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Abstract 

Background Typhoid fever is a systemic infection caused by Salmonella enterica serovar Typhi (S. Typhi) invasion 

from the gut lumen. Transmission between people occurs through ingestion of contaminated food and water, 

particularly in settings with poor water and sanitation infrastructure, resulting in over 10 million illnesses annually. 

As the pathogen invades via the gastrointestinal tract, it is plausible that the gut microbiome may influence the out‑

come of S. Typhi exposure. There is some evidence that bacteria producing short‑chain fatty acids (SCFAs) may create 

an environment unfavourable to invasive Salmonella, but data from humans is limited.

Methods To investigate the association between the gut microbiome and typhoid fever, we analysed samples 

collected from three all‑age cohorts enrolled in a prospective surveillance study conducted across three settings 

where typhoid fever is endemic (Dhaka, Bangladesh; Blantyre, Malawi; and Kathmandu, Nepal). Cohorts consisted 

of acute typhoid fever patients (n = 92), asymptomatic household contacts of typhoid fever patients (representing 

individuals who were likely exposed to S. Typhi but did not develop the disease, n = 97) and asymptomatic serosurvey 

participants with high Vi antibody titres (representing individuals who were exposed to S. Typhi and may be carriers, 

n = 69). The stool microbiomes of each cohort were characterised using shotgun metagenomics, and bacterial diver‑

sity, composition and function were compared.

†Leonardos Mageiros, James E. Meiring, Angeziwa Chunga Chirambo, Farhana 

Khanam, Sabina Dongol, Kathryn E. Holt and Thomas C. Darton contributed 

equally to this manuscript.

*Correspondence:

Philip M. Ashton

flashton@gmail.com

Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-025-02125-7&domain=pdf


Page 2 of 16Ashton et al. Microbiome          (2025) 13:168 

Results We identified 4 bacterial species that were significantly lower in abundance in typhoid fever patients 

compared with household contacts (i.e. probably exposed), in two of the three participant populations (Bangladesh 

and Malawi). These bacteria may represent taxa that provide protection against the development of clinical infection 

upon exposure to S. Typhi and include the inflammation‑associated species Prevotella copri clade A and Haemophilus 

parainfluenzae. Our functional analysis identified 28 specific metabolic gene clusters (MGCs) negatively associated 

with typhoid fever in Bangladesh and Malawi, including seven MGCs involved in SCFA metabolism. The putative pro‑

tection provided by microbiome SCFA metabolism was supported by data from a controlled human infection model 

conducted in a UK population, in which participants who did not develop typhoid fever following ingestion of S. 

Typhi had a higher abundance of a putative SCFA‑metabolising MGC (q‑value = 0.22).

Conclusions This study identified the same protective associations between taxonomic and functional microbiota 

characteristics and non‑susceptibility to typhoid fever across multiple human populations. Future research should 

explore the potential functional role of SCFAs and inflammation‑associated bacteria in resistance to S. Typhi and other 

enteric infections.

Introduction
Typhoid fever, caused by invasive Salmonella enterica 

serovar Typhi (S. Typhi) infection, causes an estimated 

10.9 million illnesses and 116,800 deaths per year, dis-

proportionately affecting people in South and Southeast 

Asia and sub-Saharan Africa [42, 59]. The introduction 

of typhoid conjugate vaccines is expected to decrease the 

number of typhoid fever cases in these settings, along 

with improvements in water, sanitation and hygiene 

(WASH). However, the large burden of disease, the role 

of asymptomatic gallbladder carriage as a source of infec-

tion and the fact that typhoid fever often impacts the 

most impoverished and marginalised communities mean 

that eradicating this infection will be difficult [43, 48, 61].

The human gut microbiota, a complex ecosystem 

comprising trillions of microbial cells, plays an indis-

pensable role in shaping our overall health and sus-

ceptibility to diseases [56]. This densely populated 

microbial environment is not only pivotal in the pro-

cesses of digestion and nutrient absorption but also 

intimately connected to our immune system, determin-

ing its responses to various stimuli [8]. As the nexus 

between the external environment and our internal 

physiology, the gut microbiome is a critical determi-

nant of the outcome of gastrointestinal infectious dis-

ease exposures, via a phenomenon termed ‘colonisation 

resistance’ [37, 38, 60, 65]. This protective effect arises 

from multifaceted interactions: direct competition for 

nutrients, production of antimicrobial compounds and 

modulation of the host’s innate and adaptive immune 

responses [36]. Some of the earliest work on colonisa-

tion resistance showed that suppressing the gut micro-

biome of mice with antibiotics dramatically reduced 

the dose of Salmonella required to establish infection 

[12]. Recent work has made great strides in under-

standing the mechanisms by which Salmonella and 

the microbiome interact [55]. Short-chain fatty acids 

(SCFAs) are important in the interaction between the 

microbiota and Salmonella, reducing the availability 

of oxygen in the gut [15] and acidifying the cytosol of 

Salmonella, thereby  inhibiting growth [31]. Despite 

well-established knowledge about the gut microbi-

ome’s function in preventing Salmonella infections and 

the established faecal-oral transmission pathway of S. 

Typhi, the precise influence of the gut microbiome on 

the outcome of S. Typhi exposure remains underex-

plored, complicated by the human host-specificity of S. 

Typhi.

While insights from animal studies of invasive infec-

tion with other S. enterica serovars can be informative, 

detailed studies of the interaction between the human 

gut microbiome and S. Typhi specifically are lacking. 

