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Abstract

The integration of Artificial Intelligence (AI) into manufacturing is transforming the indus-
try by advancing predictive maintenance, quality control, and supply chain optimisation,
while also driving the shift from Industry 4.0 towards a more human-centric and sus-
tainable vision. This emerging paradigm, known as Industry 5.0, emphasises resilience,
ethical innovation, and the symbiosis between humans and intelligent systems, with AI
playing a central enabling role. However, challenges such as the ªblack boxº nature of
AI models, data biases, ethical concerns, and the lack of robust frameworks for trustwor-
thiness hinder its widespread adoption. This paper provides a comprehensive survey of
AI trustworthiness in the manufacturing industry, examining the evolution of industrial
paradigms, identifying key barriers to AI adoption, and examining principles such as trans-
parency, fairness, robustness, and accountability. It offers a detailed summary of existing
toolkits and methodologies for explainability, bias mitigation, and robustness, which are
essential for fostering trust in AI systems. Additionally, this paper examines challenges
throughout the AI pipeline, from data collection to model deployment, and concludes with
recommendations and research questions aimed at addressing these issues. By offering
actionable insights, this study aims to guide researchers, practitioners, and policymakers in
developing ethical and reliable AI systems that align with the principles of Industry 5.0,
ensuring both technological advancement and societal value.

Keywords: Artificial Intelligence (AI); manufacturing; Industry 4.0; Industry 5.0; AI
trustworthiness; transparency; fairness; robustness; accountability; ethical AI; bias
mitigation; explainability; AI Toolkits; sustainable manufacturing; human-centric AI

1. Introduction

The exponential growth of digital systems in recent years has led to the generation of
large-scale, high-dimensional data. This trend is particularly evident in modern manufactur-
ing, where a key shift has been the adoption of decentralised and distributed architectures.
In such systems, control and decision-making responsibilities are shared across multiple au-
tonomous units, rather than being managed centrally. This decentralised structure enhances
flexibility and resilience, enabling factories to respond swiftly to disruptions and sustain
operations despite localised failures. While this distributed approach is often presented as
a technical improvement, it also raises critical questions about coordination, accountability,
and the reliability of decision-making across autonomous unitsÐissues that are central to
the trustworthiness of digital manufacturing systems. Moreover, the distribution of control
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supports scalable and adaptable production models suited to high variability in demand
and complexity [1].

However, this structural evolution also introduces significant challenges. The pro-
liferation of interconnected devices, sensors, and machines leads to massive volumes of
heterogeneous data being generated in real time. Traditional analytical tools and human-led
analysis are increasingly inadequate for extracting actionable insights from this data deluge.
As a result, more advanced, automated, and context-aware data processing methods are
required to support intelligent decision-making in distributed manufacturing environment.
As a result, Artificial Intelligence (AI) has become essential for intelligent data acquisition,
management, and processing [2]. AI enables organisations to analyse large datasets, extract
meaningful insights, and support informed decision-making. Efficient data management,
supported by AI, not only enhances scalability, security, and operational efficiency but also
minimises resource consumption [3]. In this review, we use the term AI to refer specifically
to computational systems that can perform tasks typically requiring human intelligence,
with a particular emphasis on learning from data and making decisions in complex environ-
ments [4]. The concept of knowledge in AI can be categorised into four types: definitional
(explicit definitions and facts), deductive (logical inference from rules), inductive (gen-
eralisation from examples), and creative (generation of novel ideas) [5]. In this study,
we focus on AI as knowledge derived from complex induction, encompassing machine
learning, deep learning, and related data-driven approaches. This scope does not include
all possible forms of AI, such as purely rule-based or symbolic systems, and is limited to the
opportunities and challenges of data-driven, inductive AI in manufacturing environments.

To address the analytical challenges posed by decentralised and data-intensive manu-
facturing systems, AI and related digital technologies are increasingly employed to create
high-fidelity digital modelsÐoften referred to as digital twinsÐthat simulate real-world
operations. The adoption of digital twins and context-aware processing is not merely a mat-
ter of technological advancement; their effectiveness and acceptance depend fundamentally
on the trust stakeholders place in the underlying AI systems. Without explicit mechanisms
for transparency, fairness, and accountability, these advanced tools risk introducing new
vulnerabilities or amplifying existing biases. These models enable manufacturers to eval-
uate decision scenarios in a virtual environment, assess the impact of process changes,
and prioritise risk mitigation strategies. By proactively identifying and responding to oper-
ational challenges, factories can improve resilience, reduce economic disruptions, and seize
emerging opportunities with greater agility.

Building on the foundation established by Industry 4.0, the emerging paradigm of In-
dustry 5.0 places greater emphasis on human-centric approaches, sustainability, and ethical
considerations. In this new era, AI continues to play a pivotal roleÐnot only in driving
automation and efficiency but also in supporting more responsible and inclusive indus-
trial practices [6,7]. To further conceptualise the flow and use of information in Industry
4.0 and 5.0, it is helpful to consider three fundamental components: Syntax, Semantics,
and Pragmatics. Syntax refers to the structure and format of data, ensuring interoperability
between systems. Semantics addresses the meaning and interpretation of data, enabling
both machines and humans to derive actionable insights. Pragmatics, however, concerns
the practical application and real-world impact of informationÐhow data-driven outputs
are used in operational contexts. Critically, trustworthiness is a central aspect of Prag-
matics, as it determines whether stakeholders can reliably act on AI-generated insights
in manufacturing environments. This perspective highlights that trustworthiness is not
merely a technical attribute but a practical necessity for the successful and responsible
adoption of AI in Industry 4.0/5.0 [8]. However, the adoption of AI in manufacturing is
not without significant challenges. One major concern is the ªblack boxº nature of many
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AI models, which refers to the difficulty in understanding how these systems arrive at their
decisions or predictions. This lack of transparency and interpretability can hinder trust
and accountability, as stakeholders may be unable to trace or justify the reasoning behind
AI-driven outcomes [9,10].

Trust in AI, particularly in high-stake industrial contexts, is a multidimensional con-
struct. Drawing from the broader trust literature, trust can be understood as comprising
three interrelated components: scientific or technical competence, effective communication,
and shared values [11]. While much of the AI literature focuses on technical robustness and
explainability (science/competence), empirical research consistently finds that failures of
trust are more often rooted in value misalignments and poor communication than in techni-
cal shortcomings. As Greenberg [11] notes, value-based trust is often the most challenging
to build and maintain, especially when organisational or societal values are perceived to be
at odds with those of affected stakeholders.

Another critical issue involves biases present in both the data used to train AI systems
and the algorithms themselves. Biases can arise from historical data that reflect existing
inequalities or from the design of algorithms that inadvertently favour certain groups or
outcomes over others. In manufacturing, such biases may result in unfair resource alloca-
tion, exclusion of certain workforce segments, or suboptimal decision-making that does
not account for the diversity of real-world scenarios. These concerns threaten the fairness
and inclusivity of AI applications, making it essential to identify, measure, and mitigate
bias throughout the AI lifecycle [9].

In this study, AI trustworthiness is defined as the degree to which AI systems can be
relied upon to operate transparently, fairly, robustly, and accountably within manufacturing
environments. Drawing on established frameworks such as the European Commission’s
Ethics Guidelines for Trustworthy AI, we operationalise AI trustworthiness through its
core dimensions. Transparency refers to the extent to which AI decision-making processes
are understandable and explainable to stakeholders, enabling traceability and auditabil-
ity. Fairness is the assurance that AI systems do not propagate or amplify bias and that
outcomes are equitable across different groups and contexts. Robustness signifies the
resilience of AI systems to errors, adversarial attacks, and changing operational conditions,
ensuring reliable performance. Accountability denotes the presence of mechanisms for
assigning responsibility and enabling recourse in the event of system failures or unintended
consequences. In the manufacturing domain, these dimensions are particularly salient due
to the high stakes associated with safety, quality, and regulatory compliance. Measurable
characteristics of AI trustworthiness in this context include the availability of model docu-
mentation, bias detection and mitigation reports, robustness testing results, and clear lines
of responsibility for AI-driven decisions [12].

The motivation for this paper stems from the urgent need to address these challenges
and bridge the gap between rapid technological advancements and their ethical, human-
centric application in manufacturing. Furthermore, the dynamic and complex nature of
manufacturing environments amplifies the risks associated with AI failures, which can
lead to significant supply chain disruptions, reduced business efficiency, loss in production
capacity, ethical violations, and loss of stakeholder trust. Despite a growing body of re-
search on AI in manufacturing, there remains a critical gap in comprehensively addressing
the trustworthiness of AI systems. This gap is particularly significant in the context of
Industry 5.0, where aligning AI technologies with human-centric and sustainable principles
is paramount. To address these challenges, a range of organisations and regulatory bodies
have established comprehensive frameworks to promote the trustworthy and responsible
use of AI. Notable examples include the European Commission’s Ethics Guidelines for
Trustworthy AI, the National Institute of Standards and Technology (NIST) AI Risk Manage-
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ment Framework, the Organisation for Economic Co-operation and Development (OECD)
Principles on Artificial Intelligence, the International Organization for Standardization
(ISO) and International Electrotechnical Commission (IEC) standards on AI trustworthiness,
the IEEE Ethically Aligned Design, and the Singapore Model AI Governance Framework.
These frameworks provide structured approaches for organisations to assess, monitor,
and improve the reliability, fairness, and ethical alignment of AI systems [13,14]. However,
these frameworks differ in their scope, rigour, and practical enforceability. For example,
while the European Commission’s guidelines emphasise ethical principles, the NIST and
ISO/IEC standards focus more on technical and procedural aspects. Contradictions and
gaps remain, particularly regarding how these frameworks address the unique operational
realities of manufacturing, such as real-time decision-making and the integration of legacy
systems [15].

Nevertheless, there remains a critical research gap: the absence of comprehensive frame-
works and methodologies specifically tailored to the unique demands of manufacturing
environments. This paper aims to address this gap by providing a comprehensive survey of
AI trustworthiness in manufacturing. The primary objectives of this study are the following:

1. Critically examine the role of AI in the transition from Industry 4.0 to Industry 5.0, with a
focus on the technical, ethical, and organisational challenges specific to manufacturing.

2. Assess the effectiveness and limitations of existing toolkits for ensuring AI
trustworthinessÐspecifically transparency, fairness, robustness, and accountability in
manufacturing contexts.

