRr (or rRF , or any other permutation, since these three

actions all commute). From sasb = FRr = rRF , and using also s−1
a = sa and s−1

b
= sb, we can

then obtain results such as

sa = FRrsb, sb = sarRF, (3)

or using the above results for r,

sa = FRsbR
2, sb = R2saRF. (4)

These are the desired relations then that express sa and sb in terms of each other and other actions,

thereby verifying that we don’t need both of them as fundamental generators.

There is another, perhaps somewhat unexpected result we can obtain at this point. We can

further rearrange the expressions in Eq. (4) as

F = saR
−2sbR

−1, F = R−1saR
−2sb. (5)
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Using the previous relationships between F and f , these can be further converted to

f = R−2sbR
−1sa, f = sbR

−1saR
−2. (6)

That is, we could potentially eliminate both of the flips f and F as fundamental generators, as

long as we instead keep both of the switches sa and sb. It may seem perverse to express actions as

geometrically simple as the flips f and F by combinations of actions as complicated as R, sa and

sb, but it can be done.

And finally, from our previous results sasb = FRr = rRF we can even obtain

R = F sasb r
−1 = r−1 sasb F, (7)

or any other permutation of F , sasb, and r−1. That is, none of our six actions f , F , sa, sb, r and

R seems to be truly fundamental! According to Eqs. (1)-(7), any one of them can be constructed

from various combinations of the others. It is a simple matter also to directly verify the validity of

(1)-(7), and indeed you are strongly encouraged to do so. Just evaluate the sequence of actions on

the right-hand sides, and confirm that the final result is the same as the single action on the left.

It requires a bit of time and effort filling in colours on some blank templates, but it is ultimately

straightforward, provided you properly understand the six actions separately.

However, from the point of view of trying to construct a nice, simple set of fundamental gen-

erators for the entire 144-element group, this ability to eliminate any one, or even several of them

in favour of the others is not particularly helpful, since it creates more choices than we can easily

keep track of. Instead of addressing the ‘fundamental generators’ question directly, let’s start with

something much simpler, namely what subgroups — and specifically of what sizes — will we obtain

if we gradually combine more and more of our six actions.

For example, if we consider the two actions f and F , these two together will clearly generate a

subgroup that consists of the four elements {Is, f, F, fF}. Acting on any of these four elements

with either f or F just generates a different member of the subgroup, but nothing outside it —

this is after all the requirement to be a subgroup. So, for every combination of two of our six basic

actions f, F, sa, sb, r, R, what is the size of the resulting subgroup? If you just keep applying the

two chosen actions over and over again, in all possible combinations, how many elements will you

obtain before you reach this point where you stop generating anything new?

Table 1 shows the results, for the 15 possible ways of choosing two of the six elements. Many

of these results should be readily understandable in terms of the underlying geometrical definitions

of the actions. For example, we see that either flip, f or F , combined with either switch, sa or sb,

yields a subgroup containing eight elements. To see how this comes about, first note that according

to Eq. (1) either flip combined with either switch will generate the other flip. So effectively you

have both flips, together with a switch, and each of those three actions yields a factor of two to the

total size of the subgroup.

There are also other results which are far less obvious geometrically, but are still straightforward

to obtain. For example, Table 1 claims that combining the two switches sa and sb yields a subgroup
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f, F f, r F, r f, sa f, sb F, sa F, sb

4 6 6 8 8 8 8

f,R F,R sa, sb sa, r sb, r r,R sa, R sb, R

12 12 12 18 18 18 72 72

Table 1: For every possible choice of two out of the six basic actions, the number of elements in

the subgroup generated by those two actions.

containing twelve elements. To see how this comes about, recall our previous result sasb = FRr,

and also that F, R, r all commute with one another. We then have that (sasb)
6 = F 6R6r6 = Is,

the identity element. The sequence of elements sb, sasb, sbsasb, . . . will therefore yield twelve

patterns before it repeats. From (sasb)
6 = Is we further have that sa = sb(sasb)

5, sbsa = (sasb)
5,

sasbsa = sb(sasb)
4, etc. That is, the sequence of elements sa, sbsa, sasbsa, . . . yields these same

twelve patterns, just in a different order. The only remaining item would be to verify that all twelve

of these patterns really are distinct, which you are encouraged to do, by carrying out the actual

geometrical actions involved.

