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Abstract
Motivation: The rapid expansion of single-cell RNA sequencing (scRNA-seq) technologies has increased the need for robust and scalable 
clustering evaluation methods. To address these challenges, we developed robin2, an optimized version of our R package robin. It introduces 
enhanced computational efficiency, support for high-dimensional datasets, and harmonious integration with R’s base functionalities for robust 
network analysis.
Results: robin2 offers improved functionality for clustering stability validation and enables systematic evaluation of community detection algo
rithms across various resolutions and pipelines. The application to Tabula Muris and PBMC scRNA-seq datasets confirmed its ability to identify 
biologically meaningful cell subpopulations with high statistical significance. The new version reduces computational time by 9-fold on large- 
scale datasets using parallel processing.
Availability and implementation: The robin2 package is freely available on CRAN at https://CRAN.R-project.org/package=robin. 
Comprehensive documentation and a detailed analysis vignette are available on GitHub at https://drighelli.github.io/scrobinv2/index.html.

1 Introduction
Biological systems are often represented as networks to model 
the complex interactions between their components. 
Mathematically, a network can be defined as a graph 
G¼ ðV;EÞ, where V is the set of nodes (e.g. genes, proteins, or 
cells) and E represents the edges that encode relationships be
tween the nodes. In the context of single-cell transcriptomics 
(scRNA-seq), graphs are particularly useful for representing 
cells as nodes and their transcriptional similarities as edges.

One of the main goals of scRNA-seq is to identify distinct 
cell subpopulations based on their transcriptional profiles. 
This task is typically addressed using unsupervised clustering, 
which groups cells with similar gene expression patterns. 
Clustering methods such as k-means and hierarchical cluster
ing, although widely used, often face computational limita
tions when applied to large scRNA-seq datasets. In contrast, 
graph-based clustering methods, such as community detec
tion algorithms, offer a more scalable and efficient solution 
for clustering millions of cells. A significant challenge 
remains: determining how accurately clusters derived from 
scRNA-seq data reflect true biological cell subtypes. Without 
a reliable ground truth, evaluating the accuracy of clustering 
results becomes difficult.

In network science, this translates into validation of the 
results produced by community detection algorithms. The 

primary challenge lies in determining whether the detected com
munities are significant or simply artifacts of random edge 
placement within the network. In our previous paper 
(Carissimo et al. 2018), we addressed this issue, showing that if 
a partition is significant, it will be recovered even if the graph 
structure is modified. In contrast, if a partition is not significant, 
a minimal modification of the graph will be sufficient to change 
the partition. This basic idea is then expanded and implemented 
in our R package robin (ROBustness In Network) (Policastro 
et al. 2021) where we evaluate the robustness of the community 
structure of a network found by one or more methods to give 
indications about their reliability.

Although our approach can be applied to any type of graph 
in biological, sociological, and physical fields, in this article, 
we present robin2, an updated version of robin, in which 
the method has been optimized to better accommodate large 
dataset as scRNA-seq data, with a focus on enhancing speed 
and efficiency to address the unique characteristics of 
these datasets.

2 Materials and methods
2.1 robin
The robin R package (Policastro et al. 2021) is a tool for 
evaluating the robustness and reliability of community 
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detection algorithms applied to networks. Its methodology 
comprises two core procedures. The first (robinCompare) 
compares two algorithms to determine which is better suited 
for the given network, producing stability measure curves for 
each. The second (robinRobust) assesses the stability of a 
single algorithm under random perturbations of the network 
structure by comparing stability metrics from the original 
network to those from a null model. Both these analyses le
verage functional statistical tests, including Gaussian Process 
Regression and the Interval Testing Procedure, to assess sta
tistical significance and highlight key differences.
robin offers users flexibility through customizable stabil

ity metrics, perturbation strategies, and null models. It inte
grates seamlessly with igraph algorithms and includes visual 
tools for analysis and interpretation of results. To evaluate 
stability, robin uses network partition similarity measures. 
Its perturbation strategy introduces controlled variability by 
rewiring edges while preserving the original number of nodes 
and edges. The perturbation levels typically range from zero 
to a maximum of 60%, beyond which the network becomes 
random. Two statistical tests are used to validate the robust
ness of community detection algorithms by comparing stabil
ity measure curves, Gaussian Process Regression (GP) and the 
Interval Testing Procedure (ITP) (Policastro et al. 2021).

