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Exploring the potential of computational graph-based gradients for 

choice modelling 

Choice modelling is widely used to analyse travel behaviour, but increasing 

model complexity leads to estimation challenges including increased model run 

times and multiple local optima. Computational Graph (CG) offers quick and 

accurate approximation of the likelihood function’s gradient, thereby addressing 

a key limitation of traditional gradient calculation methods. This study contrasts 

the performance of CG-based, analytical, and numerical gradient calculation 

methods for latent class and mixed logit models. Our findings highlight that CG 

achieves precise gradient estimates whilst significantly reducing estimation time. 

Analytical and CG-based gradient methods are less likely to result in bad local 

optima compared to numerical derivatives when testing across a wide range of 

starting values. Although local optima still occur, CG’s faster estimation allows 

feasible testing over a range of starting values. As such, it represents a valuable 

tool, given the significant implications of poor local optima in terms of key 

model outputs. 

Keywords: choice modelling, estimation, computational graph, automatic 

differentiation, machine learning, travel behaviour 
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1 Introduction 

Choice modelling is widely recognised in travel behaviour research for its ability to 

explain the factors driving variation in individual decisions, such as mode and route 

choice. By considering variables such as socio-demographic, travel and contextual 

characteristics, choice models provide insights that directly inform transport policy and 

urban planning. In line with an increasingly complex and connected society and the 

availability of large datasets on human behaviour, the complexity and dimensionality of 

choice models have grown substantially, necessitating improved computational 

techniques for estimation (Arteaga et al., 2022; Jiang and Anderson, 2024). Discrete 

Choice Model (DCM) coefficients are typically estimated using Maximum Likelihood 

Estimation (MLE). It is well known that the linear-in-parameters Multinomial Logit 

(MNL) model converges to a global optimum, except in cases of severe 

misspecification (Dow and Endersby, 2004). However, this simplistic model has rarely 

been used in recent literature, where analysts favour specifications that are more suited 

to capture behavioural heterogeneity, such as latent class (LC) or random parameter 

structures. The presence of unobserved individual-level parameters in these models, 

which are integrated out in the corresponding (log-)likelihood function, often results in 

the presence of multiple local optima, reducing the probability of arriving at the global 

optimum from an arbitrary vector of starting values for the parameters of interest 

(Lancsar et al., 2017; Liu et al., 2004). In this context, the global optimum is defined as 

the parameter vector that maximizes the log-likelihood function across the entire 

parameter space, representing the absolute best solution independent of initialization. In 

contrast, the best local optimum is defined as the highest log-likelihood solution 

obtained across a sufficiently large set of starting values. While the best local optimum 
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may not necessarily be the global optimum, testing multiple starting values increases the 

probability of identifying a more optimal solution. Indeed, it is recognised that it is 

unlikely to arrive at the global optimum, and achieving the best local optimum is 

generally considered an acceptable outcome (Hess et al., 2006; McFadden, 2022). 

Recent years have seen a growing interest in leveraging Machine Learning (ML) 

to enhance the estimation process of DCMs. Notably, Kim et al. (2021) and Ma et al. 

(2022) have demonstrated the significant speed advantages of using ML-based 

Computational Graphs (CG) alongside Automatic Differentiation (AD) for gradient 

approximation. Inspired by their work, our research introduces a new perspective by 

focusing on local optima, an often-overlooked aspect in the existing literature. While 

speed is a clear benefit, it is crucial to prioritize reaching the correct maximum—even if 

it requires more time—over quickly settling for a poor local optimum. This 

consideration is particularly significant in complex models, where different local optima 

can substantially impact key model outputs. 

Whilst Kim et al. (2021) already established these properties, their empirical 

estimation approach lacked consistency because the use of different software packages 

limits fair comparison. We overcome this limitation by contrasting different gradient 

calculation mechanisms within the same software package (Python, TensorFlow, and 

TensorFlow Probability (Dürr et al., 2020) allowing for a fairer comparison and more 

robust results. While advanced ML modules (e.g., deep neural networks (DNNs) and 

kernel logistic regression (KLR)) are gaining traction in choice modeling, our focus is 

on evaluating computational graph-based automatic differentiation (CG-AD) for 

enhancing the estimation performance of existing DCMs. Beyond computational 

precision and speed, we also examine how various gradient methods influence the 

likelihood of attaining the best local optimum and reducing the risk of encountering 
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poor local optima, which we refer to as stability. By testing numerous starting values, 

we evaluate the CG framework against other derivative calculation methods which are 

typically applied in choice modelling. Using the Latent Class (LC) and mixed logit 

(MIXL) models, we demonstrate that CG-AD is a flexible and effective approach for 

complex DCM estimation and large-scale model testing, enabling researchers to refine, 

modify, and iterate their econometric models more efficiently. Building on this, our 

research advances the intersection of ML and DCM by demonstrating how ML 

techniques enhance the choice modelling estimation process, with key contributions in 

estimation precision, speed, and stability: 

(1) The CG framework ensures highly precise gradient estimation. Our results show 

that CG-AD corresponds to the analytical gradient up to the 10th or 11th 

decimal level of precision. 

(2) CG-AD method significantly outperforms ND-based techniques in 

computational efficiency across all models. It achieves speed improvements 

exceeding tenfold for the MIXL models that require Monte Carlo simulations, 

making it efficient for large-scale applications.   

(3) Despite their level of precision, CG-AD and analytical derivatives remain 

subject to the risk of local optima, particularly in latent class models. However, 

in the context of mixed logit, CG mitigates the risk of converging to poor local 

optima and thereby improves the stability of optimisation processes. 

The remainder of this paper is organised as follows: Section 2 reviews the 

literature, exploring the current state of the integration of ML techniques and choice 

modelling in travel behaviour research. Section 3 outlines the methodological approach, 

presenting the mathematical formulation of the DCMs estimated in this paper. It also 
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introduces the CG-AD framework and compares it with other gradient mechanisms. 

Section 4 details the empirical approach, describing the dataset and experimental setup, 

followed by Section 5, which presents the experimental results. In Section 6, we engage 

in a deeper discussion and detailed analysis of these results. Finally, Section 7 

concludes the paper by offering closing remarks and suggesting directions for future 

research. 

2 Literature Review 

This section reviews the application of machine learning (ML) models, techniques, and 

practices in Discrete Choice Models (DCMs) and identifies gaps in current knowledge. 

The inherent similarities and complementary nature of ML and DCMs have led 

researchers to integrate the two methods in various ways (Salas et al., 2022; van 

Cranenburgh et al., 2022) , providing new insights into travel behaviour(Wang et al., 

2018; Welch and Widita, 2019). 

2.1 ML to model choice behaviour 

Some studies have focused on using ML to directly model choice behaviour, treating 

travel decisions as classification problems (Hillel et al., 2021). By leveraging algorithms 

like support vector machines and multilayer perceptrons, researchers have demonstrated 

improvements in prediction accuracy over traditional logit models (García-García et al., 

2022; Han et al., 2022; Lederrey et al., 2021; Nam et al., 2017; Omrani, 2015; Wang et 

al., 2021a; Wang et al., 2021b). Simultaneously, several researchers have explored the 

use of ML techniques to improve model building, leveraging their nonlinear 

representation ability to augment utility specifications (Sifringer et al., 2020; Wang et 

al., 2021a; Wong and Farooq, 2021), and learn taste parameters as flexible functions of 

input attributes (Han et al., 2022; Phan et al., 2022). For instance, Rodrigues et al. 
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(2020) introduced an approach combining Bayesian inference with automatic relevance 

determination, which aids in the automatic identification of optimal utility functions for 

DCMs. Martín-Baos et al. (2021) developed the PyKernelLogit package for Kernel 

Logistic Regression (KLR) model, which replaces the utility with kernel functions, thus 

freeing the analyst from the need to specify a functional form for the utilities. Łukawska 

et al. (2025) proposed the context-aware Bayesian mixed multinomial logit model (C-

MMNL), using neural networks to capture systematic, context-dependent heterogeneity 

in preference parameters, allowing for flexible interactions while maintaining 

computational efficiency. Kamal and Farooq (2024) introduced the Ordinal-ResLogit 

model, integrating Wong and Farooq (2021)’s ResLogit into the consistent rank logit 

model to ensure consistency among binary classifiers and capture unobserved 

heterogeneity. This integration of ML with DCMs facilitates more efficient utility 

function specification, allowing for more flexibility in model construction. 

However, both approaches—whether using ML alone or in combination with 

DCMs—face similar challenges in terms of interpretability. ML models, especially deep 

learning techniques, are often criticised for their "black box" nature and lead to studies 

in explainability (Górriz et al., 2023; Tjoa and Guan, 2021; Vilone and Longo, 2021). 

