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A direct comparison of laboratory 
and community EEG recordings for 
neurodevelopmental research
Abigail Dickinson, Summer-Rose Perry, Amanda Gulsrud & Connie Kasari

Leveraging portable electroencephalography (EEG) to measure brain function in community settings 

offers a promising strategy to improve the scalability and accessibility of developmental neuroscience 
research. To encourage broader adoption of these methods, it is important to demonstrate that data 

quality and neural signal integrity are comparable to gold-standard lab-based recordings. In this 

study, we directly compared EEG data collected in laboratory and home environments using portable 

EEG systems in a developmentally diverse group of young children under four years of age (n = 10). 
Despite differences in equipment and setting, our results showed comparable data quality and signal 
characteristics across conditions. Specifically, EEG data retention rates, noise levels, and spectral 
power measures were highly consistent at the group level, with no systematic differences between lab- 
and home-based recordings. To assess individual-level consistency, we calculated intraclass correlation 

coefficients (ICCs) for spectral power across brain regions and frequency bands. Most region-by-band 
combinations showed good to excellent consistency across settings; however, lower consistency was 

observed for some lower-frequency metrics, such as delta power in parietal regions. This suggests that 

certain individual features may be more sensitive to contextual or developmental factors. Overall, our 

findings demonstrate that portable, community-based EEG maintains data quality and neural signal 
integrity comparable to laboratory systems. Broader use of portable EEG may enhance scalability, 

increase participation, and promote greater inclusion in neurodevelopmental research.

Electroencephalography (EEG) is a powerful, non-invasive tool for measuring brain function in developmental 
populations. By capturing voltage changes from neuronal firing with millisecond precision, EEG provides real-
time insights into synchronized neural oscillations that underlie functional brain circuits1,2. Combined with its 
tolerability in infants and young children, this high temporal resolution has made EEG an essential method for 
mapping oscillatory rhythms during early brain development3,4. In clinical settings, EEG is routinely used to 
monitor brain activity in neonatal intensive care units, where it helps to detect seizures, assess brain injury5,6, 
and predict long-term developmental outcomes in preterm infants. Moreover, EEG has been instrumental 
in identifying neural signatures of altered brain function in diverse contexts, including neurodevelopmental 
disorders7–9, genetic conditions10–12, and the effects of early adversity such as prenatal substance exposure13 and 
institutional care14.

However, leveraging EEG to track early brain development at a broader population level requires more scalable 
and accessible collection methods. EEG is typically collected using high-density systems in controlled clinical 
or research environments. These methods yield high-quality data, but can limit accessibility for families facing 
transportation challenges, inflexible work schedules, or caregiving responsibilities, which disproportionately 
affect under-resourced and racially/ethnically diverse communities15–19, limiting the generalizability and impact 
of findings.

Recent advancements in portable EEG technology provide promising solutions by enabling data collection in 
community-based settings, including homes and schools. Innovations such as active electrodes, which enhance 
signal-to-noise ratio, and noise-shielding technology allow these systems to maintain data quality outside 
laboratory environments20,21. Leveraging portable systems for community-based EEG collection could make 
research participation more accessible and enable measures of brain function in naturalistic settings where 
children are more comfortable, potentially capturing neural activity that better reflects real-world cognitive and 
behavioral processes.

To support broader use of these methods, it is critical to establish that community-based EEG yields data 
comparable to traditional lab-based recordings, especially in young children who present unique challenges 
such as shorter attention spans and increased movement artifacts22,23. In adult populations, several studies have 
demonstrated comparable signal quality between portable EEG collected in non-lab settings and traditional 
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recordings, with no significant differences in spectral power or noise24–27. For example, one study found no 
significant differences in alpha and beta power between lab-based and outdoor EEG recordings24, while another 
reported comparable alpha power and minimal electromyographic (EMG) interference when comparing home 
and lab settings27. While prior research has demonstrated the feasibility of recording EEG from children in homes 
and schools28–31, direct comparisons with lab-based EEG recordings remain unexamined in developmental 
populations.