3. Formulate targeted research questions and methodological approaches to address the most
pressing challenges of AI adoption in manufacturing, drawing on industry case studies

The findings of this study are expected to guide professionals, engineers, and decision-
makers in manufacturing to adopt AI in ways that improve processes and respect societal
and environmental values.

The structure of this paper, illustrated in Figure 1, is organised into eight sections,
each addressing a critical dimension of AI trustworthiness in the context of Industry 5.0.
Section 2 provides the background, tracing the evolution from Industry 4.0 to Industry 5.0
and emphasising the shift toward human-centricity, sustainability, and ethical integration.
It further details the collaborative nature of Industry 5.0 and enumerates practical AI use
cases in manufacturing, such as digital twins, predictive maintenance, and generative
design. This section sets the stage for addressing the first research question: What is the role
of AI in the transition from Industry 4.0 to Industry 5.0, and what are the associated chal-
lenges? Section 3 outlines the multi-stage methodology, encompassing a literature review,
systematic search and selection, toolkit analysis, and an interdisciplinary, human-centric
approach to synthesising research questions. This section establishes the methods used
to explore the research questions and address AI adoption challenges in manufacturing.
Section 4 examines the challenges in AI adoption for Industry 5.0, including technical,
organisational, and ethical barriers like black-box models, data bias, reliability, regulatory
concerns, security threats, and workforce adaptation. This section directly addresses the
second part of the first research question: What are the technical, ethical, and organisational
challenges of AI adoption in manufacturing? Section 5 discusses the importance of AI
trustworthiness, drawing on real-world failures to highlight the necessity of transparency,
fairness, and accountability in building trust and preventing harm. This section underscores
the need for trustworthy AI systems and sets the context for exploring the necessary toolk-
its. Section 6 defines the core factors of AI trustworthiness: explainability, accountability,
fairness, and robustness. It reviews key toolkits and frameworks for each factor, address-
ing the need for interpretable decisions, responsible governance, context-specific fairness,
and resilience against errors and adversarial attacks. This section directly addresses the
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second research question: What toolkits are necessary to ensure AI trustworthiness, such
as transparency, fairness, robustness, and accountability? Section 7 analyses challenges
across the AI pipeline, from data collection and preprocessing to model development and
deployment, and formulates research questions on data integrity, bias detection, labelling
consistency, and the trade-offs between interpretability and performance. This section
delves into the methods to address AI adoption challenges in manufacturing, supported by
industrial examples, thus addressing the third research question. Section 8 concludes by
summarising the progress in trustworthy AI frameworks and toolkits, underscoring the on-
going need for ethical, technical, and organisational vigilance. It calls for interdisciplinary
collaboration, regulatory compliance, and practical evaluation of toolkits in real-world
scenarios and outlines future research directions to ensure continuous monitoring and
adaptation of AI systems in manufacturing. This section synthesises the findings and
provides a roadmap for future research, addressing all three research questions.

Figure 1. Overall paper structure.

2. Background

2.1. Industry 5.0 Capabilities and Challenges

The evolution of modern manufacturing began with Industry 4.0, which is charac-
terised by the integration of cyber±physical systems, the Internet of Things (IoT), and ad-
vanced data analytics into industrial processes. Industry 4.0 has enabled unprecedented
levels of automation, connectivity, and data-driven decision-making, transforming tradi-
tional factories into smart, interconnected environments. However, this transformation has
also introduced significant challenges, such as managing the complexity of large-scale data,
ensuring cybersecurity, and addressing the skills gap required to operate and maintain
advanced technologies.

Figure 2 outlines the key pillars driving Industry 4.0, as identified in [16]. The in-
fluence of these technologies now extends well beyond traditional industrial settings,
shaping home products, business models, clean energy solutions, and broader sustainabil-
ity effortsÐareas that earlier industrial revolutions largely overlooked. As a result, industry
is increasingly recognised as a catalyst for systemic transformation, pushing economies
toward greater sustainability [17]. Achieving this shift requires the integration of societal
and environmental considerations as core priorities within the industrial sector.

This move toward decentralisation has been made possible by the widespread adop-
tion of sensors and actuators embedded in machines through the IoT. These devices create
seamless connectivity with computing systems and generate vast streams of data, com-
monly referred to as Big Data [18]. To handle this data efficiently, processing often occurs
locally on IoT devices or is distributed through cloud and edge computing platforms.
This approach not only optimises costs and improves scalability by leveraging virtual
resources [19] but also supports the adoption of new technologies aligned with Industry
4.0 objectives. AI technologies are uniquely capable of rapidly collecting and analysing
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information from multiple systems, enabling tasks such as fault prediction and action
selection to be performed with far greater efficiency [20]. Consequently, many companies
are adopting intelligent systems that support various levels of process automation, further
accelerating the transformation of the manufacturing industry and supporting the broader
goals of Industry 4.0 and beyond.

Figure 2. Key technologies in Industry 4.0.

The European Commission introduced the concept of Industry 5.0 in 2020 during a
dedicated workshop involving research and technology organisations and funding bodies.
This new paradigm integrates AI and the societal dimension as key drivers for the future
of European industry [21]. Since then, multiple initiatives have been launched to support
Industry 5.0, including efforts to upskill and reskill European workers, particularly in
digital competencies (Skills Agenda and Digital Education Action Plan); fostering a more
competitive industrial landscape through accelerated investment in research and innovation
(Industrial Strategy); promoting sustainable development through resource-efficient, eco-
friendly industries and a transition to a circular economy (Green Deal); and advocating for
a human-centric approach to digital technologies via regulatory frameworks such as the AI
Act, white papers, and trustworthy AI requirements [22±27].

A central pillar of Industry 5.0 is AI adoption, with a focus on high-speed data pro-
cessing, workforce expertise in managing AI-driven heterogeneous technologies (including
computing resources and data), and embedding ethical principles throughout the AI lifecy-
cle to ensure trust and safe working environments [28,29]. While Industry 5.0 aims to foster
collaboration between humans and machines and promote ethical, sustainable industrial
practices, it also faces its own set of challenges. These include integrating ethical principles
into AI systems, ensuring workforce adaptability, and balancing technological progress
with societal and environmental considerations. While Industry 5.0 is often presented as a
progressive and human-centric evolution of manufacturing, several of its core assumptions
warrant critical examination. For example, the notion that increased human±machine col-
laboration will automatically lead to more ethical or sustainable outcomes is not universally
supported by empirical evidence. There is ongoing debate about whether the integration
of advanced AI and automation truly empowers workers or, conversely, risks further
deskilling and job displacement. Additionally, the emphasis on sustainability and resilience
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in Industry 5.0 frameworks can sometimes mask the persistent tension between economic
growth and environmental limits, raising questions about the feasibility of achieving all
three goals simultaneously. Critics also point out that the practical implementation of
ethical AI principles remains challenging, with many organisations struggling to translate
high-level values into operational practices. As such, while Industry 5.0 offers an aspi-
rational vision, its real-world impact depends on addressing these unresolved tensions
and ensuring that technological progress is matched by genuine social and environmental
responsibility [7].

Despite ongoing research efforts to integrate ethical considerations into AI applications,
unique challenges persist depending on the operational environment and the specific
domains where these technologies are deployed [30].

2.2. Explaining Industry 5.0

In the context of Industry 5.0, the connection between factory-specific challenges, AI
applications, and technological pillars remains insufficiently defined. Industry 5.0 marks
a fundamental shift that extends beyond technological and economic aspects, placing a
strong emphasis on human well-being, sustainability, and circular economies. Unlike
previous industrial advancements that focused on automation and efficiency, Industry 5.0
promotes a collaborative relationship between humans and machines, leveraging their
unique strengths rather than aiming for human replacement [31]. This paradigm shift calls
for a more holistic integration of AI, where ethical considerations and societal impacts are
prioritised alongside technical advancements.

While Industry 5.0 aspires to be human-centric and ethical, these ambitions often in-
volve complex trade-offs and can lead to unintended consequences. For example, efforts to
enhance worker well-being through increased human±machine collaboration may inadver-
tently introduce new forms of workplace stress, such as the need for constant upskilling or
the psychological impact of working alongside intelligent machines. Similarly, prioritising
ethical AI can sometimes slow down innovation or increase operational costs, as organ-
isations must invest in transparency, bias mitigation, and compliance measures. There
is also the risk that well-intentioned ethical frameworks may be inconsistently applied,
leading to gaps between policy and practice. These examples highlight that the pursuit of
human-centric and ethical objectives in Industry 5.0 is not without challenges, and careful
consideration of potential trade-offs is essential for responsible implementation [32].

In addition to these user-facing applications, AI is increasingly being deployed within
the underlying infrastructure, such as edge computing. Here, AI enables real-time data
processing for tasks like predictive maintenance and supports advanced features, including
Augmented Reality experiences. This seamless integration of AI across both consumer
applications and technical infrastructure demonstrates its versatility and growing impor-
tance in modern technology ecosystems [33]. As AI continues to evolve, its role in shaping
both the digital landscape and industrial environments will become even more significant,
underscoring the need for ongoing research and thoughtful implementation.

Several key technologies serve as enablers of Industry 5.0, as identified by authors in
Xu and Duan [2], Xu et al. [7], Commission et al. [21], Wang et al. [31], Habib ur Rehman
et al. [34], Vyhmeister et al. [35,36], Wang et al. [37], Wu et al. [38]. These enablers, outlined
in Figure 3, represent core components that drive this new industrial paradigm [39].
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Figure 3. Key technologies in Industry 5.0.

Future industries are expected to play an important role in advancing societal goals
while contributing to a more environmental friendly and sustainable ecosystem [40].

2.3. AI Use Cases in Industry 5.0

AI plays a significant role in Industry 5.0 by enabling smarter, more efficient, and adapt-
able operations. The following examples shown in Figure 4 illustrate AI’s potential applica-
tions within the Industry 5.0 framework [16,41,42]:

1. Digital Twin: AI is utilised to create virtual representations of processes, production
systems, factories, and supply chains, referred to as digital twins. These virtual
models are employed to simulate, evaluate, and predict performance in real-time.
By replicating the physical environment, digital twins allow manufacturers to monitor
and improve operations without needing direct engagement with the physical assets.
They depend on data from IoT sensors, programmable logic controllers (PLCs), deep
learning techniques, and AI algorithms to continuously update the digital model with
real-time information, ensuring an up-to-date and accurate virtual replica.