Despite their ability to achieve high prediction accuracy, the internal mechanisms of 

these models, involving numerous connections between input features, hidden layers, 

and output layers, remain difficult to fully comprehend. Emerging research has made 

efforts to investigate the interpretability of ML-integrated DCMs to bridge current 

knowledge gaps. Ali (2024) reviewed ML approaches for identifying key influencing 

factors, emphasizing the superiority of adjusted kernel and optimized ML models in 

capturing nonlinear relationships. Wang et al. (2020) demonstrated that DNNs can 

provide economic information as comprehensively as classical DCMs. Martín-Baos et 
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al. (2024) derived economic indicators such as Willingness to Pay (WTP) and the Value 

of Time (VOT) from the proposed KLR model. However, challenges such as high 

sensitivity to hyperparameters and frequent non-identification due to local optima 

undermine the reliability of economic insights. Ali et al. (2023) compares the 

performance of classical DCMs and ML methods (NN and GBT), finding that although 

ML can reveal nonlinearities and threshold effects through PDP and SHAP, the 

direction of variable elasticities sometimes contradicts those of CM, limiting policy 

interpretability and underscoring the irreplaceable role of CM in transport research. 

Moreover, ML methods can suffer from overfitting, particularly when applied to 

small datasets with complex structures and numerous parameters (Vabalas et al., 2019; 

Wang et al., 2021b). In contrast, DCMs are founded on a more transparent mathematical 

framework, with interpretable parameters that make them better suited for explaining 

causal relationships and understanding travel behaviour patterns (Wang et al., 2020). 

Thus, while ML offers powerful predictive capabilities, DCMs remain advantageous in 

terms of interpretability and theoretical robustness. 

2.2 ML to support DCM estimation   

Another important research direction involves leveraging ML techniques to enhance the 

estimation process in DCMs, which is also the focus of the present paper. A key 

challenge in this process is ensuring the stability and robustness of model estimation. 

Traditional estimation methods often struggle with multiple local optima, which 

complicates the identification of the best-identified solution among several suboptimal 

ones (Pacheco Paneque et al., 2021). A common strategy to mitigate this problem is 

experimenting with different starting values during the estimation process (Hess and 

Palma, 2019; Pál and Sándor, 2023; Vermeulen et al., 2008), which increases the 
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likelihood of identifying a global optimum. 

According to van Cranenburgh et al. (2022), ML can improve DCM estimation 

processes by addressing the limitations of traditional theory-driven modelling 

approaches. Inspired by the stochastic gradient descent (SGD) method commonly used 

in ML, Lederrey et al. (2021) proposed a mini-batch estimation approach for DCMs, 

significantly accelerating estimation speed and enhancing convergence stability.  The 

estimation process can be improved by transitioning from maximum likelihood 

estimation (MLE) to penalized MLE (PMLE) with Ridge and LASSO regularization to 

mitigate overfitting and exclude extreme parameters (Martín-Baos et al., 2024). Martín-

Baos et al. (2023) implemented the Nyström KLR model to reduce time complexity for 

large-scale datasets and found L-BFGS-B to be the most efficient optimization method 

compared to gradient descent, Momentum, and Adam. Within data science and ML, it is 

widely recognised that deep learning models depend fundamentally on 

the Computational Graph (CG) framework (LeCun et al., 2015). This framework 

provides the structural basis for neural networks, enabling efficient execution of 

complex operations, gradient calculations for backpropagation, and dynamic adjustment 

of network parameters during training. Verma (2000) and Margossian (2019) have 

shown that automatic differentiation (AD) and backpropagation are critical components 

of the CG mechanism, freeing researchers from manually coding gradients and 

preventing the truncation and round-off errors associated with numerical gradients 

(Baydin et al., 2018; Paszke et al., 2017). 

Previous research has demonstrated CG’s utility across domains, including 

traffic equilibrium and assignment problems (Liu et al., 2023; Wu et al., 2018), and 

traffic state and queue profile estimation (Lu et al., 2023). However, only a few studies, 

such as Kim et al. (2021) and Ma et al. (2022), have explored CG’s potential in DCMs. 
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Kim et al. (2021) demonstrated CG’s computational advantages in estimating models 

like MNL, Nested Logit (NL), and Integrated Choice and Latent Variable (ICLV) 

model, yielding parameter estimates comparable to traditional tools like Apollo and 

Biogeme. Similarly, Ma et al. (2022) implemented CG-based Multinomial Probit-based 

ICLV models, underscoring the efficiency of the AD mechanism in removing the need 

for manually coded gradients. Despite these contributions, most studies have focused on 

basic software-level comparisons without thoroughly investigating estimation stability. 

Moreover, cross-software comparisons limit result comparability, leaving a gap in 

understanding the underlying mechanisms behind CG’s performance improvements. In 

what follows, we examine and contrast the performance of CG, within the same 

software environment, against alternative gradient-based methods not just in terms of 

estimation speed, but also in its ability to find the best local optimum.    

3 Methods 

This section introduces the Computational Graph (CG)-based framework for estimating 

Discrete Choice Models (DCMs). We begin by introducing the choice models of 

interest, i.e. the Multinomial Logit (MNL) model, the Latent Class (LC) model, and the 

Mixed Logit (MIXL) model. Using the MNL model as a simplified example, we 

introduce traditional analytical and numerical gradient methods. This is followed by an 

in-depth explanation of CG with Automatic Differentiation (CG-AD). Finally, a 

comprehensive comparison of these gradient methods is provided, highlighting the 

theoretical advantages of AD. Throughout the paper, we refer to CG-AD and AD 

interchangeably as they effectively refer to the same concept in the context of this 

paper. For clarity, all symbols used in this section are defined in the Table 1.  
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3.1 Choice modelling approaches 

3.1.1 Multinomial Logit (MNL) model 

The MNL model stands as a foundational choice modelling approach within the family 

of generalised linear models. The MNL model operates under the assumption that the 

error terms are Independent and Identically Distributed (IID) and follow an extreme-

value type I (Gumbel) distribution. Notably, due to the convex nature of its likelihood 

function, the MNL model exhibits only a global optimum. 

Given a choice set with 𝐼 alternatives, the utility for individual 𝑞 choosing 

alternative 𝑖 at choice occasion 𝑡 is represented as the sum of an observed component, 𝑉𝑖𝑡𝑞, and a random component, 𝜀𝑖𝑡𝑞: 

 𝑈𝑖𝑡𝑞 = 𝑉𝑖𝑡𝑞 + 𝜀𝑖𝑡𝑞 (1) 

where 𝑉𝑖𝑡𝑞 is typically a linear function of alternative attributes and individual 

characteristics, 𝑿𝑖𝑡𝑞, and their corresponding coefficients, 𝜷: 

 𝑉𝑖𝑡𝑞 = 𝑿𝑖𝑡𝑞𝜷 (2) 

Given that the error terms, 𝜀𝑖𝑡𝑞, follow a Gumbel distribution, the probability 

that individual 𝑞 chooses alternative 𝑖 can be expressed as: 

 𝑃𝑦𝑖𝑡𝑞=1 = 𝑒𝑉𝑖𝑡𝑞∑ 𝑒𝑉𝑖′𝑡𝑞𝐼𝑖′=1 = 𝑒𝑿𝑖𝑡𝑞𝜷∑ 𝑒𝑿′𝑖𝑡𝑞𝜷𝐼𝑖′=1  (3) 

where 𝑦𝑖𝑡𝑞 is the choice variable of the 𝑞𝑡ℎ traveller, which equals 1 if the traveller 

selects the 𝑖𝑡ℎ alternative and 0 otherwise. 

The joint probability, 𝑃𝑦𝑞, for decision maker 𝑞 choosing 𝑦𝑞 from 𝐼 alternatives 

across 𝑇 time periods is then calculated as: 
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 𝑃𝑦𝑞 = ∏ ∏ 𝑃𝑦𝑖𝑡𝑞=1𝐼𝑖=1𝑇𝑞𝑡=1  (4) 

The coefficients are estimated by maximising the log-likelihood function over 𝑄 

independent decision-makers, expressed as: 

 𝐿𝐿(𝑦) = ∑ ln𝑄𝑞=1 𝑃𝑦𝑞 = ∑ ln𝑄𝑞=1 (∏ ∏ 𝑃𝑦𝑖𝑡𝑞=1𝐼𝑖=1𝑇𝑞𝑡=1 ) (5) 

3.1.2 Latent Class (LC) model 

The LC model extends the MNL model by accounting for unobserved heterogeneity 

among decision-makers. While the MNL model assumes that all individuals make 

choices based on the same set of parameters, the LC model allows for distinct segments 

or classes within the respondents, each characterised by its own set of parameters, 

thereby capturing latent heterogeneity (Heckman and Singer, 1984; Swait, 1994). This 

paper focuses on the LC-MNL model. Consider a decision-maker, 𝑞, facing 𝐼 

alternatives in each of 𝑇 choice situations. The probability that 𝑞 will choose alternative 𝑖 on occasion 𝑡 is given by: 

 𝑃𝑦𝑖𝑡𝑞=1 = ∑ 𝑃𝑦𝑖𝑡𝑞=1|𝑗𝐽𝑗=1 𝑃𝑐𝑞𝑗=1 (6) 

Assume that in the conditional utility 𝑈𝑖𝑡𝑞|𝑗 in Equation (7), the error terms 𝜀𝑖𝑡𝑞|𝑗  

are IID across alternatives, decision-makers and classes, and follow a Gumbel 

distribution. The conditional probability, 𝑃𝑦𝑖𝑡𝑞=1|𝑗, for individual 𝑞 choosing alternative 𝑖 within class 𝑗 during the choice occasion 𝑡 can then be derived as follows: 

 𝑈𝑖𝑡𝑞|𝑗 = 𝑉𝑖𝑡𝑞|𝑗 + 𝜀𝑖𝑡𝑞|𝑗 = 𝑿′𝑖𝑡𝑞𝜷𝑗 + 𝜀𝑖𝑡𝑞|𝑗 (7) 

 𝑃𝑦𝑖𝑡𝑞=1|𝑗 = 𝑒𝑉𝑖𝑡𝑞|𝑗∑ 𝑒𝑉𝑖′𝑡𝑞|𝑗𝐼𝑖′=1 = 𝑒𝑿𝑖𝑡𝑞𝜷𝑗∑ 𝑒𝑿𝑖′𝑡𝑞𝜷𝑗𝐼𝑖′=1  (8) 
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where 𝑿𝑖𝑡𝑞 is a vector of exogenous attributes, including a constant, and 𝜷𝑗 is the 

corresponding coefficients of class 𝑗 to be estimated that could be accommodated for 

class heterogeneity.  𝑃𝑐𝑞𝑗=1 represents the probability that respondent 𝑞 belongs to latent class 𝑗, also 

known as class membership, as shown in Equation (9). This probability is derived from 

the class utility in Equation (10). 