Our study addresses this gap by directly comparing EEG recordings obtained in both community-based 
and lab-based settings among young children under four years of age. This sample represents a broad range 
of developmental trajectories without excluding participants based on neurodevelopmental status, ensuring 
our findings are applicable to diverse populations. To evaluate whether community-based EEG can serve as 
a valid alternative to lab-based recordings in developmental research, we assess potential differences in key 
signal characteristics, including power in specific frequency bands, signal quality, and noise levels, across both 
settings. By systematically comparing these metrics, we aim to determine if portable EEG can reliably match 
the standards of lab-based EEG recordings, ultimately broadening the reach and impact of EEG research in 
developmental science through more scalable and ecologically valid methods.

This study addresses that gap by directly comparing EEG recordings collected in both community and lab 
settings in a developmentally diverse group of children under four years of age. By including children with a 
range of neurodevelopmental profiles, we aim to ensure that our findings reflect the variability encountered in 
real-world research contexts. To evaluate the viability of community-based EEG, we systematically compare 
key data collection and signal quality metrics—including frequency-specific power, noise levels, and data 
retention—across both settings. Our goal is to determine whether portable EEG systems can produce neural 
data comparable to lab-based systems, ultimately advancing the scalability, inclusivity, and ecological validity of 
EEG research in developmental neuroscience.

Methods
Participants
Eleven participants, aged six months to four years, were recruited from an existing database as part of a 
pilot project funded to explore promising short-term research directions (1R56DC021174-01). The UCLA 
Institutional Review Board (IRB) approved all study procedures, and a parent or guardian provided written, 
informed consent in accordance with the Declaration of Helsinki. All methods, hypotheses, and analytic plans 
were pre-registered prior to data analysis (bit.ly/4hiE8vN).

EEG sessions were scheduled within 30 days of each other whenever possible, allowing flexibility for family 
schedules. Two families opted to complete their community EEG visit before the in-lab session. All 11 participants 
completed the community EEG; however, one family later declined the in-lab visit due to hesitations about 
attending a formal research institute. Thus, our analysis includes data from the ten participants who completed 
both community and lab EEG sessions (Median Age: 2.73; Range: 1.65–3.36 years).

As shown in Table 1, the sample represented a diverse range of families. Less than half (40%) reported 
household incomes above $80,000, and 60% received government assistance through programs such as the 
Special Supplemental Nutrition Program for Women, Infants, and Children (WIC), the Supplemental Nutrition 
Assistance Program (SNAP), and Medicaid. Participants represented varied developmental trajectories, with 

Demographic variable n Percentage or Median (SD)

Age 2.73 (0.56)

Sex

Female 3 30%

Male 7 70%

Race/ethnicity

Asian 1 10%

Black 3 30%

White 2 20%

Hispanic 4 40%

Neurodevelopmental concerns

Undergoing evaluation 5 50%

Autism diagnosis 5 50%

Household income

 < $50,000 5 50%

$60,000-$80,000 1 10%

 > $80,000 4 40%

Maternal education (≥ some college) 5 50%

Receiving assistance (e.g., WIC, SNAP) 6 60%

Table 1. Demographic and sample characteristics (n = 10).
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half having an autism diagnosis and the other half undergoing evaluation for developmental concerns at the 
time of participation.

EEG collection
Continuous EEG data were acquired under two protocols: (1) using a high-density system in the laboratory and 
(2) using a portable EEG system in community settings. As outlined above, we aimed to obtain community and 
lab EEG recordings within 30 days of each other, with 90% of the final sample (n = 9) completing the lab EEG 
before the home visit. On average, recordings were conducted 18.2 days apart (median = 11 days, SD = 27.03).