2. Predictive maintenance: AI processes sensor data from machinery to predict poten-
tial failures before they happen. By utilising a digital twin to examine patterns in
equipment behaviour and performance, these systems can notify operators of po-
tential issues in advance, enabling them to prevent breakdowns before they worsen.
For instance, automotive manufacturers use predictive maintenance on assembly-
line robots, greatly decreasing unplanned downtime and leading to significant cost
savings. This method also allows manufacturers to schedule maintenance during
off-peak hours, minimising disruptions to production timelines [43].

3. Custom Manufacturing: AI empowers manufacturers to provide mass customisation,
enabling products to be tailored to individual customer preferences without disrupting
production speed. By incorporating AI into the design process, companies can swiftly
adjust designs in response to real-time consumer feedback. For example, clothing
manufacturers utilise AI algorithms to personalise products, allowing customers to
select designs that align with their unique tastes. This adaptability not only improves
customer satisfaction but also boosts engagement by offering a more personalised
shopping experience.

4. Generative Design: This technology allows manufacturers to explore numerous design
possibilities by considering factors like materials and manufacturing limitations. This
approach accelerates the design process by enabling the rapid evaluation of multiple
iterations. Generative AI design tools are already being utilised in industries like
the aerospace and automotive industries, where companies use them to develop



Sensors 2025, 25, 4357 9 of 39

optimised parts. Although the technology is already in use, its complete potential is
still not being explored within the dynamic landscape of modern manufacturing.

5. Quality Control: AI improves quality control by using computer vision and machine
learning, often supported by a digital twin, to detect defects in real-time. These
systems examine product images during the manufacturing process, identifying
inconsistencies or faults with greater precision than human inspectors. For exam-
ple, electronic manufacturers utilise AI-driven quality control to ensure components
meet stringent specifications. This results in higher product quality, reduced waste,
and greater customer satisfaction.

6. Supply Chain Management: AI streamlines supply chain operations by analysing
large volumes of data to forecast demand, manage stock levels, and improve logistics.
When coupled with a digital twin, AI can build a virtual model of the entire supply
chain, enabling manufacturers to predict and simulate disruptions or shortages in real-
time. Machine learning assists with demand predictions and automates procurement,
ensuring that manufacturers receive materials precisely when needed. AI-driven
order management systems also optimise order fulfilment, ensuring deliveries are
made on time. For example, food manufacturers use AI to anticipate seasonal shifts in
demand, allowing them to better manage resources and reduce waste. This ultimately
boosts operational efficiency and enhances responsiveness to market fluctuations.

7. Inventory management: AI enhances inventory management by analysing data to
predict stock requirements and streamline replenishment. By forecasting demand
and tracking inventory in real-time, manufacturers can ensure optimal stock levels,
lowering storage costs and improving cash flow. For instance, food and beverage
manufacturers use AI systems to monitor ingredient consumption as it happens. This
enables them to predict future needs based on production timelines, seasonal factors,
and historical usage, helping to avoid production disruptions and minimise waste
from excess stock.

8. Energy Management: AI systems track energy consumption in real-time to pinpoint
inefficiencies. These systems can suggest changes that help cut energy costs and
reduce environmental impact. For example, electronic manufacturers use AI-driven
energy management solutions to improve their operations, leading to substantial cost
reductions and a smaller carbon footprint.

Figure 4. AI use cases in Industry 5.0.
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While these AI applications offer significant promise, their deployment in manufacturing
has also revealed critical challenges related to trust, fairness, and explainability. In man-
ufacturing, ªethicalº AI refers to systems that operate transparently, avoid bias, respect
stakeholder values, and ensure accountability for outcomes [12]. However, real-world
failures highlight the complexity of achieving these goals. Given the critical role of AI in
Industry 5.0, industries are increasingly cautious about its adoption due to concerns over
transparency, ethical risks, regulatory compliance, and reliability. Without clear governance
and accountability, AI adoption remains a challenge, particularly in high-risk sectors.

3. Methodology

This study adopts a rigorous, multi-stage methodology to systematically investigate
the challenges and enablers of AI trustworthiness in manufacturing, particularly within
the context of evolving industrial paradigms. The approach highlighted in Figure 5 is
designed to ensure both breadth and depth, combining a comprehensive literature review,
critical analysis of toolkits, and the use of illustrative case studies to provide a holistic
understanding of AI trustworthiness.

Figure 5. Overall methodology.

1. Literature Review and Data Sources: This research begins with an extensive literature
review, targeting peer-reviewed journal articles, conference proceedings, and author-
itative industry reports. Sources are drawn from high-impact databases including
IEEE Xplore, Scopus, Web of Science, and the ACM Digital Library. To ensure rele-
vance and currency, this review is limited to works published within the last decade,
with a particular emphasis on studies addressing AI trustworthiness in manufactur-
ing. In addition, regulatory documents and guidelinesÐsuch as ISO/IEC standards,
the European Union (EU) AI Act, and the Assessment List for Trustworthy Artificial
Intelligence (ALTAI)Ðare included to capture the evolving landscape of ethical and
legal requirements.

2. Systematic Search and Selection: A systematic search strategy is employed, using
targeted keywords such as ªAI trustworthinessº, ªIndustry 5.0º, ªethical AIº, ªtrans-
parency in AIº, ªToolkits in AIº, and ªmanufacturing.º The selection process pri-
oritises studies that address the core dimensions of trustworthy AIÐtransparency,
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fairness, robustness, and accountabilityÐwithin manufacturing contexts. The inclu-
sion of case studies, both of AI successes and failures, provides practical ground-
ing and validation for the findings. To ensure a comprehensive and transpar-
ent literature review, the search strategy involved querying databases using spe-
cific search strings like łAI trustworthinessž AND łmanufacturingž, łAI ethicsž

AND łsmart manufacturingž, and łresponsible AIž AND łindustry 5.0ž. Inclu-
sion criteria were applied to select peer-reviewed articles, conference papers, and rel-
evant reports published between 2015 and 2024, focusing on AI trustworthiness in
manufacturing applications. Exclusion criteria were used to filter out studies that
were not directly relevant to the manufacturing sector or did not address AI trustwor-
thiness. The initial search yielded 500 of articles, which were then screened based on
their titles and abstracts. Full-text reviews were conducted on 300 articles, resulting in
a final selection of 200 articles that met the inclusion criteria.

3. Toolkit Analysis: The analysis is structured around four key dimensions of AI trust-
worthiness: transparency, fairness, robustness, and accountability. For each dimension,
this study critically examines a range of prominent toolkits and frameworks, including
but not limited to AI Explainability 360 (AIX360), SHapley Additive exPlanations
(SHAP), Local Interpretable Model-agnostic Explanations (LIME), AI Fairness 360
(AIF360), FairLearn, IBM Adversarial Robustness Toolbox (IBM ART), and Clever-
Hans. The discussion evaluates the strengths, limitations, and practical applications of
these tools, offering a comprehensive perspective on their contributions to trustworthy
AI in manufacturing. The evaluation criteria included: (1) transparency mechanisms
(e.g., explainable AI (XAI) techniques), (2) fairness metrics and mitigation strategies,
(3) robustness testing and validation methods, (4) accountability frameworks, and
(5) ethical guidelines and compliance support. The toolkits were assessed based on
their functionalities, ease of use, and applicability to manufacturing contexts. The eval-
uation involved a qualitative, comparative analysis, drawing upon expert judgment
to assess the toolkits’ strengths and weaknesses in addressing AI trustworthiness
concerns. A formal numerical scoring system was not used due to the diversity of
toolkit functionalities and the context-dependent nature of manufacturing applica-
tions. Instead, the evaluation focused on providing a nuanced understanding of each
toolkit’s capabilities and limitations in promoting AI trustworthiness.

4. Pipeline and Practical Considerations: The methodology explicitly addresses chal-
lenges across the entire AI pipelineÐfrom data collection and preprocessing to model
training, deployment, and post-deployment monitoring. Special attention is given to
issues such as data quality, interoperability, bias, concept drift, and the integration of
domain expertise.

5. Interdisciplinary and Human-Centric Approach: Recognising the complexity of man-
ufacturing environments, the methodology emphasises interdisciplinary collaboration
among AI developers, domain experts, and end-users. This ensures that technical
solutions are both practically relevant and ethically aligned. The approach is further
informed by the human-centric and sustainable ethos of Industry 5.0, integrating ethi-
cal considerations and stakeholder perspectives at every stage. No new stakeholder
interviews or primary qualitative data were collected; instead, the human-centric
perspective is embedded through the integration of ethical considerations and stake-
holder insights from published qualitative studies and documented experiences.
To illustrate the potential challenges and implications of AI trustworthiness in manu-
facturing, this study employs a series of hypothetical case studies. These scenarios
are not based on specific real-world implementations but are carefully constructed
to represent common AI applications across diverse manufacturing sectors such as
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automotive, aerospace, and electronics. The purpose of these illustrative cases is to
explore potential issues related to transparency, fairness, robustness, and accountabil-
ity that could arise when deploying AI solutions in these contexts. By analysing
these hypothetical scenarios, this study aims to provide insights into the proac-
tive measures and strategies that manufacturing organisations can adopt to ensure
AI trustworthiness.

6. Limitations and Bias Mitigation Strategies: As with any research, this study is subject
to certain limitations. To address potential biases, several mitigation strategies were
implemented throughout the research process. The possibility of selection bias in
the illustrative case studies was reduced by ensuring a diverse representation of
manufacturing sectors and AI application areas. To mitigate publication bias in
the literature review, both peer-reviewed articles and grey literature sources (e.g.,
industry reports; white papers) were considered. The analytical subjectivity inherent
in the toolkit evaluation was addressed through the use of a structured evaluation
framework, clear evaluation criteria, and the involvement of multiple researchers in
the analysis process to promote inter-rater reliability. While these strategies do not
eliminate bias entirely, they significantly reduce its impact on this study’s findings.

7. Synthesis and Research Questions: Findings from the literature, toolkit evaluations,
and case studies are synthesised to identify persistent gaps and emerging best prac-
tices. This study formulates open research questions to guide future inquiry, par-
ticularly regarding the operationalisation of trustworthy AI in dynamic, real-world
manufacturing settings.

