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Abstract

We develop a model where firms determine the price at which they sell
their differentiable goods, the volume that they produce, and the inputs
(types and amounts) that they purchase from other firms. A steady-state
production network emerges endogenously without resorting to assump-
tions such as equilibrium or perfect knowledge about production technolo-
gies. Through a simple version of reinforcement learning, firms with het-
erogeneous technologies cope with uncertainty and maximize profits. Due
to this learning process, firms can adapt to shocks such as demand shifts,
suppliers/clients closure, productivity changes, and production technology
modifications; effectively reshaping the production network. To demon-
strate the potential of this model, we analyze the upstream and down-
stream impact of demand and productivity shocks.
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1 Introduction

Recent events such as Brexit, the COVID-19 pandemic, and the Russia-Ukraine
war have shown the importance of production networks to the broadest and
most general population, as these disruptive events percolated through differ-
ent industries and geographies, impacting a heterogeneous set of economic ac-
tors. While researchers in supply chains, operations research, input-output (I0)
models, and industrial organization have studied production networks for a long
time, quantitative models about the formation and reorientation of production



networks are significantly less than qualitative analyses. Economists and IO re-
searchers typically assume production networks as fixed exogenous structures,
and focus on solving models for a price vector in equilibrium. This approach
severely restricts the ability to model realistic responses to shocks, for example,
in terms of network reorientation or the duration of transients. Recent economic
models on the endogenous formation of production networks also require strong
assumptions such as rational equilibrium and perfect knowledge about network
topology and technologies, which have similar implications on how realism such
models can reproduce. Needless to say, such assumptions are poorly supported
by empirical evidence from the supply-chain literature in terms of how ‘far ahead
in the network’ firms can see and how rational they are in this context (Choi and
Krause|2006). Hence, developing models of the endogenous formation of pro-
duction networks under uncertainty and with behaviorally plausible foundations
remains an area that needs further work.

In this paper, we develop a agent-based model where firms do not know the
production functions of the economy nor the productive structure of the econ-
omy. Importantly, uncertainty about production functions extends to the firm’s
own technology, meaning that an industry does not possess knowledge about
the functional form of its own production function other than the information
it could gather by trying out different input combinations. Not needing to as-
sume knowledge about production functions means that, instead of requiring
top-down optimization, firms can aim to maximize profits through reinforce-
ment learning by adjusting prices and output volume in a procedural fashion
as they experience success and failures in sales outcomes. Using reinforcement
learning enables agent to act in uncertain environment, without exploration or
mapping, but using immediate reward or penalty received from the environment
(Ale Ebrahim Dehkordi et al.|2023]). This specification leads to steady-state dy-
namics where stable buyer-seller relationships emerge between firms. Moreover,
because firms do not need to know specific production functions, the model can
accommodate different types of technologies, allowing for a broader set of poten-
tial outcomes and experiments that are relevant to understand the implications
of technological change.

The rest of the paper is structured in the following way. First, we discuss the
different strands of literature that have developed production network models.
Second, we present the model. Third, we analyze the model’s behavior through
a few theoretical examples with a small hypothetical economy. Fourth, we
illustrate the potential use of the model in the context of the propagation of
demand and productivity shocks using a larger hypothetical economy. Finally,
we provide a discussion and conclusion.

2 Literature review

Recent quantitative literature on production networks focuses heavily on dy-
namics taking place on exogenous production networks. Some notable exam-
ples study topics such as the propagation of idiosyncratic shocks (Acemoglu



let al][2012), the amplification of shocks (Contreras and Fagiolo|2014)), offshoring
and re-shoring choices , cascading dynamics of firms’ shutdowns
(Taschereau-Dumouchel 2020), propagation of supply and demand shocks dur-
ing COVID (Pichler et al|2021}; Pichler and Farmer|2022), the impact of labor
productivity shocks (Bagaee|2018), excess volatility from slow convergence speed
to equilibrium (Dessertaine et al|2022), the amplification of economic growth
(McNerney et al.|[2022), and global supply chains (Grazzini and Speltal|{2022))
(see (Carvalho2014) for a comprehensive survey)El These and other examples
provide insights on the potential economic dynamics that could happen on a
production network that is considered exogenous.