The most complicated entries in Table 1 are for the pairs {sa, R} and {sb, R}, which each yield

subgroups having 72 elements. In principle even these could be worked out by hand, but it would

be a very lengthy and tedious process. Instead, we can obtain results such as these computationally.

We start by labeling the 24 little panels (2 for each of the 12 side pieces) in any order we like. The

various geometrical actions can then be represented by permutations, indicating how all the panels

move to new positions. Geometrical actions applied in sequence then become just permutations

applied in sequence, which is obviously something a computer program can easily handle. It is

in this way that all the entries in Table 1 were obtained, although again many of them are also

intuitively clear from the underlying geometrical actions.

Now, what is the significance of Table 1 when applied to our original question of what to choose

as our fundamental generators? Since none of the subgroups includes all 144 elements of the entire

group, none of these 15 pairs here is sufficient to act as fundamental generators. We are tempted

to conclude therefore that two fundamental generators are indeed not enough, and that we need

(at least) three. However, we haven’t actually proved this result just yet. All that Table 1 proves

is that none of these particular pairs are sufficient to generate the entire group.

Suppose we defined two new actions though, for example p = safr and q = FR−1. How do we

know that the pair {p, q}might not generate the entire group? That is, maybe we just weren’t clever

enough in choosing the right actions to try out in creating Table 1. Indeed, we have encountered

exactly this situation before: if we describe the corner group as {X,Y,Z}, then no two of these

alone will generate the entire group, but if we introduce W = XZ, then just {W,Y } will generate

it. So how do we know that the same thing might not happen here, for just the right choices of p

and q?

Fortunately, there is a simple way to address this question. If we have already represented our
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f, F, sa f, F, sb f, F, r f, F,R f, r,R F, r,R sa, sb, r

8 8 12 24 36 36 36

f, sa, sb F, sa, sb f, sa, r f, sb, r F, sa, r F, sb, r sa, r, R sb, r, R

48 48 72 72 72 72 72 72

f, sa, R f, sb, R F, sa, R F, sb, R sa, sb, R

144 144 144 144 144

Table 2: For every possible choice of three out of the six basic actions, the number of elements in

the subgroup generated by those three actions.

six basic actions f, F, sa, sb, r, R as permutations of the numbers 1–24, and then applied these

permutations in sequence to obtain further permutations, we can easily combine all of them to

obtain all 144 geometrical patterns represented as permutations. Then we just repeat the procedure

in Table 1, but now with ‘choose 2 out of 144’ rather than ‘choose 2 out of 6’. That is, the number

of pairs we need to try out is now 144 · 143/2 = 10, 296 rather than 15. This is still a sufficiently

small number though that the calculations can easily be done (in about an hour on a workstation).

And now the results really are conclusive: out of all of these 10,296 possible pairs, none of them

generates the entire group.

We therefore move on to Table 2, which shows the sizes of the subgroups for the 20 possible ways

of choosing three of our six elements f, F, sa, sb, r, R. Many of these results are again intuitively

clear, especially if we also compare with Table 1, and imagine adding one extra action to some of

the entries there. The most important entries in Table 2 are in the bottom row, where the numbers

144 are in boldface for emphasis. These entries indicate that the given choices of three elements

work as fundamental generators, and will create the entire group. That is, any of the five sets

{f, sa, R}, {f, sb, R}, {F, sa, R}, {F, sb, R}, {sa, sb, R} (8)

can be chosen as our fundamental generators.

Comparing these five possibilities, we notice that the first four all consist of one flip, one switch,

and the rotation R. That any of these choices will indeed generate the entire group is also clear from

our previous results: First, according to Eq. (1) either flip combined with a switch immediately

gives us the other flip as well. Next, Eq. (2) gives us r, and finally Eq. (4) gives us whichever

switch we didn’t already have. That is, for any of the first four sets in (8), we can directly see

how to generate the other three actions, and once we have all six we know from their geometrical

definitions that they will indeed generate the entire group. Also, since neither of f versus F nor

sa versus sb is in any way ‘preferred’ over the other choice, all four of these sets are on an equal

footing as to which one we want to choose for our fundamental generators.

The fifth set in (8), {sa, sb, R}, is the one that is slightly anomalous, since it contains neither

of the flips, but instead both of the switches. We can certainly recognise though that it does also

work as a fundamental generators set, since Eqs. (5,6) create F and f from sa, sb, R, and Eq. (2)
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still gives us r. The conclusion therefore is that any of the five sets in (8) will indeed work as

fundamental generators. Four of these options are on an essentially equal footing, whereas the fifth

one is a bit different. Whether ‘a bit different’ means better or worse is ultimately just a matter of

personal preference though.