By combining a systematic review, critical analysis, and practical validation, this
methodology aims to advance the understanding and implementation of trustworthy, ethi-
cal, and human-centric AI systems in manufacturing, supporting the broader objectives
for manufacturing. The subsequent section examines the major technical, organisational,
and ethical challenges that hinder AI adoption in Industry 5.0 manufacturing. It dis-
cusses issues such as black-box models, data quality, reliability, regulatory uncertainty,
and workforce adaptation.

4. Challenges in AI Adoption for Industry 5.0

AI empowers the manufacturing industry to adapt to changing market demands,
personalise products at scale, and strengthen supply chain resilience through advanced
data analytics and automation. However, its successful integration into Industry 5.0 is not
without challenges. As shown in Figure 6, various technical, organisational, and ethical
barriers must be addressed to ensure AI’s seamless adoption and long-term impact [44].

1. Technical Challenges: A primary technical challenge is the ªblack boxº nature of many
AI models, which lack transparency and make it difficult for operators to trust or verify
their decisions, raising concerns about accountability. The European Commission’s
Ethics Guidelines stress the need for explainable and transparent AI to foster user
trust [45,46]. Another issue is the shortage of high-quality, relevant data for training
AI models. Poor or biased data can lead to inaccurate results and reinforce existing
biases, limiting AI’s effectiveness in manufacturing [47]. Reliability is also a concern,
as AI models that perform well in controlled settings may not replicate their success
under real-world conditions due to variations in data distributions and unforeseen
operational challenges, leading to inconsistent performance and affecting production
quality and efficiency [48].

2. Security and Cybersecurity: Security concerns are paramount, as AI systems are
susceptible to cyber threats that can compromise sensitive industrial data and dis-
rupt operations. For example, adversarial attacks on machine learning models can
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manipulate outputs or cause system failures. The NIST Cybersecurity Framework
and ISO/IEC 27001 provide standards for securing industrial AI systems, but their
implementation in dynamic manufacturing environments remains challenging [49,50].

3. Ethical and Regulatory Challenges: Ethical considerations further complicate AI adop-
tion. The potential for AI systems to perpetuate biases or make decisions that lack
fairness necessitates the development of robust ethical frameworks. The European
Commission’s guidelines advocate for AI that is lawful, ethical, and robust, ensuring
adherence to principles such as fairness, accountability, and respect for privacy [45].
Regulatory uncertainty is a significant barrier, particularly where existing regulations
conflict with AI optimisation. For instance, the General Data Protection Regulation
(GDPR) mandates the right to explanation for automated decisions, which can conflict
with the opacity of some machine learning models. This tension between data privacy
and model transparency creates compliance challenges for manufacturers seeking
to deploy advanced AI solutions [51]. The absence of standardised regulations and
governing bodies for AI in manufacturing further exacerbates uncertainty, making it
difficult for companies to ensure compliance and align with best practices. The Eu-
ropean Commission’s ALTAI aims to provide actionable guidance to address these
issues [52].

4. Organisational and Workforce Barriers: The human-centric approach of Industry
5.0 emphasises the importance of collaboration between AI systems and human work-
ers. Bridging the skills gap through targeted education and training programs is vital
to equip the workforce with the necessary competencies to effectively interact with
AI technologies [53]. Organisational resistance to change, lack of digital maturity,
and insufficient leadership support can also hinder successful AI adoption.

5. Barriers for SMEs versus Large Manufacturers: Small and medium-sized enterprises
(SMEs) face unique barriers compared to large manufacturers. SMEs often lack the
financial resources, technical expertise, and access to high-quality data required for
effective AI implementation. The cost of acquiring, integrating, and maintaining
AI systems can be prohibitive, and SMEs may struggle to attract or retain skilled
personnel. In contrast, large manufacturers typically have greater capacity to invest
in digital infrastructure, data management, and workforce development, enabling
them to overcome many of these barriers more readily. As a result, the digital divide
between SMEs and large enterprises may widen, limiting the broader impact of AI in
the manufacturing sector [54].

Figure 6. AI adoption challenges in Industry 5.0.
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5. Importance of AI Trustworthiness

AI systems are revolutionising various aspects of life, from recommending movies
to diagnosing illnesses, assisting customers, and much more [55]. While AI offers a vast
range of applications, its rapid advancement has also sparked significant concerns. The late
Stephen Hawking once warned that ªIf not properly regulated, AI has the potential to
become the greatest threat to humanityº [56].

Today, AI plays a crucial role in decision-making across multiple industries, but its
outcomes are not always favourable. The growing reliance on AI brings a significant
responsibility to ensure that these systems do not cause harm to humanity. However, there
have been instances where AI has failed, leading to severe consequences. For example,
the Correctional Offender Management Profiling for Alternative Sanctions (COMPAS)
algorithm, widely used in the United States (US) to predict criminal recidivism risk, was
found to exhibit racial bias against Black individuals [57]. A facial recognition system
misclassified Black people due to poor-quality training data [58]. Similarly, a major tech
company’s AI-driven resume screening system displayed bias against women [59]. These
cases illustrate how bias can distort the decisions of black-box AI models, leading to unfair
and harmful outcomes.

In some situations, AI has even resulted in physical harm due to system failures.
One such case involved a self-driving car that struck and killed a pedestrian because
its algorithm malfunctioned and failed to respond correctly when detecting a person
on the road [60]. Moreover, the complexity of AI models makes it difficult to interpret
their decision-making process, limiting their adoption and effectiveness. For instance,
the research [61] found that despite their potential benefits, AI-powered medical diagnosis
support systems have seen limited adoption among healthcare professionals. This reluc-
tance stems from the lack of interpretability in these systems, reducing doctors’ trust and
willingness to use them. AI systems have now reached a level of performance that allows
them to be widely integrated into society. These technologies are already reshaping people’s
daily lives [62]. However, despite their usefulness, this does not automatically mean they
are reliable or trustworthy. A casual approach toward AI is unacceptable, especially in
high-risk applications where a single wrong decision can have severe consequences. These
systems can be fragile and prone to bias.

Marcus and Davis [63] provide a compelling example using facial recognition technol-
ogy to illustrate the necessity of trustworthy AI. If such software is used for automatically
tagging individuals in social media photos, a lower degree of accuracy may be tolerable.
However, the same system becomes unacceptable when employed by law enforcement to
identify suspects from surveillance images. This contrast highlights how AI is more readily
adopted when errors do not pose serious risks to individuals or society.

To maximise the benefits of AI in critical applications and encourage broader adop-
tion, it is essential to understand the reason behind the decision taken by an AI system.
The following section outlines key requirements necessary to ensure AI systems are safe,
reliable, and trustworthy.

6. Factors Defining AI Trustworthiness

In recent years, numerous research institutions, private companies, and government
bodies have introduced various frameworks and guidelines aimed at ensuring that AI
is trustworthy [61,64±68]. However, the overwhelming number of proposed principles
has made it challenging to establish a unified set of standards. To address this issue,
some researchers [15,69] have analysed and compared these principles to identify areas
of consensus. Their findings indicate an emerging agreement on five key principles:
transparency/explainability, justice and fairness, non-maleficence (which includes societal
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and environmental well-being), responsibility/accountability, and privacy. These principles
appear more frequently in different frameworks compared to others.

To align with this analysis and adhere to one of the earliest government-backed
AI frameworks, we have chosen the EU’s framework for trustworthy AI [61], which
incorporates all five principles while also emphasising the human-centred aspect of AI.

The EU outlined three core guidelines that AI systems should follow to be considered
trustworthy: they must be lawful, ethical, and robust. Lawfulness ensures that AI devel-
opment, deployment, and usage comply with existing regulations. Ethical considerations
require AI to respect human values and moral principles. Robustness emphasises that
AI must be technically reliable while also adhering to legal and ethical standards. These
guidelines provide a foundational structure for developing and deploying AI responsibly.

To operationalise these guidelines and enhance AI trustworthiness, the EU [61], intro-
duced four ethical principles, each supported by seven key requirements, as summarised in
Figure 7 [70,71]. The first principle, respect for human autonomy, ensures AI complements
human decision-making rather than replacing it. The second principle, prevention of
harm, guarantees that AI functions as intended without causing unintended damage to
individuals or society. The third principle, fairness, ensures AI systems treat all individuals
and social groups equitably, without bias or discrimination. Lastly, the fourth principle, ex-
plainability, ensures AI systems remain transparent and interpretable. These principles are
explained through the following key requirements, which align with the aforementioned
ethical principles:

1. Human Agency and Oversight: AI systems should support and enhance human
decision-making rather than replace it. Human involvement should be proportional
to the risks and societal impact of AI’s decisions [72,73].

2. Technical Robustness and Safety: AI systems must be reliable and function as intended.
They should be capable of recovering from failures without harm and handle errors
throughout the AI lifecycle. The system must also resist external threats and produce
reproducible results [29].

3. Privacy and Data Governance: AI systems must safeguard user data throughout its
lifecycle, ensuring compliance with data protection regulations like the General Data
Protection Regulation (GDPR). Sensitive data must be protected from misuse [74].

4. Transparency: AI systems should be understandable, with decisions that can be
explained, interpreted, and reproduced. Stakeholders should fully grasp the system’s
performance and limitations [75,76].

5. Diversity, Non-discrimination, and Fairness: AI systems must ensure fairness, treating
all societal groups equally and avoiding any form of discrimination, whether direct or
indirect [77].

6. Societal and Environmental Well-being: AI systems should not harm society or the
environment during their development, operation, or use [61].

7. Accountability: AI systems must be capable of justifying their decisions. There should
be mechanisms for assigning responsibility for both correct and incorrect outcomes,
along with regular audits to prevent harm [78].
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Figure 7. Trustworthy AI framework.

6.1. Explainability

Explainability is key to ensuring that the rationale behind AI-driven decisions is clear,
supporting transparency and making the system easier to interpret. This can lead to system
improvements and stronger governance practices [79±83].

