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Abstract

Motivation: The rapid expansion of single-cell RNA sequencing (scRNA-seq) technologies has increased the need for robust and scalable
clustering evaluation methods. To address these challenges, we developed robin2, an optimized version of our R package robin. It introduces
enhanced computational efficiency, support for high-dimensional datasets, and harmonious integration with R’s base functionalities for robust
network analysis.

Results: robin2 offers improved functionality for clustering stability validation and enables systematic evaluation of community detection algo-
rithms across various resolutions and pipelines. The application to Tabula Muris and PBMC scRNA-seq datasets confirmed its ability to identify
biologically meaningful cell subpopulations with high statistical significance. The new version reduces computational time by 9-fold on large-
scale datasets using parallel processing.

Availability and implementation: The robin2 package is freely available on CRAN at https://CRAN.R-project.org/package=robin.

Comprehensive documentation and a detailed analysis vignette are available on GitHub at https://drighelli.github.io/scrobinv2/index.html.

1 Introduction

Biological systems are often represented as networks to model
the complex interactions between their components.
Mathematically, a network can be defined as a graph
G = (V,E), where V is the set of nodes (e.g. genes, proteins, or
cells) and E represents the edges that encode relationships be-
tween the nodes. In the context of single-cell transcriptomics
(scRNA-seq), graphs are particularly useful for representing
cells as nodes and their transcriptional similarities as edges.

One of the main goals of scRNA-seq is to identify distinct
cell subpopulations based on their transcriptional profiles.
This task is typically addressed using unsupervised clustering,
which groups cells with similar gene expression patterns.
Clustering methods such as k-means and hierarchical cluster-
ing, although widely used, often face computational limita-
tions when applied to large scRNA-seq datasets. In contrast,
graph-based clustering methods, such as community detec-
tion algorithms, offer a more scalable and efficient solution
for clustering millions of cells. A significant challenge
remains: determining how accurately clusters derived from
scRNA-seq data reflect true biological cell subtypes. Without
a reliable ground truth, evaluating the accuracy of clustering
results becomes difficult.

In network science, this translates into validation of the
results produced by community detection algorithms. The

primary challenge lies in determining whether the detected com-
munities are significant or simply artifacts of random edge
placement within the network. In our previous paper
(Carissimo et al. 2018), we addressed this issue, showing that if
a partition is significant, it will be recovered even if the graph
structure is modified. In contrast, if a partition is not significant,
a minimal modification of the graph will be sufficient to change
the partition. This basic idea is then expanded and implemented
in our R package robin (ROBustness In Network) (Policastro
et al. 2021) where we evaluate the robustness of the community
structure of a network found by one or more methods to give
indications about their reliability.

Although our approach can be applied to any type of graph
in biological, sociological, and physical fields, in this article,
we present robin2, an updated version of robin, in which
the method has been optimized to better accommodate large
dataset as scRNA-seq data, with a focus on enhancing speed
and efficiency to address the unique characteristics of
these datasets.

2 Materials and methods
2.1 robin

The robin R package (Policastro et al. 2021) is a tool for
evaluating the robustness and reliability of community
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detection algorithms applied to networks. Its methodology
comprises two core procedures. The first (robinCompare)
compares two algorithms to determine which is better suited
for the given network, producing stability measure curves for
each. The second (robinRobust) assesses the stability of a
single algorithm under random perturbations of the network
structure by comparing stability metrics from the original
network to those from a null model. Both these analyses le-
verage functional statistical tests, including Gaussian Process
Regression and the Interval Testing Procedure, to assess sta-
tistical significance and highlight key differences.

robin offers users flexibility through customizable stabil-
ity metrics, perturbation strategies, and null models. It inte-
grates seamlessly with igraph algorithms and includes visual
tools for analysis and interpretation of results. To evaluate
stability, robin uses network partition similarity measures.
Its perturbation strategy introduces controlled variability by
rewiring edges while preserving the original number of nodes
and edges. The perturbation levels typically range from zero
to a maximum of 60%, beyond which the network becomes
random. Two statistical tests are used to validate the robust-
ness of community detection algorithms by comparing stabil-
ity measure curves, Gaussian Process Regression (GP) and the
Interval Testing Procedure (ITP) (Policastro et al. 2021).