There is one final point to note regarding the five options in (8). All five of them include the

‘ring of six’ rotation R as one of the three fundamental generators. So how do we reconcile this

with Eq. (7), which showed that R can be constructed from some of the other actions? There is no

contradiction here though, since (7) merely states that R can be constructed from four of the other

actions. However, R cannot be constructed from any combination of just three of the other actions,

since otherwise there would be an option in (8) that didn’t include R. Note in particular how

Eqs. (1)-(6) indicate how each of f, F, sa, sb, r can be created from at most three of the others,

so no specific one of these five must be included among the fundamental generators. R though

is different: if you want to generate the entire 144-element group from just three of the six basic

actions, then R must be one of the three.

To summarise the side piece group then, the underlying geometry is best described by the six

actions {f, F, r,R, sa, sb}, but only three of these are needed as fundamental generators for the entire

144-element group, with any of the five choices in (8) being equally valid. This distinction between

the geometrical versus the ‘fundamental generators’ way of describing the side piece patterns is

sufficiently important also that it is worth reviewing in some detail. We start by returning to our

previous assertion that the best way to systematically describe all 144 patterns geometrically is (a)

first decide whether or not to switch the ‘3+3’ and ‘ring of six’ pieces, (b) next apply the rotations

r and R to get all the pieces in their final positions, (c) finally apply f and F to fix the orientations.

The 72 patterns where we decide not to switch can then be represented as

fk F l rmRn, k, l = 0, 1, m = 0, 1, 2, n = 0, 1, 2, 3, 4, 5. (9)

The other 72 patterns, where we do decide to switch, can be represented as either of the expressions

fka F la rma Rna sa, ka, la = 0, 1, ma = 0, 1, 2, na = 0, 1, 2, 3, 4, 5, (10a)

fkb F lb rmb Rnb sb, kb, lb = 0, 1, mb = 0, 1, 2, nb = 0, 1, 2, 3, 4, 5. (10b)

From Eq. (3) we also recall that sa = FRr sb. Inserting this into (10a), and using the fact that

F, R, r all commute, we see that the exponents in the two representations are related by

kb = ka, lb = (la + 1) mod(2), mb = (ma + 1) mod(3), nb = (na + 1) mod(6), (11)

thereby confirming that sa and sb are equally valid ways of achieving the desired switching action,

but ultimately both create the same 72 patterns when combined with f, F, r, R as in (10a,b).

Now consider, for example, the pattern whose labels in this representation are P = fr2Rsa =

fFR2sb. Geometrically these sequences of actions are both straightforward to understand, and you
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(a) (b)

(c) (d)

Figure 5: (a,b) Two different chessboard patterns that each satisfy the equivalence criterion. (c,d)

Two equivalence patterns where every face contains all six colours.

should have no difficulty in constructing the actual pattern from either expression. Next, using the

various relations (1)-(6), we could also convert P into any one of the five expressions

P = fsaR
−2saRsa = fsbfsbR

2sb = saFR−2saRsa = sbFsbFR2sb = R−2sbR
3saRsa, (12)

corresponding to the five choices of fundamental generator sets in (8). However, just because

it is possible to convert P into any of these five forms does not mean that it is desirable! All

five are far more complicated to understand, and the actual pattern would be much harder to

construct from these sequences of actions. Knowing that the group can be reduced to just three

fundamental generators is important from the abstract group theoretical perspective, but in terms

of understanding the geometry, and constructing actual patterns, the representations (9) and (10a)

or (10b) are far superior.

As a final challenge then, consider the four colour equivalence patterns shown in Figure 5. For

each of them, write down their correct labelings. For the corners and centres it is just a matter of

comparing with Figures 2 and 3, and seeing which arrangements there match. For the side pieces,

print out the templates below, construct actual cubes, and study them to see which side pieces

have moved where, and what the correct descriptions therefore are, in terms of the representations

(9,10).