AI systems that offer clear explanations help identify flaws and vulnerabilities, con-
tributing to the overall trustworthiness of the system [84,85]. Users have the right to
understand how an AI system produces results, including insight into the system’s
decision-making process, the data used to train it, and the criteria used to evaluate its
outcomes [86±88]. Additionally, AI systems should offer explanations that cater to a wide
range of users, each with varying levels of expertise and specific needs [89]. When users
comprehend the reasons behind an AI system’s decisions, their trust in the system in-
creases [90]. It is important to recognise that explanations vary depending on their intended
purpose and the user’s background, resulting in different approaches to interpretability,
such as global and local interpretability [91,92]. Global interpretability aims to explain
the overall workings of an AI system, providing a high-level view of how decisions are
made. This type of interpretability is typically used in large-scale applications like climate
modeling [93], where practical challenges arise due to its scale. On the other hand, local
interpretability is more focused on explaining individual decisions made by the AI system,
offering more immediate and context-specific insights. The timing and relevance of these
explanations are determined by the data used and the stage of decision-making [94,95].
Local interpretability can be further divided into two types: ex ante and ex post explana-
tions [96]. Ex ante explanations describe how the system works and is designed before
it is used, ensuring that it is adequately tested and reliable. Ex post explanations, how-
ever, clarify the reasons behind decisions after they are made, validating the assumptions
established by the ex ante explanations [97]. As outlined by ISO [98], both ex ante and
ex post explanations are critical components of an AI system’s trustworthiness through
transparency and interpretability.

Current methods for ensuring explainability primarily address the needs of developers
and designers, aiding in debugging and oversight [99]. However, more suitable approaches
are needed to address the needs of non-expert users, bridging the gap between transparency
and actual implementation [100]. In this context, the toolkits highlighted in Figure 8 and
explained in Table 1 provide a variety of approaches to AI explainability, each designed to
tackle different aspects of model transparency. For example, AI Explainability 360 (AIX360)
and Local Interpretable Model-agnostic Explanations (LIMEs) focus on providing local
explanations and enhancing trust through user-friendly models, which can be particularly
helpful for non-expert users who may not have a deep understanding of machine learning.
On the other hand, Shapley Additive Explanations (SHAPs) offers both global and local
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explanations that help users understand feature importance in a more comprehensive
manner, which could be useful in settings requiring a higher degree of interpretability.

Table 1. Comparison of AI explainability toolkits.

Toolkit Pros Cons Use Cases

AI Explainability 360
(AIX360) [101]

Comprehensive set of algorithms
covering various

explanation dimensions.

Steep learning curve due to broad
feature set.

Understanding and interpreting
predictions from complex
machine learning models.

Supports multiple data types,
enhancing versatility.

Some algorithms may require
substantial

computational resources.

Ensuring transparency and
trustworthiness in AI-driven
decision-making processes.

Developed by IBM, ensuring
reliability and

community support.

LIME
(Local Interpretable
Model-agnostic
Explanations) [102]

Provides local explanations by
approximating complex models

with simpler ones.

Local explanations may not fully
capture global model behaviour.

Explaining individual predictions
in domains like healthcare

and finance.

Model-agnostic; applicable to
various machine learning models.

Performance can be affected by
noisy data, leading to

inconsistent interpretations.

Assisting in debugging and
improving model performance by

understanding specific
decision paths.

Enhances user trust through
understandable explanations.

SHAP
(Shapley Additive
Explanations) [103]

Offers both global and local
explanations, providing a

comprehensive view of
model behaviour.

Computationally intensive,
especially with large datasets and

complex models.

Assessing feature importance in
predictive models.

Based on solid game-theoretic
foundations, ensuring consistent

and fair feature
importance values.

Requires careful handling of
feature interactions to avoid
misleading interpretations.

Enhancing model transparency in
sectors like finance and healthcare

by elucidating the impact of
individual features on predictions.

XAITK
(Explainable AI Toolkit) [104]

Provides a suite of tools for
analysing and understanding

complex machine
learning models.

May require integration efforts
with existing workflows.

Analysing and interpreting
complex machine learning models

across various domains.

Includes analytics tools and
methods for interpreting models,

supporting various
explanation techniques.

Documentation and community
support might be less extensive

compared to more
established toolkits.

Supporting research and
development in AI transparency

and accountability.

Quantus [105]

Offers a collection of evaluation
metrics for assessing the quality

of explanations.

Primarily focused on evaluating
explanations rather than

generating them.

Evaluating the effectiveness of
different explainability methods.

Facilitates the comparison of
different explanation methods.

May require additional tools or
methods for

generating explanations.

Assisting researchers in selecting
appropriate explanation

techniques for their models.
Aids in identifying the most

effective explanation techniques
for specific models.

Furthermore, concerns about privacy and security can deter organisations from adopt-
ing AI solutions. Therefore, approaches that guarantee explainability while safeguarding
privacy and security must be carefully developed [106±109]. Some of these toolkits, such
as Quantus and Explainable AI Toolkit (XAITK), focus on evaluating and ensuring the
robustness of explanation methods, which could be crucial for addressing privacy concerns
by ensuring the fairness and transparency of AI systems without exposing sensitive data.
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Figure 8. Explainability AI toolkits.

6.2. Accountability

To prevent algorithmic decision-making from leading to harmful outcomes, it is crucial
to carefully oversee the design, deployment, and operation of these algorithms. Since
algorithms are computer programs trained on data, those involved in their creation and user
must take responsibility for any unintended consequences that arise [110±112]. In [78], the
author characterises accountability as a collaborative effort, where different stakeholders
are assigned responsibilities at various stages of the AI lifecycle. Essentially, ensuring
accountability in algorithmic decision-making requires evaluating these systems against
relevant standards and clearly defining the roles of those responsible for their development.

The increasing dependence on algorithmic decision-making (DM), particularly in
high-risk environments, emphasises the need for strong accountability mechanisms. These
algorithms must be designed, developed, and implemented in a reliable and secure man-
ner to prevent potential failures. System malfunctions can have severe consequences,
as demonstrated by the Boeing aircraft crash, which resulted in 346 fatalities due to soft-
ware defects [113]. Similarly, Volkswagen encountered significant challenges with the
software architecture of its electric vehicles, and a facial recognition system exhibited bias,
disproportionately impacting women and individuals with darker skin tones [114]. Effec-
tive monitoring of these algorithms could help prevent such issues. However, assigning
responsibility for these failures is complexÐshould the blame fall on developers, data col-
lectors, or users trained to operate the system? The ambiguity surrounding accountability
highlights the necessity for a well-structured framework [115,116].

Several strategies can enhance accountability in algorithmic DM. These include in-
corporating accountability measures into the algorithm’s design, increasing transparency,
and enforcing stringent regulations and policies to improve oversight. Since account-
ability is a dynamic process [117,118], establishing it requires comprehensive governance
throughout the AI lifecycle and active collaboration among all stakeholders [119]. However,
pinpointing liability in the event of a system failure is challenging, as multiple parties are
typically involved in the development process. Accountability measures should be tailored
to specific applications, as a universal framework may not be suitable for all domains.
To enhance governance, it is recommended to implement context-specific accountability
strategies [98]. For example, ISO standards address accountability in medical AI systems
and AI-driven hiring tools. In medical AI, healthcare providers bear responsibility for any
harm caused, as they are experts in their field and the system is intended only to support
their decision-making. Conversely, in AI-based recruitment systems, users are not held
accountable for negative outcomes since they lack insight into why their application was
rejected. This distinction underscores the importance of designing accountability measures
that align with the specific context of each application [120].
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6.3. Fairness

AI-driven systems and algorithms process vast amounts of data and logical rules
to perform specific tasks and support decision-making. Given the significant role these
systems play in everyday activities and operations, it is crucial to ensure they function
without bias. A fair AI system should not discriminate against any individual or societal
group [77]. The concept of fairness is closely aligned with ethical principles and moral
values [121±124].

When AI systems are designed, developed, implemented, or monitored unfairly, they
can produce harmful outcomes. Numerous cases illustrate the consequences of biased AI.
For example, a judicial system was found to incorporate a flawed risk assessment tool that
disproportionately discriminated against individuals with darker skin tones [125]. Simi-
larly, a prominent technology company faced scrutiny for using a biased hiring algorithm
that disadvantaged women [126]. Research has also revealed that certain predictive analytic
tools used in child maltreatment screenings unfairly discriminated against marginalised
groups based on race and socioeconomic status [127]. Several factors influence the trustwor-
thiness of AI, including biases in data, models, and evaluation processes. Given the critical
importance of fairness in AI, various studies have attempted to define the concept, yet there
is no universally accepted definition. Some researchers have analysed and compared differ-
ent interpretations of fairness in AI [122]. Generally, fairness in AI is context-dependent,
meaning its definition varies based on how and where AI is applied. The two primary
categories of fairness in AI are individual fairness and group fairness [122]. Individual fair-
ness ensures that individuals within the same category receive consistent predictions [128].
This concept is associated with fairness through awareness [128] or unawareness [129],
as well as counterfactual fairness [130,131]. On the other hand, group fairness focuses on
equitable treatment across different societal groups [132]. Various methods are used to
evaluate fairness in AI, such as demographic parity, which ensures balanced representa-
tion across groups, equalised odds, which accounts for fairness in prediction outcomes,
equal opportunity, which focuses on equitable access to favourable results, and conditional
statistical parity, which adjusts fairness based on specific conditions [131,133±135].

Beyond defining fairness, various approaches have been developed to promote fairness
in AI. However, identifying a single universal method to detect and eliminate all types of
bias remains challenging. In [136] the authors highlighted the need for further research to
explore different perspectives on fairness, particularly within AI applications, as certain
systems may be more vulnerable to specific biases than others. Establishing comprehensive
frameworks and policies that define fairness in AI based on application context is essential.
Additionally, stakeholders may have differing interpretations of fairness, emphasising
the need for inclusive discussions to enhance AI trustworthiness. Strengthening testing
protocols and implementing effective measures to detect and mitigate bias in AI systems is
also vital [137].

To effectively address bias and ensure fairness in AI systems, various toolkits have
been developed to assess and mitigate discriminatory outcomes. These toolkits provide di-
verse methodologies for evaluating fairness, offering both technical and ethical approaches.
The Tables 2 and 3 presents a comparative analysis of prominent AI fairness toolkits, high-
lighting their strengths, limitations, and application areas. Understanding these toolkits
can be helpful for selecting the most suitable framework based on the specific needs of
an AI system. Additionally, Figure 9 provides a visual representation of this comparison,
further aiding in the evaluation and selection process.
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Table 2. Summary of AI fairness toolkits (Part 1). These toolkits are used to assess and mitigate bias
in AI systems, ensuring fairness in decision-making processes.

