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Abstract 42 

Arthropod declines have been reported widely; however, a lack of comprehensive data has 43 

hindered our ability to assess their large-scale generality and drivers. Here, we used a novel and 44 

freely available dataset – atmospheric scans from a network of meteorological radars – to quantify 45 

aerial abundance of both diurnal and nocturnal arthropods across the United Kingdom, spanning 46 

different geographic regions and land cover types. Based on observations between 2014 and 47 

2021, and across more than 35,000 km², we estimate numbers of arthropods flying over the UK at 48 

heights between 500 and 700 meters above ground at 1.12 (± 0.01) x 1013 individuals during the 49 

diurnal (0800–1400 UTC) and 5.02 (± 0.01) x 1012 during the nocturnal (including dusk, 1800–2200 50 

UTC) period, showing significant spatial heterogeneity. Although spatial patterns differed, both 51 

diurnal and nocturnal arthropods increased in the south and declined mainly in the far north; on 52 

average, only nocturnal arthropods showed an overall decline. Aerial abundance of both diurnal 53 

and nocturnal arthropods showed positive relationships with woodland, grassland, and urban 54 

landcover, and negative relationships with artificial light intensity and arable landcover. Our study 55 

highlights the importance of spatial variation in temporal biodiversity trends and illustrates the need 56 

for comparative studies between nocturnal and diurnal arthropods. Notably, by extracting vertical 57 

profiles of radar reflectivity and polarization signatures, we demonstrate how weather radar 58 

datasets can be used to quantify aerial arthropod abundance, detect diurnal and seasonal activity 59 

patterns, and examine their environmental drivers across large spatial and temporal scales. 60 



Significance Statement: 61 

Evidence of alarming declines in arthropod numbers has been reported from sites across multiple 62 

countries worldwide, but we lack rigorous data to assess the generality, severity, and potential 63 

causes of such declines at large spatial and temporal scales. We use weather radars as an 64 

effective tool for large-scale monitoring of aerial arthropods across the United Kingdom and 65 

showed that on average, nocturnal arthropods showed a decline in abundance, while diurnal 66 

arthropods did not exhibit a significant decrease over an 8-year period (2014-2021). Widespread 67 

spatial variation in temporal trends for both diurnal and nocturnal arthropods were driven by light 68 

pollution intensity, habitat type, and climate. Radar monitoring of aerial arthropods offers 69 

unprecedented new insights into the abundance dynamics of aerial arthropods in space and time, 70 

offering exciting prospects for continental or global biodiversity monitoring in future, facilitating a 71 

new understanding of biodiversity loss. 72 

  73 



Introduction 74 

Arthropods dominate terrestrial, freshwater and aerial environments, making up 80% of known 75 

species (Bar-On et al. 2018). There have been increasing reports of declines in arthropod (and 76 

specifically insect) populations from around the globe, but the generality of this phenomenon 77 

including its rate, magnitude and extent remains poorly understood across large spatial and 78 

temporal scales (Simmons et al. 2019). Arthropods are a hyper-abundant and hyper-diverse group, 79 

and current monitoring methods are limited by high costs and restricted spatial and taxonomic 80 

coverage (Montgomery et al. 2020). Furthermore, the diverse metrics used to assess declines, 81 

such as species richness, occupancy, biomass, and abundance, are not directly comparable, 82 

presenting challenges to interpret and respond to the wide variability of reported trends (Didham et 83 

al. 2020). Notably, alarming trends have primarily been reported in total biomass and abundance, 84 

which are critical as they strongly impact ecosystem services (Hallman et al. 2017). This raises 85 

severe concerns among scientists and policymakers because arthropods play crucial roles in 86 

ecosystems as pollinators, decomposers, and as a vital food source for numerous organisms 87 

higher up in the trophic web (Losey & Vaughan 2006). Enhanced understanding of drivers and 88 

consequences of arthropod declines at large scales is therefore essential for developing effective 89 

conservation strategies and mitigating potential ecological and societal disruptions. 90 

 91 

Empirical studies show that arthropods are affected by many different and interacting aspects of 92 

their environment such as climate, land cover change, invasive species, insecticides, and light 93 

pollution (Kehoe et al. 2021). However, much of our understanding about the relative effects of 94 

these drivers comes from studies either local in scale (e.g. point sampling), or utilizing presence-95 

only occupancy records, or by employing space-for-time substitution (Blüthgen et al. 2022). Few 96 

studies have simultaneously compared temporal trends in arthropod abundances across multiple 97 

different habitat types and across large spatial extents (Bell et al. 2020; Uhler et al 2021). 98 

Nonetheless, understanding these relationships is critical for conservation strategies aiming to 99 

mitigate biodiversity loss (Wagner 2020). 100 

 101 



Radar-based monitoring is an established tool for studying aerial animals and may provide a robust 102 

methodology for large-scale, standardized arthropod monitoring (Bauer et al. 2017). Most recent 103 

studies have used Vertical Looking Radars (VLR), which have generated considerable insights into 104 

aerial arthropod movement and abundance (Hu et al. 2016; Knop et al. 2023), but which provide 105 

limited spatial coverage. On the other hand, Weather Surveillance Radars (WSRs), intended to 106 

monitor meteorological phenomena, use existing infrastructure without extra costs, and provide 107 

unprecedented spatial coverage over thousands of square kilometers for broadscale biodiversity 108 

monitoring (Dokter et al. 2018). For example, the North American NEXRAD WSR network has 109 

been used to generate biologically meaningful data on bird phenology (Schools et al. 2012), 110 

migration (Schools et al. 2012; Sivakumar et al. 2021), demography (Nilsson et al. 2021), and 111 

epidemiology (McCuen et al. 2021) at national scales. With the advent of dual-polarization 112 

capabilities, where radars transmit and receive both horizontal and vertical pulses to distinguish the 113 

elongated shapes of insects from the more spherical signatures of precipitation, WSR networks 114 

have also been used to map the emergence and migration of arthropods (Boulanger et al. 2017; 115 