Controlled human infection model (CHIM) studies 

provide an experimental system in which to interrogate 

infections in humans, complementing observational 

studies of natural infections [23, 64]. Previous data gen-

erated from this model revealed an association between 

typhoid fever susceptibility and the presence of Metha-

nobrevibacter in the gut microbiome [68]. Analysing 

natural infections, Haak et al. determined that typhoid 

fever patients in Bangladesh had reduced microbial 

diversity and fewer SCFA producers than their healthy 

counterparts [27]. A better understanding of the causal 

relationships between the gut microbiome and typhoid 

fever could lead to novel preventative mechanisms and 

diagnostics, as well as an improved understanding of 

colonisation resistance to bacteria causing serious inva-

sive diseases in high-burden settings.

To fill this knowledge gap, we sequenced the stool 

microbiome of 258 participants enrolled in the STRA 

TAA  study, conducted in three diverse high typhoid 

fever burden settings in Asia and Africa [43]. Signals 
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that replicated in more than one study population were 

further investigated in a UK-based CHIM cohort.

Materials and methods
Participants and sample collection

Detailed methods for the STRA TAA  study have been 

published previously [18, 43]. In brief, approximately 

100,000 individuals were enumerated in a demographic 

census in three communities: Ndirande in Blantyre, 

Malawi; Lalitpur in Kathmandu, Nepal; and Mirpur in 

Dhaka, Bangladesh. Febrile patients, of any age, within 

the study populations were recruited via passive surveil-

lance, and ‘acute typhoid fever’ patients were defined 

as those with positive blood cultures yielding S. Typhi. 

When participants presented with fever, stool samples 

were collected where possible, preferably prior to anti-

microbial use. Stool specimens were transferred to − 80 

°C within 6  h of collection. Data on antimicrobial use 

prior to enrolment was recorded [18]. Blood-culture–

confirmed typhoid fever patients were then followed up, 

and stool samples were collected from their household 

contacts; asymptomatic stool culture-negative individu-

als were included in microbiome sequencing. The ration-

ale for this was that having a febrile person or typhoid 

fever case in the household is a significant risk factor for 

developing typhoid fever, and therefore, asymptomatic 

household contacts are likely exposed to S. Typhi with-

out becoming infected [22, 63]. It has been reported that 

shared household membership is positively associated 

with microbiota phylogenetic similarity [58, 62], so dif-

ferences between household members could be responsi-

ble for, or due to, the development of typhoid fever. High 

Vi-titre individuals were identified from a community-

based serological survey of up to 8500 age-stratified par-

ticipants per site from the original demographic census. 

From the serological survey, samples were analysed for 

anti-Vi IgG antibodies, i.e. those with a twofold increase 

in anti-Vi IgG titres and an absolute titre of 50 EU/mL 

or higher at the second timepoint [43]. The participants 

at each site with the highest Vi responses were followed 

up, and stool samples were collected for microbiome 

analysis [32]. Stool cultures were S. Typhi-negative in all 

but one participant [32],however, it is known that carri-

ers shed only intermittently and high-Vi individuals are 

an acceptable predictor for S. Typhi carriage [50, 53]. 

For the microbiome sub-study, we randomly selected 

for sequencing stool samples from up to 40 participants 

from each site, from each of three groups: acute typhoid 

fever cases, household contacts and serosurvey partici-

pants with high-Vi titres.

DNA extraction and sequencing

DNA extraction from stool was done using the Fast-

Prep 24 FastDNA Spin Kit (MP Biomedicals, CA, USA) 

according to the manufacturer’s instructions. DNA was 

sent to the Wellcome Sanger Institute (UK) for metagen-

omic sequencing using Illumina HiSeq 2500 or HiSeq 

4000 to generate 150 bp paired-end reads, yielding an 

average of 14.8 million read pairs (standard deviation 2.3 

million) per sample.

Bioinformatics

Raw sequencing data was quality trimmed and adapt-

ers were removed using bbduk v38.96 with the param-

eters ‘ktrim = r k = 23 mink = 11 hdist = 1 tbo tpe qtrim 

= r trimq = 20 minlength = 50’. Sequence deriving from 

human DNA was removed by mapping to a human 

reference genome (GCF_009914755.1) and the hos-

tile tool [17]. Taxonomic profiling was carried out with 

metaphlan v4.0.6 with database version mpa_vOct22_

CHOCOPhlAnSGB_202212 [10].

We used the BiG-MAP program [46] (https:// github. 

com/ medema- group/ BiG- MAP, commit e7b8042) to 

compare metagenomic readsets against a database of 

non-redundant metabolic gene clusters (MGCs) iden-

tified using gutSMASH [47] from a collection of refer-

ence genomes from the Culturable Genome Reference, 

the Human Microbiome Project and other Clostridia 

genomes (https:// zenodo. org/ recor ds/ 72526 25#. ZFVTr 

exBz0r). Each MGC is assigned to a species which is 

the species from which the representative sequence 

representing the cluster was obtained. BiG-MAP calcu-

lated the number of reads per kilobase per million reads 

(RPKM) for each metabolic gene cluster.

A sub-sample of 8.8 million reads was taken from each 

readset using the ‘sample’ command of the seqtk tool 

(v1.3-r106). Sub-sampled reads were then analysed with 

Resistance Gene Identifier (RGI) v6.0.2 bwt command 

against the CARD v3.2.7 reference database [3]. Due to 

uncertainty regarding some CARD database classifica-

tions (e.g. OXA-1 was classified as a carbapenemase, a 

curation error which has subsequently been resolved), we 

used the drug class information for each gene from the 

NCBI AMR Reference Gene Database (refgene) v2023-

08–08.2 (https:// www. ncbi. nlm. nih. gov/ patho gens/ refge 

ne). Only “Core” genes from NCBI refgene were ana-

lysed; these genes are almost entirely mobilisable AMR 

determinants and do not include mutational resistance. 