Toolkit Name Advantages Disadvantages Use Cases

IBM AI Fairness 360
(AIF360) [138]

Open-source toolkit for bias
detection and mitigation.

Focuses primarily on fairness,
may not address other ethical

AI dimensions.

Evaluating and mitigating
bias in hiring, loan approvals,

and other
decision-making systems.

Provides a comprehensive set
of metrics and algorithms for

bias mitigation.

Can be complex to implement
in production systems.

Improving fairness in public
services, education,

and financial systems.
Highly customisable and

suitable for
large-scale applications.

May require significant
computational resources.

Ensuring fairness in
automated systems such as
hiring and loan approvals.

Microsoft FairLearn [139]

Provides fairness assessment
and bias mitigation tools.

Requires technical expertise
for implementation.

Fairness assessment in
machine learning models,

especially in
enterprise settings.

Supports multiple fairness
metrics and

mitigation strategies.

Limited documentation for
non-technical users.

Ensuring fairness in predictive
models used in hiring, finance,

and healthcare.

Enables easy integration with
scikit-learn models.

Limited flexibility in
non-enterprise applications.

Used for bias mitigation
in sensitive

decision-making systems.

Google What-If Tool [140]

Interactive tool for exploring
model predictions

and fairness.

Limited to
TensorFlow models.

Analyzing fairness in
predictive models, such as

fraud detection and
medical diagnoses.

Allows visual exploration of
bias and fairness across

model predictions.

Not suitable for
non-TensorFlow
based models.

Used for exploring fairness in
machine learning models for

fraud detection and
healthcare applications.

Easy-to-use interface for
non-technical stakeholders.

Can be time-consuming for
large datasets.

Assessing fairness in machine
learning applications for

public policy and
social justice.

Aequitas [141]

Focuses on bias and fairness
in decision-making systems.

Limited scope for other ethical
AI principles.

Bias detection in public policy
and social justice applications.

Designed to be used
with real-world

decision-making data.

Does not provide technical
tools for bias mitigation.

Used for fairness assessments
in hiring, criminal justice,
and education systems.

Strong documentation and
user support.

Not highly customisable for
complex AI systems.

Ensuring fairness in
decision-making systems

related to government and
social issues.

ML Fairness Gym [142]

Simulates long-term impacts
of fairness interventions.

Requires expertise in
simulation modeling.

Evaluating fairness in
dynamic systems like credit

scoring and hiring.
Provides an interactive
environment for testing
fairness interventions.

High computational cost for
large simulations.

Used for understanding
fairness in long-term

decision-making systems.
Supports a range of fairness

interventions for
experimentation.

Simulation results may not
generalise to all

real-world scenarios.

Assessing fairness in evolving
applications such as credit

scoring and insurance.
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Table 3. Summary of AI fairness toolkits (Part 2). These toolkits are used to assess and mitigate bias
in AI systems, ensuring fairness in decision-making processes.

Toolkit Name Advantages Disadvantages Use Cases

AINow Algorithmic Impact
Assessment Toolkit. [143]

Engages stakeholders in
assessing fairness and
ethical implications.

Limited technical tools for
bias mitigation.

Assessing fairness in
community-focused

AI applications.
Provides a structured
framework for ethical

AI assessments.

Limited to ethical assessments
rather than

technical solutions.

Used for impact assessments
in AI systems affecting

marginalised communities.
Emphasises the importance of

human oversight in AI
decision-making.

Lacks deep technical fairness
metrics and algorithms.

Assisting in responsible AI
implementation in

public services.

DotEveryone Consequence
Scanning Toolkit

Open-source; minimal
resources required; focuses on

societal impacts.

Requires a strong facilitator,
which may be a barrier

for SMEs.

Conceptualising AI systems
with societal and

environmental considerations.
Helps in identifying the
societal consequences of

AI deployments.

Primarily focused on societal
impact rather than
technical fairness.

Used for ethical evaluations of
AI systems in public policy,
education, and healthcare.

Allows for early detection of
ethical and social risks in

AI systems.

Lacks comprehensive tools for
technical fairness evaluation.

Ensuring societal
considerations are addressed

in AI-based systems.

Data Ethics
Impact Assessment [144]

Integrates data ethics into AI
development processes.

Limited to ethical assessments,
not technical bias mitigation.

Ethical assessments in AI
systems for public and

private sectors.

Focuses on the ethical
implications of data usage and

AI models.

May not address technical
fairness challenges directly.

Used in ensuring data usage
complies with ethical

standards in sectors like
healthcare and government.

Provides an important
framework for responsible

AI development.

Does not provide tools for
bias correction or mitigation.

Ensuring ethical and fair data
usage in AI systems for

social justice.

Veritas Fairness
Assessment Methodology. [145]

Developed for financial
systems; focuses on fairness

and transparency.

Limited adoption outside the
finance industry.

Fairness assessments in credit
scoring and

insurance systems.
Strong focus on transparency

and accountability in
financial applications.

Not widely applicable to
non-financial systems.

Used in fairness evaluations
of automated financial

decision-making systems.

Tailored for regulatory and
compliance environments.

Limited support for
non-financial use cases.

Ensuring fairness in
automated decision-making

systems in banking
and finance.

Assurance Cases for
Fairness. [146]

Provides structured
arguments for fairness claims.

Requires domain expertise
and collaboration for

effective implementation.

Ensuring fairness in AI
systems for healthcare

and education.
Useful in establishing

transparency and
accountability for
fairness claims.

May require significant
resources to build effective

assurance cases.

Used in verifying fairness in
AI-based healthcare and

educational systems.

Focuses on providing
evidence-based assurance

for fairness.

Limited scalability to large
AI systems.

Ensuring trust and
accountability in AI systems

in sectors with high
public scrutiny.
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Figure 9. AI fairness toolkits.

6.4. Robustness

Robustness refers to the capability of an algorithm or system to handle execution
errors, unexpected inputs, or unfamiliar data effectively. It is a crucial factor influencing
the dependability of AI systems in practical settings. Insufficient robustness can lead to
unintended consequences or hazardous behaviour, compromising both safety and trust.
Within the domain of machine learning, robustness covers various aspects. In this re-
view, we categorise AI system vulnerabilities into three primary levels: data, algorithms,
and system robustness.

1. Data Level Robustness: A model trained on limited datasets that do not reflect
real-world variations may suffer significant performance degradation. One major
challenge is a distributional shift, where the data seen during deployment differs from
the training data, affecting model reliability [147]. This issue is particularly concerning
in safety-critical domains. For example, in autonomous driving, AI models must
function under a range of environmental conditions. While a system trained in sunny
weather may perform well, its effectiveness in night time or rainy conditions could
be severely reduced. To address this, researchers and industry professionals employ
extensive testing and development strategies to improve AI perception under varying
weather conditions, ensuring consistent performance [148,149].

2. Algorithm-Level Robustness: AI models can be vulnerable to adversarial attacks,
where maliciously modified inputs deceive the system. These attacks have raised
concerns in both academia and industry, leading to extensive research on threat classi-
fication and defence mechanisms [150±154]. Adversarial attacks can be categorised
based on their timing:

• Decision-Time Attacks: These involve modifying input samples in real-time to
manipulate the model’s predictions. Attackers may use such methods to bypass
security mechanisms or impersonate legitimate users [155].

• Training-Time Attacks (Poisoning Attacks): In this approach, adversaries intro-
duce deceptive samples into the training data, influencing the model’s learning
process and altering its behaviour in specific situations [155].

Another important classification is based on the space in which attacks are conducted:

• Feature-Space Attacks: Traditional adversarial methods directly alter input fea-
tures to deceive the model.

• Problem-Space Attacks (Entity-Based Attacks): Instead of modifying digital
data, attackers alter physical objects to manipulate AI recognition. For example,
a person wearing specially designed adversarial glasses could bypass a facial
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recognition system [156,157]. Apart from adversarial attacks, model stealing
(exploratory attacks) is another significant threat. These attacks do not directly
alter model behaviour but extract knowledge about the AI system, which can
later be exploited to craft more effective adversarial samples [158].

3. System-Level Robustness: AI systems must be designed to handle a wide range of unex-
pected or illegal inputs in real-world applications. Practical cases include the following:

• Unanticipated Inputs: For instance, an image with an extremely high resolution
might cause an AI-based image recognition system to crash.

• Sensor Interference: In autonomous vehicles, a lidar system might misinterpret
signals from other vehicles, leading to corrupted input data.

• Spoofing Attacks: Attackers may use fake inputsÐsuch as printed photos
or masksÐto deceive biometric authentication systems, raising security con-
cerns [159]. To mitigate these risks, defensive mechanisms are categorised as
either proactive or reactive [160]. Proactive defences aim to strengthen AI models
against diverse inputs, making them inherently robust. Reactive defences focus
on detecting adversarial samples or identifying anomalies in data distribution.

4. Evaluating Robustness: Assessing robustness is crucial for detecting vulnerabilities
and managing risks. Two primary evaluation methods are robustness testing and
mathematical verification.

• Robustness Testing Testing plays a key role in validating AI robustness, just
as it does in traditional software development. Techniques such as monkey
testingÐwhich uses randomised inputs to check system stabilityÐcan be applied
to AI models [161]. Additionally, software testing methodologies have been
adapted to assess AI resilience against adversarial attacks [162,163].
Another common method is performance testing (benchmarking), which evalu-
ates model robustness using test datasets with varying distributions. One widely
used metric is the minimal adversarial perturbation, which measures the smallest
modification needed to mislead an AI model. Another key evaluation metric is
the attack success rate, which reflects how easily an adversary can compromise
the system [164,165].

• Mathematical Verification Borrowed from formal verification methods, math-
ematical validation techniques are increasingly used to assess AI robustness.
For instance, researchers derive certified lower bounds on the minimum distor-
tion required for an adversarial attackÐa measure of how resistant a model is to
adversarial manipulations [166,167].