2.2 robin2 for clustering validation in single cell
For scRNA-seq data analysis, several statistical techniques 
have been developed and implemented (Trapnell et al. 2014, 
Satija et al. 2015, Wolf et al. 2018, Amezquita et al. 2020). 
While each of these pipelines differ in parameters and specific 
analytical approaches, they share a set of fundamental steps 
(Slovin et al. 2021).

First, data normalization is crucial to remove non- 
biological variations and make gene expression comparable 
across individual cells. This is typically achieved by dividing 
the gene counts by each cell’s total number of reads.

Next, feature selection is performed to identify genes with 
relevant biological information while excluding non- 
informative ones. Typically, this involves selecting a subset of 
highly variable genes based on metrics such as variance or co
efficient of variation. Following this, a linear dimensional re
duction technique like principal component analysis (PCA) is 
performed to condense the complexity of the data into a 
lower-dimensional space, focusing on extracting principal 
components allowing to explain data variability by construc
tion. For better interpretability of such high-dimensionality 
data, visualization is usually accomplished through nonlinear 
dimension reduction techniques like t-SNE and UMAP, 
which effectively projects the data into a lower-dimensional 
space suitable for interpretation.

Finally, clustering plays a fundamental role in identifying 
cell subpopulations by grouping cells based on their tran
scriptional similarities. These clusters often reflect distinct 
cell types, as transcriptional patterns are typically indicative 
of cellular identity and function. This approach enables the 
discovery of novel cell types and the characterization of dis
tinct subpopulations within a single-cell state. Several unsu
pervised clustering methods have been used after feature 
selection and data dimensionality reduction to partition 
single-cell data. These include techniques such as k-means, hi
erarchical clustering, and graph-based approaches. Graph- 
based clustering methods, specifically, stand out for their 
scalability, making them particularly well-suited for large- 

scale datasets. These approaches can efficiently handle graphs 
representing hundreds of thousands or even millions of cells, 
providing robust solutions for analyzing high-dimensional 
single-cell data. A correct identification of cell types is the 
most important part of a single-cell analysis, with this work 
our aim is to define which is the clustering method that better 
approximates cell subtypes.

A graph G¼ ðV;EÞ is constructed, where the nodes V rep
resent individual cells, and the edges E capture the degree of 
similarity between cell pairs. Typically, this graph is built us
ing the K-Nearest Neighbors (KNN) algorithm applied to the 
principal component (PC) reduced space, where each cell is 
connected to its K most similar neighbors. To enhance the 
graph’s representation, edge weights are refined using 
Jaccard similarity, which quantifies the proportion of shared 
neighbors between two cells.

Once the graph is constructed, a community detection al
gorithm, such as the widely used Louvain method, is applied 
to identify cell clusters. These clusters are assumed to corre
spond to distinct cell subtypes. In the absence of a definitive 
ground truth, our goal is to assess how accurately these clus
ters represent distinct cell subtypes, offering biologically 
meaningful insights. To address this issue, we significantly 
improved the two procedures previously developed in robin 
(Policastro et al. 2021). These improvements greatly boosted 
the performance of the method, enabling its application to 
very large networks, such as those encountered in single-cell 
data analysis.

Given a network of interest, represented as the graph pro
duced by a single-cell pipeline, the two procedures can be ap
plied as follows (see Fig. 1). The first, implemented in the 
function robinCompare, is designed to compare various 
community detection algorithms to identify the one that best 
fits the cell network. Once the optimal algorithm is identified, 
the second procedure, implemented in the function 
robinRobust, validates the stability of the detected 
communities. Specifically, it tests how the cell subgroups 
identified in the network of interest compare to those 
found in a corresponding random network. The curves 
generated by these two procedures are compared using the 
tests implemented in the functions robinGPtest and 
robinFDAtest, along with the AUC analysis.

Our method not only evaluates the reliability of cell clus
tering but also aids in selecting the most suitable community 
detection algorithm for the cell network, by analyzing the 
graph structure independently of biological data. The core 
idea is to assess clusters based on the robustness of the under
lying network, emphasizing network stability to identify the 
most reliable cell clustering solution. This approach is adapt
able to various levels of optimization, enabling the selection 
of community detection algorithm parameters, such as the 
resolution parameter, the identification of the algorithm that 
best fits the cell network, and ultimately the choice of the 
most effective pipeline. Specifically, given a cell graph, 
robinCompare can generate multiple stability measure 
curves by varying the input parameters of a given community 
detection algorithm. The optimal parameters are those corre
sponding to the curve with the lowest AUC. Similarly, differ
ent community detection algorithms can be compared once 
their optimal parameters have been selected by applying them 
to the same cell graph for a systematic evaluation of cluster
ing performance and identifying the best algorithm for that 
network. Finally, it is possible to compare clustering results 
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across different single-cell analysis pipelines, such as Seurat 
and OSCA, to determine the pipeline that produces the most 
robust cell clustering (example in Fig. 3, available as supple
mentary data at Bioinformatics Advances online).