Stepanian et al. 2020).  116 

 117 

Here, we demonstrate how observations from a national network of WSRs can be used to provide 118 

robust quantitative estimates of aerial arthropod abundance across vast spatial scales and at high 119 

temporal (twice a day) frequencies. We analyzed 8 years of data (2014-2021) from 15 WSRs (Fig. 120 

1A) spanning more than 35,000 km2 and 10° in latitude, and which represented a diverse variety of 121 

habitat types including woodland, agricultural and urban areas over which insects and other 122 

arthropods flew or were transported. We derived sub-daily data describing abundance trends 123 

across the UK, making it the most comprehensive spatial investigation for both diurnal and 124 

nocturnal arthropods using a common method. The resulting datasets were used to answer three 125 

primary questions: (i) what is the abundance of aerial arthropods across the UK? (ii) have there 126 

been significant changes in abundances over the studied time period? and (iii) what are the likely 127 

spatio-temporal drivers of any changes? We validate our analysis using long-term, standardized 128 

monitoring of aerial arthropod abundance from a suction trap situated close to a WSR station. Our 129 

approach provides a benchmark for directing future research efforts towards the long-term and 130 



broad-scale investigation of overall arthropod abundance patterns using standardized, 131 

homogeneous, and openly available datasets at an unprecedented spatial scale and temporal 132 

resolution.  133 

 134 

Materials and methods 135 

1. UKMO radar network 136 

The UK Met Office (UKMO) operates a network of 15 weather surveillance Doppler radars which 137 

provide complete airspace coverage over England, Wales, Scotland, and Northern Ireland (Fig. 138 

1A) (Met Office 2003). Each Doppler radar is a C-Band (wavelength (λ) ≈ 5.3 cm), dual-139 

polarization, monostatic radar which provides near-continuous polarimetric measurements of 140 

differential reflectivity (ZDR), co-polar correlation coefficient (ρHV) and phase differential (ΦDP), 141 

along with the standard legacy variables of single polarized radars, i.e., reflectivity factor (Z) and 142 

radial velocity (V). The raw polarimetric data from each radar are freely available from the Centre 143 

for Environmental Data Analysis archive in the form of HDF5 files 144 

(http://catalogue.ceda.ac.uk/uuid/82adec1f896af6169112d09cc1174499) (Met Office 2003). 145 

Ecological application of weather radar, especially for birds, has been the subject of several 146 

previous works (Schools et al. 2012; Boulanger et al. 2017; Dokter et al. 2018; Stepanian et al. 147 

2020; Sivakumar et al. 2021; Nilsson et al. 2021), and therefore here we have only aimed to 148 

describe the unique specifications of the UKMO radars. 149 

 150 

The raw data are disseminated in the form of Plan Positional Indicator (PPI) scans – i.e., a single 151 

360° (azimuthal) scan carried out for a fixed elevation angle and repeated over a series of different 152 

angles. The PPIs are averaged to 600 m range gates and 1° in azimuth, close to the radar beam 153 

width of 1.1°. However, for our ecological analysis, we were interested in observing the data at a 154 

fixed azimuth and over multiple elevations i.e., at a fixed location in spatial coordinates and across 155 

different heights over that location. We generated Columnar Vertical Profiles (CVPs; described 156 

below) of all polarimetric variables using PPI scans from different elevation angles (typically 157 

between 0.5 and 4.0 degrees) sampled on Long Pulse mode (pulse length= 2.0 µs; range covered 158 

= 250 km) and with a 600 m gate resolution every 5 minutes. 159 

http://catalogue.ceda.ac.uk/uuid/82adec1f896af6169112d09cc1174499


 160 

2. Columnar Vertical Profiles (CVPs) 161 

CVPs – 4D slices of data represented with latitude, longitude, time, and height – were generated 162 

following the approach of Murphy et al. (2020). Data from within the 600 m × 1° sectors were 163 

azimuthally averaged and projected to the CVP center, resulting in a vertical profile. The mean 164 

values were assigned as the profile value for different height bands, each 200 m deep (between 165 

100 and 2100 m). Although, technically speaking, columns are not circular and not strictly vertical, 166 

for simplicity and homogeneity of calculations, a circular representation is selected. Cylindrical 167 

columns can be considered as the volume representing a subset of voxels (i.e. volume pixels). We 168 

chose a column radius of 2.5 km, and a vertical resolution (step-size or height) of 200 m as the 169 

optimum trade-off between sector size and step size, which facilitates uniform data averaging and 170 

projection (more details on CVP calculation and this selection criterion are discussed in Supporting 171 

Information: Section S1). This approach allows us to examine fine-scale variation in polarimetric 172 

variables (to within a 2.5 km horizontally and 200 m in height), and consequently in arthropod 173 

densities. This level of detail can be valuable for identifying the environmental drivers behind the 174 

observed variations. 175 

 176 

For each radar, we generated 144 CVPs arranged in a 12 × 12 grid within a 60 km × 60 km 177 

bounding box, centered on the radar’s coordinates (Fig. 1B). This spatial extent was chosen 178 

because radar sensitivity declines beyond 30 km, often requiring ad-hoc corrections that are 179 

unreliable for detecting sparse populations of small insects. Within a 30 km radius, the radar 180 

beam's vertical resolution is adequate for estimating abundance across discrete height bands 181 

(Kilambi et al. 2018).  Applying this protocol across all 15 weather surveillance radars (WSRs) 182 

yielded a total of 2,160 CVPs (144 per radar). One CVP in the upper right corner (Fig. 1B) could 183 

not be processed for any radar due to technical limitations, leaving 2,145 CVPs for downstream 184 

processing.  185 

 186 

As mentioned above, within a CVP, data from multiple elevation angles are azimuthally averaged 187 

and projected to the CVP centre. However, due to the radar beam angle and beam broadening, the 188 



number of voxels at different heights vary with the range. We therefore removed 16 central CVPs 189 

(4 x 4 grid around the radar; Fig. 1B), where few or no voxels could be surveyed at greater heights. 190 

This resulted in a loss of data but did not bias our results, as it affected the same locations across 191 

all radars, and the number of CVPs per radar remained constant. We also removed additional 192 

CVPs for which an obstruction in the radar beam would result in severe ground clutter and 193 

shadowing, which can lead to issues when extracting comparatively weak arthropod echoes. 194 