Extended-spectrum beta-lactamases (ESBLs) were iden-

tified based on the gene product descriptions in NCBI 

refgene. Only genes with an average percent coverage of 

100% in the RGI analysis were included in further analy-

sis. The number of reads mapped to each gene (RGI com-

pletely mapped reads) was normalised by the length of 

https://github.com/medema-group/BiG-MAP
https://github.com/medema-group/BiG-MAP
https://zenodo.org/records/7252625#.ZFVTrexBz0r
https://zenodo.org/records/7252625#.ZFVTrexBz0r
https://www.ncbi.nlm.nih.gov/pathogens/refgene
https://www.ncbi.nlm.nih.gov/pathogens/refgene
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the gene (RGI reference length) to generate a ‘reads per 

kilobase of AMR gene’ metric. There was no need to nor-

malise for the number of reads, as all readsets had been 

sub-sampled to the same number of reads. RGI results 

were parsed and analysed using the scripts described in 

the Data Availability section of this manuscript. AMR 

genes identified in S. Typhi were obtained from [5].

Statistical analysis

Statistical analyses were done in R (v4.1.0). To quantify 

alpha diversity, Shannon’s index was calculated using 

the alpha.div function in the rbiom package (v1.0.3), and 

ANOVA analysis was carried out with the aov function 

(stats package, v4.1.0). The Bray–Curtis metric of beta 

diversity was calculated with the vegdist function of the 

R package vegan (v2.6.4). Principal coordinate analy-

sis (PCoA) was carried out with the cmdscale function 

(package stats, v4.1.0), and statistics comparing beta 

diversity between participant groups (i.e. acute typhoid, 

household contacts, presumptive carrier) was carried out 

using a PERMANOVA approach implemented by the 

adonis2 function of the vegan package (v2.6.4). Associa-

tions between taxa and phenotypes of interest (e.g. par-

ticipant group) were explored using multivariable linear 

modelling implemented in the maaslin2 function of the 

maaslin2 R package (v1.6.0) [40]. Depending on the anal-

ysis, co-variates such as age, sex, antibiotic exposure and 

sequencing run were included, as described. For maaslin2 

analyses, Benjamini–Hochberg correction was applied 

for multiple testing. For analyses of data from endemic 

cohorts a q-value threshold of 0.05 was used to identify 

significant associations, while for CHIM data analyses, 

due to the small sample size, the default maaslin2 q-value 

threshold of 0.25 was used.

Controlled human infection model analysis

We used data from a Salmonella Typhi and Paratyphi 

A CHIM cohort to validate the associations identified 

in the endemic countries. Briefly, healthy adults aged 

18–60 were recruited to be challenged with a single oral 

dose of either S. Typhi or S. Paratyphi A [23]. The pri-

mary endpoint for the model was a diagnosis of typhoid 

or paratyphoid fever, defined as a temperature of ≥ 38 °C 

persisting for ≥ 12 h and/or S. Typhi/Paratyphi A bacte-

raemia in a sample collected ≥ 72 h after oral challenge. 

Only data from participants who were being challenged 

for the first time were analysed here. Stool samples were 

taken from participants prior to the challenge and stored 

at − 80 °C. DNA extraction, sequencing and analyses 

were undertaken using the methods described above. The 

primary maaslin2 analyses for this cohort included only 

species or MGC classes that were significantly associ-

ated with the participant group in at least two endemic 

country cohorts; a secondary analysis was carried out 

without this restriction. Analyses were done separately 

for participants challenged with either S. Typhi or S. 

Paratyphi A, in addition to a combined analysis including 

both pathogens.

Results
Description of population

Stool microbiome sequences were successfully generated 

for 258 participants from Bangladesh (n = 80), Malawi 

(n = 102) and Nepal (n = 76). Across the three popula-

tions, there were three participant groups; 92 patients 

with acute typhoid fever, 97 household contacts of acute 

typhoid cases and 69 people with high anti-Vi titres. The 

baseline characteristics of participants are described 

in Table  1. Overall, acute typhoid fever patients were 

significantly younger than household contacts, while 

in Bangladesh and Malawi, high-Vi titre participants 

were significantly older than household contacts (Addi-

tional file 1: Fig. S1, Table 1). Overall, in Malawi, Bangla-

desh and Nepal, 62%, 53% and 54% of participants were 

female, respectively (Table  1, Additional file  1: Fig. S2). 

In Bangladesh and Malawi, sex distribution was similar 

between the participant groups, whereas in Nepal, 82% 

of household contacts and 67% of carriers were female, 

while only 24% of typhoid fever cases were female 

(Table 1; Additional file 1: Fig. S2). Of the acute typhoid 

fever cases, 37.5%, 73.9% and 44.8% from Bangladesh, 

Malawi and Nepal, respectively, reported antimicrobial 

use in the 2 weeks prior to stool sample collection.

Acute typhoid fever patients compared with household 

contacts

First, we compared stool metagenomic profiles of acute 

typhoid patients with those of household contacts, 

within each of the three study populations, to explore 

microbiome signatures associated with typhoid fever. 

The participant group was not significantly associated 

with differences in alpha diversity in any population 

(Additional file  1: Fig. S3; Additional file  2: Table  S1). 