2.2 robin2 for clustering validation in single cell

For scRNA-seq data analysis, several statistical techniques
have been developed and implemented (Trapnell et al. 2014,
Satija et al. 2015, Wolf et al. 2018, Amezquita et al. 2020).
While each of these pipelines differ in parameters and specific
analytical approaches, they share a set of fundamental steps
(Slovin et al. 2021).

First, data normalization is crucial to remove non-
biological variations and make gene expression comparable
across individual cells. This is typically achieved by dividing
the gene counts by each cell’s total number of reads.

Next, feature selection is performed to identify genes with
relevant biological information while excluding non-
informative ones. Typically, this involves selecting a subset of
highly variable genes based on metrics such as variance or co-
efficient of variation. Following this, a linear dimensional re-
duction technique like principal component analysis (PCA) is
performed to condense the complexity of the data into a
lower-dimensional space, focusing on extracting principal
components allowing to explain data variability by construc-
tion. For better interpretability of such high-dimensionality
data, visualization is usually accomplished through nonlinear
dimension reduction techniques like t-SNE and UMAP,
which effectively projects the data into a lower-dimensional
space suitable for interpretation.

Finally, clustering plays a fundamental role in identifying
cell subpopulations by grouping cells based on their tran-
scriptional similarities. These clusters often reflect distinct
cell types, as transcriptional patterns are typically indicative
of cellular identity and function. This approach enables the
discovery of novel cell types and the characterization of dis-
tinct subpopulations within a single-cell state. Several unsu-
pervised clustering methods have been used after feature
selection and data dimensionality reduction to partition
single-cell data. These include techniques such as k-means, hi-
erarchical clustering, and graph-based approaches. Graph-
based clustering methods, specifically, stand out for their
scalability, making them particularly well-suited for large-

Policastro et al.

scale datasets. These approaches can efficiently handle graphs
representing hundreds of thousands or even millions of cells,
providing robust solutions for analyzing high-dimensional
single-cell data. A correct identification of cell types is the
most important part of a single-cell analysis, with this work
our aim is to define which is the clustering method that better
approximates cell subtypes.

A graph G = (V,E) is constructed, where the nodes V rep-
resent individual cells, and the edges E capture the degree of
similarity between cell pairs. Typically, this graph is built us-
ing the K-Nearest Neighbors (KNN) algorithm applied to the
principal component (PC) reduced space, where each cell is
connected to its K most similar neighbors. To enhance the
graph’s representation, edge weights are refined using
Jaccard similarity, which quantifies the proportion of shared
neighbors between two cells.

Once the graph is constructed, a community detection al-
gorithm, such as the widely used Louvain method, is applied
to identify cell clusters. These clusters are assumed to corre-
spond to distinct cell subtypes. In the absence of a definitive
ground truth, our goal is to assess how accurately these clus-
ters represent distinct cell subtypes, offering biologically
meaningful insights. To address this issue, we significantly
improved the two procedures previously developed in robin
(Policastro et al. 2021). These improvements greatly boosted
the performance of the method, enabling its application to
very large networks, such as those encountered in single-cell
data analysis.

Given a network of interest, represented as the graph pro-
duced by a single-cell pipeline, the two procedures can be ap-
plied as follows (see Fig. 1). The first, implemented in the
function robinCompare, is designed to compare various
community detection algorithms to identify the one that best
fits the cell network. Once the optimal algorithm is identified,
the second procedure, implemented in the function
robinRobust, validates the stability of the detected
communities. Specifically, it tests how the cell subgroups
identified in the network of interest compare to those
found in a corresponding random network. The curves
generated by these two procedures are compared using the
tests implemented in the functions robinGPtest and
robinFDAtest, along with the AUC analysis.

Our method not only evaluates the reliability of cell clus-
tering but also aids in selecting the most suitable community
detection algorithm for the cell network, by analyzing the
graph structure independently of biological data. The core
idea is to assess clusters based on the robustness of the under-
lying network, emphasizing network stability to identify the
most reliable cell clustering solution. This approach is adapt-
able to various levels of optimization, enabling the selection
of community detection algorithm parameters, such as the
resolution parameter, the identification of the algorithm that
best fits the cell network, and ultimately the choice of the
most effective pipeline. Specifically, given a cell graph,
robinCompare can generate multiple stability measure
curves by varying the input parameters of a given community
detection algorithm. The optimal parameters are those corre-
sponding to the curve with the lowest AUC. Similarly, differ-
ent community detection algorithms can be compared once
their optimal parameters have been selected by applying them
to the same cell graph for a systematic evaluation of cluster-
ing performance and identifying the best algorithm for that
network. Finally, it is possible to compare clustering results
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Figure 1. The workflow of single-cell analysis pipeline for
clustering validation.

across different single-cell analysis pipelines, such as Seurat
and OSCA, to determine the pipeline that produces the most
robust cell clustering (example in Fig. 3, available as supple-
mentary data at Bioinformatics Advances online).

