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ABSTRACT: Exposure to traffic-related air pollution (TRAP) is
an ongoing health concern worldwide, particularly close to roads
where concentrations are the highest. Near-road exposure is
influenced by factors such as vehicle exhaust emission rates,
pollutant composition, and dispersion behavior. In this work we
apply a recently developed technique called plume regression based
on fast-response roadside measurements, to better understand the
variables affecting near-road TRAP concentrations. Of specific
interest is determining the extent to which vehicle design and
physical characteristics affect roadside exposure to important
pollutants such as nitrogen oxides (NOx = NO + NO2). We find
that the position of passenger car’s exhaust (tailpipe)�whether on the left or right side�results in a 40% difference in pollutant
concentration contribution at the curbside. In the UK, only 20.1% of diesel passenger cars, the most significant vehicle class
contributors to NOx emissions, have their exhausts positioned on the right, the position associated with the lowest concentrations. If
all diesel cars in the UK were equipped with right-positioned exhausts�the side farthest from the curb, curbside concentrations
from these vehicles would be reduced by one-third. We also find evidence that electric vehicles (EVs) act to dilute the exhaust
plumes of proximate fossil-fueled vehicles through vehicle-induced turbulence, reducing near-road TRAP exposure, a hitherto
unrealized benefit of EVs.

KEYWORDS: Vehicle emissions, traffic-related air pollution, exhaust position, aerodynamic design, electric vehicles

1. INTRODUCTION

Traffic-related air pollution (TRAP) has long been recognized
as having significant impacts on human health and the wider
environment.1−3 An important way of studying TRAP is
through ambient air quality measurements made close to
roads. There are thousands of near-road ambient air quality
measurement sites around the world that serve the primary
purpose of monitoring the influence of road traffic on air
pollution. Such sites typically report concentrations at an
hourly resolution, which allows a comparison of measured
concentrations with air quality standards and guidelines, many
of which have an hourly mean averaging time.4 Faster-response
measurements of at least 1 Hz have increasingly been used for
mobile measurements to map pollutant concentrations
spatially, and to estimate emission intensities.5−7 In part, this
increase in the use of fast-response measurements reflects the
developments in instrumentation. However, there are far fewer
studies that have adopted similarly fast measurements at fixed
locations.8−10

Reducing measurement sampling times offer the potential to
develop an enhanced understanding of TRAP, which is
important for developing strategies to mitigate air pollution
and its health and environmental impacts, particularly in urban

areas where exposure is highest.11 As instrument averaging
times approach one or a few seconds, near-road measurements
can resolve individual exhaust plumes from passing vehicles,
greatly enhancing the potential to gain information about
emission sources. At this temporal resolution, it is possible
(but challenging) to quantify emissions from individual
vehicles by integrating plume concentrations and using ratios
to carbon dioxide (CO2) to derive fuel-based emission
factors.12 In related work, Farren et al. recently developed a
new technique called plume regression, which greatly simplifies
the quantification of vehicle emissions.13 This method
leverages fast-response road-side measurements of dispersing
vehicle exhaust plumes, eliminating the need to identify and
extract individual vehicle plumes. Additionally, Farren et al.
demonstrated that such measurements can be used for
concentration source apportionment, enabling the quantifica-
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tion of total concentration contributions by vehicle type, which
is valuable new information.
High temporal resolution roadside measurements, capable of

resolving individual vehicle plumes, present an opportunity to
investigate the factors that control near-road TRAP concen-
trations. Critical data in this respect are information about the
individual vehicles passing the measurement location.
Automatic number/license plate recognition (ANPR/ALPR)
systems enable the efficient capture of number plates for
thousands of vehicles, which can then be used to query
national vehicle databases. In the UK, like many other
countries, these databases provide comprehensive technical
information, including fuel type and emission standard as well
as vehicle characteristics such as dimensions and mass.
Coupling this technical information with techniques for
analyzing fast-response roadside measurements allows for a
deeper investigation of the relationship between vehicle design
characteristics and near-road concentrations of TRAP.
Previous work, including computational studies by Plog-

mann et al., has demonstrated that vehicle speed and design
characteristics such as exhaust position are important factors
influencing exhaust plume dispersion.14,15 In this paper, we
apply the plume regression approach to real-world emissions
measurements to better understand the vehicle-related factors
that control near-road concentrations of TRAP. Of principal
interest is the extent to which the physical design character-
istics of vehicles affect measured concentration contributions.
Specifically, we consider the exhaust (tailpipe) position and
vehicle aerodynamic properties. The proximity of the exhaust
to the curb likely influences the degree of plume dilution,
whereas the aerodynamic properties, such as physical size, are
expected to affect vehicle-induced turbulence, thereby
impacting near-road dispersion and concentrations. Addition-
ally, we explore the growing role of electric vehicles (EVs) in
the fleet and their influence on near-road TRAP concen-
trations; particularly how EVs contribute to the dilution of
exhaust plumes from fossil-fueled vehicles through vehicle-
induced turbulence.
This study represents the first instance where individual

vehicle measurements have been used to investigate these
variables, offering a novel perspective on how vehicle design
influences roadside TRAP concentration. While the focus is on
measurements made in the UK, the approach and findings are
applicable to urban settings globally, providing transferable
insights that could improve the quantification of TRAP at the
thousands of near-road ambient air quality sites that exist
worldwide.