Because obstructions caused by hills are typically long-lasting, we used a UK wide, 90 m Digital 195 

Terrain Model (DTM) to further remove 84 CVPs across different WSRs in which potential sources 196 

of obstruction were identified (Zrnic & Ryzkhov 1998; Supporting Information: Section S1). The 197 

final dataset thus consisted of (127 * 15) - 84 = 1,821 CVPs in total. With the spatial area under 198 

each CVP = 19.62 km2 (π * 2.52), this resulted in a complete spatial coverage of 35,728 km2 across 199 

the UK (~15% of the country’s area) above which aerial arthropod abundances were estimated.   200 

 201 

3. CVP processing 202 

We removed all meteorological signals that could be attributed to precipitation using the ‘DR-203 

Filtering’ method developed by Kilambi et al. (2018). A depolarization ratio (DR) was calculated 204 

using polarimetric variables ZDR and ρHV, and all data below a DR threshold of −12.5 dB were 205 

identified as precipitation and removed (Kilambi et al. 2018; Stepanian et al. 2020). We also 206 

removed all data with extremely high reflectivity factors (>45 dBZ) which are often associated with 207 

heavy rainfall but may not be efficiently captured by the depolarization ratio (Kilambi et al. 2018; 208 

Fig. S1). We used differential reflectivity (ZDR) to remove all birds from the resulting data. High 209 

positive values of ZDR can be generally attributed to arthropods due to their somewhat more 210 

elongated body plans, with values ranging between 2 and 10 dB commonly observed (Zrnic & 211 

Ryzkhov 1998; Dokter et al. 2011; Melnikov et al. 2015; Stepanian et al. 2020; Mäkinen et al. 212 

2022). For example, Dokter et al. (2011) used a threshold of 3 dB to filter out arthropods for 213 

studying bird migrations; for the decidedly more elongate mayflies, Stepanian et al. (2020) used a 214 

ZDR threshold of 5 dB. For UK arthropods, we used a conservative threshold of 3 dB to reduce co-215 

occurring bird signatures.  216 

 217 



We used seasonal and diurnal truncations to restrict our data to periods of known high arthropod 218 

activity across the country, which would further increase the signal to noise ratio for arthropods 219 

against birds. Arthropods, especially insects, are common in weather radar scans across the UK 220 

from late April to early October when warm and dry weather prevails. During this extended period, 221 

their aerial abundance generally peaks twice per day: a diurnal peak around midday and a 222 

dusk/nocturnal peak in the evening, typically shortly after sunset (Hu et al. 2016). To identify more 223 

specific start and end periods for these peaks within a year, and within a day, we used annual and 224 

diurnal time series profiles of ZDR. Data from all 15 WSRs were used to generate two distinct 225 

categories of time series profiles: annual time series with a daily resolution, and a daily time series 226 

with hourly resolution. Using non-linear Generalized Additive Models (GAMs), we selected a 227 

seasonal time window between 15th April to 30th October with peaks in ZDR (corresponding to 228 

higher density of horizontally elongated targets i.e., arthropods; Section S6) and truncated the data 229 

to only this period for estimating arthropod abundances (Fig. S2). Using a similar approach, we 230 

identified two different time windows within each day: 0800 to 1400 hrs. and 1800 to 2200 hrs GMT 231 

corresponding to maximum daily ZDRs (Fig. S2). To avoid repeatedly counting the same insects, 232 

we restricted our analysis to a single scan (with maximum ZDR) per time window, resulting in two 233 

abundance estimates – referred to as diurnal and nocturnal, respectively – per day between 15th 234 

April and 30th October. Selecting only one scan per time window also ensures that the unequal 235 

temporal coverage of 6 hours during diurnal and 4 hours during nocturnal does not bias the 236 

downstream modelling. The nocturnal scan window may overlap with civil twilight or daylight hours, 237 

potentially capturing dusk take-offs in addition to nocturnal flights. This overlap was accepted to 238 

maintain a standardized approach and to capture aerial arthropod abundance in a consistent and 239 

comparable manner across latitudes and months.  240 

 241 

4. Estimating aerial arthropod abundance 242 

Columns are approximated as cylinders for the calculation of all mean polarimetric variables at 243 

different height bands within a CVP. Therefore, arthropod abundance estimates discussed 244 

throughout the text correspond to the volume density within a single “CVP band”, i.e., estimated 245 

abundance per km3 of atmosphere between specific height intervals of 200 m depth and referred 246 



by the lower limit (e.g. abundance density at 500 m corresponds to the mean estimated 247 

abundance/km3 of atmosphere between 500 and 700 m, and so on).  248 

 249 

To estimate abundances at different heights, we adopted the methods developed by Chilson et al. 250 

(2012). We converted the radar reflectivity factor (Z) to the more biologically meaningful radar 251 

reflectivity (η) using the equation: η (dB) = Z (dBZ) + β, where β = 26.58 for the UKMO C-Band 252 

wavelengths (Chilson et al. 2012). The total (mean) reflectivity (in units of decibels) from each 253 

height band within a CVP, was then converted to linear units (cm2/km3), and multiplied by the total 254 

volume of a CVP band (km3;  𝑉ℎ = 𝛱 ∗ 𝑟2 ∗ ℎ, where r = 2.5 km and h = 0.2 km) to obtain the total 255 

back-scattering area (cm2) i.e., the total reflective surface from all arthropods within a CVP band. 256 

By dividing the total back-scattering area by the estimated mean Radar Cross Section (σ) of a 257 

single arthropod, we derived the total number of arthropods across different heights (Chilson et al. 258 

2012; Stepanian et al. 2020) (see Supporting Information: Section S2 for more information on how 259 

σ was estimated). Dividing this number again by Vh, we obtained the volume density within a single 260 

CVP band. All estimates correspond to the reflectivity from a single radar scan per diurnal and 261 

nocturnal time period (the scan with a maximum value of ZDR within each period). This approach 262 

avoided double counting of individuals that take flights more than once or that remain airborne in 263 

the same volume of air over an extended period of time per diurnal or nocturnal time window.  264 