A different and more recent strand of literature focuses on models that ex-
plain the endogenous formation of production networks (the existence or not of
a link) from economic principles, i.e., from firms choices. In some cases, these
models analyze the formation and destruction of links (inputs choice), while
in others, they place more emphasis on the weights of such input-output re-
lations. While there have been models looking at the endogenous formation
of production networks from a purely mechanistic point of view (Atalay et al.
[2011}; |Chaney|[2014; Ko6nig) 2016} |Arata and Mundt|[2019; McNerney et al.|[2022)),
the most relevant studies are those that try to go beyond the use of stochas-
tic processes by providing economic microfoundations to the network formation
mechanisms. Overall, we can split this literature into rational-equilibrium mod-
els and procedural models. The former class is prevalent in economics, while the
latter has been prominent in operations research for supply chain management.

An early example of a rational-equilibrium model is|Carvalho and Voigtlander|
(2014), who specifies the process through which firms choose certain inputs,
placing special emphasis on the mechanism that leads production networks to
make certain inputs predominant. Subsequent models consider firms choosing
a single intermediate good to form production networks that increase produc-
tivity and place them in more central positions (Oberfield|2018); firms forming
domestic and foreign customer-supplier relationships to replicate empirical reg-
ularities in US IO tables ; industries choosing suppliers and purchas-
ing volumes to reproduce stylized facts such as density and degree distribution
(Acemoglu and Azar| |2020)); firms selecting intermediate suppliers to analyze

non-linear monetary transmission (Ghassibe|[2020); firms in two sectors forming

upstream and downstream links to explain stylized facts in the Turkish economy
; firms filtering out suppliers to mitigate the uncertainty caused by
high volatility (Kopytov et al|2021)); firms choosing suppliers according to the
costs implied by spatial distance; and network formation processes shaped by
the presence of fixed costs when forming links (Dhyne et al.|[2023). To make
these models solvable, the authors focus on equilibrium outcomes and rely heav-
ily on the assumption of specific production functions and the common knowl-

edge (by the agents/firms/industries) about their functional forms.
(2022)) criticizes this approach, arguing that real-world economies operate

ITaschereau-Dumouchel (2020) proposes a model where the production network is exoge-
nous, and firms can choose to produce or not; activating and deactivating the presupposed
links endogenously.




out-of-equilibrium.

Studies using procedural models adopt an algorithmic view by making the
dynamics of the network-formation process more explicit—without necessarily fo-
cusing on equilibrium outcomes. This literature has flourished among operations
research scholars, and very few studies of this type have crossed over to the eco-
nomics literature. An early model of this type by [Schieritz and Grobler| (2003)
combines system dynamics with agent-based modeling to emerge downstream
supply structures from income-optimization choices. |Paolucci et al.| (2008]) dis-
cuss the empirical viability of such approach for the management of supply
chains. One of the first procedural models to cross-over to the economics lit-
erature is provided by |Gualdi and Mandel| (2016), who start with a rational-
equilibrium model, and add a procedural component where firms can take op-
portunities to change suppliers in a setting with constant entry and exit of firms.
Their aim is to demonstrate that out-of-equilibrium dynamics can give place to
scale-free production networks while preserving several well-known stylized facts
about firm dynamics (e,g, firm size and growth-rate distributions). This model
has been extended to study the role of technological change in the evolution
of production networks (Gualdi and Mandel||2019)), and the transient dynamics
introduced by lock-downs during the Covid-19 pandemic in India (Mandel and
Veetil|2024). [Lengnick| (2013)) developed a baseline agent-based model that does
not depend on the assumption of rationality and can reproduce many stylized
facts of business cycle, contrasting against common dynamic stochastic gen-
eral equilibrium approach. Note that procedural models still assume that firms
have substantial knowledge about the nature of production technologies, as their
strategic choices result from a rational optimization process. We take a different
approach through learning.