2. MATERIALS AND METHODS

2.1. Point Sampling. 2.1.1. Instrumentation. Nitrogen
oxides (NOx = NO + NO2) and CO2 were measured at 1 Hz
using an Airyx Iterative Cavity Enhanced Differential Optical
Absorption Spectrometer (ICAD).16 The ICAD instrument
was placed on a trolley at the curbside and sampled through a
30 cm length of 1/4″ diameter perfluoroalkoxy tubing for
continuous measurement of vehicle exhaust plumes. The
instrument directly measures nitrogen dioxide (NO2) in the
430−465 nm range through optical absorption, with an
internal ozone-based gas phase titration system converting
nitric oxide (NO) to NO2, allowing for total NOx and NO
measurements. CO2 is measured simultaneously via a non-
dispersive infrared sensor. Further technical details are
available in the literature.17

A custom-built device was deployed approximately 1 m
upstream of the ICAD instrument to record vehicle pass times.
Optical sensors within the device measure vehicle speed and
acceleration, triggering a camera positioned a further 5−10 m
upstream of the device to capture rear images of passing
vehicles. All equipment was powered using two portable power
stations with a capacity of 512 and 256 Wh. Images of the
roadside measurement sites can be found in Figure S1.

2.1.2. Measurement Surveys. Point sampling (PS) surveys
were conducted at three sites in York, UK: two on the
University of York campus (latitude 53.947, longitude −

1.047) and one in a light industrial area near a large retail park
(latitude 53.987, longitude − 1.103); the locations were
designated as sites A, B, and C respectively. Measurement
surveys were carried out on weekdays between September and
November 2023, during daylight hours and dry weather, with
ambient temperatures ranging from 1.9 to 18.7 °C (12.9 °C
mean).
Registration (license plate) numbers were extracted from the

vehicle images using ALPR software (Rekor CarCheck Plus).18

The registration numbers were sent to CDL Vehicle
Information Services Limited to obtain vehicle technical data.
CDL sources this information from the UK vehicle taxation
system (DVLA) and the Society of Motor Manufacturers and
Traders (SMMT) Motor Vehicle Registration Information
System. The technical data includes a range of information,
including, but not limited to, vehicle type, fuel type, mass,
dimensions, make, model, registration date, and emission
standard.
In total, 11,264 vehicle passes (7,955 unique vehicles) were

recorded over 9 measurement days, with 14.7%, 23.9%, and
61.4% of measurements being made at sites A, B, and C,
respectively. Technical information was obtained for 95% of
the vehicle passes. A summary of the driving conditions and
measured vehicle fleet composition at each site is provided in
Table S1.

2.2. Analysis Methods. 2.2.1. Plume Regression. A plume
regression technique is used to quantify the contribution from
different types of vehicle that best explains the roadside
concentration time series measurements.13 For the NOx and
CO2 concentration time series, the increments above a local
background were determined for each pollutant. While various
methods can be used, a simple rolling average low percentile
approach was chosen, using a time window of 100 s.6,7,19 This
window was selected to comfortably encompass the typical
width of an exhaust plume of ≈20 s, while minimizing the
capture of contributions from sources other than passing
vehicles.
Instead of attempts to isolate individual vehicle plumes, the

technique uses a statistical approach to quantify concentration
contributions for different categories of all passing vehicles. An
average exhaust plume profile is derived from CO2 measure-
ments from isolated vehicles (where there is at least a 20 s gap
between vehicle passes before and after, n = 306).13 This
plume profile represents the expected average rise and fall of
concentrations after a vehicle passes. As noted by Farren at al.,
in some situations different plume profiles could be used, e.g.,
for different sites or for heavy vehicles with a vertical exhaust.
The effect of the plume profile shape is considered in more

detail in the Supporting Information (Figures S2 and S3). In
the current work, however, similar plume profiles were
observed at all three measurement sites, and one average
plume profile was used for all vehicle groups. Additional site-
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specific analyses were conducted to confirm the suitability of
this approach, with the results presented in the Supporting
Information (Figures S4 and S5, Table S2).
In previous work by Farren et al., roadside concentration

data were processed to provide emission factors by vehicle fuel
and technology types, e.g., a Euro 5 diesel passenger car.13 The
way in which the data are disaggregated is determined at the
beginning of the analysis. In the current application, the
interest is not the technologies but the design characteristics of
a vehicle such as the exhaust position for gasoline and diesel
passenger cars. Each time a vehicle from a particular category
passes (such as a gasoline vehicle with an exhaust positioned
on the left-hand side), a normalized plume is added to the time
series column for that category of vehicle. This process
continues to cover all vehicle categories (determined by the
initial disaggregation) of interest and for all passing vehicles;
the same averaged normalized plume profile determined from
isolated vehicle measurements was used for all vehicle
categories. The main aim of the analysis is to determine the
optimal amount by which the vehicle category plumes must be
multiplied by to best explain the robust linear regression that
relates the concentration of CO2 or NOx to the different
vehicle category plumes.20 The coefficients from the regression
provide a direct estimate of the concentration contribution
from each vehicle category. A useful benefit of the regression-
based approach is that the standard errors are provided for
each regression coefficient from which 95% confidence
intervals can be derived.
CO2 was used as a tracer for TRAP in the plume regression