These four patterns in Figure 5 were also chosen to have specific properties. The first two are

familiar chessboards that can be found among the various patterns available online. In addition

to being pretty, which is mathematically rather ill-defined, they also satisfy colour equivalence,

which we have seen is very precisely defined. The second two patterns have been constructed to

have a rather different property. If you examine them carefully, you’ll notice that the colours have

been spread out so uniformly that every face contains all six colours. This is relatively easy to

accomplish for those corner patterns that already have four different colours on each face, but gets

progressively harder the fewer colours you have on the corners. You can perhaps try to create a

few more combinations with this property.
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Group Theory Applied to the 2× 2× 2 Equality Patterns

Figure 6 presents two sets {x, y, z} and {U, V } which we will use to construct and analyse the

group theoretical structure of the colour equality patterns on the 2 × 2 × 2 cube. We begin by

noting that y and V are actually the same pattern; that is, the two groups partially overlap. The

pattern z should also look familiar; it is the same as Z in the main article. This pattern has no

handedness, and thus satisfies both equivalence and equality.

x y z

U V

Figure 6: The two sets {x, y, z} and {U, V }.

As before, the first step is to make sure you fully understand what these various generators do

to the eight corners; otherwise it’s impossible to work out any of the combinations that come later.

We have:

(a) x leaves all eight pieces in their original positions. The r/y/b front and o/w/g back corners

also retain their original orientations. The other six corners all rotate one twist clockwise.

(b) y = V also leaves the r/y/b front and o/w/g back corners untouched. The three corners

adjacent to the r/y/b front, and similarly the three corners adjacent to the o/w/g back, then each

move one slot over in a clockwise direction, as viewed from their orientation. That is, viewed from

a ‘neutral’ perspective, the two sets of three corners rotate their positions in opposite directions.

Perhaps not surprisingly, the action most similar to y/V is the ‘3+3’ clockwise/clockwise side piece

equality pattern in Figure 1a of the article. This y/V generator is probably the most complicated

one we’ve encountered, so make sure you fully understand what it does, including the orientation

of the pieces in their new positions. By using the templates to construct an actual 3D cube and

looking at these two sets of three corners it should be possible to understand it though.

(c) Since z = Z, just remind yourself what Z did before.
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(d) U is fortunately another relatively easy one. All eight corners remain in their original

positions. They alternately rotate one twist clockwise for four corners including the r/y/b front,

and counter-clockwise for the other four corners including the o/w/g back.

In the process of exploring and understanding what these actions do, make sure you also verify

that all of them satisfy the colour equality criterion! Recall that unlike equivalence, where e.g.

red and orange were mirror images, here all six colours must be distributed equally. There is no

point trying to construct colour equality groups unless you have first convinced yourself that these

starting points {x, y, z} and {U, V } do in fact satisfy the equality criterion.

Next, work out what xU, Ux, zU, Uz look like. You should find that all four of them violate

colour equality. This is precisely why we need two separate colour equality groups; trying to put

them all into one group simply wouldn’t work. Having even just one of these combinations violate

equality would actually already be enough to establish that we need (at least) two separate groups,

but it turns out that all four violate equality. The generator U simply does not get along with

either x or z. (It had better get along with y though, since U and V = y together are supposed to

generate a group!)

1. Let’s first construct the {x, y, z} group. Directly from the geometrical actions, it should

be clear that x3 = y3 = z2 = I, where the identity element I is again the standard solved

configuration. (I and z = Z, along with U and U2, are the only patterns that satisfy both equality

and equivalence.) We note next that x commutes with both y and z; y and z both move all six

corners except the r/y/b front and o/w/g back ones, but since x rotates all of those six corners

one twist clockwise, it doesn’t matter whether they get rotated first and then moved, or moved

first and then rotated. Given how complicated both y and z are, it is far less obvious whether they

commute or not, so let’s defer that question for now.

Instead, let’s just start by constructing the same 18 combinations xmyn and xmynz, with

m,n = 0, 1, 2, that we previously had for the {X,Y,Z} equivalence group. Or rather, you should

construct these 18 patterns! It will undoubtedly take a while, but by using the blank templates

below, and suitably moving the pieces around according to the actions of x, y and z separately,

you should manage to construct these 18 patterns.

At this point we don’t know yet whether this is the complete group or not, since it is conceivable

that zy or zy2 for example could still yield completely new patterns. That is, we really do need to

know the commutation relation between y and z. Well, go ahead and just construct zy and zy2.

Then compare them with the 18 patterns you have already, and see whether they are completely

new, or whether anything matches. You should find that zy is the same as x2y2z and zy2 is the

same as xyz, which we note are remarkably similar to our previous equivalence results ZY = Y 2Z

and ZY 2 = Y Z, even though y and Y have completely different actions.