We used standardized procedures across both recordings, aiming to obtain five minutes of continuous EEG 
under task-free conditions, consistent with standard practices for spontaneous (task-free) EEG recordings 
in developmental populations32,33. If a child became fussy, we extended the session to ensure adequate data 
collection. In-lab EEG was collected using our standard protocol, and portable EEG procedures were established 
to be as consistent as possible. In all cases, EEG was recorded while the participant sat on a parent’s or caregiver’s 
lap. For all recordings, EEG data were sampled at 1000 Hz, with electrode impedances maintained below 100 kΩ, 
aligning with widely used thresholds for infant populations34 and consistent with our established EEG protocols 
for developmental populations35. Setup times were not directly compared due to differences in electrode 
systems (129 channels in the lab vs. 32 in the community). However, active setup time (electrode placement and 
impedance checks) were consistently under 10 min for all recordings.

In-lab EEGs were collected in a soundproofed, electrically shielded room with participants seated on a 
caregiver’s lap. Data were collected using a 129-channel HydroCel Geodesic Sensor Net (Electrical Geodesics 
Inc., Eugene, OR) along with a Net Amps 300 amplifier, and Net Station 4.4.5 software. An appropriately sized 
HydroCel Sensor Net was soaked in saline and placed on the participant’s head, where we adjusted electrode 
positions and added saline as needed. Data were referenced to the vertex (Cz) during recording, and four 
electrooculogram (EOG) sensors positioned beneath and next to the eyes were removed from the electrode 
setup to improve comfort.

Community EEG recordings were conducted in locations selected by families, using published 
recommendations for non-laboratory EEG to guide our protocol30,32. Eight families opted to complete the 
recording at their own home or the home of a close friend or relative, while two chose community-based settings, 
including a facility offering activities for children and a structured day program. EEG data were recorded from 
32 active gel-based electrodes (BrainProducts actiCAP slim active gel electrodes) using a BrainVision LiveAmp 
amplifier and BrainVision Recorder software. After measuring the participant’s head circumference, electrodes 
were inserted into an appropriately sized BrainProducts ActiCap with 10–20 positions (Fp1, Fz, F3, F7, FT9, 
FC5, FC1, C3, T7, TP9, CP5, CP1, Pz, P3, P7, O1, Oz, O2, P4, P8, TP10, CP6, CP2, Cz, C4, T8, FT10, FC6, FC2, 
F4, F8, Fp2). Two additional channels served as the online reference (FCz) and ground (AFz). Conductive gel 
was applied to the electrodes before placing the cap on the participant’s head, with extra gel added using a blunt 
syringe as necessary.

EEG processing
Offline data processing was conducted using EEGLAB33 and custom MATLAB scripts (The MathWorks, Inc., 
Natick, MA). Given that lab-based EEGs were collected with fixed 129-channel caps, when importing data 
we selected 32 channels that aligned with the portable system’s electrode positions, consistent with previous 
comparison protocols25. All subsequent data processing steps were conducted using identical procedures and 
parameters for both lab-based and portable system recordings. First, we applied a finite impulse response 
(FIR) high-pass filter to remove frequencies below 1 Hz, followed by an assessment of 60 Hz main line noise 
by examining spectral power and calculating a signal-to-noise ratio (SNR). Power estimates were computed 
using EEGLAB’s ‘spectopo’ function with standard parameters. To derive the SNR metric, we first normalized 
the power spectrum for each channel to between 0 and 1 using min–max scaling. We then calculated the SNR 
as the ratio of the normalized power at 60 Hz to the average normalized power across the 1–50 Hz frequency 
range. After calculating noise metrics, a low-pass FIR filter was applied to remove frequencies above 50 Hz using 
EEGLAB’s default setting, which designs the filter using a Hamming window and an automatically determined 
filter order.

