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Visual input underpins cognitive function by providing the brain with essential environmental information. Neu-
ral decoding of visual scenes seeks to reconstruct pixel-level images from neural activity, a vital capability for
vision restoration via brain-computer interfaces. However, extracting visual content from time-resolved spiking
activity remains a significant challenge. Here, we introduce the Wavelet-Informed Spike Augmentation (WISA)
model, which applies multilevel wavelet transforms to spike trains to learn compact representations that can be
directly fed into deep reconstruction networks. When tested on recorded retinal spike data responding to natural

video stimuli, WISA substantially improves reconstruction accuracy, especially in recovering fine-grained details.
These results emphasize the value of temporal spike patterns for high-fidelity visual decoding and demonstrate
WISA as a promising model for visual decoding.

1. Introduction

In daily life, the brain continuously receives and processes a vast ar-
ray of sensory information from the external environment. This sensory
input is transmitted through a complex neural system, ultimately driv-
ing behavioral responses. Neurons play a central role in this process,
serving as critical elements for information transmission and efficient
computation. Individual neurons respond to input stimuli by altering
their membrane potential, generating discrete electrical events known
as neural spikes (Rieke, 1997). These spikes are widely recognized as
the fundamental units of neural computation, encoding and represent-
ing sensory stimuli, including visual information (Chichilnisky, 2001;
Gollisch and Meister, 2008), where the earlier visual system carries out
a significant part of visual information (Chen et al., 2024; Gollisch and
Meister, 2010; Karamanlis et al., 2022).

Neural coding seeks to understand how neurons encode the rela-
tionship between sensory stimuli and neural spikes (Rieke, 1997). This
field encompasses two primary components: neural encoding and neural
decoding. Neural encoding investigates how individual neurons or neu-
ral populations process environmental stimuli (Liu and Gollisch, 2015;
Liu et al., 2017; Olshausen et al., 1996; Onken et al., 2016; Simon-
celli and Olshausen, 2001; Wang et al., 2020), while neural decoding
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focuses on extracting and interpreting information embedded in neural
signals (Quiroga et al., 2009; Wu et al., 2006). In the context of the vi-
sual system, this involves exploring how visual scenes are represented
by spiking signals and developing methodologies to decode these signals
to reconstruct the input stimuli (Shah and Chichilnisky, 2020; Yu et al.,
2020; Zhang et al., 2022).

To uncover the principles of neural encoding, researchers have de-
veloped a variety of models based on the intrinsic properties of neurons
and neural circuits (Meyer et al., 2017; Pillow et al., 2008; Wu et al.,
2025; Yan et al., 2022; Yu et al., 2020). Early spike-feature transfor-
mation methods exploited the wavelet transform to perform unsuper-
vised detection and sorting of action potentials, demonstrating superior
discrimination of spike classes without manual intervention (Quiroga
et al., 2004). Subsequent work has addressed the computational bot-
tlenecks of large-scale recordings by developing scalable, automated
spike-sorting pipelines that maintain high reliability across thousands
of channels (Carlson and Carin, 2019). These studies utilize the dual
importance of time-frequency feature representation and algorithmic ef-
ficiency in spike-based decoding. Building on these insights, our current
work focuses on integrating learnable multiscale wavelet representa-
tions with temporal convolutional feature learning to directly enhance
downstream image reconstruction. During the neural transmission of
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visual information, neural spikes are essential units to represent visual
stimuli. Consequently, constructing models capable of directly recon-
structing visual scenes from spiking signals is critical to advance our
understanding of neural representation (Botella-Soler et al., 2018; Gol-
lisch and Meister, 2008). An effective neural decoder should reliably ex-
tract and reconstruct stimulus information encoded in neural spikes (Yu
et al., 2020).