 265 

5.Validation Using Long-term Arthropod Monitoring Data 266 

For validation of the estimated abundances, we used concurrent samples from a suction trap 267 

maintained by the Rothamsted Insect Survey (Bell et al. 2020), which is within the scan radius of 268 

Chenies weather radar (~17.6 km from the suction trap). Using the approach discussed above, we 269 

estimated aerial arthropod abundances for different heights above the location of the suction trap. 270 

We used Ordinary Least Squares (OLS) regression to assess the relationship between the 271 

observed daily arthropod abundances near the ground (from the suction trap data), and the 272 

abundance estimates obtained from the CVPs at different heights above the trap. 273 

 274 

6.Statistical analysis 275 



To model spatio-temporal variation in aerial arthropod abundance, we focused on estimates from a 276 

single band at 500 m, which was represented in the maximum number of CVPs per radar (lower 277 

bands at 100 and 300 m were not available for all CVPs due to radar beam angle (also see 278 

Supporting Information: Section S4; results for other heights are discussed in Section S5). 279 

 280 

We assessed variation in the aerial arthropod abundance along spatial, temporal, and 281 

environmental variables, using a generalized additive modeling (GAMs) framework (Wood 2011; 282 

Wood 2017). GAM is an additive modeling technique where the impact of the different predictor 283 

variables is captured through non-linear, additive smoothing functions using the general form: 284 𝑔(𝜇) = 𝛽 + 𝛴(𝑗=1)𝑛 𝑓𝑗(𝑥𝑗), where the mean response (μ) is related to the predictor variables 285 

(x1,….,xn) by the identity link function g(μ) which defines the relationship between the response and 286 

‘n’ additive predictors. β represents the intercept term, and ƒj is a smoothing function for the 287 

predictor xj. Since our estimates of abundance were not derived from individual counts but total 288 

reflectivity on a continuous scale, we used Gaussian error distributions to model the estimated 289 

abundances instead of the commonly used Poisson for abundance counts. All GAMs were fitted 290 

using the R package ‘mgcv’ (Wood 2011), and the function “bam” with discrete = TRUE option for 291 

the large dataset. 292 

 293 

Using the estimated arthropod abundance densities between 500 and 700 m as the response 294 

variable (μ), a total of 7 hierarchical spatio-temporal GAMs were fitted to the diurnal and nocturnal 295 

datasets independently (Table S1). The covariates (maximum daily temperature (Tmax), Rain, 296 

Wind, Artificial Light at Night (ALAN), Elevation, percentage land cover under Arable, Woodland, 297 

Grassland, and Urban (built-up areas + gardens) categories, Year, and the Latitude (y) and 298 

Longitude (x) of each CVP centroid, were fitted with thin-plate regression splines (Supporting 299 

Information: Section S3). As GAMs use shrinkage to reduce overfitting, the predictor “Year” only 300 

contributes the effect not represented by climate and land cover data. This minimises the 301 

probability of wrongly detecting a trend over time that could be attributed to variation in these 302 

environmental variables. We included CVP Grid location within the 12x12 lattice (Fig. 1B), Month, 303 

and Radar as random effects. Overall temporal trends in abundance were assessed by using the 304 



modelled predictions averaged across all CVPs for each year, while complete spatio-temporal 305 

predictions are based on all significant covariate relationships.  306 

 307 

Given the large parameter space, we performed an automated variable selection using the ‘double 308 

penalty approach’, implemented via the argument select = TRUE in mgcv. This approach adds an 309 

additional, second penalty that allows shrinkage of the model linear terms, and therefore when 310 

added to the first ‘wiggliness’ penalty, the two can result in an insignificant covariate being entirely 311 

removed from the model. The best model was selected using a combination of model diagnostics 312 

(normality and spread of the residuals, k-index (Wood 2011), deviance explained, ΔAIC and adj-313 

R2), and AIC scores. We accounted for spatial autocorrelation by including smooth functions of the 314 

individual CVP coordinates, i.e. f(x,y), and for temporal autocorrelation using AR(1) autoregressive 315 

function with the value of temporal autocorrelation parameter ‘Rho’ estimated using the function 316 

start_value_rho() from package itsadug (Rij et al. 2015). Residual spatial autocorrelation (patterns 317 

in residuals correlated to spatial proximity) was evaluated using correlograms based on Moran’s I 318 

(Wood 2003), using CVP centroids as the spatial coordinates. Model fit was evaluated using the 319 

gam.check() function in mgcv.  320 

 321 

We used the function predict.gam() which enables a fitted gam model object to be used for 322 

prediction at different values of the model covariates. We also used predict.gam() to estimate the 323 

(approximate) uncertainty (standard errors) of those predictions obtained by the Taylor expansion 324 

approach. These spatio-temporal predictions were used to generate yearly spatial maps of aerial 325 

arthropod abundances per km3 of atmosphere. All statistical analyses were performed in the R 326 

programming environment (version 4.3.0; R Core Team 2023) on Platform:x86_64-pc-linux-gun 327 

(64-bit). Raw weather data retrieval, storage and CVP analyses were facilitated using JASMIN, the 328 

UK's collaborative data analysis environment (https://jasmin.ac.uk; Lawrence et al. 2013).  329 

 330 

Results 331 

Arthropod abundance from weather surveillance radars 332 

https://jasmin.ac.uk/


Median arthropod density within the 500 m CVP band (i.e. abundance/km3 between 500 and 700 m 333 

height) was 4.61 x 107 (interquartile range = 3.77 x 108) and 2.06 x 107 (interquartile range = 2.91 x 334 

108) diurnal and nocturnal arthropods, respectively. Extrapolating this to the entire UK indicates 335 

that an average of 1.12 (± 0.01) x 1013 diurnal and 5.02 (± 0.01) x 1012 nocturnal arthropods were 336 

present over the UK between 500 and 700 m height, between 15th April and 30th October, and at 337 

any given instance between 0800 - 1400 and 1800 - 2200 GMT, respectively, although with high 338 

inter-annual variability (Fig. S3).  339 

 340 

On average, arthropod abundances decreased monotonically at the rate of 8.74 (±0.01) x 105 341 

individuals per 200 m of height gained in the air column (Diurnal: slope = -7.77 (± 0.01) x 105, Adj. 342 