technique due to its high concentration in exhaust gases,
stability under ambient conditions, direct proportionality to
fuel combustion, and independence from exhaust after-
treatment systems. These features make CO2 an ideal tracer
for assessing how vehicle design affects exhaust plume
dispersion and subsequent roadside concentrations of TRAP,
which can be assumed to disperse similarly to CO2.

14 CO2

exhaust gas concentrations vary for diesel and gasoline fuels
based on differences in the air/fuel ratio utilized for
combustion. However, the differences in absolute CO2

emissions output are small, and discussed further in Section
3.1. NOx and NO2 were also analyzed to provide direct
evidence of the influence of vehicle design on roadside TRAP
concentrations and to provide information that could be used
to derive emission factors.

2.2.2. Vehicle Design Properties Assignment. Exhaust exit
positions were assigned from the vehicle images for passenger
cars only, as other vehicle types rarely showed visible exhausts
or did not exhibit varied placement. Of 8,643 car measure-
ments, 44.4% were manually assigned and as either ‘left’, ‘right’,
‘center’, or ‘split’, while the 2.9% of EVs were assigned as
‘none’. The assignments, based on the rear of the vehicle
relative to UK traffic flow, define left as curbside, right as
offside, split for exhaust exits in both positions, and center as
middle placement. Examples for each assignment are shown in
Figure S6.
The remaining cars were not assigned manually, due to

nonvisible down-turned exhaust exits, often hidden by the rear
bumper. A random forest model was used to predict exhaust
positions for these vehicles as either left or right, as split or
center exhausts are rarely down-turned or hidden by other
design features.21,22 This machine learning algorithm, chosen
for its ability to handle categorical data, was trained on the
manually assigned data (80% training and 20% validation).

Predictor variables included the fuel type, Euro emission class,
body type, manufacture year, number of doors, seat count,
drive axle configuration, transmission type, and gear count.
Features were selected to balance model robustness with the
need for complete data; the model showed high classification
accuracy, with an F1-score of 0.94 and Matthews correlation
coefficient of 0.85. Following exhaust prediction, 95.5% of cars
(8597 measurements) had assigned exhaust positions, with the
remaining unknowns due to insufficient predictor variable data.
Tables S3 and S4 provide detailed model performance metrics
and a summary of the number of manually assigned and
predicted exhaust positions. To evaluate the influence of
exhaust position on near-road TRAP concentrations, vehicles
were grouped by type, fuel type, and exhaust position in the
plume regression analysis.
Aerodynamic drag coefficients (Cd) quantify a vehicle’s air

resistance, and are directly proportional to vehicle-induced
turbulence (Section 2.2.3). Vehicles were assigned a Cd value
based on market segment classifications derived from their
dimensions. Passenger cars were grouped into eight segments
(A, B, C, D, E, F, J, and S), while light goods vehicles (LGVs)
formed a separate segment (V). Vehicles with missing
dimension information, including heavy goods vehicles
(HGVs) and buses, were classified as unknown. Estimated
Cd values from the literature were then assigned to each
segment.23,24 Table S5 provides dimension classifications and
Cd values for each segment.

2.2.3. Vehicle-Induced Turbulence. Vehicle-induced turbu-
lence plays an important role in exhaust gas dispersion and
directly influences roadside TRAP concentrations. Turbulent
kinetic energy (TKE), measured using a sonic anemometer,
has been used to evaluate the relationship between near-road
TRAP and vehicle-induced turbulence.15,25,26 In this study, we
consider the power required to overcome aerodynamic drag,
Pd, which is directly proportional to the TKE and reflects the
energy available for turbulence generation. Pd is calculated
using eq 1, where ρ is the air density (1.233 kg m−3 at the
mean measurement temperature of 12.9 °C and 101.3 kPa), Cd

is the drag coefficient (Section 2.2.2), A is the vehicle frontal
area, and v is the measured vehicle speed.24 A benefit of the
vehicle technical information is the ability to calculate the
frontal area and Pd for individual vehicles from their dimension
measurements.

=TKE P C Av
1

2
d d

3

(1)

For assessing the impact of vehicle-induced turbulence and
aerodynamic properties on near-road TRAP, vehicles were
grouped by type, fuel type, exhaust position, and losses due to
aerodynamic drag, Pd. Drag losses were calculated using eq 1
and expressed in categories as quantiles (Low < 0.25, 0.25 ≤

Low-mid < 0.50, 0.50 ≤ High-mid < 0.75, 0.75 ≤ High),
calculated independently for each vehicle type and fuel type
subgroup. The calculation of quantiles was necessary as the
plume regression method requires defined vehicle groupings.