Traditional neural decoding approaches often involve classifying
neural signal patterns to infer the corresponding stimulus type (Ragni
et al., 2021; Shen et al., 2021; Wen et al., 2018). More recently, stimu-
lus reconstruction techniques have emerged that allow the recovery of
pixel-level details of visual scenes from neural signals (Nishimoto et al.,
2011; Zhang et al., 2020, 2022), including functional magnetic reso-
nance imaging (fMRI) activity (Naselaris et al., 2009; Nishimoto et al.,
2011; Qiao et al., 2018; Thirion et al., 2006; Wen et al., 2018), spiking
neural signals (Botella-Soler et al., 2018; Gollisch and Meister, 2008;
Marre et al., 2015; Parthasarathy et al., 2017), and calcium imaging
signals (Garasto et al., 2018; Yoshida and Ohki, 2020). Despite these
advancements, current methodologies face limitations in decoding high-
resolution dynamic natural scenes (Shah and Chichilnisky, 2020). Ad-
dressing these challenges is critical for realizing the full potential of neu-
ral decoding in visual neuroscience, brain-machine interface, and visual
neuroprosthesis technologies (Yang et al., 2023; Yu et al., 2020).

In this study, we introduce the Wavelet-Informed Spike Augmenta-
tion (WISA) model, based on previous deep learning decoding mod-
els (Yu et al., 2024; Zhang et al., 2020, 2022). WISA first applies a
discrete wavelet transform (DWT) to spike trains to obtain multilevel
coefficients that capture essential time-frequency structure (Strang and
Nguyen, 1996). A compact temporal convolutional network then adap-
tively refines these coefficients, and an inverse DWT reconstructs aug-
mented spiking neural signals for downstream decoding. By integrating
learnable, multiscale preprocessing directly into the decoding pipeline,
WISA enables end-to-end optimization of time-frequency features,
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substantially improving reconstruction fidelity of video stimuli. To eval-
uate the effectiveness of WISA, the augmented spikes were integrated
into a downstream decoding network to align the spikes with corre-
sponding visual stimuli. The entire framework, comprising WISA and the
decoding network, operates as an end-to-end deep learning system, en-
abling the reconstruction of dynamic natural visual scenes directly from
spiking signals. Using experimentally recorded neural spiking signals in
response to video stimuli, we demonstrated that WISA significantly im-
proves the quality of visual scene reconstruction. These results highlight
the robustness and practical potential of the WISA approach for learning
representations of spiking signals and providing an advanced modeling
framework for neural decoding of dynamic visual scenes using neural
spike sequences.

2. Results
2.1. Decoding visual scenes with WISA

The proposed decoding framework comprises two stages (Fig. 1). In
the first stage, the WISA module is utilized to learn representations of
temporal sequences of spiking signals (see Methods). The second stage
involves a decoding network that converts the augmented spiking sig-
nals into visual images. To highlight the benefits of WISA, we use previ-
ously developed CNN models as decoders (Yu et al., 2024; Zhang et al.,
2020, 2022). Although alternative decoding networks can be incorpo-
rated, we use the CNN decoder throughout the study as a baseline model
for comparison with WISA.

The proposed decoding framework was evaluated using experimen-
tal data recorded from retinal ganglion cells to reconstruct two natu-
ral video stimuli: salamander and trigger videos, which show varying
levels of spatial and temporal complexity (Zheng et al., 2021). The
results demonstrated that WISA significantly enhances the decoding
performance (Fig. 2). Both the CNN decoder without WISA and the
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Fig. 1. The decoding framework with WISA. (Top) The WISA module has three sequential steps: 1) DWT is applied to spiking signals to obtain multilevel wavelet
coefficients; 2) Temporal convolutional neural network (TCNN) module is employed to learn and extract high- and low-frequency features from the wavelet coeffi-
cients; 3) The wavelet coefficients of the extracted features are reconstructed through inverse DWT, generating the augmented spikes. (Bottom) The CNN decoding

network uses augmented spikes to obtain reconstructed visual images.
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Fig. 2. WISA improves the decoding results. (A) Decoded images from the Salamander (left) and Tiger (right) video by the decoder network with WISA and without
WISA. (B) Highlighted image details were better retrieved by WISA. (C) The decoding performance quantified by SSIM with and without WISA. Each data point is

the SSIM of a test image.

WISA-enhanced model successfully reconstructed the global content of
each video frame (Fig. 2(A)). However, the WISA-enhanced model ex-
hibited superior ability to capture fine-grained details within the images
(Fig. 2(B)). The decoding performance was quantitatively evaluated us-
ing the structural similarity index measure (SSIM) between the original
and decoded images, revealing a marked improvement with WISA com-
pared to the baseline CNN decoder (Fig. 2(C)).