2.3 Computational aspects
robin2 introduces several novel features to enhance func
tionality and performance. To scale computations for 
high-dimensional datasets such as single-cell data, we have 
integrated a parallelized computational framework based on 
the bplapply function from the BiocParallel package, 
which ensures platform independence. This parallelization, 
applied to the percentage of perturbation, has been imple
mented in both robinCompare and robinRobust func
tions, significantly accelerating the computation of all steps 
associated with a given perturbation. (Table 1, Table 1, avail
able as supplementary data at Bioinformatics Advances on
line, Figs 1 and 2, available as supplementary data at 
Bioinformatics Advances online). In Table 1, we present the 
reduction in execution times achieved by using parallelization 

with 12 cores compared to a single-core sequential algorithm 
in the previous version of robin. Each row of Table 1 corre
sponds to an increasing number of nodes and edges sampled 
from the dataset used in the Application section, highlighting 
a 9-fold improvement in execution time.

To enhance robin’s interoperability with igraph, we 
have provided comprehensive support for all arguments 
across all clustering methods available in igraph and addi
tionally the support for the previously missing Leiden algo
rithm. Our implementation enables users not only to 
compare different algorithms but also to evaluate the same al
gorithm under varying parameter settings, providing greater 
flexibility in performance assessment. The updated package 
also benefits from a dedicated robin class, which enables ef
ficient storage of intermediate computations and final results. 
Additionally, this class ensures compatibility with the R base 
plotting interface, which streamlines result visualization. 
Lastly, we have introduced the plotMultiCompare func
tion to improve comparative analysis. This function accepts 
multiple robin objects as input and generates a single com
prehensive graph that summarizes the results in multiple 
methods (example in Fig. 5, available as supplementary data
at Bioinformatics Advances online).

2.4 Application
The proposed method was applied to two datasets from 
different species: a subset of the Tabula Muris dataset 
(Tabula 2018) derived from mouse tissues and human 
Peripheral Blood Mononuclear Cells (PBMC) from the 
singleCellMultimodal Bioconductor package (Eckenrode 
et al. 2023). For the Tabula Muris, the data analysis was per
formed using the Seurat pipeline, detailed at https://satija 
lab.org/seurat/articles/pbmc3k_tutorial.html. The cell graph 
was constructed using the shared nearest neighbor algorithm 
in the reduced dimensional space as explained above. We ap
plied robin2 to select an optimal community detection 
method that best approximates cell subtypes. Specifically, 
robin2 was used to compare clustering results from differ
ent community detection algorithms. The steps for the com
parison and validation of clustering are summarized in Fig. 1.

The graph generated by Seurat consisted of 7986 cells 
and 279 713 edges (Table 2, available as supplementary data
at Bioinformatics Advances online). Four community detec
tion algorithms were applied to this graph obtaining different 
numbers of clusters (Fig. 4, available as supplementary data
at Bioinformatics Advances online). To identify the clustering 
method that best approximates cell subtypes, robin2 was 

Figure 1. The workflow of single-cell analysis pipeline for 
clustering validation.

Table 1. Time performance for robinCompare across networks of 
different dimensions.a

Ncells Edges 1 Core 12 Cores

580 17 429 0:0:15 0:0:3
2900 86 796 0:5:9 0:0:43
5800 189 771 0:14:49 0:1:49
8700 307 048 0:32:42 0:3:24
11 600 419 723 0:45:41 0:4:59
14 500 541 615 1:7:42 0:7:2
17 400 656 453 1:26:36 0:9:24
20 300 770 781 1:53:45 0:12:25
23 200 893 303 2:18:19 0:15:10
26 100 1 013 844 2:54:14 0:19:34
29 000 1 129 064 3:32:8 0:24:7

a Showing how the parallelization speeds up the computations by 9-fold.
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utilized with the robinCompare function (Comparison step 
of the Fig. 1). The results indicated that Louvain produced 
the most stable clustering, as evidenced by the lowest curve, 
followed closely by Walktrap, while the other algorithms 
exhibited higher variation (Fig. 5, available as supplementary 
data at Bioinformatics Advances online).