 𝑃𝑐𝑞𝑗=1 = 𝑒𝑉𝑞𝑗∑ 𝑒𝑉𝑞𝑗𝐽𝑗′=1 = 𝑒𝑆′𝑞𝛾𝑗∑ 𝑒𝑆′𝑞𝛾𝑗′𝐽𝑗′=1  (9) 

 𝑈𝑞𝑗 = 𝑉𝑞𝑗 + 𝜁𝑞𝑗 = 𝑺′𝑞𝜸𝑗 + 𝜁𝑞𝑗 (10) 

where 𝑺𝑞 represents the explanatory variables of individual 𝑞 for class allocation, 

including a constant, 𝜸𝑗 is the corresponding coefficient vector, and 𝜁𝑞𝑗 is an error term 

that captures random disturbances, following an IID Type I extreme value distribution 

across classes. 

The joint probability 𝑃𝑦𝑞 and the log-likelihood function are computed as 

Equations (4) and (5). Coefficients are estimated using the maximum likelihood 

method, but careful selection of initial values is essential, as the LC-MNL model may 

exhibit multiple local optima. 

3.1.3 Mixed Logit (MIXL) model 

The MIXL model is a flexible approach that overcomes the restrictive IID assumption 

inherent in the MNL model and can approximate any random utility model (McFadden 

and Train, 2000). Unlike the LC-MNL model where choice preferences are assumed to 

follow a discrete distribution and unobserved heterogeneity is associated with class-

specific parameters, the MIXL model assumes that parameters follow continuous 
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distributions, such as normal or lognormal. In contrast to both the MNL and LC-MNL 

models, the mixed logit model does not have closed-form choice probability 

expressions (Hensher and Greene, 2003). Through maximum simulated likelihood 

estimation, researchers can solve such open-form models by drawing pseudo-random 

realisations, simulating choice probabilities, and estimating the corresponding 

parameters. 

Similar to the LC model, individuals are faced with 𝐼 alternatives during 𝑇 

choice occasions. The probability that an individual 𝑞 chooses alternative 𝑖 in situation 𝑡 

is expressed as shown in Equation (11). 

 𝑃𝑦𝑖𝑡𝑞=1 = ∫ 𝐿𝑖𝑡𝑞𝑓(𝜷)𝑑𝜷 (11) 

Here, 𝑓(𝛽) is a density function, which can take various forms, such as normal, 

lognormal, or uniform. The MIXL model can be viewed as a mixture of logit functions 

evaluated at different 𝜷 values, with 𝑓(𝜷) serving as the mixing distribution. Due to the 

IID assumption and the Gumbel distribution of the random disturbance 𝜀𝑖𝑡𝑞 in Equation 

(13), 𝐿𝑖𝑡𝑞 can be computed as shown in Equation (12). 

 𝐿𝑖𝑡𝑞 = 𝑒𝑉𝑖𝑡𝑞∑ 𝑒𝑉𝑖′𝑡𝑞𝐼𝑖′=1 = 𝑒𝑿𝑖𝑡𝑞𝜷∑ 𝑒𝑿𝑖′𝑡𝑞𝜷𝐼𝑖′=1  (12) 

 𝑈𝑖𝑡𝑞 = 𝑉𝑖𝑡𝑞 + 𝜀𝑖𝑡𝑞 = 𝑿′𝑖𝑡𝑞𝜷 + 𝜀𝑖𝑡𝑞 (13) 

In this expression, 𝑿𝑖𝑡𝑞 represents the vector of explanatory variables considered 

in the choice model, which includes attributes of alternatives and socio-economic 

characteristics. 𝑉𝑖𝑡𝑞(𝜷) denotes the observable component of utility. 
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By employing methods such as Halton sequences to draw values of 𝜷 based on 

its distribution, we can simulate the non-closed probability 𝑃𝑦𝑖𝑡𝑞=1 using Monte Carlo 

simulation methods, as presented in Equation (14). 

 𝑆𝑃𝑦𝑖𝑡𝑞=1 = 1𝑅 ∑ 𝐿𝑖𝑡𝑞𝑅𝑟=1 (𝜷𝑟) (14) 

where 𝑅 denotes the number of replications (i.e., draws of 𝜷𝑟), 𝜷𝑟 represents the 𝑟𝑡ℎ 

draw of 𝜷, and 𝑆𝑃𝑖𝑡𝑞 is the simulated probability that individual 𝑞 chooses alternative 𝑖 
on occasion 𝑡. By substituting the simulated value of 𝑃𝑦𝑖𝑡𝑞=1 into Equation (15), the log-

likelihood function can be computed using the simulation method. 

3.2 Traditional gradient methods: analytical and numerical algorithms 

3.2.1 Analytical Differentiation (AnaD) 

Analytical Differentiation (AnaD) provides an exact gradient expression derived 

through calculus. It is typically associated with fewer function evaluations, making it 

particularly fast in high-dimensional spaces and highly efficient for estimating DCMs 

(Mai et al., 2015). Moreover, AnaD is less sensitive to hyperparameters of the 

estimation routine such as step size, which are crucial in numerical methods. However, 

the likelihood function of DCMs is often complex, making AnaD challenging to 

compute and implement (Bansal et al., 2018). 

In the context of the MNL model, the log-likelihood function 𝐿𝐿 as presented in 

Equation (15) is both smooth and differentiable (Train, 2009). Its derivative can be 

efficiently computed as follows: 
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∂𝐿𝐿∂𝜷 = ∑ ∑ ∑ 𝑦𝑖𝑡𝑞𝑖𝑡𝑞 (𝑿𝑖𝑡𝑞′ 𝜷)∂𝜷 − ∑ ∑ ∑ 𝑦𝑖𝑡𝑞𝑖𝑡𝑞 ln(∑ 𝑒𝑿𝑖𝑡𝑞′ 𝜷𝑗 )∂𝜷               = ∑ ∑ ∑ 𝑦𝑖𝑡𝑞𝑖𝑡𝑞 𝑿𝑖𝑡𝑞 − ∑ ∑ ∑ 𝑦𝑖𝑡𝑞𝑖𝑡𝑞 ∑ 𝑃𝑗𝑡𝑞𝑗 𝑿𝑗𝑡𝑞= ∑ ∑ ∑ (𝑦𝑖𝑡𝑞 − 𝑃𝑖𝑡𝑞)𝑖𝑡𝑞 𝑿𝑖𝑡𝑞                      (15) 

3.2.2 Numerical Differentiation (ND) 

Numerical Differentiation (ND) refers to the gradient (or derivative) approximation of 

the given function, using finite differences evaluated at selected sample points. The 

simplest approach for computing the ND is to employ the definition of the limit 

derivative (Oliver, 1980). Within this category, the forward difference method, 

backward difference method, and central difference method are commonly utilised for 

approximating derivatives (Smith, 1985). 

For a small positive number ℎ, the gradient of a multivariate function 𝑓(𝐱) at a 

point 𝐱) is ∇𝑓 = ( ∂𝑓∂𝑥1 , . . . , ∂𝑓∂𝑥𝑛), which can be approximated as follows: 

(1) Forward Difference Method: 

 
∂𝑓∂𝐱 ≈ 𝑓(𝐱+ℎ𝐞𝐯)−𝑓(𝐱)ℎ  (16) 

(2) Backward Difference Method: 

 
∂𝑓∂𝐱 ≈ 𝑓(𝐱)−𝑓(𝐱−ℎ𝐞𝐯)ℎ  (17) 

(3) Central Difference Method: 

 
∂𝑓∂𝐱 ≈ 𝑓(𝐱+ℎ𝐞𝐯)−𝑓(𝐱−ℎ𝐞𝐯)2ℎ  (18) 

The forward difference method calculates the derivative at a point by 

considering the difference between the function values at that point and at a slightly 
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larger point. Conversely, the backward difference method calculates the derivative by 

considering the difference between the function values at that point and at a slightly 

smaller point. These two methods primarily differ in the direction in which they 

evaluate the function values relative to the point of interest. In contrast, the central 

difference method, also known as the symmetric difference quotient method, estimates 

the derivative by averaging the forward and backward differences, thereby mitigating 

first-order errors and offering a more accurate approximation. These methods can also 

be extended to compute partial derivatives and gradients of multivariable functions. 