2.2. Correlation analysis of decoded images
To further assess the reconstruction performance of the WISA model

across different datasets, we randomly sampled 10 % of all frames from
both videos, 180 frames from the salamander video and 160 frames from

the tiger video, and calculated the Pearson correlation coefficients (CC)
for each pixel in the reconstructed images (Fig. 3). The WISA model
consistently exhibited higher accuracy, with average CCs concentrated
above 0.9 for the salamander video and above 0.8 for the tiger video.
In contrast, the CNN decoder without WISA displayed more dispersed
and generally lower CCs. The significantly higher CCs achieved by WISA
indicate a stronger relationship between the reconstructed and original
images, showing its superior performance (Fig. 3(A)).

To further quantify pixel-level reconstruction fidelity, we computed
the Pearson correlation coefficient between flattened original and re-
constructed images for both the baseline CNN decoder (without WISA)
and the WISA-enhanced model. The WISA-enhanced scatter plot aligns
tightly with the identity line, yielding a Pearson correlation of 0.97 and
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Fig. 3. The comparison of individual pixel correlation for the decoded images. WISA shows higher correlations than CNN. (A) Pearson correlation coefficients
averaged over each image by WISA and CNN. Each point indicates the correlation coefficient averaged over all the pixels of each image. (B) The scatter plots of
individual pixel values of all the original and decoded images by both models. Each point represents a pixel value from the original image and its corresponding

reconstructed image.

indicating accurate recovery of most pixel intensities (Fig. 3(B)). In con-
trast, the baseline CNN exhibits a more dispersed scatter and a lower
correlation coefficient of 0.83, reflecting larger reconstruction errors.
These results demonstrate that WISA not only achieves superior over-
all correlation but also substantially reduces pixel-wise errors, thereby
more effectively preserving fine-grained image details.

These results confirm that the WISA model is capable of preserv-
ing the details and pixel values of the original images, resulting in
higher reconstruction accuracy and consistency. Conversely, the plain
CNN model without WISA exhibited larger errors during reconstruction
and performed worse overall, particularly in complex regions with high
pixel values.

2.3. Low-dimensional embedding of original and reconstructed
images

To address the challenge of visually distinguishing reconstructed
images from the originals, we employed Principal Component Analy-
sis (PCA) to compare their low-dimensional embedded representations.
Specifically, 10 % of all frames from both videos were randomly sampled
and divided into 32 x 32 patches. The original images and their corre-
sponding reconstructed images were pooled and analyzed using PCA for
dimensionality reduction and visualization (Fig. 4).

The PCA results reveal that the low-dimensional embeddings of im-
ages reconstructed by the WISA model closely align with those of the
original images. This alignment suggests that the WISA-reconstructed
images successfully preserve the fine-grained visual patterns and struc-
tural characteristics of their corresponding original frames. These find-
ings further validate the effectiveness of the WISA model in accurately
reconstructing visual scenes.

2.4. Comparative evaluation of WISA against state-of-the-art spike
decoding models

To further validate the superiority of the WISA framework, we
conducted quantitative comparison experiments on two video datasets

against recently proposed spike-based decoding models, Spk2ImgNet
(Zhao et al., 2021) and S2INet (Li et al., 2023). Spk2ImgNet applies
parallel, multi-branch learnable filters over spike time windows of
varying lengths to estimate instantaneous luminance, extracts features
via shared-weight multi-layer residual blocks, and fuses these features
across time wusing reliability-weighted deformable convolutions,
producing the reconstructed image end-to-end. S2INet employs an
end-to-end autoencoder architecture whose encoder comprises two
fully connected layers with Gabor-oriented convolutional blocks
(to mimic V1 spatial-frequency and orientation selectivity), and
whose decoder uses symmetric deconvolutional layers to restore
the image. The experiments with Spk2ImgNet and S2INet were
carried out by optimizing the model parameters to suit our current
dataset.