Consistent with our previous studies, we used artifact subspace reconstruction (ASR)36 as the primary 
cleaning method for all subsequent EEG analyses37–39. ASR was implemented using EEGLAB’s clean_rawdata 
function with default parameters and a channel rejection threshold of 0.7, consistent with our prior work36–39. 
However, to assess whether our estimates of data quality (i.e., the amount of data retained following artifact 
removal) were robust to the choice of cleaning algorithm, we also calculated data quality metrics using two 
additional cleaning methods: amplitude-based thresholding and manual artifact rejection.

The amplitude-based thresholding approach was adapted from our prior evaluations of multi-site infant EEG 
quality39. We used the erplab toolbox function pop_continuousartdet33,40, to remove data sections where more 
than 25% of channels exceeded ± 600  µV, as well as channels where over 25% of data points surpassed this 
threshold. We then eliminated channels deviating ± 250 µV for over 25% of an infant’s resting recording and any 
segments where over 25% of channels deviated ± 250 µV. This approach effectively removed artifacts surpassing 
established thresholds, aligning with previous evaluations of infant EEG data quality32. The third method involved 
manual rejection, where data were visually inspected to eliminate segments affected by artifacts. Although this 
approach is less automated and more subjective, it allows for more nuanced noise detection30. Data retention 
was evaluated as an indicator of data quality by calculating the percentage of retained data following artifact 
removal. Metrics for each cleaning algorithm included the ratio of clean seconds (retained data length /original 
data length) and channels (retained channels/32).
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Power spectral density calculation
Clean EEG data were divided into continuous three-second segments to avoid discontinuities. For each 
participant, we randomly selected 30 three-second segments, ensuring that an equal data amount contributed 
to the power calculations41, with 90 s meeting established thresholds shown to obtain reliable power estimates42. 
Power spectral density (PSD) was computed using MATLAB’s ‘pwelch’ function, with a window duration of 2 s 
and a 50% overlap. PSD analysis focused on four regions of interest: frontal, central, parietal, and occipital. Each 
region represented the average of three electrodes: frontal (F3, Fz, F4), central (C3, Cz, C4), parietal (P3, Pz, 
P4), and occipital (O1, Oz, O2), aligning with regions examined in our previous developmental EEG studies43. 
Absolute power estimates were converted to relative power by dividing each frequency bin by the sum of the 
entire power spectrum. Power estimates were summed across five standard frequency bands: delta (1–4 Hz), 
theta (4–6 Hz), alpha (6–12 Hz), beta (12–30 Hz), and gamma (30–50 Hz).

Statistical analysis
All analyses were performed in MATLAB and R. We used two-tailed Wilcoxon Signed-Rank tests to assess 
differences between lab and community conditions, including recording duration, noise estimates (60 Hz power 
and SNR ratio), the number of retained channels, and the duration of retained seconds. To provide a more 
nuanced evaluation, we computed Bayesian statistics using the brms package in R. Because a direct Bayesian 
Wilcoxon test is unavailable, we modeled the paired differences between conditions using a robust Student’s 
t-distribution, which provides a nonparametric Bayesian alternative equivalent to the Wilcoxon test. Bayes 
factors (BF) were derived such that BF

10
 (evidence in favor of the alternative) equals 1/BF

01
, with BF

10
 values < 3 

considered weak evidence and values > 10 considered strong evidence for the alternative hypothesis44.
For analyses of spectral power metrics (the power within each frequency band for each region), we first 

adjusted for age effects due to significant developmental changes and variable intervals between community and 
lab recordings. We regressed out the effect of age at the time of each recording using linear regression, applied 
separately for each frequency band and region combination. This allowed us to isolate variance in EEG power 
independent of age-related effects. Statistical tests, including Wilcoxon signed-rank tests and Bayesian analyses, 
were then applied to the resulting residuals to evaluate differences between conditions, using identical procedures 
to those described above. Finally, to examine individual-level consistency in power measures across conditions, 
we computed intraclass correlation coefficients (ICCs) using the psych package in R. Specifically, we applied 
two-way mixed-effects models and report single-measure consistency and absolute agreement metrics, in line 
with recommended best practices45. ICC values were interpreted in line with established guidelines describing 
poor (ICC < 0.50), moderate (ICC = 0.50–0.75), good (ICC = 0.75–0.9), and excellent (ICC > 0.90) reliability46.