2.3 Computational aspects

robin2 introduces several novel features to enhance func-
tionality and performance. To scale computations for
high-dimensional datasets such as single-cell data, we have
integrated a parallelized computational framework based on
the bplapply function from the BiocParallel package,
which ensures platform independence. This parallelization,
applied to the percentage of perturbation, has been imple-
mented in both robinCompare and robinRobust func-
tions, significantly accelerating the computation of all steps
associated with a given perturbation. (Table 1, Table 1, avail-
able as supplementary data at Bioinformatics Advances on-
line, Figs 1 and 2, available as supplementary data at
Bioinformatics Advances online). In Table 1, we present the
reduction in execution times achieved by using parallelization

Table 1. Time performance for robinCompare across networks of
different dimensions.?

Necells Edges 1 Core 12 Cores
580 17429 0:0:15 0:0:3
2900 86796 0:5:9 0:0:43
5800 189771 0:14:49 0:1:49
8700 307048 0:32:42 0:3:24
11600 419723 0:45:41 0:4:59
14500 541615 1:7:42 0:7:2
17400 656453 1:26:36 0:9:24
20300 770781 1:53:45 0:12:25
23200 893303 2:18:19 0:15:10
26100 1013 844 2:54:14 0:19:34
29000 1129064 3:32:8 0:24:7

* Showing how the parallelization speeds up the computations by 9-fold.

with 12 cores compared to a single-core sequential algorithm
in the previous version of robin. Each row of Table 1 corre-
sponds to an increasing number of nodes and edges sampled
from the dataset used in the Application section, highlighting
a 9-fold improvement in execution time.

To enhance robin’s interoperability with igraph, we
have provided comprehensive support for all arguments
across all clustering methods available in igraph and addi-
tionally the support for the previously missing Leiden algo-
rithm. Our implementation enables users not only to
compare different algorithms but also to evaluate the same al-
gorithm under varying parameter settings, providing greater
flexibility in performance assessment. The updated package
also benefits from a dedicated robin class, which enables ef-
ficient storage of intermediate computations and final results.
Additionally, this class ensures compatibility with the R base
plotting interface, which streamlines result visualization.
Lastly, we have introduced the plotMultiCompare func-
tion to improve comparative analysis. This function accepts
multiple robin objects as input and generates a single com-
prehensive graph that summarizes the results in multiple
methods (example in Fig. 5, available as supplementary data
at Bioinformatics Advances online).

2.4 Application

The proposed method was applied to two datasets from
different species: a subset of the Tabula Muris dataset
(Tabula 2018) derived from mouse tissues and human
Peripheral Blood Mononuclear Cells (PBMC) from the
singleCellMultimodal Bioconductor package (Eckenrode
et al. 2023). For the Tabula Muris, the data analysis was per-
formed using the Seurat pipeline, detailed at https://satija
lab.org/seurat/articles/pbmc3k_tutorial.html. The cell graph
was constructed using the shared nearest neighbor algorithm
in the reduced dimensional space as explained above. We ap-
plied robin2 to select an optimal community detection
method that best approximates cell subtypes. Specifically,
robin2 was used to compare clustering results from differ-
ent community detection algorithms. The steps for the com-
parison and validation of clustering are summarized in Fig. 1.

The graph generated by Seurat consisted of 7986 cells
and 279 713 edges (Table 2, available as supplementary data
at Bioinformatics Advances online). Four community detec-
tion algorithms were applied to this graph obtaining different
numbers of clusters (Fig. 4, available as supplementary data
at Bioinformatics Advances online). To identify the clustering
method that best approximates cell subtypes, robin2 was
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utilized with the robinCompare function (Comparison step
of the Fig. 1). The results indicated that Louvain produced
the most stable clustering, as evidenced by the lowest curve,
followed closely by Walktrap, while the other algorithms
exhibited higher variation (Fig. 5, available as supplementary
data at Bioinformatics Advances online).