R2 = 0.11, p < 0.001; Nocturnal: slope = -9.71 (± 0.21) x 105, Adj. R2 = 0.12, p < 0.001; Fig. S4).  343 

 344 

Validation using long-term arthropod monitoring data  345 

Based on the dual-polarization coverage of the Chenies weather radar, and the number of 346 

operational days at the Rothamsted suction trap, we obtained n = 127 days that overlapped across 347 

the two datasets. We further removed days (n = 9; entire day i.e., 24-hr removed) where heavy 348 

rainfall occurred, resulting in a total of 116 days for comparison. We found strong and significant 349 

correlations between estimated abundances and at different heights in the CVP with the observed 350 

arthropod abundances at 12.2 m suction traps (Adj. R2 = 0.32 to 0.47; p < 0.001; Fig. 2A). As 351 

expected, the slope of this relationship decreased with height, with the strongest relationship at 352 

lowest height (Fig. 2A).  353 

 354 

Spatio-temporal variation 355 

Of the 7 hierarchical GAMs tested (Table S1), the best fitting model included the following terms:  356 𝑔(𝜇) = 𝑓1(𝑦𝑒𝑎𝑟) + 𝑓2(𝑦𝑒𝑎𝑟𝑓 , 𝑅) + 𝑓3(𝑟𝑎𝑑𝑎𝑟, 𝑅) + 𝑓4(𝑌𝑒𝑎𝑟, 𝑏𝑦 = 𝑅𝑎𝑑𝑎𝑟) + 357 𝑓5(𝑚𝑜𝑛𝑡ℎ, 𝑅) + 𝑓6(𝐶𝑉𝑃𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑅) + 𝑓7(𝑥, 𝑦) 358 

 359 

along with the following 9 covariates:   360 



𝑓8(𝑇𝑚𝑎𝑥) + 𝑓9(𝑅𝑎𝑖𝑛) + 𝑓10(𝑊𝑖𝑛𝑑) + 𝑓11(𝐴𝑟𝑎𝑏𝑙𝑒) + 361 𝑓12(𝑈𝑟𝑏𝑎𝑛) + 𝑓13(𝑊𝑜𝑜𝑑𝑙𝑎𝑛𝑑) + 𝑓14(𝐺𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑) + 𝑓15(𝐴𝐿𝐴𝑁) + 𝑓16(𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛) 362 

 363 

This model explained 80.2% and 76.4% of the total deviance in diurnal and nocturnal arthropods 364 

respectively and revealed significant spatio-temporal heterogeneity across the WSR network 365 

(Table S2 & S4). Average cumulative predictions per year revealed significant declines in nocturnal 366 

arthropod abundances over time; however, diurnal abundances did not exhibit a consistent 367 

negative trend with year (Fig. 3A). Nearly all the tested variables had similar patterns of 368 

associations with both diurnal and nocturnal arthropod populations, indicating a broad scale 369 

generality of the relationships (Fig. 3B-G). The only variable showing different effects on diurnal 370 

and nocturnal arthropods was ALAN, which had a weak negative effect on nocturnal species, and a 371 

strong negative effect on diurnal ones, but only at higher ALAN levels. Woodland and grassland 372 

cover had positive associations (Fig. 3F & 1G), while arable cover revealed a negative relationship 373 

with aerial arthropod abundances but only for high arable land cover (Fig. 3D). Across the 374 

individual, height-stratified GAMs, the estimated effect sizes (and significance) of land cover 375 

covariates declined progressively with increasing height (Supporting Information: Section S5).  376 

 377 

Arthropod abundances showed a strong spatial dependence, with a significant effect of the 378 

smoothed terms for the CVP’s x and y coordinates [f7(x,y)], and the temporal trends exhibited a 379 

higher net decline towards the higher latitudes, for both diurnal and nocturnal arthropods (Fig 4). 380 

We also observed an increase (positive change) in arthropod abundances at the lower latitudes 381 

(Fig 4). The modelled relationship between abundance and all covariates was used to generate 382 

national scale spatio-temporal predictions for new, un-sampled locations (Fig. 5). 383 

 384 

Discussion  385 

By employing an extensive and standardized dataset on a national scale, our study has revealed 386 

important broadscale spatio-temporal patterns in the abundance of aerial arthropods across the UK 387 

between 2014 and 2021. On average, nocturnal arthropods showed a decline in abundance, while 388 

diurnal arthropods showed substantial inter-annual variation, but no overall increasing or 389 



decreasing trend (Fig. 3A). However, these trends were not consistent across all regions: both 390 

groups exhibited significant increases in abundance over the southern latitudes, with declines 391 

primarily confined to the northernmost regions (Fig. 4). Our study emphasizes the significance of 392 

spatial variation in obscuring temporal trends (Wagner et al.2021), which is likely important when 393 

analyzing the impact of spatially structured drivers. Furthermore, we have demonstrated that WSR 394 

networks can deliver systematic, non-invasive biodiversity monitoring which provides large-scale 395 

and continuous coverage at high temporal resolutions.  396 

 397 

Spatio-temporal variation indicated declines in arthropod abundance at higher latitudes across the 398 

UK, compared to the south (Fig. 4B). The decline in the north reflects the observed negative 399 

association between maximum daily air temperature (Tmax) and arthropod abundances which 400 

were most prominent at lower values of Tmax typical of northern latitudes in the UK (Fig. 3B). 401 

Temperature has increased in the UK over the study period (Christidis et al. 2023) and the positive 402 

correlation between arthropod abundance and Tmax at higher values of the latter would also 403 

explain the increase in the southern latitudes. Recent warming has been highly uneven across the 404 

globe, with higher latitudes warming faster than the tropics (Intergovernmental Panel on Climate 405 

Change (IPCC), 2021). However, the UKCP18 projections reveal the opposite latitudinal gradient 406 

for the UK: maximum temperatures have risen (and are projected to rise) more sharply in southern 407 