Having established these results for zy and zy2, we then also have the same conclusion as

before for the equivalence group, that any arbitrary combination of x, y, z can always be reduced

to one of these 18 patterns xmyn and xmynz, with m,n = 0, 1, 2. That is, there really are exactly

18 elements in this group, and no others. Furthermore, even though the individual patterns are
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completely different from the previous equivalence group, they have the same general relationship

among one another, as seen by these common forms of expressing them in terms of {x, y, z}.

There are still two further items to consider before we’re done with this group. First, check that

all 18 patterns you’ve constructed really do satisfy the equality criterion! That is, what you have

so far is a group of some kind, just from the way it was constructed as a group, but if you want to

call this an equality group you better check that every element really is an equality pattern.

Second, although the relations ZY 2 = Y Z and zy2 = xyz may seem very similar, there is also

one significant difference between the two. Can you think what it is? Is there something you can

do with zy2 = xyz that you cannot do with ZY 2 = Y Z? The answer is given on the next page, so

don’t turn the page just yet, but instead try to come up with the answer yourself first.

2. We turn next to the {U, V } group. We again easily see that U3 = V 3 = I. A little thought

further convinces us that U and V will commute. In particular, U rotates corners clockwise and

counter-clockwise in an alternating pattern, whereas V moves them around. However, V never

moves any corners in a way that would change their sense of rotation by U . Whether we do UV or

V U therefore does not matter; the result will be the same. Given U3 = V 3 = I and UV = V U , we

immediately see then that any arbitrary combination of the two can always be reduced to one of the

nine patterns UmV n, with m,n = 0, 1, 2. So, go ahead and construct these nine patterns, and as

before check that all of them really do satisfy the equality criterion, and then you can legitimately

call this a second equality group.

UV U
2

V
2

U
2

V UV
2

Figure 7: The four combinations UV , U2V 2, U2V , UV 2, as labeled.

Figure 7 shows the four members that combine U and V . As we might expect, {UV,U2V 2} and

{U2V,UV 2} are each mirror image pairs. We note next that all four patterns have a pronounced

front-back asymmetry. If we instead pair them up as {UV,U2V } and {U2V 2, UV 2}, the patterns

are identical except with front and back reversed. That is, any one of these alone has a somewhat

lopsided, asymmetrical appearance, but the set of all four together has a nice symmetry again.
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Having obtained our two equality groups here, we can also return to Ref. [6] in the article, and

compare with the patterns there. Every pattern there does indeed appear in one or both (I, y, y2)

of the groups derived here, and every pattern here also appears there (allowing for the fact that for

all the various mirror image and front/back asymmetry pairs only one member was listed there).

So what exactly have we gained by this group theoretical analysis? We now have a proper

understanding of the relationships between the different patterns. The computer search in [6] gives

you a complete listing of the patterns, which is certainly an important first step, but it is ultimately

just a random list of patterns, with no insight yet into the relationships between any of them.

For example, in [6] it was claimed that U is the simplest pattern other than the solved state

I itself, based purely on the notion that this clockwise/counter-clockwise rotation of U is so easy

to understand. In contrast, the one member of the Figure 7 quadruplet that was included in [6]

was presented as an interesting ‘anomalous’ pattern, but without any further comments. It is a

testament to the elegance of group theory that we can now so clearly see where the whole quadruple

set comes from, and how the seemingly simple element U is in fact a crucial ingredient in creating

these seemingly anomalous elements.

The last item then is to return to the question posed earlier, what is the significance of the

result zy2 = xyz? It can be rearranged to yield x = zy−1zy−1, and similarly x−1 = zyzy. (We also

used y−1 = y2 and z−1 = z here.) In other words, x isn’t actually an independent generator at all,

but can be created from y and z. Try it out! Work through the four steps on the right-hand sides,

and verify for yourself that the final results are precisely the actions of x and x−1.

This is very similar to our previous results (5,6), where we found that the geometrically very

simple side piece flips f and F can be constructed from very complicated combinations of other

actions. Here also we have complicated combinations of y and z that ultimately yield the very

simple geometrical actions x and x−1.

This of course also means that, once again, in terms of fundamental generators we don’t need

the full set {x, y, z}, but instead just {y, z} are already enough. Or alternatively, as before for the

{X,Y,Z} group, here also we can introduce w = xz, yielding w4 = x and w3 = z, and thus generate

the whole group with just {w, y}. This is analogous to (8), where we also had various choices of

minimal generating sets.