Having a small number of procedural models in the literature suggests an
important knowledge gap in understanding how real-world firms—with limited
information and bounded rationality—give place to production networks through
their choices of suppliers, clients, volumes, and prices, while remaining prof-
itable. Our model departs from existing approaches in significant ways, and pro-
vides a previously unexplored avenue to investigate important questions about
the formation and reorientation of production networks. Next, we introduce
such model.

3 Model

Our aim is to focus on the production network problem, not on the dynam-
ics of the entire economy. Hence, for simplicity, we do not model households
and labor, but assume exogenous aggregate demands for each good. Follow-
ing the naming convention introduced by |[Acemoglu and Azar| (2020), we use
the terms ‘firm’ and ‘industry’ interchangeably in the remainder of the pa-
per. The logic behind the model is rather simple. Firms choose output vol-
umes and prices to try to maximize profits in a dynamical setting; leading
them to select and purchase inputs from potential suppliers. Firms do not



know the details of their production technologies, so they learn from experi-
ence through trial and error. When learning is consistent (we explain con-
sistent learning in , the model reaches a steady state where
inter-firm transactions are stable and a production network emerges. The
model was implemented in Python with Numpy vectorization and available at
https://github.com/vmtuong/endogenous-production-network

3.1 Setup

There are N industries in the economy, each one producing a differentiated
good that is consumed by other firms as well as an end consumer market. The
consumer market of industry ¢ has an aggregate demand

QHP) = fi(Py), (1)

where price P; is set by industry .

Firms sell their products to their respective final consumption markets as
well as to other firms that use them as inputs. To generate output, an industry
uses a certain production technology described by

Qi = gi(ai), (2)

where q; is a vector of inputs coming from other industries (including 7).

Firms do not know the specific form of their own production function (and
neither of the other firms); all they see is their own inputs and output. Hence,
firms try to learn how technology works. Learning happens through the expe-
rience of setting prices and output targets, making choices about the amount
to be purchased for each input, and receiving responses in terms of profits. Ef-
fectively, this is a procedural optimization process. Next, we explain how the
profit-seeking mechanism works.

Let us begin with industry ¢ at time ¢, with inputs q;, price p;:, and
output quantity ();+. Once all firms have produced their outputs, they engage
in purchasing interactions. Firms interact with each other in random order.
During an interaction, firm ¢ buys quantity

¢i—j = min(q} ,, Q7 ;) (3)

from industry j. Here, qz’t is the j'" element of q;,, and Qj; 1s the residual
product of industry j (it is residual because it may have already sold to other
firms) before transacting with 4. Let us assume that firms always have liquidity,
so they can access funds to pay for all the purchased inputs, and profits will be
reported after sales.
Once all firms have made their purchases, they sell the remaining production
i (if any) to the consumption market. Consumers buy at most the quantity
dictated by the aggregate demand at the given price set by the industry. Thus,


https://github.com/vmtuong/endogenous-production-network

it is possible that a firm is unable to sell all its residual product by the end of
period t [

After completing the sale and purchase process, the amount of goods sold
by industry i is Q7 ;, which may be different from the produced quantity Q.
Hence, the firm profits are

N
;. = Pi,tQZt - Z Pjytqg,t‘ (4)

Jj=1

The profits provide information to the industry about its performance after
choosing a price, a quantity, and adjusting its inputs according to their marginal
product and prices. Firms use this information to gradually make adjustments
that aim to increase profits. Note, however, that even if an industry plans to
produce a certain quantity @); ¢, this may not be feasible due to shortages from
its suppliers due to miscoordination. While miscoordination introduces noise
in the learning process (like in the real world), firms manage to learn and set
prices and quantities that are consistent with their aggregate demands, driving
the economy into a steady state with an endogenous production network.