England than in northern Scotland (Lowe et al. 2018; Murphy et al. 2018). This north–south 408 

asymmetry in warming, together with the positive correlation between arthropod abundance and 409 

higher Tmax, would offer some explanation for why increases were concentrated in southern 410 

CVPs, whereas declines were largely confined to the northernmost regions. These findings 411 

underscore how spatial variation in climate change can drive contrasting temporal biodiversity 412 

trends within a relatively small geographic area. Previous research has shown that distinct 413 

atmospheric layers in aerial arthropods are associated with local maxima in the vertical air 414 

temperature profile (Drake 1984; Wood et al. 2006), suggesting that the inclusion of finer-scale 415 

variables (vertical profiles of local climate) is likely to improve the prediction of aerial arthropod 416 

variability in radar datasets in future (e.g. UK Met Office’s numerical weather prediction model, the 417 

“Unified Model”) (Brown et al. 2008).  418 



 419 

Habitat type and land cover changes have been identified in the past as the main drivers of 420 

arthropod declines, a factor implicated equally in global bird and mammal declines (Chamberlain & 421 

Fuller (2000). While our samples are constrained to arthropods suspended in the atmosphere 422 

above the habitat matrix below, we did find associations with the different habitat types. We 423 

observed a negative relationship of aerial arthropod abundances with arable cover, and a positive 424 

relationship with woodland, grassland and, surprisingly, urban land cover. The negative effects of 425 

increasing arable cover are often mediated by loss of native plants, increased use of pesticides 426 

and fertilizers, increased frequency of harvest in recent years, and others, which are deemed to be 427 

key drivers of arthropod declines (Fox 2013). The strong positive effect of urban cover (Fig. 3E) 428 

may be due to urban heat island effects (Youngsteadt et al. 2017); arthropod aerial movements, 429 

particularly at higher heights, are triggered by steadily rising isothermal currents associated with 430 

warmer temperatures of urbanized regions (Reynolds et al. 2008). A similar observation was noted 431 

recently for birds (Van Doren et al. 2017). Although the pattern is contrary to expectation, it should 432 

be noted that ‘urban cover’ represents a broad, heterogeneous category spanning all built-up 433 

areas, gardens and suburban areas. Thus, a more detailed investigation into the relative 434 

abundances across these categories may provide a deeper understanding of the role of urban 435 

cover on aerial arthropod abundances. This positive association likely causes predictive modelling 436 

to show urban regions as the most prominent hotspots of aerial arthropod abundance across the 437 

UK (Fig. 5).  438 

 439 

The predicted patterns of urban insect abundance differed markedly between nocturnal and diurnal 440 

arthropods, with nocturnal densities elevated throughout urban areas, while diurnal taxa show 441 

depressed abundance in urban centres. This suggests that the concentration of nocturnal 442 

arthropods in cities could at least partly be due to the attraction to ALAN, as shown previously for 443 

birds (Van Doren et al. 2017) and insects (Tielens et al. 2021). For example, urban areas of Las 444 

Vegas (USA) were previously characterized as a large-scale attractive sink on nocturnal flights of 445 

arthropod population, indicating the attractive or disorienting effect of artificial light (Tielens et al. 446 

2021). ALAN impacts the vital biological functions of nocturnal and diurnal arthropods alike; it alters 447 



the circadian patterns of activity and rest in diurnal arthropods which results in impaired immune 448 

function, reduced fecundity, and a shorter lifespan (Kouser et al. 2014; Durrant et al. 2015) It also 449 

causes diurnal and crepuscular arthropods to move their foraging activity into the night which 450 

subjects them to increased predation (Garber 1978), and cold stress (Owens & Lewis 2018). 451 

Despite a potentially negative effect on both nocturnal and diurnal arthropod populations, the 452 

impact on nocturnal arthropods may be masked by positive density effects due to behavioural 453 

attraction; nocturnal arthropods are drawn to light sources across larger distances (Owens & Lewis 454 

2018). On the other hand, the negative fitness effects on demography should accumulate over time 455 

via effects on arthropod circadian rhythms, navigation, and foraging behavior (Manfrin et al. 2017). 456 

The stronger negative effect of very high ALAN values on diurnal arthropods in our findings is 457 

counter-intuitive (Fig. 3C) and may be due to some other driving variable not considered in the 458 

present analyses. Specifically, the very high ALAN intensities associated with reduced diurnal 459 

arthropod abundances may be associated with core cities, and/or with industrial or transport 460 

infrastructure, distinguishing them from suburban environments characterised by only moderate 461 

ALAN levels. With temporal niche partitioning between diurnal and nocturnal species becoming 462 

less extreme in response to human activity (Levy et al. 2019; Owens et al. 2020), more research is 463 

needed to document the role of ALAN in arthropod declines, including diurnal groups/species. We 464 

ensured that the diurnal effect of ALAN was independent of urban cover by re-running our models 465 

after accounting for the correlation between ALAN and urban cover (Supporting Information 466 

Section S4).  467 

 468 

As previously mentioned, all spatio-temporal patterns and predictions discussed here correspond 469 

to the arthropods within a specific height band in the atmosphere (between 500 – 700 m). Previous 470 

work have shown that the median flight layer has remained altitudinally stable over the past 471 

decade (Gao et al. 2020), and that there is strong temporal coupling among neighbouring (vertically 472 

adjacent) layers (Reynolds et al. 2005). These observations suggest that a single, broad altitudinal 473 

band provides a reliable index of (relative) spatio-temporal changes in aerial abundances of 474 

arthropods. Although the vertical layering is strongly governed by temperature inversions, 475 

boundary-layer depth and wind shear (Drake 1984; Reynolds et al. 2005), these phenomenon have 476 



so far reported weak or non-monotonic long-term trends in previous studies (Zhang et al. 2013; 477 

Shahi et al. 2020; Yue et al. 2021). Nevertheless, future work linking height-resolved arthropod 478 

abundances with detailed, local temperature profiles and atmosheric processes will be essential to 479 

detect climate- and habitat-driven redistribution of flight heights. We analysed the land-cover 480 

relationship for estimated arthropod abundances at different heights and observed a diminishing 481 

influence of land cover variables with increasing height (Supporting Information: Section S5). 482 