To enhance AI robustness, researchers and practitioners have developed specialised
toolkits that help assess, mitigate, and defend against various vulnerabilities. These toolkits
provide methods for robustness testing, adversarial attack detection, and model harden-
ing, ensuring AI systems perform reliably across different conditions. Table 4 presents a
comparative overview of key robustness toolkits, highlighting their functionalities, advan-
tages, limitations, and practical use cases. Figure 10 further illustrates this comparison
through a visual representation, providing additional clarity for evaluating these toolkits.
The next section analyses how these trustworthiness factors are addressed across the entire
AI pipeline, from data collection to model deployment. It formulates research questions and
highlights practical challenges and best practices for ensuring trustworthy AI in real-world
manufacturing settings.
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Table 4. Comparison of AI robustness toolkits.

Toolkit Pros Cons Use Cases

IBM ART [168]

Supports multiple
ML frameworks

Can be complex to set up
Security testing for AI in

finance & healthcare

Offers both attacks & defences Some attacks are slow
Adversarial training for

robust AI models
Includes explainability tools

CleverHans [169]

Well-documented Limited defence techniques
Evaluating deep learning

model security
Strong focus on

adversarial attacks
Primarily TensorFlow-focused

Research on
adversarial robustness

Open-source and widely used

Foolbox [170]

Simple API for
adversarial attacks

Lacks built-in
defence mechanisms

Red teaming for AI security

Works with PyTorch,
TensorFlow, JAX

Not as actively maintained
as ART

Benchmarking
model vulnerability

Optimised for speed

MIT Robustness [171]

Designed for
adversarial training

Focused on image
classification tasks

Adversarial training in
computer vision

PyTorch support
Limited support for
non-vision models

Research in
robustness techniques

Provides pre-trained
robust models

DeepRobust [172]

Supports both graph and
image-based AI models

Requires deep understanding
of adversarial learning

AI security in social networks
(graph AI)

Covers attacks and defences
Not as widely adopted as ART

or CleverHans
Robustness evaluation for

medical AI models
Provides benchmark datasets

AdverTorch [173]

PyTorch-based attack toolkit Native PyTorch support
Developing adversarial

defences in PyTorch
Various attack

implementations
Limited to PyTorch ecosystem

Generating
adversarial examples

Focus on adversarial training
Robust training

pipeline integration

Robustness Gym [174]

Robustness
benchmarking suite

Modular and extensible
Evaluating NLP

model robustness

Supports data transformations Primarily NLP-focused
Stress-testing AI models

in production

Model evaluation techniques
Enhancing general AI

model reliability

TRADES [175]

Trade-off between robustness
and accuracy

Strong theoretical backing
Improving robustness

in DNNs
Adversarial

training framework
Requires deep ML expertise

Research on robust AI
training methods

Defence against
adversarial perturbations

Defending against
adversarial attacks

AutoAttack [176]

Ensemble adversarial
attack method

Strong attack performance
Benchmarking

adversarial robustness

Automates attack selection Limited flexibility for defences
Validating

adversarial defences

Works on image classifiers
Testing robustness in

computer vision

RobustBench [177]

Maintains a leaderboard of
robust models

Limited set of attacks
compared to ART

Benchmarking AI robustness
in academia

Easy benchmarking
of defences

Mostly vision-focused
Comparing

adversarial defences
Open-source
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Figure 10. AI robustness toolkits.

7. Challenges in the AI Pipeline: From Data Collection to
Model Deployment

While the principles of AI trustworthinessÐtransparency, fairness, robustness,
and accountabilityÐare well established in the literature, their practical realisation in
manufacturing environments presents unique challenges and opportunities. This review
bridges the theoretical and practical dimensions by mapping these core principles onto
concrete factory-level scenarios. For example, transparency is operationalised through
the deployment of explainable AI (XAI) tools that allow production engineers to interpret
and validate machine learning predictions for quality control, thereby increasing trust in
automated inspection systems. Fairness is addressed by monitoring and mitigating biases
in predictive maintenance algorithms, ensuring that all equipment types and production
lines receive equitable attention, rather than favouring those with more historical data.
Robustness is exemplified by the implementation of adversarial testing protocols in digital
twins, which simulate unexpected disruptionsÐsuch as sensor failures or supply chain
shocksÐto assess the resilience of AI-driven decision systems. Accountability is rein-
forced through the establishment of clear audit trails and responsibility matrices, enabling
traceability of AI-driven decisions and facilitating compliance with regulatory standards.
The practical realisation of these strategies often necessitates interdisciplinary collabora-
tion. For instance, in the deployment of predictive maintenance systems, data scientists,
manufacturing engineers, and ethicists have worked together to design algorithms that
are not only technically robust but also transparent and fair in their recommendations.
Such collaborations ensure that AI solutions are informed by domain expertise, ethical
considerations, and operational realities, thereby enhancing both societal impact and user
acceptance. By providing these scenario-based insights, this review demonstrates how the
abstract dimensions of AI trustworthiness can be translated into actionable strategies and
best practices for factory operations. This theoretical±practical integration not only supports
the adoption of trustworthy AI in manufacturing but also aligns with the broader objectives
of Industry 5.0, which emphasise human-centricity, sustainability, and ethical responsibility
in industrial innovation. However, even with these strategies in place, manufacturing is
undergoing a radical transformation driven by AI, particularly within the framework of
Industry 5.0, which emphasises human±machine collaboration. AI technologies are central
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to this transformation, enabling smarter, more efficient, and adaptable operations [1]. Yet,
the adoption of AI is not without challenges. Each step in the AI pipelineÐfrom data
collection to model deployment and post-deployment monitoringÐpresents unique hur-
dles that impact the overall trustworthiness and effectiveness of AI solutions. Addressing
these challenges requires a careful balance between technical innovation, robust ethical
frameworks, and organisational transformation [178].

The development of AI models follows a structured pipeline shown in Figure 11,
ensuring a systematic approach to creating reliable and trustworthy systems. The process
begins with data collection, where data is gathered from various sources such as servers and
IoT devices. This data forms the foundation for building AI models. Once collected, the data
is securely stored in data storage systems, including databases like MySQL, PostgreSQL,
and MongoDB, as well as cloud-based storage buckets such as Amazon S3, Google Cloud
Storage, and Microsoft Azure Blob Storage. These systems ensure the data is organised,
accessible, and ready for further processing [179].

Figure 11. AI model development stages.

In the data processing stage, the raw data is filtered to remove noise and irrelevant
information, and it is transformed into a usable format. This step ensures the data is clean,
consistent, and ready for analysis. The processed data is then stored again in storage
systems to maintain its integrity and accessibility for subsequent stages [180].

The next step is model training, where analysts and machine learning engineers use
the processed data to train AI models. This involves designing algorithms that learn
patterns and make predictions based on the data. For example, in manufacturing, AI
models may be trained to predict equipment failures, optimise production schedules,
or improve quality control. After training, the models undergo model evaluation, where
their performance is rigorously tested to ensure they meet the required standards of
accuracy, fairness, and robustness. This step is critical in manufacturing, as any inaccuracies
in predictions or decisions can lead to costly disruptions or defects [181].

Finally, the validated models are integrated into production systems during the model
deployment stage. Here, the models are used to perform real-world tasks, such as pre-
dictive maintenance, quality inspection, or supply chain optimisation. Post-deployment
monitoring ensures that the models continue to perform effectively, addressing issues such
as data drift, performance degradation, and cybersecurity risks. For instance, in man-
ufacturing, continuous monitoring can help detect changes in production conditions or
equipment behaviour that may affect the model’s accuracy [182].
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This structured pipeline ensures a systematic approach to AI development, enabling
the creation of transparent and reliable AI systems in manufacturing. However, each
stage of this pipeline presents unique challenges, such as ensuring data quality, addressing
biases, and maintaining model robustness in dynamic manufacturing environments. These
challenges must be addressed to fully realise the potential of AI in manufacturing and
to build systems that are not only effective but also trustworthy and aligned with the
principles of Industry 5.0. As AI systems progress through each stage of the manufacturing
pipeline, trustworthiness can gradually erodeÐa process known as ªtrust leakage.º Small
issues like data bias or reduced robustness, if not addressed early, may be amplified in later
stages [27]. In the following subsections, we discuss how trust leakage can arise at each
phase and strategies to mitigate these risks.

7.1. Data Collection

The data collection stage is fundamental to manufacturing AI, with data sourced from
IoT sensors, legacy equipment, and digital systems. However, manufacturing data is often
noisy, incomplete, and inconsistent, making it especially vulnerable to bias and privacy
issues. If these challenges are not addressed early, they can propagate through the pipeline
and compromise the fairness and reliability of AI models [183]. See Box 1.

Box 1. Illustrative example 1.

A global leader in sustainable manufacturing shown in Figure 12 has implemented an AI-driven
smart factory to produce environmentally friendly products. The factory integrates AI across its
operations, including supply chain management, production optimisation, predictive maintenance,
and employee monitoring, with the goal of improving efficiency, reducing costs, and meeting
sustainability targets. However, as the factory scales its AI systems, several challenges emerge.
The organisation collects data from multiple sources, such as supplier databases, IoT sensors,
and customer feedback, but faces issues with data interoperability due to inconsistent formats
and schemas. For example, supplier data may use different terminologies, and IoT sensors from
various vendors often produce incompatible data, leading to errors in supplier evaluation and
production scheduling. Additionally, the reliability of external data sources becomes a concern
when inaccurate information, such as incorrect carbon footprint data for materials, damages the
organisation’s reputation when the error is discovered.
Bias in historical data further complicates matters, as supplier selection models may favour long-
term suppliers over new, innovative ones, and shopfloor automation systems might fail to recognise
diverse accents and voices due to insufficiently inclusive training data. Predictive maintenance
systems can also exhibit regional bias, relying on data from older machines predominantly used
in one region, which results in inaccurate predictions for newer machines. Moreover, noisy or
incomplete data from IoT sensors can cause false alarms in maintenance systems, leading to
unnecessary production delays.
Ethical concerns arise as the AI system monitors employee movements to ensure safety compliance
but also flags workers for ªlow performanceº based on arbitrary metrics, disproportionately af-
fecting certain groups and raising privacy concerns. Finally, the AI system for demand forecasting
struggles with concept drift, failing to adapt to sudden shifts in consumer preferences, which results
in stockouts and lost sales.

The above example highlights the challenges, such as data bias, interoperability, and
privacy, that can arise during the data collection steps. Therefore, this research raises the
following questions related to this step:

• RQ1: How can data producers and owners implement interoperable data schemas to
ensure data integrity?