A key assumption in our model is that firms do not close if they reach
negative profits during the learning phase (or in a transient resulting from a
shock). While this assumption is not realistic at the level of firms, it holds for
industries in the short and medium term, it is consistent with other models in
the literature, and it allows for a simpler specification. Hence, for this paper,
we maintain this assumption. Next, we elaborate on the learning component of
the model.

3.2 Learning

Firms adjust their price through a learning process that is known as PID con-
troller (Carrella)|2014) in the engineering literature, and as directed learning in
the behavioral literature (Dhami|[2016|). The principle of this learning model
is rather simple: firms keep increasing (decreasing) prices if such action raised
their profits in the previous period. They choose the opposite action if profits
fell. Formally, the price in period t + 1 is determined by

Pi,t = Imax {,up, Piﬂg_l + Sign(AH,t—lAHi,t—l) X 5275} s (5)

where the sign function is 1 if AP;;_1AIl; ;1 > 0 and -1 if this argument is
negativel’| uP prevents prices from becoming zero, and 61;77 1 is the size of the
adaptation, which is endogenously determined by

5. — |Pil?t—1(Qi,t*1) — P 1| ©
,t T d ’
’ Pi,tfl(Qiﬂf—l)

2For simplicity, and for the time being, let us assume all goods are perishable.
3If AP; ;1 AIl; ;1 = 0, then the firm explores the two actions by randomly choosing one
direction with equal probability.




meaning that the magnitude of the adaptation correlates to the proportional dif-
ference between the demand’s price and the price set by the firm. It is assumed
that industry 7 is capable of obtaining information about the price that the con-
sumer market would pay for @; ;—1, hence the term Pf’ltfl (Qit—1) in
Finally, note that prices are explicit control variables, not numeraries.

The specification of the learning component is quite parsimonious. First, it
avoids potential issues related to defining a large action space since there are
only two choices: more or less. Second, the adaptation step is endogenous, so
there is no need to calibrate learning parameters in this component. Third,
the link between action and reward (profit) is direct, so the firm’s incentives
are explicit while their actions are coherent, which aligns with basic economic
intuition about a firm’s incentives.

Next, to determine its total output volume, firm ¢ needs to make decisions
on purchasing specific amounts of each input j. This decision is slightly more
complex than the pricing one as it depends not only on the profit history, but
also on the new price of each input, as well as on its marginal product. Never-
theless, it is possible to separate the quantity-adjustment process into individual
problems for each input and to use an extended version of the directed-learning
model. First, let us focus on purchasing input j, which corresponds to the jth
entry of q%*. This purchasing decision is determined by

; 1 AQ;—
qg,t = max O7qi7j,t—1 =+ Sign(AQi,t_lAHiﬂg_l) X 5g,t X Pf X % , (7)
Jt qu’,t—l

d
q - q |Qi,t—1(Pi,t—1)*Qi,t—1|
where §;, is endogenous as §; , = TPy

nitude of the adaptation correlates to the proportional difference between the
demand’s quantity and the quantity set by the firm.

Note that q*¢ is a ‘purchasing plan’, not the actual amount of inputs that the
firm acquires. Since firms adjust prices and volumes, it is possible for an industry
to experience supply shortages. Nevertheless, as we will show in section [4] the
model reaches a steady state with moderate fluctuations and a stable endogenous
production network. This is an important element of the model as questions
related to supply chain shocks often involve the sudden shortage of goods, which
can lead to amplifying dynamics such as the bullwhip effect.

A key difference in the adaptation of input choices with respect to pricing
is that they must consider their potential substitutability. However, how can
a firm determine rates of substitutability if it does not know the functional
form of its production function? To solve this problem, we assume that firms
can experiment with their technology to calculate marginal changes at specific
levels of production. The intuition is that, while an industry may not have
perfect information about its production technology, it can experiment with it
to learn about its response to potential input changes.