Beta diversity varied significantly between typhoid fever 

patients and household contacts across all sites (Fig.  1, 

Additional file 2: Table S2). The proportion of beta diver-

sity variance explained by the participant group was 

highest in Malawi (R2 = 0.25, FDR = 0.01), followed by 

Bangladesh (R2 = 0.07, FDR = 0.01), Nepal (R2 = 0.06, 

FDR = 0.01 and the combined analysis (R2 = 0.04, FDR 

= 0.01) (Fig. 1; Additional file 2: Tables S2–S5). The par-

ticipant group explained the greatest beta diversity vari-

ance of the factors investigated (which also included sex, 

age and reported antibiotic use) in a combined analysis 

of all three sites and for each site individually. In Malawi, 
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prior antibiotic usage and the interaction of prior anti-

biotic usage with age and sex were also significantly 

associated with beta diversity, although these variables 

explained a lower proportion of variance than the partici-

pant group (R2 0.02–0.05; Additional file 2: Table S4). In 

Nepal, sex was significantly associated with beta diversity 

and explained almost as much variance as the participant 

group (R2 = 0.04; Additional file 2: Table S5), which was 

itself associated with sex at this site. Firmicutes were the 

dominant phylum in typhoid fever patients and house-

hold contacts at all three sites, followed by Bacteroidetes 

in Malawi and Nepal and Actinobacteria in Bangladesh 

(Additional file 1: Fig. S4; Additional file 2: Table S6).

Maaslin2 analysis of taxonomic profiles identified 92, 

23 and 0 species significantly associated with household 

contact vs. typhoid fever participant groups in Malawi, 

Bangladesh and Nepal, respectively (Fig.  2; Additional 

file 2: Tables S7–S8). No taxa showed significant associa-

tions across all three sites; however, four showed consist-

ent associations at two sites (Bangladesh and Malawi), all 

of which were negatively associated with typhoid fever 

(Fig.  2). These four species were Prevotella copri clade 

A, Haemophilus parainfluenzae, Clostridium SGB6179 

and a Veillonellaceae spp represented by a metagenome-

assembled genome, GGB4266_SGB5809. Although there 

were differences in age between cases and household 

contacts at all sites, age was included as a covariate in 

maaslin2, and the associations with typhoid status were 

also evident within age groups where data from that age 

group was available (Figs. 5, 6, 7 and 8). Of these four spe-

cies, none was significantly associated with typhoid fever 

in Nepal or the CHIM; most samples from the CHIM did 

not contain any reads assigned to these species (Addi-

tional file 2: Table S29).

Some species were associated with typhoid fever at a 

single endemic country site. In Bangladesh, there were 

19 species for which the relative abundance significantly 

differed between typhoid fever participants and house-

hold contacts that did not differ at any other site or in 

the CHIM (Additional file  2: Table  S7). Three species 

were negatively associated with typhoid fever (Prevo-

tella copri clade C, Romboutsia timonensis and Ligilac-

tobacillus ruminis), while 16 species including 7 species 

of Actinomyces were positively associated with typhoid 

fever (Additional file 2: Table S7). In Malawi, 70 species 

were negatively associated with typhoid fever, including 

Ruminococcus gnavus, Roseburia intestinalis, Roseburia 

inulinivorans and Faecalibacterium prausnitzii (Addi-

tional file  2: Table  S8), while 18 species were positively 

associated with typhoid fever including 11 (61%) that are 

only in the Metaphlan4 database as metagenome-assem-

bled genomes (Additional file 2: Table S8).

To complement our taxonomic analysis, we also carried 

out functional gene analysis. We explored two dimen-

sions of variation in metabolic gene clusters (MGCs). 

First, we examined the distribution of specific MGCs, 

investigating participant group differences at a granu-

lar, sub-type level (e.g. a specific RNF complex from a 

strain of Bacteroides ovatus). Second, we compared the 

abundance of different MGC types between participant 

groups (e.g. all RNF complex MGCs). This dual approach 

enables us to capture both detailed and broad patterns of 

functional gene distribution within the microbiome.

Table 1 Characteristics of participants in the microbiome sub‑study of STRA TAA  surveillance

a Carriers from Bangladesh were not included in the analysis due to sample protocol differences

b Antibiotic usage in the 2 weeks previous was an exclusion criterion for carriers and household contacts

Bangladesh Malawi Nepal

Acute typhoid N 40 23 29

Median age, years
(range)

6 (1–60) 10 (3–40) 17 (5–38)

Female (%) 48% 61% 24%

Antibiotics in last 2 weeks (%) 38% 74% 45%

Carrier N NAa 39 30

Median age NAa 32 43.9

Female (%) NAa 56% 67%

Antibiotics in last 2 weeks (%) NAa NAb NAb

Household contact N 40 40 17

Median age, years
(range)

29 (4–65) 24 (18–41) 35 (15–48)

Female (%) 65% 65% 82%

Antibiotics in last 2 weeks (%) NAb NAb NAb
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We identified 264 specific MGCs that significantly dif-

fered between typhoid fever patients and household con-

tacts in the Malawi cohort, 126 in Bangladesh and 2 in 

Nepal (Additional file 1: Tables S24–S26). Neither of the 

specific MGC associations identified in the Nepal data 

were replicated in the Malawi or Bangladesh cohorts. 

There were 28 specific MGCs significantly associated 

with typhoid fever in both Bangladesh and Malawi (sum-

marised in Table 2, full information in Additional file 2: 

Table S9), and all were negatively associated with typhoid 

fever in both settings. Six of these specific MGCs were 

linked to SCFA metabolism (‘pyruvate2acetate.formate’) 

and five to anaerobic metabolism (‘Rnf complex’), asso-

ciated with Prevotella and Haemophilus (see Fig.  2; 

Additional file  2: Table  S9). None of these 28 specific 

MGCs showed negative associations with acute typhoid 

fever in Nepal.