2.2.4. Emission Rates. The CO2 coefficients calculated from
plume regression reflect the expected near-road concentration
increment associated with each vehicle group, and are
influenced by both CO2 emission rate, and subsequent
dispersion (related to exhaust position and aerodynamic
properties). To isolate the contribution of dispersion and the
impact of vehicle design characteristics, two metrics for CO2

emission rates were used in this study. Neither of the emission
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rate values can be directly compared to the plume regression
coefficients that provide concentration and not emission
estimates. However, these emission factors are useful to
understand the extent to which roadside concentrations are
associated with emissions rather than dispersion influences.
For the exhaust position analysis (Section 3.1), Type-

Approval CO2 emission rates based on laboratory test cycles (g
km−1), available from the vehicle technical information, were
aggregated to calculate a mean value for each vehicle group.
These emission rates are listed in Table S6. The mean Type-
Approval CO2 emission rate reflects an average value across a
range of driving conditions and was chosen as it could be
calculated for all vehicle types.
For the vehicle-induced turbulence and aerodynamic

properties analysis (Section 3.4), which included only cars
and LGVs, instantaneous CO2 emission rates were modeled for
individual vehicles. Instantaneous fuel consumption (kg/s) was
calculated using the Passenger Car and Heavy Duty Emission
Model (PHEM), incorporating vehicle speed, acceleration,
road gradient, and technical data (e.g., mass, dimensions,
engine specs).27,28 These rates were then converted into CO2

emission rates (g s−1) using standard emission factors: 3.16 g
kg−1 for gasoline and 3.17 g kg−1 for diesel.29 Finally, the values
were aggregated for each vehicle group and used to normalize
the plume regression CO2 coefficients. Modeled instantaneous
CO2 emission rates provide a more accurate estimate of actual
emission at the time of measurement than type-approval values
but could not be calculated for all vehicle types due to missing
technical data.

3. RESULTS AND DISCUSSION

3.1. Exhaust Position Effect on CO2. The CO2

concentration measurements were grouped by vehicle type,
fuel type, and exhaust position (passenger cars only) for plume
regression. The resulting calculated CO2 concentration
coefficients are shown in Figure 1, with detailed values
provided in Table S7. These coefficients represent the increase
in roadside CO2 concentrations associated with each vehicle
group. It is important to note that these coefficients differ from
vehicle emission factors, as roadside CO2 concentrations are
influenced by emission rates and factors, such as exhaust
proximity to the curb and vehicle design features affecting
plume dispersion. These measurements therefore offer direct
insight into roadside TRAP emissions and dispersion under
real-world conditions.
Figure 1 reveals clear trends driven by vehicle type, fuel type,

and exhaust position. Larger vehicles, such as buses and HGVs,
exhibit higher CO2 coefficients due to their higher emission
rates. Among passenger cars, gasoline hybrid vehicles are
associated with the lowest CO2 coefficients, reflecting their
lower emission rates. Furthermore, left exhaust cars consis-
tently produced higher CO2 coefficients than right exhaust cars
across all fuel types, highlighting the importance of the
proximity of exhaust to the curb for near-road TRAP
concentrations.
Specifically, CO2 coefficients were reduced by 38%, 41%,

and 36% for diesel, gasoline, and gasoline hybrid cars,
respectively, when comparing right exhausts to left exhausts.
These differences can confidently be attributed to exhaust
location, as the mean vehicle speeds, aerodynamic properties,
and type approval CO2 emission rates (Section 2.2.4 and Table
S6) for left and right exhaust vehicles within each fuel type

Figure 1. CO2 coefficients for vehicle type and fuel type groups. The inset plot further separates passenger cars by the exhaust position. Error bars
represent 95% confidence intervals, and number labels denote vehicle group sample sizes. Gray boxes display the reduction in CO2 coefficient for
right exhaust positions compared to left for each fuel type. The exhaust locations include those manually assigned and predicted.
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were very similar, with less than 5% variation across all
comparisons. The only exception was for gasoline hybrid cars,
where vehicles with right exhausts had a 37% higher mean type
approval CO2 emission rate than those with left exhausts. This
may explain why the difference in the CO2 coefficients was the
smallest for gasoline hybrid cars. However, it is important to
note that type approval CO2 emission rates do not perfectly
represent real-world driving conditions and serve only as a
guide.30,31