Results
Ten participants successfully contributed EEG data in both lab and community settings, with an average recording 
length of 356 s. Metrics describing recording length, 60 Hz signal power, 60 Hz SNR, and data retention rates 
for each condition are summarized in Table 2 and Fig. 1 (A-C). Wilcoxon rank sum tests indicated no significant 
differences between community and lab-based recordings in the amount of data collected (W = 41, p = 0.19) or 
noise estimates, including 60 Hz signal power (W = 28, p = 1.00) and 60 Hz SNR (W = 24, p = 0.77). Bayesian 
analysis provided anecdotal evidence supporting the null hypothesis regarding 60 Hz noise estimates (BF

10
< 1). 

However, for recording duration, Bayesian evidence (BF
10

 = 1.41) provided anecdotal support for the alternative 
hypothesis, with community recordings (median: 363.46 s) being slightly longer than lab recordings (median: 
330.74 s).

To assess data quality, we evaluated data retention rates following artifact removal (Table 2; Fig.  1D, E). 
Wilcoxon rank sum tests showed no significant differences in the percentage of channels or seconds retained 
across conditions for various cleaning algorithms, including ASR (channels: W = 26, p = 0.91; seconds: W = 39, 

Lab Community

W P BF10Median, Mean (SD) Range Median, Mean (SD) Range

Recording length 330.74, 344.34 (44.5) 300.45–421.67 363.46, 367.89 (34.43) 324.02–432.46 41 0.19 1.41

60 Hz Power 0.29, 0.17 (0.27) 0.09–0.87 0.27, 0.18 (0.24) 0.09–0.82 28 1 0.82

60 Hz SNR 1.3, 0.73 (1.1) 0.54–3.37 1.27, 0.77 (1.34) 0.39–4.50 24 0.77 0.83

Cleaning algorithm 1 (ASR)

Channels (%) 90, 90.63 (5.67) 81.25—96.88 89.38, 90.63 (5.93) 78.12–96.88 26 0.91 0.82

Seconds (%) 76.37, 75.14 (13.67) 48.90—94.82 80.76, 82.59 (9.62) 61.73–89.96 39 0.28 3.32

Cleaning algorithm 2 (amplitude thresholds)

Channels (%) 97.81, 100 (3.91) 90.62–100.00 95.31, 98.44 (6.46) 84.38–100.00 8 0.33 0.24

Seconds (%) 94.59, 97.94 (6.81) 81.35–99.39 89.02, 93.01 (14.87) 97.94–100.00 21 0.56 0.52

Cleaning algorithm 3 (manual cleaning)

Channels (%) 92.5, 93.75 (6.45) 81.25–100.00 94.06, 95.31 (6.15) 93.75–100.00 15 0.44 7.07

Seconds (%) 88.92, 91.85 (11.62) 60.48–98.46 84.51, 86.11 (12.55) 66.46–99.04 21 0.56 0.59

Table 2. Comparison of data collection and quality metrics: Wilcoxon signed-rank test and Bayesian analysis. 

Reported p-values are derived from Wilcoxon Signed-Rank tests.
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p = 0.28), amplitude-based (channels: W = 8, p = 0.33; seconds: W = 21, p = 0.56), and manual cleaning (channels: 
W = 15, p = 0.44; seconds: W = 21, p = 0.56). Bayesian analysis largely supported these null findings (BF

10
 < 1) but 

indicated substantial evidence in favor of the alternate for two metrics: channels retained after manual cleaning 
(BF

10
= 7.07) and seconds retained after ASR (BF

10
 = 3.32).