The robustness (Validation step of the Fig. 1) of the 
Louvain algorithm was evaluated using the robinRobust 
function, comparing the communities detected in the real 
graph with those generated by a random graph based on a 
configuration model. The differences between the two result
ing curves were also tested. The robinFDATest yielded all 
statistically significant P-values, and the Bayes Factor from 
robinGPTest exceeded 100, providing strong evidence that 
the two curves originate from distinct processes (Fig. 6, avail
able as supplementary data at Bioinformatics Advances on
line). These results confirm the statistical significance of the 
communities detected by Louvain.

To evaluate how well the identified clusters (Fig. 7, avail
able as supplementary data at Bioinformatics Advances on
line) approximated cell subtypes, the percentage of overlap 
between Louvain clusters and cell subtypes was calculated 
(Fig. 8, available as supplementary data at Bioinformatics 
Advances online). The analysis revealed that most clusters 
corresponded to a single subtype, aligning with the goal of 
scRNA-seq analysis. Some clusters contained more than one 
subtype, but these subtypes were biologically similar. For in
stance, Cluster C27 included early pro-B cells, late pro-B 
cells, and Fraction A pre-pro B cells, while Cluster C22 con
tained various monocyte types. These observations further 
support the conclusion that Louvain effectively approximates 
the cell subtypes within this network.

To assess the performance of the robin2 method, the 
ground truth of cell subtypes was compared to the partitions 
generated by each algorithm using the Variation of 
Information (VI) stability measure. As shown in Table 2, the 
VI measure corroborated the findings of the robin2 analy
sis, which were obtained without prior knowledge of the 
ground-truth. The results indicated that the Louvain and 
Walktrap algorithms were the most effective, producing clus
ters closely aligned with the ground truth. In contrast, Label 
Propagation demonstrated the poorest performance among 
the algorithms applied to this network (Fig. 5, available as 
supplementary data at Bioinformatics Advances online).

The human PBMC dataset was analyzed following the 
Bioconductor Orchestrating Single-Cell Analysis (OSCA) 
guidelines. We applied six community detection algorithms 
to the graph generated by OSCA (10 032 cells and 2 242 251 
edges), obtaining different numbers of clusters.

To compare and validate the various community detection 
methods, we applied the same procedure described above. 
The most stable algorithm was Leiden, which identified 11 
clusters (see Fig. 9, available as supplementary data at 
Bioinformatics Advances online). To assess the biological 

relevance of these findings, we annotated the communities us
ing SingleR (Aran et al. 2019), with the MonacoImmuneData 
dataset from the celldex Bioconductor package as the refer
ence. We found a strong correlation with the ground-truth 
cell types (see Fig. 10, available as supplementary data at 
Bioinformatics Advances online).

Furthermore, our pipeline can transfer the obtained clus
ters to either a Seurat or SingleCellExperiment object and 
perform differential expression analysis to identify marker 
genes defining each cell subtype.

Detailed analysis pipelines for both datasets, including the 
integration of robin2 within both Seurat and OSCA frame
works, are publicly available at https://drighelli.github.io/scro 
binv2/index.html.

3 Discussion
In this work, we have demonstrated how to apply robin2 to 
scRNAseq data, where the clustering step is a fundamental 
aspect in any dataset analysis for the identification of the cell 
types. Indeed, with the aid of our methodology, we are now 
able firstly to compare multiple clustering algorithms and 
then verify the robustness of the obtained communities. 
Additionally, we have enhanced robin computational effi
ciency by several orders of magnitude, making it practical 
also for big single-cell datasets. We achieved this by imple
menting in robin2 the parallelization of computations over 
the percentage of the rewiring strategy, which in our method 
is equal to 12. To improve the statistical robustness of the 
test, each percentage of perturbation consists of 10 replicates. 
To further speed up the computation, future improvements 
could potentially be achieved by parallelizing the computa
tions for individual replicates as well. Performances in terms 
of running time are now acceptable even with large datasets.

Finally, we demonstrated how to select the optimal com
munity detection method that best approximates cell sub
types by comparing different community detection 
algorithms. However, our method offers greater potential 
and can also be used to optimize parameter choices, such as 
the resolution parameter, within the same algorithm. 
Furthermore, the application of our method enables the com
parison of different single-cell analysis pipelines, such as 
Seurat, OSCA, and others, through the generated 
graphs, thereby aiding in the more precise definition of 
cell subtypes.
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Table 2. VI between cell type and clusters.

Algorithms VI
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