In practice, ND methods, particularly the central difference method, are 

commonly employed when gradients are required but difficult to compute analytically, 

as often encountered in optimisation problems. Consequently, these methods are also 

widely used in software packages for DCMs. However, despite their ease of 

implementation, ND methods have notable limitations (Baydin et al., 2018):  

• They are susceptible to round-off errors, and the accuracy of the gradient 

depends on the choice of step size ℎ. A small ℎ can lead to sensitivity to 

numerical errors, while a large ℎ may result in inaccurate approximations 

(Jerrell, 1997). 

• They are computationally expensive for high-dimensional functions, as the 

function must be evaluated at least twice for each dimension at a single point of 

interest (Margossian, 2019). 

3.3 Automatic Differentiation (AD): underlying mechanism of computational 

graph 

In the field of machine learning, it is widely recognised that CG combined with AD 

typically result in faster, more accurate, and more stable derivative calculations 



16 
 

compared to ND. This makes AD a fundamental mechanism for building models in 

deep learning platforms such as TensorFlow and PyTorch (Margossian, 2019; Paszke et 

al., 2017). CG is a visual representation of mathematical operations for a complex 

function, where nodes represent variables or operations and edges represent 

dependencies between them. AD is a technique used within CG to compute the 

derivatives of the function by decomposing them into elementary operations, each of 

which is executed precisely and swiftly by the computer, achieving numerical precision 

up to machine accuracy. This process ensures that the computed derivatives closely 

align with AnaD from a theoretical perspective (Guarda et al., 2024; Ma et al., 2020; 

Wu et al., 2018). Therefore, AD allows for accurate and efficient computations during 

the training process, enhancing model estimation and inherently avoiding the 

approximation errors common with numerical methods. 

This paper employs the TensorFlow platform (Abadi et al., 2016) to develop the 

CG-based MNL model. The forward and reverse modes of AD, when applied within 

CG, optimise memory usage and facilitate effective derivative calculations. The forward 

propagation process of the CG-based MNL model is depicted in Figure 1, where input 

data traverse through a network to generate an output in the forward direction, as 

described by Equations (1) to (4). In Figure 1, input nodes 𝑥𝑖 represent attributes for the 𝑖𝑡ℎ alternative and personal characteristics from the empirical dataset, while the 𝛽𝑖 are 

estimated coefficients, including alternative-specific constants. Intermediate CG nodes 

in grey colour such as 𝑁1,𝑁11,𝑁21,𝑁31 represent elementary decomposition functions 

and facilitate transitions between inputs and outputs. During estimation, variables are 

estimated by maximising the log-likelihood function LL, as expressed in Equation (4). 

In the forward pass, a single sweep through the CG computes both the numerical values 

and derivatives for all nodes, delivering results with machine-level accuracy. In the 
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backward pass, the only necessities are access to the expression graph and the numerical 

values of the intermediate variables (Baydin et al., 2018). The calculation of derivatives 

is then automatically performed by applying the chain rule to these operations. This 

unique combination of graph structure, the forward-backward mode, the memory 

mechanism, and the chain-rule-based computation process contributes to the efficiency 

of the CG. 

Specifically, the derivative of the variable with respect to the negative log-

likelihood function can be computed using the nodes and links illustrated in Figure 1. 

The derivative of 𝜷 can be expressed as 
𝑑LL(𝛽)∂𝜷 = (∂𝐿𝐿∂𝛽1 , . . . , ∂𝐿𝐿∂𝛽𝐼), where 

∂𝐿𝐿∂𝛽𝑘 is 

determined using the chain rule: 

 
∂𝐿𝐿∂𝛽𝑘 = ∑ ∂𝐿𝐿∂𝑃𝑖𝐼𝑖=1 ∂𝑃𝑖∂𝑁2𝑖 ∂𝑁2𝑖∂𝑁1𝑖 ∂𝑁1𝑖∂𝛾𝑖 ∂𝛾𝑖∂𝛽𝑘 (19) 

3.4 Comparison of gradient methods 

To clarify the distinctions between the derivation methods discussed in this study, we 

present a comparative analysis of their merits and drawbacks, as shown in Table 2. 

These differentiation methods include (1) AnaD, (2) ND, and (3) AD: 

(1) AnaD involves manually calculating derivative expressions and coding them for 

model calibration. While it provides highly optimised computation when 

performed accurately, the manual calculation of derivatives is prone to errors 

and is time-consuming(Griewank and Walther, 2008). 

(2) ND employs a straightforward formula to approximate derivatives. Despite its 

simplicity and widespread use, it is susceptible to calculation errors and can be 

excessively time-consuming. The time complexity for approximating derivatives 
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increases linearly with the dimensions of partial derivatives (Gebremedhin and 

Walther, 2020). 

(3) AD computes exact derivatives by deconstructing functions into elementary 

operations and applying the chain rule. It offers attractive time complexity for 

gradient computation but requires substantial memory to store all intermediate 

gradient values. Efficient implementation is necessary, as demonstrated in 

frameworks like TensorFlow and PyTorch (Paszke et al., 2017). 

Compared to the AnaD approach which requires manually specifying 

derivatives, CG-based structures can automatically and swiftly compute derivatives 

with respect to the log-likelihood function, ensuring both accuracy and efficiency. In 

contrast to ND, the CG-based approach avoids truncation and round-off errors, thereby 

enhancing computational efficiency (Baydin et al., 2018; Gebremedhin and Walther, 

2019; Margossian, 2019). 

4 Empirical Approach 

Our objective is to explore the potential of Computational Graph (CG) for the precise 

and efficient estimation of Discrete Choice Models (DCMs), specifically the Latent 

Class (LC) model and mixed logit (MIXL) model.  

The computational experiments involved in this study are conducted on a system 

equipped with an Intel Core i7 processor and 16GB of RAM, operating on Microsoft 

Windows 11 (version 10.0.22621). The software environment utilised for our 

experiments is composed of Python version 3.8.15, augmented by TensorFlow version 

2.9.1, and TensorFlow Probability version 0.17.0. This operating environment furnishes 

the necessary computational and statistical capabilities for our research. 
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4.1 Empirical Dataset 

The dataset used in this research is derived from a Stated Preference (SP) survey 

conducted in Switzerland, which investigates public transport route choices (Axhausen 

et al., 2006). The dataset is publicly available through the Apollo website (Hess and 

Palma, 2019). A summary of the dataset is provided in Table 3. 

The panel dataset contains 3,492 observations from 388 participants, with each 

participant facing nine choice situations, each involving a selection between two public 

transport routes. Each alternative route is characterised by four attributes: travel time, 

travel cost, headway (the interval between consecutive buses or trains), and the number 

of interchanges required. Additionally, the dataset includes socio-economic 

characteristics and trip-specific details for each respondent, such as income, household 

car availability, and the purpose of the journey (e.g., commuting, shopping, business, or 

leisure). This dataset provides a robust foundation for evaluating various choice 

modelling approaches in the context of public transport route selection. 

4.2 Empirical setting 

Our experiments began with the Multinomial Logit (MNL) model. However, due to its 

convex nature, starting values and gradient methods have minimal impact on the 

optimal solution, hence it is not detailed in this paper. As outlined in Section 4.1, the 

decision framework involves two route choices, each characterised by four distinct 

attributes. The LC model involves two latent classes, devoid of any covariates within 

the class allocation model, with each class having a unique set of parameters. When 

considering the MIXL with either lognormal or normal density, every attribute-related 

parameter follows an uncorrelated lognormal or normal distribution within the 

preference space. Given that the MIXL models require simulation to approximate the 
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integrals for choice probabilities, we employ 5,000 Halton draws to simulate the 

likelihood. To comprehensively evaluate aspects such as precision, speed, and 

robustness, we repeated the experiment with 200 sets of starting values for each model, 

assessing the estimation time and convergence behaviour. This testing approach ensured 

that our conclusions were not dependent on specific initial conditions but were 

generalisable across a diverse range of starting values.  Detailed experimental settings 

are provided in  

Table 4. 

The LC model’s coefficients (𝛽𝑡𝑡, 𝛽𝑡𝑐, 𝛽ℎ𝑤, 𝛽𝑐ℎ) and the specific alternative 

constant (ASC) were sampled from a range of [-2,2], reflecting the potential 

heterogeneity of traveller preferences. For the MIXL models with normal density, mean 

coefficients (𝜇𝑡𝑡, 𝜇𝑡𝑐, 𝜇ℎ𝑤, 𝜇𝑐ℎ), covariance coefficients (𝜎𝑡𝑡 , 𝜎𝑡𝑐 , 𝜎ℎ𝑤, 𝜎𝑐ℎ) and ASC 

were randomly drawn from [-1,1]. In contrast, the Mixed Logit models with lognormal 

density drew 𝜇 values from [-6,0] and 𝜎 values from [-0.5,0.5], acknowledging the 

distributional characteristics of lognormal and normal distributions. This variability is 

intended to provide a comprehensive understanding of the models’ behaviour under 

different conditions. 