Formally, let firm i perform a production experiment consisting of increasing
one unit of input j and measuring the change in ¢’s output volume. The marginal

, meaning that the mag-



product is captured by Ag‘ =1 in [Equation 7| The intuition is that inputs that

i,t—1
generate larger changes will receive higher priority in a purchasing plan. Finally,

the firm also considers the price of input j, and uses this information through

when adapting. Thus, when choosing between two potential substitutes Wlth
similar characteristics, an industry will tend to prioritize buying the cheaper
one.

Together, [Equation 6] and [Equation 7] constitute the learning module of the
model. Since firms do not need to know any functional form of the production
function to compute optimal volumes and prices, the model allows for various
types of production technologies. This is an important advantage over most
existing frameworks as it allows modifying production functions ‘on the go’ to
study the impact of technological changes.

3.3 Dynamics

The model iterates through time, allowing industries to transact, sell to the
consumer market, and adjust prices and quantities. We study the economy when
learning yields a state that is consistent with the markets’ aggregate demands.
That is, we say that a firm’s learning is consistent if its price and quantity lie
in a neighborhood of the aggregate final market demand.

As we show in [subsubsection 4.1.1] for a given parameterization that yields
consistent learning, the outcomes are robust across independent realizationsﬁ
The interaction protocol of the firms is summarized in

4From various numerical analyses, we find that the only situations in which consistent
learning is not achieved is when the production functions yield extreme values in output
changes, as these introduce large amounts of noise that hinder consistent learning.



Algorithm 1: Interaction protocol pseudocode

1 foreach period t do
2 foreach firm i do
L Produce Q; ¢;
foreach firm i do
foreach firm j do
L Firm 4 buys ¢;—;, from firm j;
foreach firm i do
8 L Firm ¢ sells the remaining quantity Q7" to the final market ;
9 foreach firm i do
10 L Firm ¢ calculates profit II; +;
11 foreach firm i do
12 Firm ¢ adjusts price P;; ;
13 Firm ¢ adjusts purchase plan qg,t;

4 Analysis

Let us begin the analysis of the model by using a three-industry example. As we
move to study shocks in section [5] we increase the number of industries to five.
Later, in section@ we investigate a larger system in the context of propagation.

4.1 Numerical example with linear technology

We specify a production structure where every firm has a linear technology.
While the nature of these technologies is the same for the three industries, their
parameters are heterogeneous. More specifically, we define the system

Q1 =2q11+5q12+5¢13
Q2 =q21+5¢2+q3 (8)
Q3 = 4q31 + +44q3,3

According to industry 1 is most productive with inputs from
industries 2 and 3, and less with its own goods. Industry 2 is the opposite case
from 1, as it is most productive when using its own goods. Firm 3 does not
need to use input 2 at all, while it is equally productive using goods from 1 and
3. Note that, overall, industry 1 is the most productive, followed by 3 and then
2. The difference in marginal product between 3 and 2 is only one unit.

The implied productive structure is depicted in where an arrow
X — Y indicates that X buys from Y. Note that firm 3 does not use inputs from



industry 2. In this example, firm 3 does not know this, so it will learn that pur-
chasing input 2 does not generate a response in terms of profits. In general, this
zero-knowledge setting allows firms to eventually learn consistently. However,
as the number of industries grow or as production technologies become more
coupled (i.e., with more interaction between inputs), learning which inputs are
not productive becomes more difficult. To ameliorate this difficulty, it is possi-
ble to introduce a ‘minimal-knowledge assumption’ in which firms are unaware
of the functional form of the production technology, but they know which in-
puts are not used; a reasonable assumption according to how real-world firms
operate. First, we show the example with the zero-knowledge setting and, then,
for simplicity, we work with the minimal-knowledge assumption.

Figure 1: Implied productive structure with linear technologies

Notes: The arrows indicate potential purchasing relationships. For example 3 — 1 means
industry 3 could buy inputs from industry 1. The circular edges without arrow mean self-
loops.