Signal characteristics were examined by comparing spectral power measures. Figure 2 presents averaged PSD 
estimates for each participant across all 32 channels, showing that spectral characteristics were highly consistent 
across recording conditions. Boxplots summarizing power measures are provided in Fig.  3, with statistical 
analysis detailed in Table 3. Wilcoxon signed-rank tests indicated no significant differences between lab and 
community recordings across all spectral measures (all p > 0.44). Bayesian analyses provided further support 
for the null hypothesis, with the highest BF

10
 value (1.84), suggesting minimal evidence in favor of differences 

between conditions.
On average, spectral power measures showed good consistency across conditions (median ICC

C
 = 0.81) and 

moderate absolute agreement (median ICC
A

 = 0.67). However, there was substantial variability across specific 
region-by-band combinations (see Table 3). For instance, ICC Consistency metrics, calculated using a two-
way mixed-effects model, showed good/excellent reliability for beta (median = 0.96, range: 0.88–0.98) and 
gamma (median = 0.87, range: 0.79–0.97) bands across regions. However, average reliability was moderate for 
delta (median = 0.47, range: 0–0.82), mixed for alpha (median = 0.62, range: 0.13–0.67), and lowest for theta 
(median = 0.77, range: 0.16–0.87), with strong regional variability observed.

Agreement metrics (ICC
A

) were generally lower than consistency metrics (ICC
C

) and also showed variability 
across regions and frequency bands, particularly in the lower-frequency ranges. For example, beta and gamma 
bands showed good to excellent agreement across regions (beta: 0.79–0.97; gamma: 0.66–0.94). In contrast, 
alpha, theta, and delta bands showed greater variability. While alpha and theta bands demonstrated moderate 
agreement in several regions, some region-by-band combinations yielded poor agreement (alpha: 0.07–0.50; 
theta: 0.09–0.77; delta: 0.00–0.69).

Fig. 1. Boxplots display (A) recording lengths and (B) 60 Hz power estimates for each condition, with 
individual data points overlaid. (C) Power spectral density plotted illustrate the 60 Hz signal in each condition. 
Power spectra represent the average data from all 32 channels, prior to low-pass filtering and artifact removal. 
Shaded areas represent 95% confidence intervals. (D,E) Ridge plots depict the proportion of (D) seconds and 
(E) channels retained for each of the three cleaning algorithms used to assess data quality. Individual data 
points are overlaid to depict individual values for the primary cleaning method (ASR).
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Discussion
This study directly compared lab-based and community EEG recordings in a developmentally diverse cohort, 
representative of the range of neurodevelopmental variability seen in real-world clinical and research settings. 
To assess whether community EEG is a viable alternative to traditional lab-based recordings, we systematically 
evaluated practical data collection metrics, including the total amount of data collected, noise estimates, and 
data quality. Data quality was indexed by the proportion of data removed when applying three different cleaning 
algorithms. We also compared signal characteristics by analyzing spectral power across different scalp regions 
and frequency bands.

Fig. 3. Boxplots illustrating power values across conditions. Panels (A–E) show power values for each spectral 
band (averaged across all brain regions), with individual participant data points overlaid. Panels (F–H) display 
power values for three specific regions (Frontal, Central, and Occipital), with power values averaged across all 
spectral bands, and individual participant data points overlaid for clarity.

 

Fig. 2. PSD plots provide participant-level comparisons of spectral characteristics. Each subplot shows the 
power spectra for a single participant, with lab recordings in blue and community recordings in red. The power 
spectra are averaged across all 32 channels, with shaded regions representing confidence intervals calculated 
from the standard deviation of channel values.
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Our data suggest that it is feasible to collect community EEG recordings of comparable quality to lab-based 
EEG. Specifically, we did not observe significant differences between settings in the amount of data collected, 
60 Hz noise estimates, or data quality metrics. For most of these comparisons, Bayesian analyses supported the 
null hypothesis (BF

10
< 1), consistent with the absence of meaningful differences between lab and community 

EEGs. There was, however, weak evidence for a difference in recording length (BF
10

 = 1.41) and moderate 
evidence for differences in two data retention metrics (BF

10
 = 3.32–7.07). Importantly, upon inspecting the data, 

these differences consistently favored community EEG, with slightly longer recording durations and higher 
data retention compared to lab-based recordings. Thus, our findings do not indicate that community EEG 
recordings are of lower quality; rather, they suggest that community EEG is at least comparable, and even slightly 
outperformed lab-based EEG on some practical metrics.