The robustness (Validation step of the Fig. 1) of the
Louvain algorithm was evaluated using the robinRobust
function, comparing the communities detected in the real
graph with those generated by a random graph based on a
configuration model. The differences between the two result-
ing curves were also tested. The robinFDATest yielded all
statistically significant P-values, and the Bayes Factor from
robinGPTest exceeded 100, providing strong evidence that
the two curves originate from distinct processes (Fig. 6, avail-
able as supplementary data at Bioinformatics Advances on-
line). These results confirm the statistical significance of the
communities detected by Louvain.

To evaluate how well the identified clusters (Fig. 7, avail-
able as supplementary data at Bioinformatics Advances on-
line) approximated cell subtypes, the percentage of overlap
between Louvain clusters and cell subtypes was calculated
(Fig. 8, available as supplementary data at Bioinformatics
Advances online). The analysis revealed that most clusters
corresponded to a single subtype, aligning with the goal of
scRNA-seq analysis. Some clusters contained more than one
subtype, but these subtypes were biologically similar. For in-
stance, Cluster C27 included early pro-B cells, late pro-B
cells, and Fraction A pre-pro B cells, while Cluster C22 con-
tained various monocyte types. These observations further
support the conclusion that Louvain effectively approximates
the cell subtypes within this network.

To assess the performance of the robin2 method, the
ground truth of cell subtypes was compared to the partitions
generated by each algorithm using the Variation of
Information (VI) stability measure. As shown in Table 2, the
VI measure corroborated the findings of the robin2 analy-
sis, which were obtained without prior knowledge of the
ground-truth. The results indicated that the Louvain and
Walktrap algorithms were the most effective, producing clus-
ters closely aligned with the ground truth. In contrast, Label
Propagation demonstrated the poorest performance among
the algorithms applied to this network (Fig. 5, available as
supplementary data at Bioinformatics Advances online).

The human PBMC dataset was analyzed following the
Bioconductor Orchestrating Single-Cell Analysis (OSCA)
guidelines. We applied six community detection algorithms
to the graph generated by OSCA (10 032 cells and 2 242 251
edges), obtaining different numbers of clusters.

To compare and validate the various community detection
methods, we applied the same procedure described above.
The most stable algorithm was Leiden, which identified 11
clusters (see Fig. 9, available as supplementary data at
Bioinformatics Advances online). To assess the biological

Table 2. VI between cell type and clusters.

Algorithms VI

Louvain 1.05
Walktrap 1.07
Fast Greedy 1.14
Infomap 1.54
Label Propagation 1.61
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relevance of these findings, we annotated the communities us-
ing SingleR (Aran et al. 2019), with the MonacolmmuneData
dataset from the celldex Bioconductor package as the refer-
ence. We found a strong correlation with the ground-truth
cell types (see Fig. 10, available as supplementary data at
Bioinformatics Advances online).

Furthermore, our pipeline can transfer the obtained clus-
ters to either a Seurat or SingleCellExperiment object and
perform differential expression analysis to identify marker
genes defining each cell subtype.

Detailed analysis pipelines for both datasets, including the
integration of robin2 within both Seurat and OSCA frame-
works, are publicly available at https://drighelli.github.io/scro
binv2/index.html.

3 Discussion

In this work, we have demonstrated how to apply robin2 to
scRNAseq data, where the clustering step is a fundamental
aspect in any dataset analysis for the identification of the cell
types. Indeed, with the aid of our methodology, we are now
able firstly to compare multiple clustering algorithms and
then verify the robustness of the obtained communities.
Additionally, we have enhanced robin computational effi-
ciency by several orders of magnitude, making it practical
also for big single-cell datasets. We achieved this by imple-
menting in robin2 the parallelization of computations over
the percentage of the rewiring strategy, which in our method
is equal to 12. To improve the statistical robustness of the
test, each percentage of perturbation consists of 10 replicates.
To further speed up the computation, future improvements
could potentially be achieved by parallelizing the computa-
tions for individual replicates as well. Performances in terms
of running time are now acceptable even with large datasets.

Finally, we demonstrated how to select the optimal com-
munity detection method that best approximates cell sub-
types by comparing different community detection
algorithms. However, our method offers greater potential
and can also be used to optimize parameter choices, such as
the resolution parameter, within the same algorithm.
Furthermore, the application of our method enables the com-
parison of different single-cell analysis pipelines, such as
Seurat, OSCA, and others, through the generated
graphs, thereby aiding in the more precise definition of
cell subtypes.
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