To further quantify the model performance, we used another sim-
ilarity metric, peak signal-to-noise ratio (PSNR), calculated between
the stimulus and the decoded images. WISA substantially outperforms
all competing methods on both datasets in terms of PSNR and SSIM
(Table 1). Compared to the baseline CNN, WISA achieves better PSNR
and SSIM gains. Spk2ImgNet and S2INet achieved lower reconstruc-
tion fidelity under our experimental conditions. To evaluate the ro-
bustness of these improvements, Welch’s t-tests was conducted on the
SSIM and PSNR values comparing WISA with Spk2ImgNet, S2INet
and CNN, where both metrics exhibit highly significant improvement
in WISA (p < 0.001). These results demonstrate that WISA utilizes
learnable wavelet representation to take into account temporal infor-
mation in spiking sequences, improving the ability of spike-to-scene
reconstruction.

2.5. Optimizing wavelet transformation on model performance

To examine the robustness of wavelet hyperparameters in WISA,
we conducted systematic ablation experiments along two dimensions:
wavelet basis function and decomposition level. First, holding the
Daubechies wavelet basis (dB) constant, we varied the decomposi-
tion level from 1 to 4 and compared each to our chosen level of 5
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Fig. 4. Low-dimensional embedding distribution of decoding results preserved by WISA. WISA better preserves the embedding distribution of the original images,
compared to CNN. Each point indicates a 32x32 patch image.

Table 1

A quantitative comparison of PSNR and SSIM for each evaluated model on the salamander and tiger
datasets. The values (Mean + Std) are obtained from different model training settings.

Salamander Tiger
Model PSNR SSIM PSNR SSIM
Spk2ImgNet 12.1762+0.2098 0.3289+0.0142 11.1660+0.1262 0.1732+0.0072
S2INet 14.5524+0.1731 0.2352+0.0171 12.7392+0.0971 0.1650+0.0036
CNN 19.0123+0.7959 0.5319+0.0186 15.0715+0.9295 0.2324+0.0139
WISA 23.9370+0.0217 0.7290+0.0651 20.7847+0.1458 0.5459+0.0378
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(Fig. 5(a-b)). The results indicate that lower decomposition levels (Level
< 4) or shorter filters (e.g., dB8 at low levels) can extract only par-
tial time-frequency features, leading to substantially reduced PSNR and
SSIM. In contrast, at Level 5, the model both fully captures multi-
scale time-frequency information and avoids performance saturation,
since it does not exceed the signal’s maximum permissible decompo-
sition level [log, N] (where N is the signal length)-thereby achieving
peak PSNR and SSIM on both Salamander and Tiger datasets. Second,
with the decomposition level fixed at 5, we compared three alterna-
tive wavelet bases-Coiflet, Haar, and Symlet-against our final choice
of Daubechies-8 (Fig. 5(c-d)). Coiflet, Haar, and Symlet all underper-
form relative to dB8-Level 5 in terms of PSNR and SSIM, owing to their
shorter filter lengths or differing design priorities that prevent balanced
feature extraction across time and frequency domains. These findings
demonstrate that the dB8 wavelet combined with a five-level decompo-
sition optimally balances computational efficiency and maximal multi-
scale time-frequency feature extraction, thereby enhancing image recon-
struction quality and validating the robustness of this hyperparameter
configuration.

Table 2

2.6. Contribution of different model components in WISA

As shown in Table 2, we investigated the effect of different model
components on the decoding performance. By removing various compo-
nents, the performance drops compared to the full WISA model. Com-
pared to the baseline CNN, TCNN increases performance, demonstrat-
ing that the TCNN module alone can effectively enhance the learning
and integration of time-frequency features, thus strengthening image re-
construction capability. Omitting the IDWT step leads to a pronounced
drop in reconstruction quality compared to the complete WISA model,
showing the necessity of inverse wavelet reconstruction for preserving
multi-scale temporal dynamics. To evaluate the significance of these im-
provements, Welch’s t-tests were applied to the SSIM and PSNR values
of the full WISA in contrast to three ablated models, showing both met-
rics exhibit highly significant increases (p < 0.001). Therefore, the full
WISA model achieves the highest SSIM and PSNR among all configura-
tions, confirming that the synergy of multilevel wavelet decomposition,
TCNN enhancement, and inverse transform optimally boosts decoding
performance.

Ablation analysis of the WISA model components for the decoding performance. The full WISA is repre-
sented as a combination DWT + TCNN + IDWT + CNN. (—) Component removed; (+) Component added. The
values (Mean=+Std) are obtained from different model training settings.