  In our framework, we implemented Analytical Differentiation (AnaD), 

Numerical Differentiation (ND), and Automatic Differentiation (AD) for the LC model. 

Our primary objective with AnaD was determining whether AD could achieve a 

comparable level of accuracy, as suggested theoretically. After this was confirmed for 

LC (see results below), we decided not to pursue the complex coding of AnaD for 

MIXL models. Instead and for completeness,  we turned to the Apollo package to 

compare the precision of gradients obtained through AD and ND. In the comparison of 

speed and stability, our analysis encompassed a comprehensive threefold comparison 
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(AD, ND, AnaD) for the LC model and a twofold comparison (AD, ND) for the MIXL 

model, ensuring a fair and thorough evaluation within the CG framework. 

5 Results 

This section presents the empirical results for our wide range of estimation settings. The 

results show that Computational Graph-Automatic Differentiation (CG-AD) exhibits 

good performance in three primary dimensions: gradient precision, estimation speed, 

and optimisation stability.  

5.1 Gradient precision 

The primary objective of this section is to validate that the gradient precision of CG-AD 

closely aligns with that of analytical differentiation (AnaD), while numerical 

differentiation (ND) may not achieve such high levels of precision. Table 5 therefore 

provides a detailed comparison of derivative precision for different models.  The 

reported 'starting value' is, for illustrative purposes, randomly chosen from the 200 

starting values used in the following section. These starting values include both an all-

zero parameter vector and center of randomly drawn starting values in the MIXL-

lognormal model, as shown in Table 4. Notably, across all tested starting values in this 

section, the three gradient methods consistently yield similar experimental results, 

demonstrating a good model fit. Therefore, in Table 11, we present the log-likelihood, 

parameter estimates, standard errors, and t-ratios for CG-AD, further confirming the 

precision and effectiveness of CG-AD estimation. 

As Table 5 shows, the gradients computed by CG-AD are nearly exactly 

replicating those obtained by AnaD. Specifically, the CG-AD results for the three 

models align with the AnaD up to the 10th or 11th decimal, indicating a very high level 
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of gradient precision for CG-AD1. This level of accuracy is consistently observed across 

all parameters of the model. In sharp contrast, the ND already displays differences at the 

2nd or 3rd decimal places for some parameters. Take 𝜇𝑡𝑡 in the Mixed Logit (MIXL) 

model with normal density for example, the gradient computed via CG-AD and AnaD is 

427.6213, while for ND it is 427.6204. The level of precision observed for CG-AD, as 

opposed to ND, ensures the true gradient landscape is closely mirrored, potentially 

increasing the probability of accurate estimation.  

5.2 Estimation speed 

This section highlights the advantages of CG in accelerating the estimation 

process. The distribution of estimation times across the 200 experiments is presented in 

the box plots in  Figure 2. Table 6 shows that the average estimation time for the Latent 

Class (LC) model using AD is approximately 4.93 seconds, while ND takes about 20.53 

seconds on average. For the MIXL model with normal density, AD requires 

approximately 1,059 seconds, whereas ND takes a significantly longer 12,481 seconds. 

For the MIXL model with lognormal density, the estimation time for AD is around 693 

seconds, compared to 8,579 seconds for ND. Overall, the AD method reduces the time 

usage for the LC model to about half of that needed by the ND method. For the more 

complex mixed logit methods employing 5,000 Halton draws, the estimation time 

decreases by over tenfold. Our study emphasizes the superior computational 

performance of the CG-AD method over ND-based techniques, particularly evident 

when conducting Monte Carlo simulations for model estimation. 

 
1 Interested readers can visit our GitHub page to run the program and check the level of 

precision: https://github.com/lyliuyanly/CG-for-CM. The Excel dataset serves as an 

extended version of Table 4, allowing verification of precision beyond 12 significant digits.  

https://github.com/lyliuyanly/CG-for-CM
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5.3 Log-likelihood convergence 

Besides exploring CG’s potential for the precise and efficient estimation of DCMs, we 

are also interested in model convergence. Across the 200 starting values, we interpret 

the estimates with the highest log-likelihood as the best local optimum but cannot 

guarantee this is the global optimum. Our primary interest is in the extent to which 

different gradient calculation methods can consistently arrive at the ‘best’ log-likelihood 

value across the range of starting values. Figure 3 presents an overview of the frequency 

at which our different gradient calculation methods arrive at given log-likelihood values 

for respectively the LC model, the MIXL model with normal density, and the MIXL 

model with lognormal density. 

As shown in Figure 3, finding the best local optimum is challenging. For the LC 

model, CG-AD and AnaD are only able to reach the best local optimum in a few more 

instances than ND, and the number of times the best local optimum is achieved is only 

12% of the time for CG-AD and 11% for ND. In this case, we don’t see a substantial 

benefit of using AnaD, AD, or ND-based derivatives and can only re-iterate that the 

speed benefit of LC allows testing across multiple starting values to circumvent the 

issue. 

  For the MIXL model, for a large enough number of draws, the final log-

likelihood values in many cases are very close to the best one. After contrasting the 

parameter estimates in these locations, we can interpret these as arriving at the same 

optimum. The majority of mixed logit models therefore reach the best local optimum 

(around -1464 for MIXL-normal and around -1445 for MIXL-lognormal). However, we 

still observe instances of non-convergence and convergence to bad local optima. This is 

particularly the case for the MIXL model with lognormal densities where this applies to 

nearly 30% of instances. Notably, for the LC model, we find that the parameter 
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estimates of the top four identified local optima differ significantly from each other, 

highlighting the challenges in achieving stable estimates. 

Since the focus in this section is on the CG-based approach's ability to improve 

estimate robustness and reduce the likelihood of non-convergence and poor local 

optima, we employed a Chi-square test for all models, as presented in Tables 7–10, to 

provide a comprehensive assessment. Among them, the MIXL-lognormal model 

exhibits statistically significant results. Using the final log-likelihood of the 

Multinomial Logit (MNL) model as a benchmark (-1,666), the final LL values for the 

MIXL-lognormal model are categorised into three groups: 1) Worse than MNL: non-

convergence or 𝐿𝐿 ∈ (−∞, −1,666); 2) Better than MNL but significantly worse than 

the best local optimum and therefore can be viewed as undesirable local optima: 𝐿𝐿 ∈[−1,666, −1,445); 3) Close to the best local optimum: LL around -1,445. We test the 

null hypothesis (H0) that under CG-AD there are no significantly different occurrences 

of undesirable local optima that worse than the MNL or non-convergence relative to 

ND. Based on our analysis (see Table 10), the Chi-square statistic is calculated to be 

5.82 with 2 degrees of freedom, resulting in a p-value less than 0.1. This p-value allows 

us to reject the H0. Thus, we conclude that the CG-AD notably enhances the stability of 

the MIXL-lognormal model by mitigating the occurrences of landing in undesirable 

local optima and reducing instances of non-convergence. For the LC and MIXL-normal 

models reported in Table 8 and Table 9, they do not show strong statistical significance 

in the Chi-square test. For the general trends observed across all models in Table 7, the 

Chi-square statistic is 6.69 with 2 degrees of freedom (p < 0.1), indicating a significant 

difference. These findings suggest that CG-AD enhances model estimation stability by 

reducing the likelihood of undesirable local optima and non-convergence, with its 



25 
 

impact varying across model specifications and being particularly notable in the MIXL-

lognormal model. 

Let us further analyse the reasons for the instability: the lack of convergence and 

tendency to achieve poor local optima may be related to the complexity of calculations 

involving the lognormal distribution, which can encounter numerical issues. According 

to the Apollo manual (Hess and Palma, 2019), ND may be susceptible to generating 

zero probabilities due to specific calculations in the process, particularly in complex 

models. This can impact the precision and reliability of estimation results. Although our 

CG approach is not immune to zero probabilities and numerical issues, our findings 

suggest that the CG approach with AD reduces the likelihood of falling into local 

optima, thus providing a more accurate and reliable choice modelling optimisation 

mechanism. While convergence may be achieved more frequently with AD, 

optimisation remains a pressing and unresolved challenge that should be treated with 

prudence.  

6 Discussion 

We have explored the potential advantages of Computational Graph-Automatic 

Differentiation (CG-AD) in three key areas: gradient precision, estimation speed and 

stability. Building on the results presented in the previous section, we now discuss how 

these results can help choice modelling researchers in developing their models more 

efficiently. 

 As previously mentioned, the local optima problem cannot be avoided except 

for the Multinomial Logit (MNL) model, which has a convex likelihood function. 

Despite the high precision of CG-AD’s gradient approximation, local optima and 

numerical issues are still inevitable, particularly with poor starting values. Some 
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additional investigation shows that numerical issues related to starting values often arise 

early in the optimisation process for the Latent Class (LC) model. However, when these 

issues emerge later, they are typically caused by the optimiser passing through a flat or 

complex region with local optima, where even small differences in the gradient can lead 

the optimiser along a different path.  

Similar findings can be observed with the Mixed Logit (MIXL) model. When 

dealing with a large number of parameters, the simulated likelihood function often 

contains multiple local optima in a high-dimensional solution space (Chen et al., 2010). 