Full information in Additional file 1: Table S9

There were 31 MGC types that significantly differed 

between typhoid fever patients and household contacts 

in the Malawi cohort, 8 in Bangladesh and 1 in Nepal 

(Fig. 3; Additional file 2: Table S30). There was one MGC 

type that was negatively associated with typhoid fever 

in both Malawi and Bangladesh, ‘TPP_AA_metabo-

lism.Arginine2putrescine’. Other MGC types that were 

negatively associated with typhoid fever in Malawi only 

included ‘acetate2butyrate.TPP_fatty_acids’, ‘TPP_fatty_

acids.aminobutyrate2Butyrate’, ‘acrylate2propionate,’ and 

Fig. 1 Principal coordinate analysis of the beta diversity between household contacts and typhoid fever participants across all three sites 

and for each site individually. The proportion of variance explained (R2) and the Bonferroni‑corrected FDR from a PERMANOVA analysis 

including participant group, sex and antibiotic usage are displayed on each plot. In the combined analysis, the country of sampling 

was also included in the PERMANOVA analysis
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Fig. 2 Forest plot of species that significantly differed between household contacts and typhoid fever participants in at least two endemic 

countries. Results from all three endemic countries and the CHIM cohort are shown for context. CHIM maaslin2 analysis only included species 

that were significantly associated in at least two of the endemic country sites. Species are labelled with their GTDB identifier, note that “s__ 

GGB4266_SGB5809” refers to a proposed novel genus/species of Veillonellaceae

Table 2 Summary of the specific MGCs negatively associated with typhoid fever in both Bangladesh and Malawi and the species of 

each MGC reference sequence

MGC_class n Species

Pyruvate2acetate.formate 6 Haemophilus aegyptius, Haemophilus haemolyticus, Haemophilus parainfluenzae, 
Prevotella copri, Prevotella sp., Prevotella sp.

Rnf_complex 5 Haemophilus parainfluenzae, Prevotella copri, Prevotella sp., Prevotella sp., Prevotella sp.

TPP_AA_metabolism 4 Clostridium celatum, Haemophilus pittmaniae, Haemophilus sputorum, Prevotella sp.

Respiratory_glycerol 2 Aggregatibacter sp., Haemophilus parainfluenzae

Arginine2putrescine.Putrescine2 spermidine 1 Romboutsia sp.

Formate_dehydrogenase 1 Haemophilus sp.

Fumarate2 succinate 1 Haemophilus sp.

OD_eut_pdu_related.PFOR_II_pathway 1 Paeniclostridium sordellii

OD_fatty_acids 1 Dialister succinatiphilus

Others_HGD_unassigned 1 Prevotella copri

PFOR_II_pathway 1 Prevotella sp.

TPP_AA_metabolism.Arginine2putrescine 1 Haemophilus sp.

TPP_fatty_acids 1 Prevotella copri

porA 1 Prevotella copri

succinate2propionate 1 Dialister invisus
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Fig. 3 Forest plot of selected MGC types that differed significantly between household contacts and typhoid fever participants in at least one 

cohort. If an entry is NA, then there was insufficient of that MGC type identified in that cohort for maaslin analysis
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‘Rnf_complex.succinate2propionate,’ while in Bangla-

desh, ‘Pyruvate2acetate’ was negatively associated with 

typhoid fever. In Bangladesh, ‘Others_HGD_unassigned.

Nitrate_reductase’ was positively associated with typhoid 

fever, while in Malawi, two MGC types were positively 

associated with typhoid fever—‘Molybdopterin_depend-

ent_oxidoreductase’ and ‘pdu’. In Nepal, ‘Fumarate2 suc-

cinate.fatty_acids’ was significantly negatively associated 

with typhoid fever.

We hypothesised the taxa and MGCs that were found 

in higher abundance in asymptomatic household con-

tacts of typhoid fever patients may be protective against 

developing disease upon exposure to S. Typhi. We sought 

to explore this more directly by assessing their abun-

dance in CHIM participants who did or did not develop 

enteric fever upon challenge with typhoidal Salmonella, 

in a UK-based study [23]. We sequenced the microbi-

omes of 13 participants who were subsequently chal-

lenged with S. Typhi and 13 with S. Paratyphi A, of which 

7 and 6 were diagnosed with enteric (typhoid or paraty-

phoid) fever, respectively (Additional file  2: Table  S18). 

There was no significant difference (FDR < 0.05) in alpha 

or beta diversity at baseline among CHIM participants by 

age at challenge, sex, or subsequent enteric fever diagno-

sis (Additional file 2: Tables S19–20; Additional file 1: Fig. 

S15). In an analysis including only the 28 MGC classes 

that were identified as negatively associated with typhoid 

in both Malawi and Bangladesh, two were also negatively 

associated with typhoid fever diagnosis in CHIM par-

ticipants: an ‘Rnf_complex.Glycine_cleavage.succinate-

2propionate’ MGC (coefficient = − 3.4, q-value = 0.22) 

and an ‘Rnf_complex’ MGC (coefficient = − 6.2, q-value 

= 0.22) (Additional file  1: Fig. S16, full results available 

in Additional file  2: Table  S23). None of the 28 MGC 

classes tested were associated with paratyphoid fever or 

a combination of both typhoid and paratyphoid fever. We 

investigated whether any of the species associated with 

typhoid in both Malawi and Bangladesh were associated 

with susceptibility to typhoid and/or paratyphoid fever 

in the CHIM cohort; none of them was (see Fig. 2). All 

four species that were associated with typhoid fever in 

the endemic cohorts were not detected in the majority of 

samples from the CHIM (Additional file 2: Table S29).