To evaluate the machine learning algorithm used to assign
exhaust positions for cars with nonvisible exhausts in the
images, a plume regression was performed categorizing car
exhaust groups into manually assigned and predicted positions.
The resulting CO2 coefficients are shown in Figure S7 and
Table S8. For manually assigned cars, the CO2 coefficients
were reduced by 60%, 59%, and 75% for diesel, gasoline, and
gasoline hybrid vehicles, respectively, when comparing right to
left exhaust positions. In contrast, for predicted exhaust
positions, the reductions were 23%, 34%, and 4%, respectively.
While left-exhaust CO2 coefficients were similar between
manually assigned and predicted groups across all fuel types,
right-exhaust CO2 coefficients were approximately twice as
high for predicted positions compared to manually assigned
ones.
A likely explanation for these observations is exhaust

orientation, which has been shown in the literature to influence
plume dispersion and near-road concentrations.14 Manually
assigned exhausts are all horizontal, and predicted exhausts can
all be assumed to be down-turned. Horizontal exhausts result
in more dispersion and lower roadside concentrations, while
down-turned exhausts result in less dispersion and higher
roadside concentrations. Even though the predicted exhaust
positions are not visible, these results show that there is a
consistent left−right difference in the CO2 coefficient.
However, hidden (down-turned) exhausts are associated with
different dispersion characteristics compared with horizontal
exhausts.
The CO2 coefficient for gasoline cars with center exhausts in

Figure 1 was 1.4 and 3.0 times higher than those for those with
left and right exhausts, respectively. This increase is likely due
to these vehicles being high-performance models with lower
fuel efficiency and higher CO2 emission rates, as confirmed by
technical data showing that all 51 center-exhaust cars were
classified as sport models with a 17.6% higher mean type-
approval CO2 emission rate. Additionally, center exhausts
release exhaust gases directly into the wake zone of the vehicle,
where the interaction of turbulence and plume dispersion
could result in higher measured CO2 concentrations when
compared to exhaust positioned in other locations.14 More
research with direct turbulence measurements, such as using a
sonic anemometer, is needed to better understand these
interactions.
For split exhaust cars, CO2 coefficients were similar to those

with right exhausts for diesel and gasoline fuel but much lower
than both left and right exhausts for gasoline hybrid fuel. Split
exhaust diesel and gasoline cars exhibited mean Type Approval
CO2 emission rates that were 30−34% and 10−13% higher,
respectively, compared to left and right exhaust cars. This
difference may partially explain the observed results. Another
contributing factor is the uneven distribution of exhaust gases
in split exhaust systems, a characteristic that varies across
manufacturers and models, and could not be further discerned
in this work.32 Additionally, some vehicle manufacturers install

fake exhaust outlets to enhance vehicle aesthetics, even when
the true exhaust is hidden on the left or right.33 Where such
fake exhausts were obvious, these vehicles were classified as
unknown during the exhaust position assignment. However, it
is important to note that a small number of vehicles may have
been incorrectly classified as split.
Exhaust position also likely explains the differences observed

between diesel buses and HGVs. Despite similar Type
Approval CO2 emission rates, the CO2 concentration
coefficient for buses was 2.4 times higher than that for
HGVs. Diesel buses typically have exhausts located low at the
rear, often visible on the right-hand side in vehicle images,
whereas HGV exhausts are more varied in placement, often
higher on the vehicle toward the front and not visible in any
images. This placement results in greater dispersion of exhaust
gases before reaching the PS instruments for HGVs compared
to buses, reducing their CO2 concentration coefficients. Other
factors influencing dispersion, such as vehicle speed and
aerodynamic properties, were similar among the two vehicle
groups.
For diesel LGVs, the CO2 coefficient is lower than that of

diesel cars with left exhausts but higher than those with right
exhausts. LGVs have a type approval CO2 emission rate 38%
higher than cars with either left or right exhausts. While
exhaust locations for LGVs could not be assigned, the CO2

coefficient results suggest that most LGVs likely had the right
exhausts, based on their relative values when compared to
diesel cars. LGVs had a greater mean frontal area but lower
mean speed than diesel cars; these factors likely influence
roadside exhaust dispersion in opposing ways, though detailed
conclusions are limited by the available data.
These findings highlight the significant impact of vehicle

design characteristics on near-road CO2 and TRAP concen-
trations. Of all cars (excluding EVs), 38% had right-positioned
exhausts, associated with the lowest CO2 coefficients and
roadside TRAP concentrations. If the remaining cars
repositioned their exhausts to the right, the average CO2

coefficient for cars�and thus roadside TRAP concentration
contributions�could decrease by 29%. Achieving a compara-
ble reduction through improvements in catalyst after-treatment
systems would be far more challenging.
While it is unlikely that existing vehicles would be retrofitted

with repositioned exhausts due to cost and engineering
constraints, exhaust placement could be considered in the
design of future vehicles. Although most vehicle models are
built on global platforms, regional adaptation�such as steering
column layout, headlight beam patterns, and emissions control
settings�are already common.34 In this context, the exhaust
position represents a feasible design consideration that could
be aligned with local driving practices to reduce near-road
TRAP exposure. Given the expected continued production of
fossil-fueled (particularly hybrid) vehicles over the coming
decades, there remains scope for manufacturers to reduce near-
road TRAP concentrations through design choices.35