Both Monte Carlo and Halton numerical integration procedures introduce inherent 

“noise” that depends on the number of draws taken and the sequence in which the draws 

are generated (Palma et al., 2020). However, increasing the number of draws (whether 

Halton or random) reduces the simulation noise and improves integration precision. 

Hess et al. (2007) and Hess et al. (2006) tested multiple runs using pseudo-random 

draws and concluded that 2,000 draws are sufficient to guarantee stable estimation 

results and mitigate the impact of local optima. To reduce such noise, we used 5,000 

draws in our experiments and found that this mostly led to the best local optima. 

Nevertheless, even with such high gradient precision provided by CG-AD, local optima 

could not be avoided solely by increasing the number of draws due to the existence of 

bad numerical issues. 

The best and most straightforward way to mitigate the local optima issue is to 

test multiple starting values (Hess and Palma, 2019). Recognising that this testing 

approach can be computationally intensive, Bierlaire et al. (2010) proposed an 

algorithm that can dynamically filter out unpromising candidates, thereby reducing the 

computational cost of the testing process. 
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However, testing a very large number of starting values is challenging for some 

sophisticated models and large datasets. In such a situation, analytical differentiation 

(AnaD) can be hard to calculate and numerical differentiation (ND) is time-consuming. 

CG-AD significantly accelerates the gradient computation and model calibration 

process. For example, the average estimation time for MIXL with normal density is 

12,481 seconds (using 5,000 Halton draws) using ND, while only 1,058 seconds using 

CG-AD. Furthermore, CG-AD’s results closely align with those obtained from the 

AnaD method and ensure a high degree of precision. Although not entirely accurate, its 

efficiency is particularly beneficial for the analyst to test large sets of starting values 

quickly and therefore serves as a substitution for AnaD, which is difficult to calculate 

and prone to human errors. Apart from enhancing practical applicability for complex 

scenarios and data-intensive fields, a quicker estimation process also signifies a 

reduction in computational resources (CPU time, memory, etc.), which is particularly 

beneficial when resources are limited. Therefore, the speed of the CG-AD allows 

advanced choice modelling practitioners and researchers to refine, modify, and iterate 

their models more efficiently, enhancing the overall process of model development and 

adjustment. 

7 Conclusion 

The growing complexity of choice models and the context of big data present 

challenges to the speed, accuracy, and stability of the parameter estimation process. 

Building on the understanding that both choice modelling and 

classification/regression problems are non-convex optimisation processes aimed at 

finding the optimal parameter, we aim to leverage machine learning (ML)-based 

Computational Graph (CG) techniques to address classical choice modelling problems. 
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Drawing from previous work by Kim et al. (2021), we developed Latent Class (LC) and 

Mixed Logit (MIXL) models for travel mode choice using an open-access dataset, and 

further illustrated the core advantages of CG both theoretically and experimentally. 

Using a consistent compilation environment, coding language, and optimiser, we 

ensured a fair comparison of the properties of Automatic Differentiation (AD) and 

Numerical Differentiation (ND) methods. 

Our experiments provide compelling evidence and practical insights into the CG 

framework by extensively testing various Discrete Choice Models (DCMs), 

demonstrating their estimation efficiency, accuracy, and stability in econometric 

applications. The results demonstrate that CG, underpinned by its unique AD 

mechanism, significantly accelerates the parameter calibration process. Specifically, we 

observed more than a tenfold reduction in estimation time for mixed logit methods 

employing 5,000 Halton draws. Beyond efficiency, we also observed CG’s stability 

potential. When adjusting starting values and comparing the distribution of log-

likelihoods and estimates, we found that CG is more likely to reach the best local 

optimum and less prone to stagnation at suboptimal solutions for the MIXL models. 

Consequently, integrating CG into DCMs enables more efficient model runs, 

simplifying testing and validation for researchers. 

Based on the results, we conclude that CG-AD is a valuable tool for choice 

modellers. This powerful estimation technique not only promises advancements in 

econometric modelling and innovative applications but also underscores the need for 

continued research and refinement. Expanding validation across diverse datasets will be 

a crucial step in further strengthening its reliability and real-world applicability. While 

we have shown that AD can improve estimation stability, ensuring a guaranteed 

convergence to the global optimum in DCMs remains a significant challenge. Moving 
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forward, we aim to fully leverage CG-AD as an estimation tool to enhance the 

calibration of discrete choice models (DCMs). Beyond traditional BFGS methods, CG-

AD enables efficient derivative computation and can be seamlessly integrated with 

various optimization techniques within the TensorFlow framework, such as stochastic 

gradient descent (SGD) and Adaptive Moment Estimation (Adam). Additionally, 

regularization techniques (e.g., dropout, L2) and normalization methods (e.g., batch 

normalization) can help smooth the negative log-likelihood loss landscape and mitigate 

the risk of extreme parameter estimates leading to local optima. Furthermore, diverse 

initialization strategies—including heuristic algorithms (e.g., simulated annealing, 

genetic algorithms) and reinforcement learning—could enhance optimization robustness 

and accelerate convergence. 

Beyond estimation improvements, broader ML techniques offer promising 

avenues for advancing choice modeling. The TensorFlow platform provides CG-AD 

with greater flexibility to integrate various ML architectures, such as deep neural 

networks (DNNs), attention mechanisms, and Transformers, to better capture nonlinear 

relationships in utility functions, taste coefficients, and latent variables, thereby 

improving model generalization. While these hybrid models introduce additional 

complexity, key economic indicators such as elasticity and willingness to pay (WTP) 

can still be efficiently derived using the derivatives obtained through automatic 

differentiation. Although CG-AD does not directly enhance model interpretability, it 

facilitates the computation of economic indicators, thereby preserving transparency. In 

this light, CG-AD acts as a bridge between classical theory and modern ML, preserving 

the core strengths that make DCMs valuable for transport applications—namely, 

theoretical consistency and economic insight—while adding flexibility and scalability. 

By leveraging these capabilities, future research can further integrate ML-driven 
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techniques into classical frameworks, balancing predictive performance, computational 

efficiency, and behavioral transparency. 
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Table List 

Table 1. Notation table 

Symbol Description of Dimensions 𝐼 Number of alternatives in the choice set 𝑇 Number of choice occasions 𝑄 Number of decision-makers 𝐽 Number of latent classes in the LC model 𝑅 Number of replications for Monte Carlo simulation 

Symbol Description of Indices 𝑖 Index for alternatives 𝑡 Index for choice occasions 𝑞 Index for individuals 𝑗 Index for latent classes 

Symbol Description of Utility Function Components 𝑈𝑖𝑡𝑞  Utility of alternative 𝑖 for individual 𝑞 at choice occasion 𝑡 𝑈𝑖𝑡𝑞|𝑗 For class 𝑗, utility of alternative 𝑖 for individual 𝑞 at choice occasion 𝑡 𝑈𝑞𝑗 Utility of individual 𝑞 belonging to class 𝑗 𝑉𝑖𝑡𝑞 Observed component of 𝑈𝑖𝑡𝑞  𝑉𝑖𝑡𝑞|𝑗 Observed component of 𝑈𝑖𝑡𝑞|𝑗 𝑉𝑞𝑗 Observed component of 𝑈𝑞𝑗 𝜀𝑖𝑡𝑞 Random error term in 𝑈𝑖𝑡𝑞  following an i.i.d. Gumbel distribution 𝜀𝑖𝑡𝑞|𝑗  For class 𝑗, random error term in 𝑈𝑖𝑡𝑞 following an i.i.d. Gumbel distribution 𝜁𝑞𝑗  Random error term in class membership model 𝑿𝒊𝒕𝒒 Vector of explanatory variables for alternative 𝑖, individual 𝑞, and occasion 𝑡 𝑺𝑞 Vector of explanatory variables of individual 𝑞 for class allocation 𝜷 Vector of model parameters 𝜷𝑗 Vector of model parameters for the latent class 𝑗 𝜷𝑟  Vector of model parameters for the Halton draw r 𝜸𝑗 Vector of model parameters for class membership model in LC model 
Symbol Description of Choice Variables 𝑦𝑖𝑡𝑞  Choice variable of the 𝑞𝑡ℎ traveller, 1 if alternative 𝑖 is chosen at occasion 𝑡, 0 

otherwise 𝑃𝑦𝑞  Joint probability of observed choices for individual 𝑞 𝑃𝑦𝑖𝑡𝑞=1 Probability that individual 𝑞 chooses alternative 𝑖 at occasion 𝑡 𝑃𝑐𝑞𝑗=1 Probability that individual 𝑞 belongs to class 𝑗 𝐿𝑖𝑡𝑞(𝛽𝑟) Logit probability expression in MIXL model for Halton draw 𝛽𝑟 𝑃𝑦𝑖𝑡𝑞=1|𝑗 For class 𝑗, conditional probability that individual 𝑞 chooses alternative 𝑖 at occasion 𝑡 𝑆𝑃𝑦𝑖𝑡𝑞=1 Simulated probability in MIXL model 𝑓(𝛽) Density function of parameter distribution in MIXL model 𝐿𝐿(𝑦) Log-likelihood function 

Symbol Description of Gradient and Numerical Computation ∇𝑓 Gradient of function 𝑓, which can be the log-likelihood function 
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ℎ Step size in numerical differentiation 𝐞𝑣 Unit vector in direction 𝑣 ∂𝑓∂𝐱 Partial derivative of function 𝑓 with respect to point 𝐱 ∂𝐿𝐿∂𝜷  Gradient of the log-likelihood function with respect to parameter vector 𝜷 

 

Table 2. Summary of techniques to calculate derivatives 

Technique Advantages Disadvantages 

Analytical 

Differentiation 

(AnaD) 

Exact and fast 

Time-consuming to code, human error-

prone, and difficult for complicated 

functions. 