The aggregate demands of the final markets to which each industry sells its
residual product (after supplying the other industries) is

Q¢ =8000 — 2p;
Q% =8000 — 0.8p; . (9)
Q4 =15000 — 1.5p3

Firms do not know the functional form of these demands. Thus, as we
have previously explained, consistent learning means that each firm needs to
find a residual output and a price that live on its corresponding demand curve.
[Figure 2]shows an illustrative run of the model, starting at zero-level production.
The plot shows the demand function that each firm faces, as well as the firms’
trajectories in the price-quantity space (recall that the quantity in this plot
corresponds to residual output volume). The three trajectories show that all
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firms are able to learn consistently, as their prices and quantities end up living
on the demand curvesP]

Figure 2: Consistent learning under linear technologies
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Notes: Diamond markers denote the final price and residual quantity of each firm.

Next, let us examine the temporal evolution of the price, output volume,
and profit of each industry in This chart shows that, after enough
iterations, the three variables reach stable levels. We show ahead that stability
and consistency are insensitive to initial conditions and model stochasticity,
providing evidence of robustness.

There are a few interesting highlights in |Figure 3| First, firm 1, which
has the most productive technology, is not the one making the highest profits.
The most profitable firm is 3, which faces the the largest aggregate demand.
Second, firms 2 and 3 converge to a similar price level, but differ in output
volumes, which translates into a substantial difference in profits. Third, in all
three firms, learning price dynamics seem punctuated or step-wise, while output
volumes evolve smoothly.

Figure 3: Dynamics under linear technologies

(a) Price dynamics (b) Output dynamics (c) Profit dynamics
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Finally, let us analyze the inter-firm dynamics that give place to the pro-
duction network endogenously. More specifically, we track the endogenous flows

5The diamond markers in correspond to the final price and residual quantity of
each firm. While difficult to appreciate in this chart, these points stay in a tight neighborhood,
suggesting that the economy reached a steady state. This is more clearly shown in in
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between industries during the learning process. To measure such flows, we fo-
cus on three types of transactions: (1) the volume that a firm purchases from
each industry (including itself), (2) the total cost of such purchases (per input),
and (3) the sales that an industry makes to each other. We analyze each of
these measures in terms of their composition, meaning that, for each simula-
tion period, we compute them as fractions of their industry-specific total. For
example, for sales made by industry 1, we calculate the fraction that goes to
each of the other firms (including itself). presents the emergence of
the production network through the evolution of these endogenous flows. These
ternary plots capture the distribution of a given variable in terms of the shares
coming from each supplier at a point in time. For example, a dot in the top
corner of would mean that a the corresponding firm purchases 100%
of its inputs from industry 2. In contrast, a dot in the middle of the triangle
would imply that this firm gets one third of its inputs from each industryﬂ

Figure 4: Endogenous inter-industry flows under linear technologies

(a) Purchased volume (b) Costs (c) Sales
0.0 0.0 0.0
10 @ industry 1 10 @ industry 1 » 10 @ industry 1
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Notes: Larger and more opaque markers indicate more recent periods.

The first thing to notice is that, according to [Figure 4a] and [Figure 4b] firm
3 does not purchase inputs from firm 2. From the perspective of sales,
shows that, indeed, industry 2 makes no sales to firm 3. Hence, without any
knowledge about the production technology, industry 3 makes purchasing deci-
sions that are consistent with the implied productive structure of the economy.
The rest of the flows between industries show heterogeneous learning trajecto-
ries. Some of these trajectories explore a bigger space (e.g., those from industry
2), while others move more directly to their steady-state values. Overall, this
depiction of the endogenous formation of a production network shows that sim-
ple learning mechanisms and zero knowledge about the productive structure of
the economy are sufficient to generate production networks endogenously from
basic economic principles.