Finally, if you’re feeling especially heroic, you can also have a go yourself at trying to apply

group theory to the side piece equality patterns on 3× 3× 3 cubes. The basic patterns as such are

listed in detail in Ref. [7], so it’s ‘just’ a matter of figuring out the right group theoretical structure

(which may possibly involve splitting things up even further).
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Comparing the Different Groups

Table 3 summarises results for the equivalence corner and side piece groups, and the two equality

corner groups. The most striking aspect is probably how different the best geometrical and group

theoretical descriptions are. Only one of the four groups, the {U, V } equality group, has the

geometry and the group theory agreeing on the best representation. For the other three the best

way to describe the geometry involves more generators than the most compact group representation

does.

Equivalence Equivalence Equality Corner Equality Corner

Corner Group Side Piece Group Group 1 Group 2

Number of Elements 18 144 18 9

Best geometrical

representation {X,Y,Z} {f, F, r,R, sa, sb} {x, y, z} {U, V }

Most compact group

representation {W,Y } Any of Eq. (8) {y, z} or {w, y} {U, V }

Table 3: A comparison of the key aspects of the four groups considered in this work.

Let’s next consider the two 18-element groups in more detail. We recall that they were each

described by

X3 = Y 3 = Z2 = I, XY = Y X, XZ = ZX, ZY = Y 2Z, ZY 2 = Y Z, (13)

x3 = y3 = z2 = I, xy = yx, xz = zx, zy = x2y2z, zy2 = xyz, (14)

yielding

{XmY n , XmY nZ} and {xmyn , xmynz} with m,n = 0, 1, 2 (15)

as the 18 elements in each group. And again, in each case we could describe the groups more

compactly by introducing W = XZ and w = xz, but the three-generator descriptions here are

more convenient for what we want to do next.

One interesting question then is, do these ultimately describe the same group structure, or

are the slight differences between the {Y,Z} versus {y, z} commutation relations enough to make

them fundamentally different groups? To answer this question, let’s start by constructing Table 4,

showing the so-called order of each group element, where the order of an element a is the smallest

k for which ak = I.

Make sure also that you understand how these values are obtained. For example, the claim is

that Y Z and x2yz each have order 2. To verify that this is correct, we evaluate

(Y Z)(Y Z) = Y (ZY )Z = Y (Y 2Z)Z = Y 3Z2 = I, (16a)

(x2yz)(x2yz) = x4yzyz = xy(zy)z = xy(x2y2z)z = x3y3z2 = I, (16b)
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I 1 X 3 X2 3 Z 2 XZ 6 X2Z 6

Y 3 XY 3 X2Y 3 Y Z 2 XY Z 6 X2Y Z 6

Y 2 3 XY 2 3 X2Y 2 3 Y 2Z 2 XY 2Z 6 X2Y 2Z 6

I 1 x 3 x2 3 z 2 xz 6 x2z 6

y 3 xy 3 x2y 3 yz 6 xyz 6 x2yz 2

y2 3 xy2 3 x2y2 3 y2z 6 xy2z 2 x2y2z 6

Table 4: The orders of the 18 elements in each of the two groups {X,Y,Z} and {x, y, z}.

where you should be able to provide the detailed justifications for all the steps along the way. All

entries in Table 4 are obtained in this way. For the ones where the order comes out to be 6 it can

be a bit tedious to work out all the lower powers along the way, but it is good practice, so have a

go at it and confirm at least some of these results yourself.

Comparing the various entries then, it is at least possible that the two groups might be the same.

In particular, in addition to the identity I itself, which obviously has order 1, in each upper/lower

half of the table there are three 2s, eight 3s, and six 6s. If these numbers had not been the same, we

would be done already, and the conclusion would be that the two groups would be fundamentally

different. Since these overall totals are the same though, we can at least try to pair them up so

that each element in one group has a partner in the other group with the same order.

Focusing on the three order-2 elements in each group, we have {Z, Y Z, Y 2Z} and {z, x2yz, xy2z}.

Suppose we introduce ỹ = x2y. This relabels the second set as {z, ỹz, ỹ2z}, giving it the same ap-

pearance as the first set. And just as we left z alone, we can also leave x alone, since the conditions

it satisfies in Eq. (14) are already the same as those satisfied by X in Eq. (13).