Numerical 

Differentiation 

(ND) 

Easy to code and 

implement 

Potential truncation/round-off errors, 

slow especially in high dimensions, as 

the method requires at least D 

evaluations, where D is the number of 

partial derivatives required. 

Automatic 

differentiation 

(AD) 

Exact, speed is 

comparable to or even 

quicker than hand-

coding derivatives, 

highly applicable. 

Needs to be carefully implemented, 

although this is already done in several 

packages including TensorFlow and 

PyTorch. 

 

Table 3. Data dictionary for apollo_swissRouteChoiceData  

Variable Description Values 

ID Unique respondent ID Min: 1, max: 84525 

choice 
Public transport route 

choices 
1 for route 1; 2 for route 2 

tt1 Travel time of route 1 Min: 2, mean: 52.59, max: 389 

tc1 Travel cost of route 1 Min: 1, mean: 19.67, max: 206 

hw1 Headway of route 1 15; 30; 60 

ch1 
Interchange number of route 

1 
0; 1; 2 

tt2 Travel time of route 2 Min: 2, mean: 52.47, max: 385 

tc2 Travel cost of route 2 Min: 1, mean: 19.69, max: 268 

hw2 Headway of route 2 15; 30; 60 

ch2 
Interchange number of route 

2 
0; 1; 2 
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hh_inc_abs Household income Min: 10000, mean: 76507.73, max: 167500 

car_availability Household car availability 1 for car available (37.89 %), 0 otherwise 

commute Purpose of travel is commute 
1 for commute purpose (28.61%), 0 

otherwise 

shopping Purpose of travel is shopping 
1 for shopping purpose (8.24%), 0 

otherwise 
business Purpose of travel is business 1 for business purpose (9.29%), 0 otherwise 

leisure Purpose of travel is leisure 1 for leisure purpose (53.87%), 0 otherwise 

Individuals 388 
 

Observations 3492 

 

Table 4. Estimation Settings for Model Comparison 

Model 

Type 
Latent Class Model 

Mixed Logit- Normal 

Density 

Mixed Logit- 

Lognormal Density 

Parameter 

Setting 

Coefficients 𝛽𝑡𝑡, 𝛽𝑡𝑐, 𝛽ℎ𝑤, 𝛽𝑐ℎ of two latent 

class a/b, alternative 

route specific 

constant 𝐴𝑆𝐶1 

Mean coefficients 𝜇𝑡𝑡, 𝜇𝑡𝑐, 𝜇ℎ𝑤, 𝜇𝑐ℎ 

covariance coefficients 𝜎𝑡𝑡, 𝜎𝑡𝑐, 𝜎ℎ𝑤, 𝜎𝑐ℎ, 

alternative route 

specific constant 𝐴𝑆𝐶1 

Mean coefficients 𝜇𝑡𝑡, 𝜇𝑡𝑐, 𝜇ℎ𝑤, 𝜇𝑐ℎ 

covariance 

coefficients 𝜎𝑡𝑡, 𝜎𝑡𝑐, 𝜎ℎ𝑤, 𝜎𝑐ℎ 

Gradient 

Method 
AD, ND, AnaD 

AD, ND, AnaD (in 

Apollo) 

AD, ND, AnaD (in 

Apollo) 

Starting 

Value 

200 random draws, 𝛽, 𝐴𝑆𝐶 in [−2,2] 200 random draws, 𝜇, 𝜎, 𝐴𝑆𝐶 in [−1,1] 200 random draws, 𝜇 

in [−6,0], 𝜎 in [−0.5,0.5] 
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Table 5: Derivative comparison of different models   

LC 

Parameter 𝛽𝑡𝑡,𝑎 𝛽𝑡𝑡,𝑏 𝛽𝑡𝑐,𝑎 𝛽𝑡𝑐,𝑏 𝛽ℎ𝑤,𝑎 𝛽ℎ𝑤,𝑏 𝛽𝑐ℎ,𝑎 𝛽𝑐ℎ,𝑏 𝐴𝑆𝐶1 ∆𝑏 

Value 0 0 0 0 0 0 0 0 0 0 

CG-AD 1.9995E3 1.9995E3 1.1250E1 1.1250E1 7.5675E3 7.5675E3 4.5525E2 4.5525E2 1.2000E1 0 

ND 1.9995E3 1.9994E3 1.1285E1 1.1273E1 7.5675E3 7.5671E3 4.5525E2 4.5525E2 1.2000E1 0 

AnaD 1.9995E3 1.9995E3 1.1250E1 1.1250E1 7.5675E3 7.5675E3 4.5525E2 4.5525E2 1.2000E1 0 

Value -1.55181E-1 -3.47948E-1 1.75951 1.25873 -2.54204E-1 -1.47778 -1.34748 -2.18778E-1 -1.48403 -1.38234 

CG-AD -8.79764E3 -2.30280E3 3.02961E3 1.49242E3 -1.10860E4 2.68779E1 7.77773E2 7.26236E1 -1.60148E2 -2.07999E2 

ND -8.79764E3 -2.30281E3 3.02961E3 1.49242E3 -1.10860E4 2.68781E1 7.77773E2 7.26235E1 -1.60148E2 -2.07999E2 

AnaD -8.79764E3 -2.30280E3 3.02961E3 1.49242E3 -1.10860E4 2.68779E1 7.77773E2 7.26236E1 -1.60148E2 -2.07999E2 

MIXL-normal 

Parameter 𝜇𝑡𝑡 𝜇𝑡𝑐  𝜇ℎ𝑤  𝜇𝑐ℎ 𝜎𝑡𝑡 𝜎𝑡𝑐 𝜎ℎ𝑤 𝜎𝑐ℎ 𝐴𝑆𝐶1 

 Value 0 0 0 0 0 0 0 0 0 

CG-AD -3.9990E3 -2.2500E1 -1.5135E4 -9.1050E2 2.5245E-1 -9.5841E-1 -7.0502E-1 -2.5600E-1 -1.2000E1 

ND -3.9990E3 -2.9520E1 -1.5135E4 -9.1071E2 2.5098E-1 -9.5521E-1 -7.2384E-1 -2.5418E-1 -1.1984E1 

AnaD -3.9990E3 -2.2500E1 -1.5135E4 -9.1050E2 2.5245E-1 -9.5841E-1 -7.0502E-1 -2.5600E-1 -1.2000E1 

 Value 2.3430E-1 8.9392E-2 4.9030E-2 -5.9195E-1 -3.9652E-1 3.5190E-1 4.0572E-1 -6.5085E-1 -8.0343E-1 

CG-AD -4.2762E2 -3.1630E2 -5.7545E2 -3.0033E2 1.0991E2 1.0890E2 -4.5562E2 -1.7143E2 1.8898E2 

ND -4.2762E2 -3.1629E2 -5.7545E2 -3.0034E2 1.1041E2 1.0869E2 -4.5570E2 -1.7141E2 1.8898E2 

AnaD -4.2762E2 -3.1630E2 -5.7545E2 -3.0033E2 1.0991E2 1.0890E2 -4.5562E2 -1.7143E2 1.8898E2 

MIXL-lognormal 

Parameter 𝜇𝑡𝑡 𝜇𝑡𝑐  𝜇ℎ𝑤  𝜇𝑐ℎ 𝜎𝑡𝑡 𝜎𝑡𝑐 𝜎ℎ𝑤 𝜎𝑐ℎ  

Value 0 0 0 0 0 0 0 0 

CG-AD -6.5905E3 2.1962E3 -1.8311E4 8.1497E2 3.1328E-1 1.6340 6.0495 -5.1259E-1 

ND -6.5905E3 2.1959E3 -1.8311E4 8.1496E2 3.1344E-1 1.7017 5.9796 -5.1128E-1 

AnaD -6.5905E3 2.1962E3 -1.8311E4 8.1497E2 3.1328E-1 1.6340 6.0495 -5.1259E-1 

Value -3 -3 -3 -3 -1E-2 -1E-2 -1E-2 -1E-2 

CG-AD -1.4925E2 6.9259E1 -3.9286E2 4.6522E1 -9.0437 -1.6925 -1.4227E1 -5.5218E-1 

ND -1.4925E2 6.9248E1 -3.9287E2 4.6522E1 -9.0411 -1.6920 -1.4222E1 -5.5211E-1 

AnaD -1.4925E2 6.9259E1 -3.9286E2 4.6522E1 -9.0437 -1.6925 -1.4227E1 -5.5218E-1 

Value -3.5231 -5.1831E-1 -5.4063 -3.2638 1.2180E-1 -4.3868E-1 -2.2918E-1 1.4683E-1 

CG-AD 3.4643E2 -8.4733E2 5.9703E1 3.0486E1 1.0305E2 -1.3252E3 -1.7327E1 4.5958 

ND 3.4643E2 -8.4735E2 5.9703E1 3.0486E1 1.0304E2 -1.3251E3 -1.7326E1 4.5955 

AnaD 3.4643E2 -8.4733E2 5.9703E1 3.0486E1 1.0305E2 -1.3252E3 -1.7327E1 4.5958 

Note: Some numbers are expressed in scientific notation (e.g., 1.23E4 = 1.23 × 10⁴, 5.67E-8 = 5.67 × 10-8). 