The effect of exhaust position is particularly important for
diesel cars in the UK, where only 20% of vehicles had the right
exhausts. Repositioning the exhausts of the remaining cars
could reduce their roadside TRAP contributions by 33%,
which is especially important given the historically higher NOx

and particulate matter (PM) emissions from diesel cars. It is
important to note that exhaust repositioning does not reduce
the overall TRAP emissions. However, the primary concern
with these pollutants is their harmful impacts on human health,
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so minimizing roadside exposure through any means remains a
priority.
Passenger car exhaust position often reflects the production

region’s left- or right-hand traffic practices, with vehicles
designed to position exhausts on the offside (furthest from the
curb). Of the measured cars, 76% were manufactured in
regions that drive on the right-hand side of the road, opposite
to the UK, explaining why the minority of vehicles had
exhausts positioned on the right � the optimal position to
minimize near road TRAP in the UK. Exhaust position is
therefore disproportionately important in the UK, where
vehicles drive on the left-hand side, but the passenger car fleet
predominantly comprises models produced for right-hand
driving regions.
The global implications of these results are also important.

In all regions, the international vehicle market ensures that a
portion of the fleet will have exhausts positioned closest to the
curb, regardless of left- or right-hand driving practices. Insights
into the impacts of exhaust position on near-road TRAP
concentrations from this study demonstrate the value of
combining fast-response roadside measurements with individ-
ual vehicle data. The current work also shows the importance
of vehicle design factors in helping to explain near-road
concentrations of TRAP. Future research should prioritize
quantifying how exhaust position effects diminish with
increasing lateral and vertical distances from the road. One
approach to achieve this is through controlled release
experiments, where a tracer gas is emitted from various points
on a vehicle to simulate different exhaust positions.

3.2. Exhaust Position Effect on NOx. To more directly
assess the impact of the exhaust position on roadside TRAP
concentrations, plume regression was performed for NOx using
the same vehicle groups analyzed for CO2. The NOx

concentration coefficient values for each group are presented
in Figure S8 and Table S9. Unlike CO2, NOx emission rates
vary significantly based on fuel type and after-treatment
systems, adding complexity to vehicle group comparisons. For
this reason, CO2 was the primary focus of this analysis.
However, the NOx results provide valuable insight into near-
road TRAP.
Diesel cars had NOx concentration coefficients 5.2 and 6.5

times higher than those of gasoline cars for left and right
exhaust positions, respectively, highlighting their significantly
greater contribution to near-road NOx concentrations,
consistent with reported emission rates.36,37 For right exhaust
cars, NOx coefficients were 27.9%, 75.9%, and 34.0% lower
than for left exhaust cars for diesel, gasoline, and gasoline
hybrid vehicles, respectively, in agreement with the CO2

findings (Section 3.1). The greater variability compared to
that of CO2 likely reflects the higher signal-to-noise ratio in the
NOx increment data, especially for lower NOx emitting
gasoline and gasoline hybrid vehicles.
NOx/CO2 ratios (ppb ppm−1) were calculated from the

plume regression data sets to ensure differences in NOx

coefficients between left and right exhaust cars were due to
exhaust position, rather than differences in NOx emission rates
due to variations in variables such as vehicle manufacturer,
body type, or engine size. These ratios isolate NOx emission
rates by removing the influence of exhaust location and
dispersion, assuming a similar dispersion for CO2 and NOx.
Vehicle emission remote sensing is another roadside

measurement technique that uses cross-road spectroscopy to
capture emissions from the entire vehicle plume. Emission

ratios obtained from PS have previously shown to agree well
with those from remote sensing.13 A representative sample of
remote sensing measurements, collected in 2022, was selected
to match the PS data in terms of sample size, fuel type
distribution, and Euro class distribution. The random forest
machine learning algorithm (trained and used on the PS data)
was applied to this remote sensing sample to assign exhaust
positions to vehicle measurements. The NOx/CO2 ratios from
the remote sensing sample were then aggregated by the fuel
type and exhaust position, as shown in Table 1.

The NOx/CO2 ratios derived from PS and the remote
sensing sample align with values reported in the literature.36

Strong agreement (all values within 95% confidence intervals)
between the two data sets, summarized in Table 1, supports
plume regression as a highly robust technique for assessing
roadside vehicle emissions. Additionally, the similar NOx/CO2

ratio values for left and right exhaust vehicles indicate that the
observed differences in NOx coefficients are primarily due to
the exhaust position. Repositioning the exhausts of all cars to
the right-hand side would reduce the average NOx coefficient,
and therefore average contribution of cars toward roadside
NOx increment concentrations by 26.1%, directly demonstrat-
ing the impact of vehicle design choices on near-road TRAP
concentrations.
For NO2, patterns similar to those observed for total NOx

were found across vehicle types and exhaust locations, with
NO2 concentration coefficients presented in Table S9. The
trends in NO2 concentration coefficients mirrored those of
NOx, but were approximately five times smaller in magnitude.
In the case of NO2 concentrations there are two principal
contributions to curbside concentrations: the directly emitted
(primary) NO2 from vehicles and the contribution from NO
reacting with ozone (O3) to produce secondary NO2. At other
sites and for other conditions e.g. warm, sunny weather where
secondary NO2 formation could be enhanced, there could be
differences in the behavior of NO2 and total NOx, which would
warrant further investigation.
A promising future extension of this work is the fast-

response measurement of additional pollutants. PS has proven
effective for measuring vehicular PM, a pollutant of significant
concern for human exposure and health.12 Combining fast-
response PM measurements with the plume regression
approach could offer new insights into how exhaust position
and roadside dispersion processes influence near-road PM
mass and particle number (PN) concentrations.