That is, the suggestion anyway is that if we simply relabel the {x, y, z} group in terms of

{x, ỹ, z} instead, then {x, ỹ, z} could perhaps satisfy exactly the same commutation relations as

{X,Y,Z} in (13). Verifying the easy ones first, we certainly have

x3 = ỹ3 = z2 = I, xỹ = ỹx, xz = zx. (17)

For the less obvious {y, z} commutation relations that prompted this whole exercise in the first

place, we first note that ỹ = x2y can be rearranged as y = xỹ. Then just insert this into the

previous {y, z} commutation relations to obtain:

zy = x2y2z =⇒ z(xỹ) = x2(xỹ)2z =⇒ xzỹ = x4ỹ2z =⇒ zỹ = ỹ2z, (18)

zy2 = xyz =⇒ z(xỹ)2 = x(xỹ)z =⇒ x2zỹ2 = x2ỹz =⇒ zỹ2 = ỹz. (19)

If we therefore do nothing more than label the second group in terms of {x, ỹ, z} rather than

{x, y, z}, then the various commutation relations are indeed seen to be exactly identical to those

of the {X,Y,Z} group, so clearly they are the same group.

We could of course have avoided all of this as far back as Figure 6, just by listing ỹ rather

than y as the relevant generator there. However, in terms of the geometry y really is simpler and
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therefore better than ỹ. Also, in terms of emphasising that the two equality groups share the

common generator y = V , we really did need y rather than ỹ, since x is not an element of the

{U, V } group, and therefore neither is ỹ.

Since this worked so well, let’s do one more easy comparison, and then at least set up a more

challenging comparison for especially energetic readers to try. If we go all the way back to Table

1, the 144-element equivalence side piece group has the subgroups {r,R}, {sa, r} and {sb, r} that

also each have 18 elements. So do any of these have the same underlying structure as our {X,Y,Z}

group?

The easy one is the {r,R} group. Since r and R commute, the 18 elements are simply given by

rmRn with m = 0, 1, 2 and n = 0, 1, 2, 3, 4, 5. That is, r and R just have their own separate actions,

with no coupling between them, which makes both the geometrical interpretation and the group

structure very simple. Also, if the entire group is commutative, it cannot possibly be the same

as the non-commutative {X,Y,Z} group. We see therefore that there are at least two different

18-element groups, one commutative and one non-commutative.

The {sa, r} and {sb, r} groups are considerably trickier, especially since we don’t even under-

stand yet why they end up having 18 elements. That is actually quite straightforward, and yields

a surprisingly simple geometrical interpretation as well. Let’s first recall Eq. (2), stating that

r = sR2s, where we will generically use s to denote either of the two switches {sa, sb}. At the time,

we interpreted this result r = sR2s to mean that as long as we had either of the switches together

with R, then we didn’t need to include r among our fundamental generators. However, we can also

rearrange this result as R2 = srs. That is, the groups generated by {s, r} and {r,R2, s} are the

same, since R2 can be generated from the other two.

We therefore consider the group generated by {r,R2, s}, together with the associated commu-

tation relations

r3 = (R2)3 = s2 = I, rR2 = R2r, sr = R2s, sR2 = rs. (20)

Any combination of these three elements can then always be converted into the form

rm(R2)nsk with m,n = 0, 1, 2, k = 0, 1. (21)

The geometrical interpretation is thus very simple: first decide whether you want to switch or not

(k = 1 or 0), then the rotations r and R2 act completely separately, with three choices each, for a

total of 18 elements. So yet again we see that the geometry of a particular group is best understood

by including more generators than strictly needed in the most compact group representation.

So, the challenge for you is: is it possible to relabel this {r,R2, s} group so that its commutation

relations (20) also end up looking exactly like the commutation relations (13) of the {X,Y,Z}

group? To discover the answer, again first work out the equivalent of Table 4. You should find that

the overall numbers match, so there is at least the possibility of the individual elements correctly

matching up as well. Then again focus on the three order-2 elements, and decide how you want

to label them to match the previous result {Z, Y Z, Y 2Z}. You should find that taking s to be the
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equivalent of Z works. You therefore ‘just’ need to decide what the second element, call it ŷ, should

be.

Up to now everything is exactly the same as before in converting the {x, y, z} group to {x, ỹ, z}.

For the final step there is an additional challenge though. For the {x, y, z} group we could leave x

alone, since it already satisfied the desired conditions, most importantly xz = zx. For the {r,R2, s}

group though, if we’re taking s to be the equivalent of Z, then the third element, call it x̂, cannot

be either of r or R2, since neither of these commutes with s. So how should we choose x̂? Well, we

want it to satisfy x̂3 = I, x̂ŷ = ŷx̂ and x̂s = sx̂. So, just look at the various order-3 elements, and

find the one that commutes with s, and that’s the correct choice for x̂.