 

Table 6. Estimation time (seconds) for AD and ND derivatives 

 Index LC MIXL-Normal MIXL-Lognormal 

 

AD 

Mean 4.93 1058.58 693.19 

Std 2.40 1124.77 599.10 

Medium 4.36 621.90 517.95 

 

ND 

Mean 20.53 12481.11 8579.01 

Std 10.71 5812.18 6039.07 

Medium 17.60 11566.84 7262.64 
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Table 7. Final LL Statistics for the three models  

 
non-convergence 

or (-inf,-1666) 

[-1666,best local 

optima) 

best local 

optima 

AD 45 180 375 

ND 71 180 349 

Total 116 360 724 

Note: 𝜒2 = 6.69,𝑑𝑓 = 2⟹𝑝 ≈ 0.035 (significant，𝑝 < 0.1) 

 

Table 8. Final LL Statistics for LC  

 
non-convergence 

or (-inf,-1666) 

[-1666,best local 

optima) 

best local 

optima 

AD / 176 24 

ND / 178 22 

Total / 354 46 

Note: 𝜒2 = 0.20,𝑑𝑓 = 1⟹𝑝 ≈ 0.654 (non-significant) 

 

Table 9. Final LL Statistics for MIXL-normal  

 
non-convergence 

or (-inf,-1666) 

[-1666,best local 

optima) 

best local 

optima 

AD 4 1 195 

ND 9 0 191 

Total 13 1 386 

Note: 𝜒2 = 2.96,𝑑𝑓 = 2⟹𝑝 ≈ 0.227 (non-significant) 

 

Table 10. Final LL Statistics for MIXL-lognormal  

 
non-convergence 

or (-inf,-1666) 

[-1666,best local 

optima) 

best local 

optima 

AD 41 3 156 

ND 62 2 136 

Total 103 5 292 

Note: 𝜒2 = 5.82,𝑑𝑓 = 2⟹𝑝 ≈ 0.054 (significant，𝑝 < 0.1) 
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Table 11. Parameter estimation for different models of CG-AD 

LC 

Parameter 𝛽𝑡𝑡,𝑎 𝛽𝑡𝑡,𝑏 𝛽𝑡𝑐,𝑎 𝛽𝑡𝑐,𝑏 𝛽ℎ𝑤,𝑎 𝛽ℎ𝑤,𝑏 𝛽𝑐ℎ,𝑎 𝛽𝑐ℎ,𝑏 𝐴𝑆𝐶1 ∆𝑏 

Starting 

Value 
0 0 0 0 0 0 0 0 0 0 

Coef. -7.3549E-2 -9.7726E-2 -9.5717E-2 -5.3342E-1 -3.9622E-2 -4.7482E-2 -7.6379E-1 -2.1676 -4.4836E-2 3.9177E-2 

Std.err 4.3533E-4 7.1754E-4 8.3114E-4 4.7765E-3 1.9809E-4 2.8814E-4 5.3843E-3 9.3931E-3 2.4242E-3 1.3710E-2 

t-ratio -1.6895E2 -1.3619E2 -1.1516E2 -1.1168E2 -2.0003E2 -1.6479E2 -1.4186E2 -2.3076E2 -1.8495E1 2.8575 

LL (initial) //LL (final) 
-2420.469955//-1564.098668 

Starting 

Value 
-1.55181E-1 -3.47948E-1 1.75951 1.25873 -2.54204E-1 -1.47778 -1.34748 -2.18778E-1 -1.48403 -1.38234 

Coef. -6.0076E-2 -1.6953 -1.3206E-1 -3.5591 -3.4771E-2 -2.6911 -1.1890 -1.3757 -1.5679E-2 2.9333 

Std.err 2.2188E-4 4.3547E-2 6.9576E-4 9.3150E-2 9.7529E-5 7.3174E-2 2.3476E-3 3.9052E-2 2.2112E-3 1.7066E-2 

t-ratio -2.7076E2 -3.8930E1 -1.8980E2 -3.8209E1 -3.5652E2 -3.6777E1 -5.0646E2 -3.5228E1 -7.0907 1.7188E2 

LL (initial) //LL (final) -12105.27645//-1644.145721 

MIXL-normal 

Parameter 𝜇𝑡𝑡 𝜇𝑡𝑐  𝜇ℎ𝑤  𝜇𝑐ℎ 𝜎𝑡𝑡 𝜎𝑡𝑐 𝜎ℎ𝑤 𝜎𝑐ℎ 𝐴𝑆𝐶1 

Starting 

Value 
0 0 0 0 0 0 0 0 0 

Coef. -1.4786E-1 -5.0308E-1 -6.5385E-2 -2.1353 6.7190E-2 -4.0232E-1 -4.1196E-2 1.3271 -4.9420E-2 

Std.err 1.2940E-2 6.3793E-2 4.9086E-3 1.3534E-1 1.1080E-2 4.8440E-2 5.3598E-3 1.4096E-1 6.2576E-2 

t-ratio -1.1426E1 -7.8862 -1.3321E1 -1.5777E1 6.0642 -8.3056 -7.6862 9.4142 -7.8977E-1 

LL (initial) //LL (final) -2420.469955//-1464.147211 

Starting 

Value 2.3430E-1 8.9392E-2 4.9030E-2 -5.9195E-1 -3.9652E-1 3.5190E-1 4.0572E-1 -6.5085E-1 -8.0343E-1 

Coef. -1.4627E-1 -4.7425E-1 -6.5286E-2 -2.1605 -5.6939E-2 4.2932E-1 4.1014E-2 -1.2314 -5.1195E-2 

Std.err 1.1293E-2 4.6599E-2 4.8246E-3 1.3460E-1 8.1581E-3 5.1951E-2 5.3728E-3 1.2305E-1 5.9710E-2 

t-ratio -1.2952E1 -1.0177E1 -1.3532E1 -1.6051E1 -6.9794 8.2640 7.6337 -1.0007E1 -8.5740E-1 

LL (initial) //LL (final) -2410.888953//-1463.67735 

MIXL-lognormal 

Parameter 𝜇𝑡𝑡 𝜇𝑡𝑐  𝜇ℎ𝑤  𝜇𝑐ℎ 𝜎𝑡𝑡 𝜎𝑡𝑐 𝜎ℎ𝑤 𝜎𝑐ℎ  

Starting 

Value 
0 0 0 0 0 0 0 0 

Coef. -2.0163 -1.0268 -2.9272 6.3097E-1 -4.9016E-1 1.0496 -7.7476E-1 -8.4999E-1 

Std.err 8.7437E-2 1.2932E-1 8.3340E-2 7.4054E-2 6.8734E-2 9.8757E-2 1.1921E-1 9.8623E-2 

t-ratio -2.3059E1 -7.9405 -3.5123E1 8.5204 -7.1313 1.0628E1 -6.4992 -8.6186 

LL (initial) //LL (final) -22106.1493//-1444.869248 

Starting 

Value -3 -3 -3 -3 -1E-2 -1E-2 -1E-2 -1E-2 

Coef. -1.9920 -1.0311 -2.9347 6.2198E-1 -4.4940E-1 -1.0206 -8.3249E-1 -8.2274E-1 

Std.err 8.6804E-2 1.3492E-1 8.5001E-2 7.2994E-2 6.8924E-2 9.0372E-2 1.1734E-1 1.0300E-1 

t-ratio -2.2948E1 -7.6421 -3.4526E1 8.5210 -6.5202 -1.1294E1 -7.0946 -7.9877 

LL (initial) //LL (final) -2253.782757//-1444.830455 

Starting 

Value -3.5231 -5.1831E-1 -5.4063 -3.2638 1.2180E-1 -4.3868E-1 -2.2918E-1 1.4683E-1 

Coef. -1.9904 -1.0461 -2.9239 6.4083E-1 4.8288E-1 -1.0025 -8.4345E-1 8.2969E-1 

Std.err 8.8225E-2 1.3985E-1 8.6196E-2 7.5123E-2 5.7391E-2 8.5501E-2 1.3251E-1 1.1466E-1 

t-ratio -2.2560E1 -7.4802 -3.3921E1 8.5304 8.4140 -1.1725E1 -6.3651 7.2363 

LL (initial) //LL (final) -2833.202652//-1444.39905 

Note: Some numbers are expressed in scientific notation (e.g., 1.23E4 = 1.23 × 10⁴, 5.67E-8 = 5.67 × 10-8). 
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Figure List 

 

Figure 1: Computational graph (CG) structure of a simple multinomial logit (MNL) 

model 

 

 

(a) LC                          (b) MIXL-normal           (c) MIXL-lognormal 

Figure 2: Estimation Time for Different Models 
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(a) LC 

 

(b)MIXL-normal 

 

(c) MIXL-lognormal 

Figure 3: LL-final distribution for Different Models 