Table 1. NOx/CO2 Ratios for Cars Grouped by Fuel Type
and Exhaust Location, Derived from Point Sampling and a
Representative Sample of Remote Sensing Dataa

NOx/CO2 (ppm ppb‑1)

Fuel Type Exhaust Position Point Sampling Remote Sensing

Diesel Left 2.74 ± 0.07 2.85 ± 0.17

Diesel Right 3.18 ± 0.25 3.41 ± 0.35

Gasoline Left 0.54 ± 0.03 0.46 ± 0.09

Gasoline Right 0.52 ± 0.06 0.39 ± 0.08

Hybrid Left 0.17 ± 0.20 0.59 ± 0.34

Hybrid Right 0.20 ± 0.11 0.32 ± 0.08
aHybrid refers to gasoline hybrid vehicles. The uncertainty values
represent 95% confidence intervals.
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3.3. Electric Vehicles. Plume regression produced negative
CO2 concentration coefficients for EVs (Figure 1), indicating
that the passing of these vehicles is associated with a decrease in
near-road CO2 and TRAP concentrations. This finding was
reinforced by a negative average plume profile for isolated EV
measurements, as shown in Figure S9. A likely explanation of
this observation is that EVs disperse the plumes of nearby
fossil-fueled vehicles through vehicle-induced turbulence,
which is influenced by the EV’s aerodynamic properties
(frontal area and drag coefficient), speed, and existing traffic
TRAP concentrations due to fossil-fueled vehicles.
Aerodynamic properties primarily depend on the frontal

area, which directly influences induced turbulence (eq 1).
Larger, less aerodynamic EVs should therefore produce more
turbulence and dispersion. Thus, electric buses are expected to
have the most negative CO2 coefficients, followed by electric
LGVs and electric cars, given their relative sizes. However, the
CO2 coefficients for EVs are also strongly influenced by vehicle
speed (which has a cubic relationship to induced turbulence)
and existing exhaust gas concentrations, both of which are
dependent on traffic flow and measurement location.
PS measurements were made at three sites: low-traffic sites

A and B, with average vehicle gaps of 15.5 s and speeds of 34.5
km h−1, and high-traffic site C, with a 7.0 s gap and 44.2 km
h−1 average speed. All electric buses, 80% of electric LGVs, and
34% of electric cars were measured at low-traffic locations, with
the remainder sampled at the high-traffic site. Detailed driving
conditions for each site are listed in Table S1. The low CO2

coefficient for electric buses is likely due to their slower speeds
and lower CO2 concentrations at low-traffic sites A and B, with
an average speed of 32.3 km h−1 and a vehicle gap of 18.2 s.
Although more electric LGVs were measured at low-traffic
locations compared to electric cars, their more negative CO2

coefficient suggests that the differences in the frontal area and
the resulting impact on turbulence dominate the results.
To further investigate EV impacts on near-road TRAP

concentrations, the electric car group was divided by
measurement location into low-traffic (sites A and B) and
high-traffic (site C) categories, and the plume regression was
rerun for CO2. The updated CO2 coefficients for EVs are
presented in Figure 2, while the coefficients for non-EVs
remained unchanged. The CO2 coefficients, average speeds,
frontal areas, and drag coefficients of the EV subgroups used in
the revised plume regression are summarized in Table S10.

The CO2 concentration coefficient for electric cars at the
high-traffic site was 83% more negative than that at low-traffic
sites, despite comparable frontal areas and drag coefficients.
This difference is attributed to a 29% greater mean speed at the
high-traffic site, which would act to enhance the dilution of
exhaust plumes from other nearby vehicles. Indeed, the higher
speed alone may account for the observed CO2 coefficient
decrease, as vehicle-induced turbulence is proportional to the
cube of speed (1.293 = 2.15, 115% increase in turbulence from
speed). However, it is likely that existing concentrations of
CO2 at the high-traffic site were also greater, given the driving
conditions and smaller average vehicle gap. The large 95%
confidence intervals, due to relatively small sample sizes,
highlight the need for further research to better isolate these
variables.
It is also important to consider differences in site

characteristics that may influence the calculated CO2

concentration coefficients such as variations in geometry and
local topography at each measurement location. These factors
are explored in more detail in the individual site analyses
presented in the Supporting Information (Figures S4 and S5,
Table S2). At Site B (low-traffic), the CO2 concentration
coefficient for electric cars was four times more negative than
that at Sites A (low-traffic) and C (high-traffic). Consequently,
the CO2 concentration coefficient for cars at low-traffic sites in
Figure 2 is likely more negative than that expected under more
uniform measurement conditions. This suggests that the true
difference between high- and low-traffic sites may be greater
than reported.