Notably, aerial arthropods at heights greater than 900 m were not significantly correlated to a 483 

single land cover variable. This indicates that arthropods undertaking flights at higher heights are 484 

decoupled from the underlying habitat type, most likely because they are engaged in a longer 485 

distance flight, covering distances greater than our CVP spatial resolution. This is further supported 486 

by the large number of recent studies showing that even the tiniest aerial arthropods (e.g. aphids 487 

and micro-hymenopterans) are not entirely passive in their dispersal processes (Reynolds & 488 

Reynolds 2009; Wainwright et al. 2017; Ortega-Jiménez & Combes 2018; Bell & Shepherd 2024), 489 

and exhibit attraction to light sources (Kirchner et al. 2005; Döring & Chittka 2007). Future studies 490 

are needed to delve deeper into the size and taxonomic classifications of radar observations, 491 

providing clearer insights into how spatio-temporal trends translate to different ecological groups 492 

(Lukach et al. 2022). 493 

 494 

Much of our macroscale understanding of arthropod diversity trends so far has been derived from 495 

studies on ground-dwelling and/or low-flying diurnal insects. Consequently, it is not unexpected 496 

that some of the emerging results – especially the positive association between urban land cover 497 

and aerial arthropod density, and the negative effect of ALAN on diurnal arthropods – are novel 498 

and counterintuitive. These observations show that aerial arthropods may not be temporally and/or 499 

spatially synchronised with arthropod activity at ground level and hence may not accord with the 500 

monitoring of field-caught species or the perceptions of those who collect them. It is also the case 501 

that these arthropods are almost entirely being monitored during one life stage – the adult winged 502 

phase, part of a much more complex life cycle which cannot be measured using radar. The 503 

importance of this study is to open a window to a huge and important new source of biodiversity 504 

monitoring data. Our findings here are just a tantalizing glimpse of what such data can reveal, and 505 



further longer-term analyses should be conducted as these datasets grow longer, especially to 506 

confirm the continuity of the temporal trends we detect. 507 

 508 

Our work has provided significant insights into aerial arthropod activity, confirming and extending 509 

findings initially observed with Vertical Looking Radars (VLRs; Supporting Information Section S6). 510 

For instance, the positive correlation between differential reflectivity (ZDR) and aerial arthropod 511 

density (Fig. 2B) is consistent with VLR observations of horizontally aligned targets at similar 512 

heights. Peaks in ZDR between April and October, and during mid-day and evening, also validate 513 

earlier observations of high insect activity during these windows (Hu et al. 2016). The extensive 514 

scale of our results reveals the broadscale generality of these mechanisms across a range of 515 

biomes.  516 

 517 

A series of interesting research gaps emerge from our work. First, the taxonomic and/or 518 

morphological resolution that can be derived from WSR observations requires further analysis. 519 

Although current radar-based estimates of arthropod abundance are not species-specific 520 

(Chapman et al. 2011; Hüppop et al. 2019; Gauthreaux & Diehl 2020; Bauer et al. 2024), recent 521 

studies suggest that WSR data – especially when coupled with ground-based monitoring – has the 522 

potential to discriminate among different biological taxa, at least at higher taxonomic levels (e.g. 523 

Orders) (Lukach et al. 2022; Hu et al. 2024). There is a need for extensive work in electromagnetic 524 

modeling and simulation to explore radar cross sections of a diverse array of arthropod taxa to 525 

classify the radar data by broad taxonomic groups (Mirkovic et al. 2016; Mirkovic et al. 2019; 526 

Addison et al. 2022). Our analyses here have assessed only overall arthropod numbers, but a 527 

degree of morphological information concerning sizes and shapes is provided in dual-polarization 528 

radar reflectance data. Future studies could be explicitly designed to bridge the gap between 529 

ground-based long-term monitoring and weather radar observations; high-throughput tools such as 530 

metabarcoding from suction trap samples, along with strategic new sampling approaches (e.g., 531 

drone-based aerial surveys), could help build the crucial taxonomic link between radar signals and 532 

biological identity. Second, much of the research using radar has focused on migratory organisms 533 

rather than resident populations. The relative contribution of migrants to local arthropod 534 



communities, and, hence, the value of migration to the ecosystem services that are provided by 535 

those communities remain poorly understood. Incorporating data from citizen and community 536 

scientists, who increasingly contribute to species-level occurrence data and can measure near-537 

ground abundances that are invisible to the WSR, particularly for moths and freshwater insects 538 

migrating along watercourses in the UK, could enhance our understanding of local arthropod 539 

communities and their ecological contributions. Addressing these issues will require collaborations 540 

between scientists, engineers, conservation practitioners, policymakers, and citizen scientists to 541 

advance the use of radar-derived measures in biodiversity conservation. 542 

 543 

Our research is one of the first studies to empirically assess abundance changes and potential 544 

drivers to a broad-spectrum of aerial arthropod taxa at a national scale. Spatial heterogeneity has 545 

posed a significant challenge in reconciling temporal trends in arthropod declines, even within a 546 

single taxonomic group (Didham et al. 2020). Until now, it has remained uncertain whether 547 

observed heterogeneity stemmed from methodological disparities between studies or was an 548 

inherent characteristic of arthropod communities (Wagner 2020). The methods developed herein 549 

provide insights into both diurnal and nocturnal arthropod trends using a single monitoring method, 550 

something that is missing from contemporary monitoring methods. This analytical framework can 551 

be used to investigate how future changes in major environmental conditions may influence aerial 552 

arthropod densities. This is the first critical step for better understanding their roles in ecosystem 553 

functions and services.  554 

 555 

The benefits of WSR observations come at relatively little marginal cost because the underlying 556 

infrastructure – comprising radar installations, data acquisition systems, and archival platforms – is 557 

already established and maintained through national meteorological services for operational 558 

weather forecasting. Unlike traditional arthropod monitoring methods, which often involve resource-559 

intensive collection tools and incur significant field costs for data collection, weather radar data are 560 

continuously and passively collected at high spatio-temporal resolution. The primary costs 561 

associated with ecological use of radar data arise not from data acquisition but from data 562 

processing. These include maintenance of processing scripts and pipelines (1 person-month per 563 



year; ~ £10,000 with full economic costing), storage and compute capacity (estimated at £10,000 564 

to £30,000 annually depending on data volume and archival depth, though currently subsidized for 565 