Beyond practical data considerations, we evaluated spectral power characteristics to assess whether neural 
signal properties were comparable across settings. Group comparisons revealed no significant differences in 
power estimates across frequency bands or scalp regions, with Bayesian analyses largely supporting the null 
hypothesis. To complement group-level analyses, we assessed individual-level consistency in spectral power 
measurements using ICCs for both consistency and absolute agreement. Most region-by-band combinations 
demonstrated good to excellent reliability across conditions; however, this was not true for all metrics. Several 
low-frequency measures, such as parietal delta power, showed substantially reduced reliability. These findings 
suggest that while neural signal properties are broadly preserved across settings, certain metrics (particularly in 
lower frequency ranges) may be more sensitive to contextual or developmental variability.

Although some variability was observed across specific measures, the overall pattern of our results strongly 
supports the comparability of EEG recordings collected in community and laboratory settings. Collectively, 
these findings demonstrate that portable, community-based EEG offers a viable, flexible, and scalable alternative 
to traditional lab-based methods. By demonstrating similar data characteristics across lab and community EEG 
recordings, our study builds on previous research that has established the feasibility of leveraging portable EEG 
systems in developmental populations30,31 and comparable signal characteristics in adults24,27. However, our 
study fills a critical gap by directly comparing lab and community EEG data in young, neurodevelopmentally 
diverse children. This is particularly relevant for early childhood research, as this period represents a critical 
window for detecting and intervening in atypical developmental trajectories.

Moreover, the diversity of our cohort highlights the value of community-based EEG in reaching 
underrepresented populations. Traditional lab-based research can present logistical barriers, especially for 