3.4. Aerodynamic Properties. To further investigate the
role of vehicle-induced turbulence, we considered the relation-
ship between the CO2 coefficient and Pd. For cars and LGVs,
plume regression was run on four Pd quantile groups (Section
2.2.3). Cars were separated into fossil-fueled and electric
groups, and the resulting CO2 concentration coefficients are
shown in panels A and B of Figure 3. Exact coefficient values
and additional information are listed in Table S11.
For fossil-fueled cars, the relationship between vehicle-

induced turbulence (Pd quantile) and measured CO2

concentrations is complex. As Pd increases, both dispersion
and CO2 emission rates rise due to the impact of Pd on the
engine load, which influences fuel consumption and emissions.
Panel A of Figure 3 shows the CO2 concentration coefficients
for fossil-fueled cars, reflecting the combined effect of the
emission rate and the near-road dispersion. Exhaust position
distributions were similar across all four quantiles.
Panel C isolates the emission rate component of this

relationship, presenting mean instantaneously modeled CO2

emission rates for each Pd quantile (Section 2.2.4). With
increasing Pd quantile (Low to High), the increasing drag force
means that the vehicle’s engine load is higher, thus fuel
consumption and CO2 emission rate also increase.
To isolate the effect of vehicle-induced turbulence, the CO2

concentration coefficients in panel A were normalized by the
emission rates in Panel B, using the Low Pd quantile emission
rate as the baseline (1.0). While the normalized CO2

concentration coefficients, shown in panel E, do not show a
perfect decrease with increasing Pd, normalization does shift
the results toward expectation, eliminating the initial increase
from Low to Low-mid Pd (likely due to rising CO2 emissions)
and revealing a clear downward trend from High-mid to High
Pd. Similar findings for LGVs are presented in Figure S10.

Figure 2. CO2 concentration coefficients for the EVs. Electric cars are
disaggregated into those measured at the high- and low-traffic sites.
The error bars represent 95% confidence intervals and the text labels
denote traffic condition.
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Because electric cars do not emit CO2, they serve as an ideal
baseline for evaluating the effects of vehicle-induced turbulence
on near-road TRAP concentrations. From Pd quantile Low to
High, the electric car CO2 coefficient becomes increasingly
negative, highlighting the role of EV-induced turbulence in
dispersing CO2 and reinforcing the findings in the previous
section. Over this range, the mean vehicle speed increased by
75%, while the frontal area increased by 2.8%. Because speed
and frontal area are the primary drivers of turbulence, the
stronger correlation with speed suggests that it is the dominant
factor behind the increasingly negative CO2 coefficients.
Positive CO2 coefficients for electric cars in lower Pd

quantiles can be attributed to two factors. First, low turbulence
in these quantiles may not effectively disperse CO2 from other
traffic, leading the plume regression to attribute residual CO2

to electric cars. Second, low Pd electric cars represent the
smallest CO2 concentration increments; therefore, minor
deviations from local background concentrations have a larger
impact on coefficient variability.
Emission rates were not calculated for electric cars;

therefore, no normalization was applied, making panels F
and A identical. If the modeled CO2 emission rates for fossil-

fueled cars perfectly captured the true emissions during vehicle
measurements, the normalized CO2 coefficients in panel E
would isolate the dispersion effects on roadside CO2

concentrations and closely match the trend observed for
electric cars in panel F. However, modeling inaccuracies and
variability in the PS data introduce discrepancies, and
additional research is required to draw further conclusions.
These findings demonstrate that vehicle-induced turbulence

directly affects roadside CO2 and TRAP concentrations, with
the impact increasing with Pd. While aerodynamic properties
such as frontal area and drag coefficient contribute, vehicle
speed plays a more significant role due to its greater variation
and cubed relationship with Pd. For fossil-fueled vehicles,
turbulence and dispersion effects on roadside CO2 and TRAP
concentrations are closely linked to emission rates, which also
rise with increasing Pd.
In addition to the findings for exhaust position (Sections 3.1

and 3.2), these results have important implications for the
thousands of near-road ambient air quality sites worldwide as
well as for air quality simulation models in near-road and street
canyon environments. This work suggest that aerodynamic
properties and exhaust position may introduce systematic

Figure 3. CO2 concentration coefficient (A and B), instantaneous modeled CO2 (C and D), and CO2 concentration coefficient normalized by
instantaneous modeled CO2 (E and F) for fossil-fueled and electric passenger cars, grouped by Pd quantile. The error bars represent 95%
confidence intervals, and the yellow lines show the trends across quantiles.
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biases in measured or predicted pollutant concentrations.
Considering these physical vehicle attributes in roadside
monitoring analyses and dispersion modeling is therefore
likely to enhance accuracy. Future research in this area should
explore the interaction between vehicle-induced turbulence
and roadside TRAP concentrations using sonic anemometers
to provide a direct measure of TKE. This work could be
extended by considering how the measured effect vary with
near-road geometry and meteorological conditions.
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