Analysis of high‑Vi participants

High-Vi participants may represent asymptomatic gall-

bladder carriers or individuals with recent exposure or 

sub-clinical infection, either of whom may be a source 

of transmission. Detection of carriers is important for 

typhoid fever control and will remain so even as disease 

incidence reduces due to vaccination and improvements 

in WASH; therefore, we sought to explore the microbi-

ome signature of this group. Samples from Bangladesh 

were not included in this analysis, as laboratory process-

ing of the high Vi-titre participant samples from Bangla-

desh was not consistent with the other sites or participant 

groups. Using PERMANOVA, the participant group was 

significantly associated with beta diversity in both coun-

tries (age and sex were not significant; Additional file 2: 

Table  S11–12). The participant group explained greater 

variance in the Malawi cohort (R2 0.25, FDR = 0.01) than 

in Nepal (R2 0.07, FDR = 0.01; Additional file  2: Tables 

S11–S12; Additional file  1: Fig. S10). The three partici-

pant groups have distinct beta-diversity signatures, with 

high-Vi individuals closer to typhoid patients than to 

household contacts (Fig.  4). In the Malawi cohort, 125 

bacterial species significantly differed between house-

hold contacts and high Vi-titre individuals (Additional 

file  2: Table  S13), and 41 of these also significantly dif-

fered between household contacts and typhoid fever 

(Additional file 2: Table S21). These 41 species include H. 

parainfluenzae, Blautia obeum and Ruminococcus gnavus 

(all less prevalent in acute typhoid and high-Vi individu-

als than household contacts; Additional file 2: Fig. S11). 

Amongst Nepal samples, only one species significantly 

differed between household controls and high-Vi indi-

viduals (the Firmicutes SGB GGB9790 SGB15413). There 

were no species associated with household contacts com-

pared with typhoid patients from Nepal, and SGB15413 

did not differ between these groups (Additional file 2: Fig. 

S12).

The combined relative abundance of species only 

described as species genome bins (SGBs) was signifi-

cantly lower in household contacts in Malawi (13.9%), 

compared with both typhoid fever patients (34.8%, P = 

0.012) and high Vi-titre participants (47.1%, P = 2.2 

×  10−16) in this setting (Additional file  1: Fig. S13). The 

50 SGBs with the highest summed abundance across all 

participant types in Malawi belonged to Firmicutes (n = 

41), Actinobacteria (n = 4), Bacteroidetes (n = 3) and 

Proteobacteria (n = 2) (Additional file 2: Table S22). The 

most common families of the 50 most abundant SGBs 

were Oscillospiraceae (n = 13), Lachnospiraceae (n = 7) 

and Clostridiaeceae (n = 4) (Additional file 2: Table S22). 

In Nepal, high Vi-titre individuals had lower SGB relative 

abundance than acute typhoid cases (16.8% vs. 29.9%, p = 

0.03; Additional file 1: Fig. S13).

Antimicrobial resistance genes

We recently reported antimicrobial resistance (AMR) 

genotypes and phenotypes for S. Typhi isolated from 

acute typhoid fever cases in Bangladesh, Malawi and 

Nepal [20]. Quinolone resistance was common in 

Bangladesh and Nepal but rare in Malawi; here, we 

saw a similar pattern reflected in the gut microbi-

omes, with 2% quinolone resistance in Malawi, 30% in 
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Bangladesh and 15% in Nepal (only mobile genetic ele-

ment encoded quinolone determinants were analyzed 

in the metagenomic data; Additional file 2: Table S14). 

Macrolide resistance was identified in one S. Typhi 

isolates from Bangladesh (0.6%) but not in Nepal or 

Malawi; here, we found higher rates of macrolide 

resistance in microbiomes from individuals in Bang-

ladesh (38%) and Nepal (35%) and lower in Malawi 

(11%). For the older drugs, S. Typhi isolates from 

Malawi had near-universal resistance to older sulfona-

mides and tetracyclines, and this was mirrored in high 

rates of resistance genes to these drugs in the micro-

biome samples (92% sulfonamides, 52% tetracycline). 

Extended-spectrum beta-lactamases (ESBLs) were not 

detected in any S. Typhi isolates but were common in 

the microbiomes in Nepal (17%) and Bangladesh (9%); 

less so in Malawi (3%).

The proportion of samples with macrolide and tri-

methoprim resistance genes that have been observed 

in S. Typhi was significantly higher in participants 

with acute typhoid fever than in household contacts or 

high Vi-titre participants (macrolides = 42%, 14% and 

22%, respectively, chi-square test p-value = 4.4 ×  10−5; 

trimethoprim = 32%, 12% and 20%, respectively; chi-

square test p-value = 0.005). There was no significant 

difference between participant types in the proportion 

of samples with resistance genes to any other drug 

classes. There was no statistically significant associa-

tion between prior reported antibiotic usage and the 

number of AMR genes (Wilcoxon-rank sum P-value 

= 0.52) or the number of AMR gene classes (Wilcoxon 

rank sum P-value = 0.56) in typhoid fever patients 

across all sites (Additional file 1: Fig. S14).

Discussion
In this study, we examined the relationship between the 

stool microbiome and typhoid fever in three settings with 

endemic disease. Our analyses identified four microbial 

species (Fig.  2), linked to anaerobic fermentation and 

SCFA metabolism (Table  2), that differentiated typhoid 

fever patients from household contacts in Bangladesh 

and Malawi. While these taxa were not found in the UK-

based CHIM participants, a different MGC with a poten-

tial link to SCFA metabolism was higher in participants 

who were not susceptible to typhoid fever. Looking at the 

abundance of different MGC types (as opposed to spe-

cific MGCs), we found four types of MGC involved in 

SCFA metabolism that were negatively associated with 

typhoid fever in Malawi and one in Bangladesh. Over-

all, our data support a protective role for SCFA-produc-

ing microbes, although with our study design, it is not 

Fig. 4 Heatmap of the abundance of the 400 most abundant species in household contacts, acute typhoid fever cases and high Vi‑titre participants 

from Malawi. The columns are sorted by participant group, and rows are sorted by hierarchical clustering across all samples
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possible to deconvolute the impact of the microbiome on 

typhoid from the impact of typhoid on the microbiome.