Lab Community
Comparing 
conditions ICC

Median (SD) Median (SD) W P BF10 ICC
C

ICC
A

Frontal

Delta 0.26 (0.03) 0.26 (0.03) 24 0.77 1.28 0.82 0.69

Theta 0.09 (0.01) 0.09 (0.02) 26 0.92 1.2 0.16 0.09

Alpha 0.03 (0.01) 0.03 (0.01) 27 1 1.17 0.62 0.45

Beta 0.01 (0.003) 0.01 (0.002) 31 0.77 0.96 0.96 0.92

Gamma 0.002 (0.001) 0.002 (0.001) 26 0.92 1.04 0.87 0.77

Central

Delta 0.25 (0.05) 0.26 (0.04) 26 0.92 1.28 0.13 0.07

Theta 0.09 (0.01) 0.09 (0.02) 26 0.92 1.15 0.77 0.63

Alpha 0.03 (0.02) 0.04 (0.01) 26 0.92 1.17 0.67 0.50

Beta 0.01 (0.002) 0.01 (0.001) 20 0.49 1.84 0.88 0.79

Gamma 0.002 (0.001) 0.002 (0.001) 20 0.49 1.4 0.79 0.66

Parietal

Delta 0.27 (0.04) 0.26 (0.03) 23 0.7 1.27 0.00 0.00

Theta 0.09 (0.02) 0.1 (0.03) 26 0.92 0.96 0.87 0.77

Alpha 0.04 (0.02) 0.04 (0.01) 24 0.77 1.36 0.13 0.07

Beta 0.01 (0.002) 0.01 (0.001) 27 1 1.02 0.98 0.97

Gamma 0.002 (0.001) 0.002 (0.001) 22 0.63 1.24 0.97 0.94

Occipital

Delta 0.29 (0.03) 0.27 (0.05) 27 1 0.96 0.82 0.69

Theta 0.09 (0.01) 0.1 (0.01) 33 0.63 0.69 0.16 0.09

Alpha 0.03 (0.01) 0.03 (0.01) 30 0.85 0.97 0.62 0.45

Beta 0.005 (0.002) 0.01 (0.001) 30 0.85 0.77 0.96 0.92

Gamma 0.002 (0.001) 0.002 (0.001) 28 1 0.9 0.87 0.77

Table 3. Comparison of spectral power measures: Wilcoxon signed-rank test, Bayesian evidence, and Intra-

class correlations (ICC). All ICCs were computed using two-way mixed-effects models. W Wilcoxon signed-

rank test statistic, ICC intra-class correlation, ICC
A

 ICC absolute agreement, ICC
C
 ICC consistency.
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those who face challenges related to transportation, time constraints, and financial costs17,18. These barriers 
are amplified in lower-income communities, where time constraints and financial concerns are often cited as 
obstacles to participation18,19. By reducing logistical barriers, community-based EEG has the potential to offer 
broader participation opportunities, enhancing sample diversity, generalizability, and understanding of early 
brain development across different social and environmental contexts.

Limitations & next steps
Although this study provides encouraging evidence for the feasibility of community-based EEG collection, 
several limitations should be noted. Despite consistent findings across metrics, the modest sample size limits 
the ability to detect subtle effects and may not fully capture the variability in EEG responses across broader 
populations. As such, these results should be viewed as foundational, offering initial support for the use of 
portable EEG and informing the design of larger-scale studies. Additionally, while our findings demonstrate the 
feasibility and signal quality of community-based EEG during task-free, resting-state recordings, they may not 
generalize to task-based paradigms, which require greater experimental control and timing precision. Future 
research should evaluate the performance of community-based EEG in specific task-based contexts and identify 
best practices for broader application.

Finally, while community-based EEG offers a promising approach to increasing research accessibility, it is not 
a standalone solution to broader underrepresentation issues. Barriers to participation extend beyond logistical 
challenges and include systemic factors such as historical mistrust of research institutions, privacy concerns, 
and cultural differences in research engagement. These factors contribute to the persistent underrepresentation 
of certain racial, ethnic, and socioeconomically marginalized groups in research16,17,47,48. This is reflected in 
our sample, where one family declined a lab visit due to concerns about participating in research at a formal 
institution.

As we expand the use of community-based research, it is crucial to recognize that research participation 
preferences are not uniform15,18. While some families may find community-based EEG more accessible, 
others may have concerns about privacy, confidentiality, or researcher presence in the home, particularly in 
communities where trust in research has been historically eroded15. The importance of flexibility is evident in 
our sample, where two families chose to participate in community settings rather than at home, a request we 
were able to accommodate. This highlights the need for adaptive research models that promote inclusivity by 
responding to the individual needs and preferences of families.

Conclusions
In conclusion, this study underscores the promise of community-based EEG as a viable and effective method for 
collecting high-quality neural data in developmental populations. By demonstrating signal quality comparable 
to that of lab-based recordings, this approach has the potential to broaden the scope of neuroscience research 
beyond traditional laboratory environments, thereby enhancing accessibility and inclusivity. Furthermore, it 
paves the way for future investigations examining children in more naturalistic settings, addressing questions 
related to real-world interactions and environmental engagement that are challenging to replicate in traditional 
lab environments. Moving forward, integrating community-driven strategies alongside community-based EEG 
may help to enhance the representativeness of our studies and ensure that our findings have greater relevance 
and impact for understudied and underserved populations.

Data availability
The data supporting this study will be made publicly available on the National Database of Autism Research 
(NDA) in accordance with the study’s timeline and data sharing policies. For inquiries regarding data access, 
please contact the corresponding author.
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