• RQ2: What mechanisms best facilitate the extraction of unbiased, informative datasets
from complex environments?

• RQ3: What types of biases are present in manufacturing datasets and data collec-
tion processes, and what strategies can be used to detect and address them while
maintaining optimal performance?
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• RQ4: What methods can be employed to gather unbiased and informative datasets
from shop floor environments where human involvement is significant?

• RQ5: How can workers with limited AI expertise effectively evaluate algorithms for
bias and fairness?

Figure 12. Navigating AI challenges in smart manufacturing.

7.2. Data Preprocessing

Data augmentation and preprocessing are essential for preparing manufacturing
dataÐoften sourced from IoT sensors, machine logs, and manual entriesÐfor AI models.
These steps clean, balance, and transform raw data to ensure reliability and accuracy.
However, aggressive cleaning or augmentation can unintentionally introduce or amplify
bias, impacting the fairness and robustness of downstream models [184]. See Box 2.

Box 2. Illustrative example 2.

Imagine a manufacturing company that produces automotive parts and wants to implement an AI
system to predict product quality based on production parameters. The company collects data from
various sources, including IoT sensors on machines, manual quality checks, and supplier records.
However, several challenges arise shown in Figure 13 during data augmentation and preprocessing:

• Labelling Issues: The company needs labelled data to train its AI model, but quality labels are
subjective and depend on the expertise of the quality inspectors. For instance, one inspector
might classify a product as ªacceptableº, while another might label it as ªdefectiveº under similar
conditions. This inconsistency leads to uncertain labels, which can affect the model’s accuracy.

• Data Imbalance: Most of the products meet quality standards, resulting in an imbalanced
dataset where defective products are under-represented. This imbalance can cause the AI
model to overlook rare but critical defects.

• Data Cleaning: The IoT sensors occasionally produce noisy or incomplete data due to hardware
malfunctions or network issues. For example, temperature readings from a sensor might show
sudden spikes that do not reflect actual conditions, leading to incorrect predictions.

• Feature Engineering: The production team hypothesises that the humidity level in the factory
might influence product quality. However, this data is not directly available and needs to
be derived from existing environmental data, requiring domain expertise to create meaning-
ful features.
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Figure 13. AI challenges in manufacturing.

To address the identified challenges in data preprocessing and augmentation for AI
applications in manufacturing, the following research questions are proposed:

• RQ6: What methodologies can be developed to ensure consistent and accurate la-
belling of manufacturing data, particularly in scenarios where labels are subjective or
context-dependent?

• RQ7: What are the most effective practices for addressing imbalanced datasets in
manufacturing, and how can synthetic data generation techniques be optimised for
such applications?

• RQ8: How can automated approaches be designed to detect and rectify noisy or
incomplete data originating from IoT sensors and other manufacturing data sources?

• RQ9: What strategies can be employed to integrate domain knowledge into feature
engineering processes while minimising the risk of introducing additional biases?

• RQ10: What frameworks or methodologies can be developed to identify and mitigate
biases in manufacturing datasets, ensuring fair and unbiased AI-driven predictions?

7.3. Developing AI Models

Model development in manufacturing involves model selection, training, and
deploymentÐeach with unique challenges for trustworthiness. This stage is especially
vulnerable to overfitting, lack of transparency, and bias amplification, particularly when
performance is prioritised over interpretability. Addressing these risks is essential to ensure
reliable and effective AI models.

1. Model selection is a crucial phase where the type of machine learning model is cho-
sen, as it directly influences the model’s interpretability and performance. Simpler
models, such as decision trees, are often preferred in manufacturing due to their ease
of understanding and transparency. However, this preference can sometimes lead
to reduced accuracy, creating a trade-off between interpretability and performance.
Additionally, computational limitations, particularly in resource-constrained envi-
ronments, can restrict the use of more advanced models, further complicating the
selection process [181].

2. Model training is another critical phase, where hyperparameters such as the depth of
decision trees or the number of layers in a neural network are fine-tuned to enable
the model to learn patterns effectively from the data. This phase is resource-intensive,
with high computational and environmental costs, especially for large-scale models.
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The process also requires skilled professionals to manage training effectively and avoid
suboptimal results. While automated machine learning (AutoML) tools can simplify
the training process, they often introduce challenges such as reduced transparency,
potential bias, and overfitting, which can compromise the trustworthiness of the
model [185].

3. Deployment phase focuses on integrating the model into real-world operations and
ensuring its continued relevance. A significant challenge in this phase is addressing
concept drift, where changes in the data distribution over time can render the model’s
predictions inaccurate. To mitigate this, organisations must implement mechanisms to
detect when updates are needed and determine whether incremental updates or full
retraining is more appropriate. This phase requires careful monitoring and adaptation
to ensure the model remains effective in dynamic manufacturing environments [186].
See Box 3.

Box 3. Illustrative example 3.

A large automotive manufacturing company developed an AI model to predict machine failures
on its assembly line, aiming to reduce unplanned downtime and optimise maintenance schedules.
Initially, the model performed exceptionally well, using data from sensors monitoring machine
vibrations, temperature, and operational cycles. The predictions allowed the company to schedule
maintenance proactively, significantly reducing production delays. However, after several months,
the model’s accuracy began to decline, leading to unexpected machine breakdowns . Upon investi-
gation, the team discovered that the supplier of a critical machine component had changed, resulting
in slight variations in material properties. These changes in sensor readings were outside the scope
of the model’s training. Additionally, the production line was reconfigured to accommodate a new
vehicle model, which altered the operational patterns of the machines, as shown in Figure 14.

To address the challenges highlighted above, this paper raises several important
research questions.

• RQ11: How can manufacturing practitioners balance the trade-off between model
interpretability and performance?

• RQ12: What are the most effective methods for detecting and managing concept drift
in industrial applications?

• RQ13: How can organisations account for the environmental and financial costs of
training AI models?

Figure 14. AI challenges in manufacturing.

8. Conclusions and Future Directions

AI is fundamentally transforming the manufacturing sector by enabling smarter,
more efficient, and adaptive processes. As manufacturers increasingly depend on AI for
decision-making, the importance of trustworthiness in these systems becomes paramount.
Trustworthy AI is not only about technical accuracy but also about ensuring transparency,
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fairness, robustness, and accountability. These principles are essential to prevent unin-
tended consequences, such as biased decisions, lack of explainability, or system failures
that could disrupt operations and erode stakeholder trust.

This paper has provided a comprehensive review of the current landscape of AI
trustworthiness in manufacturing. It has highlighted the progress made in developing
frameworks and tools for explainability, bias mitigation, and robust model deployment.
However, it is clear that manufacturing environments are highly dynamic and complex,
and no single solution can address all challenges. The effective implementation of trust-
worthy AI requires ongoing attention to ethical considerations, human values, and close
collaboration between engineers, domain experts, and end-users. Only through such a
holistic approach can the manufacturing industry fully harness the benefits of AI while
minimising risks and ensuring responsible innovation.

Looking forward, the journey toward trustworthy AI in manufacturing must continue
to evolve. Continuous monitoring and adaptation of AI models will be necessary to
maintain their accuracy and fairness as manufacturing data and environments change
over time. There is also a growing need to develop and adopt frameworks that integrate
ethical, environmental, and financial considerations into every stage of the AI lifecycle.
This integration will help ensure that AI systems not only perform well but also align with
broader societal and sustainability goals.

Interdisciplinary collaboration will play a crucial role in this evolution. By bringing
together AI specialists, manufacturing professionals, and ethicists, the industry can develop
solutions that are both technically robust and ethically sound. Furthermore, regulatory
compliance with emerging standards, such as the EU AI Act and ISO guidelines, will be
essential for responsible AI deployment and for building stakeholder confidence.

A significant next phase for this research will involve the practical testing and evalu-
ation of leading AI trustworthiness toolkits within real manufacturing scenarios. By rig-
orously assessing these toolkits, this research aims to identify which solutions are most
effective and user-friendly in practice. The insights gained from this phase will provide
actionable recommendations for industry adoption and will help bridge the gap between
theoretical frameworks and real-world application.

While this study provides a comprehensive overview of AI trustworthiness in manu-
facturing, several limitations should be acknowledged. Methodologically, the reliance on
literature review and illustrative, hypothetical case studies may limit the generalisability
of the findings, as real-world complexities and sector-specific nuances may not be fully
captured. Conceptually, the operationalisation of AI trustworthiness, though grounded
in established frameworks, may be subject to interpretation and may not encompass all
emerging dimensions as the field evolves. Contextually, the focus on manufacturing means
that insights may not directly translate to other sectors or geographic regions with different
regulatory, cultural, or operational landscapes. These limitations highlight the need for
further empirical validation and cross-sectoral analysis.

To advance the field, future research should focus on developing robust, quantitative
methods for assessing and benchmarking AI trustworthiness in manufacturing environ-
ments. This includes the creation of standardised metrics and tools for trust quantification,
enabling objective comparison across different AI systems and deployment contexts. Com-
parative studies of AI regulatory frameworks across sectors and regions are also needed to
identify best practices and inform the development of harmonised, context-sensitive stan-
dards. Additionally, longitudinal research tracking the long-term impacts of AI adoption
on workforce dynamics, ethical outcomes, and organisational performance will provide
valuable insights for both policymakers and industry leaders. Finally, there is a need for
in-depth, real-world pilot studies that evaluate the effectiveness of trustworthiness toolk-
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its and frameworks in diverse manufacturing settings, thereby closing the gap between
theoretical advances and practical implementation.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence

GDPR General Data Protection Regulation

AIX360 AI Explainability 360

SHAP SHapley Additive exPlanations

LIME Local Interpretable Model-agnostic Explanations

AIF360 AI Fairness 360

IBM ART IBM Adversarial Robustness Toolbox

NIST National Institute of Standards and Technology

OECD Organisation for Economic Co-operation and Development

ISO International Organization for Standardization

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ALTAI Assessment List for Trustworthy Artificial Intelligence

EU European Union

IoT Internet of Things

ML Machine Learning

XAITK Explainable AI Toolkit

HVMC High-Value Manufacturing Catapult

COMPAS Correctional Offender Management Profiling for Alternative Sanctions

AutoML Automated Machine Learning

NLP Natural Language Processing

DNN Deep Neural Network

CNN Convolutional Neural Network

RMF Risk Management Framework
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