The strengths of our study include a larger sample size 

than previous investigations of the interaction between 

typhoid fever and the microbiome, and a multi-site study 

design to increase generalisability. In contrast to previ-

ous studies of the microbiome and typhoid fever, we 

used shotgun metagenomics to characterise the gut flora, 

enabling in-depth functional analysis and investigation 

of AMR genes. Notably, using the same methodology to 

analyse participants from different countries, most of the 

taxa we associated with typhoid fever differed between 

locations. This suggests that susceptibility to disease in 

different human populations may be modified by dif-

ferent species, which could hamper the generalisability 

of study findings between populations. It is notable that 

the most consistent microbial signature for disease sus-

ceptibility, identified across multiple study populations 

with small sample sizes, was a functional signature (spe-

cifically gene clusters associated with SCFA metabolism) 

rather than any specific taxa that perform this function.

One of the key limitations of our study is the lack of 

age and sex matching between typhoid fever and house-

hold contact groups. The age and sex composition of the 

household controls reflect the occupants of the house-

hold during the daytime visits of the study workers. This 

discrepancy may introduce bias, as age and sex influence 

the composition and function of the microbiome, and 

the microbiota may not reach a mature state until ado-

lescence [29, 67]. Although age has been linked to dif-

ferences in alpha and beta diversity in the literature [29, 

67], it was not significantly associated with these ecologi-

cal variables in our study. Although these variables were 

included in the statistical analyses, the lack of matching 

weakens our findings. Our use of a case–control study 

design in the endemic countries generated numerous 

hypotheses for subsequent research, but it does not prove 

causal relationships. Additionally, we did not collect die-

tary information from participants. Diet is a major deter-

minant of microbiome composition and function, and 

variations in dietary habits could confound the associa-

tions we observed [13]. Lastly, accounting for the effect 

of antibiotics on the microbiome in these cohorts pre-

sents a complex challenge, as it can significantly alter 

microbiome composition and potentially mask or mimic 

associations with typhoid fever. These challenges could 

largely be addressed using CHIM studies. Unfortunately, 

the only available CHIM data was from a different study 

population (in the UK) and with a small sample size (n = 

13 exposed to S. Typhi). The use of larger high-income 

country CHIMs and the development of CHIMs in pop-

ulations from settings with endemic disease would be 

helpful to better elucidate specific microbial signatures 

of protection. The Bangladesh and Nepal sites have con-

siderable diversity of S. Typhi circulating [20], and we 

know that minor differences between Salmonella strains 

can result in different interactions with the microbiota 

[25]; however, we did not carry out an analysis including 

the sub-lineage of S. Typhi as a covariate, due to limited 

sample size. While the primary site of S. Typhi invasion is 

the ileum, we have sampled the colon, which may be less 

relevant to S. Typhi invasion. However, the colon is the 

primary enteric site for the production and absorption of 

SCFAs, which have been shown to act on the peripherally 

and in the ileum to modulate immune environments and 

intestinal barrier functions [6, 9].

Our use of shotgun metagenomics enabled us to also 

investigate the prevalence of AMR genes associated 

with resistance in S. Typhi across the three sites and 

participant groups. Macrolide and trimethoprim resist-

ance genes were more common in acute typhoid cases 

compared with the household controls and high Vi-titre 

participants, highlighting that typhoid and associated 

antimicrobial usage impose selective pressure on the gut 

microbiome. This supports the idea that reducing dis-

ease via immunisation could reduce AMR beyond just 

S. Typhi. Higher levels of resistance to sulphonamides in 

Malawi likely reflect the common use of trimethoprim-

sulfamethoxazole in HIV/AIDS programs [39], while 

higher microbiome prevalence of acquired ESBL and 

fluoroquinolone-resistance genes in Bangladesh than 

Malawi reflects the local epidemiology (e.g. recent stud-

ies of bloodstream infections show that in Bangladesh, 

72% and 75% were resistant to ciprofloxacin and third-

generation cephalosporins respectively, compared with 

31% and 30% in Malawi) [1, 44]. The gut microbiome 

prevalence of resistance genes followed a similar pattern 

to the prevalence of resistance genes in S. Typhi observed 

from these sites [20] for tetracycline, sulphonamides and 

quinolones, which likely reflects a shared evolutionary 

pressure on the isolates and the microbiome. The fact 

that non-ESBL beta-lactamases were identified in fewer 

metagenomes than extended-spectrum beta-lactamases 

is because we only counted beta-lactamase encoding 

genes that are commonly found in S. Typhi.

Zhang et  al. investigated the 16S community profile 

and metatranscriptome features associated with sus-

ceptibility to typhoid fever in a CHIM [68]. One of their 

primary findings was that the archaeal genus Methano-

brevibacter was enriched in people who were challenged 

with S. Typhi but did not develop the disease. In con-

trast, we only identified one association with a Metha-

nobrevibacter species (M. smithii; a positive association 

with typhoid fever in Malawi. Furthermore, Zhang et al. 

identified that Prevotella was higher in people who devel-

oped typhoid fever, in contrast to our findings that it was 
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negatively associated with typhoid fever in natural infec-

tions in endemic settings. One source of these discrepan-

cies could be that Zhang et  al. employed 16S, while we 

used shotgun metagenomics. Haak et al. observed more 

SCFA-producing bacteria in both healthy control and 

febrile but non-typhoid fever participants in their study 

in Bangladesh compared with typhoid fever patients, and 

a higher faecal load of SCFAs in controls than any febrile 

group [27], which corresponds well with our findings. It 

has also been shown that higher SCFAs in an acidic envi-

ronment, and a strict anaerobic environment, can inhibit 

the growth of Enterobacteriaceae such as Salmonella via 

both direct and indirect mechanisms [15, 31, 55]. One 

caveat is that the site of S. Typhi invasion in the gut may 

not be at an acidic pH. Recently, a higher relative abun-

dance of butyrate-producing bacteria was associated 

with a reduced risk of hospitalisation for infections in a 

prospective study carried out in high-income European 

countries [33]. Two MGC types positively associated with 

typhoid fever in Malawi were molybdopterin-dependent 

oxidoreductase and propanediol utilisation microcom-

partments, both of which enable growth in the inflamed 

gut [21, 69], suggesting that the microbiota of typhoid 

fever participants in Malawi may be in a state of dys-

biosis. Arginine to putrescine was the only MGC type 

associated with health in both Bangladesh and Malawi, 

polyamines such as putrescine promote gut barrier integ-

rity [52], and can act as immunomodulators [49].