Salamander Tiger
WISA model components PSNR SSIM PSNR SSIM
—DWT —TCNN —IDWT +CNN 19.0123+0.7959 0.5319+0.0186 15.0715+0.9295 0.2324+0.0139
—DWT +TCNN —IDWT +CNN 20.6344+0.5667 0.5959+0.0141 16.6029+0.7111 0.3334+0.0161
+DWT +TCNN —IDWT +CNN 18.7159+0.4980 0.5087+0.0134 13.9396+0.7515 0.1919+0.0612

+DWT +TCNN +IDWT +CNN

23.9370+0.0217

0.7290+0.0651

20.7847+0.1458

0.5459+0.0378
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3. Conclusions and discussions

In this study, we proposed a novel WISA module that operates on
spike sequences by performing wavelet transformation, learning to en-
hance its wavelet coefficients, and outputting new representations. The
augmented representation of spikes retains the temporally ordered effec-
tive information embedded in spiking signals. Compared to other deep
learning models without wavelet, the present study shows the advantage
of exploring spikes in the time-frequency domain. We demonstrated the
effectiveness of WISA in reconstructing visual stimulus images, enabling
future studies on the utilization of time-resolved neural activity for vi-
sual decoding.

3.1. Visual decoding

The goal of neural decoding in vision is to predict visual stimuli
based on neural activity. Traditionally, linear methods have been em-
ployed as neural decoders due to their simplicity and computational
efficiency (Schoenmakers et al., 2013). However, the limited represen-
tational capacity of linear approaches results in suboptimal reconstruc-
tion performance, particularly for complex visual tasks such as decoding
natural scenes. While linear methods provide high interpretability, their
inability to capture intricate features of visual stimuli restricts their ap-
plicability in high-fidelity reconstruction.

In recent years, deep neural networks (DNNs) have become increas-
ingly prevalent in neural decoding tasks, offering enhanced represen-
tational capabilities. CNNs, in particular, are widely adopted in vari-
ous DNN architectures for visual decoding. CNNs progressively extract
hierarchical visual features from input images through convolutional
layers, utilizing kernels of varying sizes that mimic receptive fields in
neuroscience (Ciresan et al., 2011; Goodfellow et al., 2016; LeCun et al.,
2002; Richards et al., 2019).

Advances in CNN-based algorithms have demonstrated exceptional
performance in image decoding using neural signals (Giiclii et al., 2015;
Igbal et al., 2019; Kim et al., 2021; Li et al., 2022; Zhang et al., 2020,
2022). Compared to linear methods, DNN-based approaches signifi-
cantly enhance the accuracy of reconstructing natural scenes. Despite
their dependency on large-scale neural data, deep learning technologies
remain among the most promising methodologies for advancing visual
neural decoding.

3.2. Enhancing spiking signals

Action potentials, or spikes, represent a specialized form of electri-
cal signaling in neural cells, serving as a fundamental mechanism for
neuronal information transmission and communication. When the mem-
brane potential of a neuron surpasses a threshold during depolarization,
an action potential is generated (Kleinfeld et al., 2019). Spikes are typ-
ically recorded using microelectrodes, an invasive method where elec-
trodes are inserted into or near neurons to capture neural activity (Ors-
born et al., 2014; Shanechi et al., 2017; Steinmetz et al., 2021). The
quality and complexity of the recorded neural signals depend heavily on
the underlying electrophysiological techniques employed (Nurmikko,
2018; Steinmetz et al., 2018). Often, spike events are inferred indirectly
through spike sorting, a computational process applied to multi-unit
recordings. However, this approach is prone to imprecise estimations,
noise, and the mixing of signals from multiple neuronal sources (Carlson
and Carin, 2019; Quiroga et al., 2004; Rey et al., 2015).