6To read these plots, one can follow the trace of the three straight lines that are closest to
the relevant dot. Each of these lines leads to the axis that indicates the share coming from the
industry corresponding to the axis. The trace belonging to an axis matches the inclination of
the axis ticks.
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4.1.1 Robustness

The previous example shows the dynamics of the model for a single illustrative
model run. Next, we would like to show that those dynamics are robust across
independent simulations with the same parameterization and under randomized
initial conditions. We show a set of 1000 of independent simulations in the top
panels of Each of these simulations has the same initial conditions, so
the only difference between them is the random seed. We can see that, overall,
the model displays low variation in terms of the realized steady states. Hence,
one could argue that the dynamics of the model are robust under this setup.

Figure 5: Robust dynamics under different regimes of initial conditions (ICs)

(a) Price under same ICs (b) Output under same ICs
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(f) Profit under random ICs
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Notes: The top panels correspond to 1000 independent simulations with the same initial
conditions. The bottom panels show 1000 independent simulations with random initial con-
ditions. ICs stands for initial conditions.

The bottom panels of show a set of independent runs when one
randomizes the initial conditions of the model. In this case, we can see that
there is more variation in the realized steady states. However, numerical ver-
ification indicates that the distribution of the outcome variables is unimodal.
Furthermore, a two-sample t-test for difference in means cannot reject the null
hypothesis comparing the data of the top panels against that of the bottom
panels. Similar robustness is observed when looking at inter-industry flows.

4.2 Numerical example with heterogeneous technologies

In economics, the canonical examples of production technologies are of three
types: (1) linear, (2) Cobb-Douglas, and (3) Leontief. Each of these types con-
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veys a different nature on how inputs interact in a production process. While in-
puts are fully substitutable in a linear technology, they are impossible to substi-
tute in a Leontief (perfect complements). The Cobb-Douglas sits between these
cases, conveying imperfect substitutability /complementarity. While there are
several other types of production functions (Mishra |2010), the three canonical
forms are often integrated into the more general constant-elasticity-substitution
(CES) technology, which takes the form

Pi

Pi

N
Qi=Ai |> aials| (10)
j=1

where A; is the total factor productivity coefficient, parameters a; ; add up to
one, ¢; denotes the returns to scale (¢, = 1 corresponds to constant returns),
and p; is the substitution parameter. It is well known that p; — 1 leads to a
linear function; p; — 0 to a Cobb-Douglas one; and p; — —oo to a Leontief.
Thus, to specify heterogeneous technologies in the model, we choose values for
the substitution parameters that approximate the three canonical cases. Note,
however, that the model could accommodate other non-canonical technology
specifications as firms need zero or minimal knowledge about the functional
forms to maximize profits.

For the purpose of illustrating the workings of the model, we use the CES
specification as the baseline to introduce technological heterogeneity. More
specifically, we parameterize constant-returns-to-scale technologies for the three
as follows

A1 = 10, a1,1 = 012, a1,2 = 0447 a1,3 = 0447 pP1 = —10, Y1 = 1.00
AQ = 107 a1 = 0147 az2 = 0727 az3 = 014, P2 = 00017 Yo = 1007
A3 = 107 as 1 = 050, a3 3 = 0507 p3 = 100, Y3 = 1.00
(11)

so firm 1 tends to use inputs as strong complements, firm 2 as imperfect sub-
stitutes, and firm 3 as perfect substitutes. In this specification, we preserve
the implied productive structure from the example with linear technologies, i.e.,
firm 3 does not require inputs from firm 2.

presents the dynamics of the model. Notice that, with heteroge-
neous technologies, the three industries achieve consistent learning, as
shows how they set their price and residual quantity on their corresponding de-
mand curves. Price, volume, and profit variables also stabilize. It is interesting
to see that the ordering of the steady-state outcomes is the same as the case
with linear technologies, which owes to preserving the same demand functions.
As we will see ahead, this is not the case when considering other types of firm
heterogeneity such as returns to scale.