NERC projects via platforms such as JASMIN), and updates to classification algorithms in 566 

response to changes in radar hardware or improvements in methodology (additional personnel; @ 567 

~£10,000 per year). These are best viewed as fixed service-level costs, akin to community-wide 568 

resources like GBIF or GenBank, rather than project-specific expenses. Given the ubiquity of 569 

existing national WSR networks across Eurasia, the Americas and Australasia (and as well as the 570 

current expansion of networks globally), there are exciting prospects for continental or even global 571 

scale biodiversity monitoring in future. 572 

 573 

  574 
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Figure 1. A) Map showing locations of 15 weather radars across the UK, and B) a 12 x 12 800 

lattice of the different Columnar Vertical Profiles (CVPs) around the radar used for 801 

estimating aerial arthropod abundance in the present study. A) Dual polarized data from 15 802 

UKMO-Radars (purple triangles) was processed from a fixed region around the radar (purple 803 

squares overlaid on the triangle, each corresponding to the region covered by a 12 x 12 CVP 804 

lattice as shown in B). B) Around each radar, 144 Columnar Vertical Profiles (CVPs) of 5 km 805 

diameter were generated. The spatial coordinates for each CVP were obtained by creating a 806 

regular grid with the coordinates of each radar as the centroid (golden dot in the centre). The outer 807 

black circle represents the 30 km buffer where the radar beam retains sufficient resolution for 808 

stratified height analysis. The height of the bars within each CVP corresponds to the number of 809 

voxels available across different heights (see legend for heights in meters). The number of voxels 810 

vary with the range due to the beam height and broadening, hence both the height of the bars as 811 

well as the numbers of bars is variable across CVPs. The innermost CVPs closest to the radar 812 

(within a 5 km radius; solid red circle) were removed from all downstream analysis due to highest 813 

likelihood of echoes from ground clutter. A further 12 CVPs falling within the 7.5 km radius (marked 814 

by the dashed red circle) were excluded from all radars due to insufficient vertical coverage of the 815 

radar beam. One CVP in the upper-right corner (highlighted in red) could not be processed for any 816 

radar due to technical issues.  817 
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Figure 2. Validation of radar derived estimates of arthropod abundance using a ground-819 

based suction trap. We obtained daily total arthropod counts from a 12.2 m suction trap 820 

maintained by the Rothamsted Insect Survey, which is 17.6 km from the Chenies weather radar, 821 

and therefore within the radar’s scanning range. We estimated aerial arthropod abundances for 822 

different heights in the air column, at the location of the suction trap using the methods developed 823 

in this study. We used Ordinary Least Squares (OLS) regression to assess the correlation between 824 

the observed daily arthropod abundances near the ground (from the suction trap data), and the 825 

abundance estimates obtained from the CVPs at different heights. We found strong and significant 826 

correlations between the observed arthropod abundance recorded at the suction trap, and A) 827 

abundance estimated from the Chenies weather radar, and B) ZDR or differential reflectivity. We 828 

measured the correlations at different heights within the CVP and observed that the slope of both 829 

relationships decreased with height, with the strongest relationship at lowest height. We used 830 

scaled variables for regression models since the two data are obtained at different spatial scales. 831 



Figure 3. Temporal trends and drivers of variation for aerial diurnal and nocturnal arthropod 832 

abundances estimated over 35,000 sq. km in the UK, using UK-Met Office weather radar 833 

stations across an 8-year period. Within each plot, the values on the y-axis correspond to 834 

arthropod abundance per km3 between 500 m and 700 m in the atmosphere (A) Cumulative 835 

abundances for diurnal (between 0800 and 1400 GMT; shown in green) and nocturnal (between 836 

1800 and 2200 GMT; shown in purple) aerial arthropods were predicted using generalized additive 837 

models for each year between 2014 and 2021 (for raw temporal series see Fig. S3) (B-G) Each 838 

plot shows a covariate on the x-axis and aerial arthropod abundance on the y-axis. Variables 839 

shown are B) TMax: Maximum daily air temperature; C) ALAN: Artificial Light at Night measured 840 

using DN Values i.e. Digital Number which ranges from 0 to 63 where 63 represents maximum 841 

night-time illuminated sky; D-G) Percentage land cover under arable, urban, woodland and 842 

grassland. The relationships are shown for both diurnal (green) and nocturnal (purple) arthropods. 843 

  844 



Figure 4. Spatio-temporal surfaces for diurnal (top) and nocturnal (bottom) aerial arthropod 845 

abundance estimated from UK-Met Office weather radar stations across an 8-year period in 846 

the UK. The shaded circles overlap the 15 UK weather radars for which dual polarized data was 847 

available. Aerial arthropod abundances were estimated for approximately 127 Columnar Vertical 848 

Profiles (a cylindrical volume of atmosphere, 2.5 km in radius and roughly spanning 1.8 km in 849 

height between 100-2100 m) around each radar (the shaded circles shown above are slightly 850 

enlarged for clarity). Generalized Additive Model (GAM) was used to model the spatio-temporal 851 

relationships between abundances (only between 500 and 700 m) and latitude, longitude and year. 852 

A) Shown here are the model outputs for only 2014 and 2021 for diurnal (top) and nocturnal 853 

(bottom) aerial arthropod abundances. B). Corresponds to the relative change from 2014 to 2021, 854 

with negative values indicating a decline in log(abundance/km3) of aerial arthropods.  855 
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Figure 5. Predicted abundance densities of diurnal (shown in green; top row) and nocturnal 857 

(shown in purple; bottom row) aerial arthropods between 500 and 700 m height in the 858 

atmosphere, across the UK between 2014 and 2021. The model predictions across the entire 859 

country are derived by combining the stacked rasters of underlying covariates such as weather, 860 

land cover, elevation, and artificial light at night (ALAN), and using the modelled relationships 861 

between these covariates and arthropod abundance (as shown in Fig. 3 & 4).  862 
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