Then, once you’ve chosen x̂ and ŷ as combinations of r and R2, it’s again ‘just’ a matter

of translating the original {r,R2, s} commutation relations (20) into new {x̂, ŷ, s} commutation

relations, and checking whether they match the {X,Y,Z} commutation relations (13). If you’ve

correctly worked out the right choices for x̂ and ŷ, you should find that they do match. That

is, once the {r,R2, s} group has been suitably relabeled, it is also seen to have the same group

structure as the previous {X,Y,Z} and {x, y, z} groups.

As a final comment on these specific three groups then, it is quite extraordinary that in terms

of the geometry there is no question, they really are best described in terms of {X,Y,Z}, {x, y, z},

and {r,R2, s}. To see that the underlying group structure is the same though, we have to do these

complicated relabelings that would completely obscure the geometry, if we actually tried to describe

it in terms of the new labelings. This demonstrates once again how different the geometrical and

group theoretical perspectives can be.

In terms of just abstract group theory, these various comparisons certainly raise a great many

further questions. For example, if the commutation relations (13), (14) and (20) ultimately all

describe the same group structure, then which description is ‘best’ in some sense? Is there some

standard form that we should be applying? Also, if we’ve seen that there are at least two different

18-element groups, one commutative and one non-commutative, then how many others might there

be? And even if we succeeded in constructing one or more new 18-element groups that were clearly

different from both of our groups here, at what point would we know that we’ve constructed all of

them, and there simply aren’t any further 18-element groups for us to discover?

Well, the answers to all these questions go far beyond the ‘beginner level’ knowledge we’ve

assumed here! Once you’ve learned more group theory you can perhaps revisit these results here,

and see how they fit into a more advanced understanding of the subject. I hope anyway that you’ve

enjoyed seeing these examples, and learned something in the process. And finally, many thanks to

the anonymous referee whose comments motivated this entire comparison section.
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Figure 8: Templates for Figure 1 in the article. The second of these is also the side piece pattern

r in Figure 4.
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Figure 9: Templates for Figure 2, corner patterns I and X.
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Figure 10: Templates for Figure 2, corner patterns X2 and Y .
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Figure 11: Templates for Figure 2, corner patterns XY and X2Y .
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Figure 12: Templates for Figure 2, corner patterns Y 2 and XY 2.
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Figure 13: Templates for Figure 2, corner patterns X2Y 2 and Z.
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Figure 14: Templates for Figure 2, corner patterns XZ and X2Z.
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Figure 15: Templates for Figure 2, corner patterns Y Z and XY Z.
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Figure 16: Templates for Figure 2, corner patterns X2Y Z and Y 2Z.
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Figure 17: Templates for Figure 2, corner patterns XY 2Z and X2Y 2Z.
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Figure 18: Templates for Figure 3, patterns IcX and C Y .
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Figure 19: Templates for Figure 3, patterns C2 Z and IcXY Z.
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Figure 20: Templates for Figure 4, side piece actions f and F .
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Figure 21: Templates for Figure 4, side piece actions sa and sb.
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Figure 22: Templates for Figure 4, side piece actions sa and sb, now with the lines added that

explicitly show which side pieces are being exchanged.
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Figure 23: Templates for Figure 4, the combination sasb and the side piece action R.
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Figure 24: Templates for Figures 5a and 5b.
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Figure 25: Templates for Figures 5c and 5d.
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Figure 26: Some blank 2× 2× 2 templates may also be useful.
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Figure 27: Corner patterns I and X.
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Figure 28: Corner patterns X2 and Y .
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Figure 29: Corner patterns XY and X2Y .
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Figure 30: Corner patterns Y 2 and XY 2.

49



Figure 31: Corner patterns X2Y 2 and Z.
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Figure 32: Corner patterns XZ and X2Z.
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Figure 33: Corner patterns Y Z and XY Z.
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Figure 34: Corner patterns X2Y Z and Y 2Z.
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Figure 35: Corner patterns XY 2Z and X2Y 2Z.
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Figure 36: Templates for Figure 6, generators x and y.
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Figure 37: Template for Figure 6, generator z.
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Figure 38: Templates for Figure 6, generators U and V .
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Figure 39: Templates for Figure 7, UV and U2V .
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Figure 40: Templates for Figure 7, UV 2 and U2V 2.
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