Our findings from the STRA TAA  cohorts can be inter-

preted from two perspectives: (i) the microbiota protect-

ing against typhoid and (ii) typhoid causing microbiota 

changes. In contrast, the CHIM study design enables 

us to specifically assess whether microbiota present 

prior to pathogen exposure are associated with the out-

come of that exposure (i.e. developing disease or not). 

Unfortunately, none of the taxa negatively associated 

with typhoid fever in the endemic settings was present 

in most of the CHIM participants, making it impos-

sible to validate the association. It is well established 

that microbiome species composition differs between 

human populations, particularly between those in high-

income countries and low- and middle-income coun-

tries [26]. However, the metabolic gene cluster findings 

identified a recurring finding across the endemic settings 

and the CHIM; an association between species encod-

ing SCFA metabolising genes and non-susceptibility to 

typhoid fever. While it should be noted that the CHIM 

sample size was small, the fact that we identified a sta-

tistically significant difference supports the idea that the 

effect is quite strong. While our CHIM analyses lacked 

power, which is reflected in the high q-values obtained, 

the q-value for the SCFA MGC association was below the 

default maaslin2 threshold for significant findings.

Both P. copri and H. parainfluenzae, which were sig-

nificantly lower in typhoid fever patients compared with 

household contacts in both Bangladesh and Malawi, are 

associated with increased gut inflammation [34, 57]. 

P. copri is thought to increase Th17 inflammation [24], 

while H. parainfluenzae stimulates intestinal (IFN-γ) 

+ CD4 + T cells [57], two mechanisms that play a key role 

in response to Salmonella infections [7, 51]. Increased 

inflammation could prime the host to respond more 

rapidly to pathogenic exposures, leading to enhanced 

control of infections. It is highly plausible that the gut 

microbiome plays a role in shaping the response of the 

immune system to pathogen challenges [19]. This intrigu-

ing association needs further investigation, as the role of 

inflammation in enabling Salmonella to overcome colo-

nisation resistance in mice is well established [55, 65]. 

Among the species negatively associated with typhoid 

fever in Malawi only was Ruminococcus gnavus, which 

could influence susceptibility to enteric infection via IgA 

stimulation [14], protect against enteropathogenic E. 

coli [41], stimulate host tryptophan catabolism [28] (S. 

Typhi requires tryptophan to grow in macrophages [11]) 

and produce secondary bile acids including chenodeoxy-

cholic acid and iso-LCA that have anti-virulence effects 

on Salmonella [35, 66].

The direction of causality cannot be determined from 

our study design, and a murine model of Salmonella 

Typhimurium infection recently reported shifts in gut 

microbiome composition, including a reduction in Rumi-

nococcaceae taxa associated with acetate and butyrate 

production, following infection [54]. It is therefore plau-

sible that the microbiome is modified in people suffering 

from typhoid fever. Gut disruption is known to alter the 

gut microbiome, for example, colorectal cancer patients 

from Morocco and Kenya had reduced P. copri in their 

gut [4, 45]. Potential triggers for microbiome altera-

tions in typhoid fever could include antibiotic exposure, 

dietary changes or anorexia due to sickness, S. Typhi-

induced malabsorption in the small intestine resulting in 

alterations to the nutrient composition within the large 

intestine, and the direct impact of fever on microbiome 

composition as the increase in temperature could favour 

the growth of particular bacterial species [16, 30].

We cannot be certain about the exact cause of higher 

levels of anti-Vi antibodies in the high Vi-titre partici-

pants. Potential sources of immune stimulation include 

recent symptomatic or asymptomatic S. Typhi exposure/

infection, exposure/infection with Citrobacter freundii 

which can be Vi-antigen positive, or chronic S. Typhi car-

riage. It is striking that there was a clear divergence in 

microbiota profile between these participants and acute 

cases and household contacts in Malawi, as this suggests 

that there is an interaction between the cause of the high 
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Vi-titre and the gut microbiota. The 41 species that were 

significantly lower in both typhoid fever cases and high 

Vi-titre participants included the potentially immune-

modulatory H. parainfluenzae [57], the bile acid modi-

fying B. obeum (formerly Ruminococcus obeum) and R. 

gnavus. Notably, it has been demonstrated that bile salt 

hydrolases encoded by B. obeum can inhibit Vibrio chol-

erae virulence gene activation and colonization [2], and 

it is intriguing to hypothesise a similar mechanism might 

protect against S. Typhi gallbladder carriage and/or sys-

temic infection. The influence of these species on sus-

ceptibility to S. Typhi infection, gallbladder carriage and 

immune reactivity should be investigated further.

Conclusions
We found that typhoid fever patients in Malawi and 

Bangladesh display distinct microbiome signatures com-

pared to household contacts, marked by a lower abun-

dance of SCFA producers and inflammation-related 

species. The negative association between SCFA-produc-

ing genes and typhoid fever susceptibility was also rep-

licated to some extent in our UK-based challenge study. 

The differences in species composition in the microbiota 

of these distinct cohorts make direct comparison and 

therefore validation difficult, highlighting the importance 

of establishing challenge studies in endemic settings to 

directly address important mechanistic questions.
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