Analyzing neural spiking signals to extract meaningful features rele-
vant to behavior has been a central focus in neuroscience (Quiroga et al.,
2009). Computational methods have been used to represent spike fea-
tures through wavelet transforms (Jia et al., 2022; Quiroga et al., 2004)
or latent embeddings learned via deep neural networks (Schneider et al.,
2023; Shen et al., 2021). In this study, we provide an approach to pro-
cess spiking signals to reconstruct augmented spiking sequences, form-
ing a novel representation. The quality of these augmented spikes was
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evaluated using a decoding framework, demonstrating improved per-
formance in reconstructing visual stimulus images. Our findings align
with recent advancements in spike generation and enhancement using
deep learning generative models (Kapoor et al., 2024; Shen et al., 2025),
offering a promising avenue for representing spiking signals for a wide
range of downstream applications.

3.3. Wavelet analysis enhances deep learning models for decoding of
temporal neural signals

The wavelet transform is conceptualized as a sequence of multi-
scale high-pass and low-pass filters that allow signals within specific
frequency ranges to pass while attenuating others. This method first
identifies frequency components in the original signal and then local-
izes these components by sliding the filter across the signal. Conse-
quently, wavelet transform is widely utilized in temporal signal pro-
cessing (Chen et al., 2018; Liu et al., 2020; Pan et al., 2022; Sakar et al.,
2019; Suzuki, 2020). By decomposing a signal through a combination of
high-pass and low-pass filters, the wavelet transform generates wavelet
coefficients containing high-frequency and low-frequency information.
Manipulating these coefficients enables the removal of redundant in-
formation, while the original signal can be reconstructed via the in-
verse wavelet transform. Our work aligns with recent research utilizing
wavelet transformations to analyze temporal information embedded in
neural signals (Duraivel et al., 2020; Jia et al., 2022; Lopes-dos-Santos
et al., 2018).

In recent years, the integration of deep learning models with wavelet
transforms has gained significant attention, proving beneficial for vari-
ous downstream tasks. Its potential has been demonstrated to enhance
computational efficiency in image reconstruction (Liu et al., 2018) and
improve image denoising capabilities (Yang et al., 2020) in the gen-
eral field of computer vision. However, there are few studies on its ap-
plication to neural spiking signals and visual coding. Our recent work
shows that wavelet analysis can improve the decoding of static images
using temporal spiking signals, compared to CNN models without using
wavelets (Jia et al., 2022). The current work extends this paradigm by
integrating wavelets with CNNs to process temporal spike stream sig-
nals in an end-to-end fashion for decoding dynamic videos. Within this
framework, CNNs function as feature selectors and extractors of wavelet
coefficients, optimizing downstream processing by reconstructing en-
hanced wavelet coefficients for improved model performance.

In future work, our framework is potentially extended for analysis
of visual coding in other types of temporal neural signals, including
invasive recordings of intracranial EEG (iEEG) or electrocorticography
(ECoG), and spiking signals in humans. The challenges of these exper-
imental modalities are the limited recording scale and time (Quiroga,
2019), as well as limited access to video stimulus (Cao et al., 2025,
2022). Although noninvasive recordings of scalp electroencephalogram
(EEG) (Grootswagers et al., 2022), fMRI and magnetoencephalography
(MEG) (Hebart et al., 2023), can record large scale neural populations
and long-term visual stimulation, the limited spatial and/or temporal
resolution and signal-to-noise ratio pose new challenges for analysis,
particularly for dynamic scenes beyond static images (Allen et al., 2022).
Our proposed wavelet-informed deep learning approach may provide
new insights into these challenges. Further extension of our model needs
to address the application ability of temporal resolutions of different
types of signals to be suitable for various types of neural signals.

4. Methods
4.1. The wavelet-informed spike augmentation (WISA) module

The entire decoding network consists of two major modules, WISA
for processing spikes and CNN for decoding images.

In the WISA module, we first use the discrete wavelet transform
(DWT) in the time domain to decompose the spike stream signals into
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multiple high-frequency components and one low-frequency compo-
nent. Secondly, we construct a compact, small yet efficient module, the
Temporal CNN (TCNN), which processes the signal and outputs a new
signal through a learning process. Finally, we restore a new signal S’
with the same size as H X W x T through inverse discrete wavelet trans-
form (IDWT), generating a new representation of the spikes.

4.1.1. Application of DWT on spiking signals

The DWT performs multi-scale analysis on the original signal
through scaling and translation operations. In the process of wavelet
decomposition, using low-pass filters (D;) and high-pass filters (Dy)
allows us to capture different frequency components of the original sig-
nal and locate their specific positions in the time domain. Typically,
one-dimensional DWT includes a set of decomposition filters (D; and
Dy;) and reconstruction filters (R; and Ry) to complete the signal’s
decomposition and reconstruction.

When processing spike stream signals, the record of spike counts over
a certain period is denoted as S. The wavelet decomposition process
first uses Dy and D; to convolve and downsample S, obtaining high-
frequency wavelet coefficients Sy, and low-frequency wavelet coeffi-
cients S; ;. The reconstruction process then involves the inverse opera-
tion on Sy, and .S}, reconstructing the signal S’ as follows:

Spi=QU(Dy *S),
S =Q D(Dy *S),
S"=R;, *(21)S;,; + Ry * 2 NSy,.

Here, (2 ]) and (2 1) represent downsampling and upsampling opera-
tions, respectively, and * denotes convolution. Through these steps, we
obtain the low-frequency wavelet coefficient matrix F;, and the high-
frequency wavelet coefficient matrix Fy;, as the results of the first layer
of wavelet transform. In multi-level wavelet transformations, the low-
frequency wavelet coefficients .S;, are further decomposed using Dy
and D; . After five levels of decomposition, the resulting wavelet coeffi-
cient set F = Fy, Fyy, Fy3, Fya, Fys, Fr 5 includes five high-frequency
wavelet coefficients and one low-frequency wavelet coefficient.

4.1.2. The TCNN module

After decomposing spike stream signals along the time axis using
DWT, we obtain the original signal’s low-frequency and high-frequency
wavelet coefficients. Our goal is to learn and extract low-frequency and
high-frequency features of the signal from these wavelet coefficients.
Utilizing the wavelet coefficient matrix F obtained from filter decompo-
sition, we process F with a CNN-based feature extraction module, named
the Temporal CNN (TCNN) module.

This CNN-based feature extraction module includes several convo-
lutional layers with skip connections and activation layers. Each coef-
ficient F; (where F; is a wavelet coefficient in matrix F) is input into
two consecutive temporal CNN layers, with a ReLU layer in between, to
obtain residual features. Adding the original F; generates an interme-
diate output Fimid, which is then input into a temporal CNN layer with
ReL.U, ultimately producing output F;. In this module, all CNN layers are
one-dimensional convolutional layers, mainly processing the temporal
channel T in F;. The computational process is as follows:

Fimld =ReLU (F: * I/Vconvl) * Weonva + Fis
F! = ReLU (F™4 &« W, 103),

where, * denotes the convolution operation, and W_,,y1, Weonve, and
Weonvs are the weight matrices of the three convolutional layers.

4.1.3. Generating new spiking signals by IDWT

After the TCNN processing, we obtain a new set of wavelet coeffi-
cients F' = Fy 1, Fyor, Fyy, Fyu, Fr s, and generate a new spike signal
S’ of the same size as S using IDWT.

In the WISA module, the spike signal .S undergoes wavelet trans-
formation and feature learning and extraction via the TCNN module,
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followed by reconstruction into .S’ using IDWT. This process can be ex-
pressed as S’ = fyga(S). Since .S and S’ are of the same size, for the
network architecture of the downstream task, we only need to intro-
duce the WISA module at the network’s head. We refer to this down-
stream network as ‘task’, and its prediction is denoted as Y,y The en-
tire computational process can be described as: Yiug = fiask (fwisa (5)).-
The outcome of this new representation of spikes is a new temporal se-
quence of spiking signals, which can be used for different downstream
tasks.

4.2. The CNN decoding network

After processing spikes with the WISA module, a decoding network
model was used to align spikes with images. We aim to evaluate the
augmented spikes to validate the effectiveness of WISA in image re-
construction, so we used our previously developed decoding network
model based on the CNN architecture (Yu et al., 2024; Zhang et al.,
2020, 2022). Briefly, the CNN model is divided into two stages. The
first stage consists of a three-layer fully connected network. The first
layer receives the spike signals processed by the wavelet transform as
input, with the number of units corresponding to the number of neurons
in the spike signals. The second layer is a hidden layer containing 512
neurons, using the ReLU activation function and including a dropout
layer to prevent overfitting. The output layer has a number of neurons
equal to the number of pixels in the target image. Considering the tar-
get image size of 90x90 pixels, the output layer has 8100 neurons, using
the sigmoid activation function. In this way, we obtain an intermediate
image.

At the second stage, the CNN first uses convolution operations and
downsampling to process and reduce the size of the intermediate im-
age. This includes four convolutional layers with kernel sizes of (64,7),
(128,5), (256,3), and (256,3), padding of 0, and a stride of (1,1), aim-
ing to denoise the intermediate image while preserving important parts.
Then, deconvolution and upsampling are used to restore the image size
and texture. This stage includes four convolutional layers with ker-
nel sizes of (256,3), (128,3), (64,5), and (1,7), padding and stride of
0 and (1,1) respectively, and the output is a grayscale image of size
H X W x C. The second stage uses the ReLU activation function, and
a dropout layer is included after each convolutional layer to prevent
overfitting.

4.3. End-to-end training of the WISA-CNN model

The entire decoding network needs to be trained by an end-to-end
fashion, with the spike trains at the input end and the visual images
at the other end. The model was implemented using PyTorch. During
training, we used the Adam optimizer and set the initial learning rate
to 0.0001. We trained all networks for 600 epochs and adjusted the
learning rate to 0.0002 after reaching 400 epochs. The models were
trained on an NVIDIA-A100 (40GB) GPU with a batch size set to 16.

The Mean Squared Error (MSE) was used as the loss function that
measures the pixel-level difference between the reconstructed image
and the ground-truth image, making it suitable for error quantification
in image restoration. By minimizing this MSE loss, the network learns
to adjust its parameters to generate a reconstructed image that more
closely resembles the actual image, thereby reducing reconstruction er-
ror at the pixel level.

4.4. Experimental data

The spiking signals, along with the corresponding video stimulus
datasets, are taken from the previous studies (Onken et al., 2016), and
detailed experimental methods and data collection processes can be
found (Liu et al., 2017; Onken et al., 2016). Briefly, the decoder was
applied to reconstruct dynamic videos from spikes recorded simultane-
ously by a population of retinal ganglion cells (RGCs) in an isolated sala-
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mander retina. The retina was placed on a multielectrode array within
a recording chamber. Visual stimuli were presented on an OLED display
and projected onto the photoreceptor layer through a lens positioned
above the retina. The dataset has two videos with various scenes of sala-
manders and tigers, consisting of 1800 and 1600 frames, respectively,
representing different levels of scene complexity (Zheng et al., 2021).
The images are 90x90 pixels, and the responses are from 90 retinal gan-
glion cells. The entire dataset was randomly split into 90 % as training
set and 10 % test set.

4.5. Image reconstruction evaluation metrics

We employed two popular metrics to compare the similarity between
the reconstructed images and the original stimulus images.

1) Peak Signal-to-Noise Ratio (PSNR) is a metric for assessing image
quality, comparing the error between the original image and the pro-
cessed image to the maximum possible error. The formula is as follows:

2
MAX}

PSNR =10 - loglo m )

where MAX; is the maximum pixel value of the image (usually 255),
and MSE is the mean squared error. PSNR is measured in decibels (dB),
with higher values indicating better image quality.

2) Structural Similarity Index Metric (SSIM) (Wang et al., 2004) is
a comprehensive image quality assessment metric that considers lumi-
nance, contrast, and structural errors. It is calculated for multiple win-
dows of an image and is based on luminance (/), contrast (C), and struc-
ture (S). The SSIM index ranges from O to 1, with values closer to 1
indicating greater similarity between the reconstructed image and the
original stimulus image. The formula is as follows:

SSIM(x,y) = [I(x, V)] - [e(x, 1)I? - [s(x, Y’

The values of «, f, and y are usually set to 1. Then

2y pyter
- Y
I(x,y) = ==
Hytuytey
20,0,+c)
b
c(x = =
( ’y) o'§+o'§+cz ’
o'xy+03
s(x,y) = ———
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where p, is the average of x, u, is the average of y, o, is the variance
of x, o, is the variance of y, ¢; = (kll)2 and ¢, = (kzl)2 are constants,
¢3 = ¢y /2. 1 is the dynamic range of the pixel values (from 0 to 255),
k;=0.01, and k, =0.03.
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