Next, we present the inter-industry flows in under heterogeneous
technologies. In this case, the trajectories differ from the case with linear tech-
nologies. The steady-state inter-industry flows differ as well, suggesting that
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Figure 6: Dynamics under heterogeneous technologies
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the endogenous production network that emerges is different from the one with
linear technologies. This difference may have further implications in terms of
adaptability to shocks, something that we will cover ahead.

Figure 7: Endogenous inter-industry flows under heterogeneous technologies
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4.3 Numerical example with heterogeneous returns scale

Now we look at the model under heterogeneous returns to scale. Empirical
evidence on firm dynamics suggest vast heterogeneity in how firms scale their
output as a consequence of using more inputs, i.e., the common assumption of
constant returns to scale is unlikely to hold in the real world. Operating with
non-constant returns to scale and, furthermore, with industries that exhibit
heterogeneity in the nature of their returns, is an analytical challenge. Here,
we show that our model is able to naturally handle different types of returns to
scale.

Recall that parameter ¢; from determines the nature of the
returns. Thus, we continue with the parameter specification presented in[Equa-]
but assigning a different ¢; to each industry. More specifically, we set
constant returns for firm 1 (¢1 = 1), decreasing returns to firm 2 (p2 = 0.9),
and increasing returns to firm 3 (¢3 = 1.5).
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Figure 8: Dynamics under heterogeneous returns to scale
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shows the dynamics emerging from a 3-industry economy where
each firm has a different type of returns to scale. First, in we can
see that firms reach consistent learning as well. However, in the case of firm 3
(increasing returns), learning along the demand curve is achieved through more
exploration. Second, the exploration of firm 3 translates into price volatility
in Third, the punctuated character of the learning process for firm
3 is accentuated under increasing returns. For example, shows a
quick boom and bust in the output volume of firm 3 during the initial learning
phase. Fourth, steady-state profits remain qualitatively consistent with the case
of constant returns to scale, with the difference that firm 3 reaches the steady
state faster.

Next, in we show the endogenous inter-industry flows. First, the
trajectories look qualitatively different from the two previous examples. For
instance, longer distances with opaque markers indicate that exploration and
learning in terms of the production network takes longer. It is interesting to
see that this difference is not evident from the more aggregate plot presented
in It comes to highlight the importance of focusing on more disaggre-
gate dynamics. Second, in we can see that firm 2 revisits previously
explored purchasing proportions, as its trajectory indicates a cycle. Industry
1 (constant returns to scale), in contrast, exhibits sporadic purchasing configu-
rations and a quick settling in a well-defined neighborhood. This also suggests
that parts of the production network settle in their steady-state value quicker
than others, something that may be important to consider when thinking about
adaptation to shocks. Finally, the evolution of profits also exhibit longer tra-
jectories than the previous examples.
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Figure 9: Endogenous inter-industry flows under heterogeneous returns to scale
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5 Shocks and their propagation

So far we have demonstrated how endogenous production networks can be ex-
plained from simple learning behavior under uncertainty. From the previous
examples, it is clear that various aspects about the dynamics unfolding in the
network-formation process are relevant to understand changes and adaptation
to exogenous shocks. We have also argued that the types of shocks that can be
operationalized in our model are more varied than those that are permissible
in a rational-equilibrium framework; for example, modifying a production func-
tion on the run. In this section, we investigate—with examples—different types
of shocks and present their propagation outcomes. More specifically, we imple-
ment shocks to: (1) the aggregate demand, (2) returns to scale, (3) production
technologies; and (4) industry shutdown. To implement these examples, we aug-
ment the size of the economy by adding two more industries. We intentionally
design the implied productive structure to place these firms in a semi-isolated
position in the economy, as it allows for interesting shock scenarios.

A =10, a1 =013, a;5=031, a;5=031, ay4=0.25,

Ay =10, ag; =008, azs=0.38, as3=008, ays=0.46,

A3 =10, as; = 0.50, as,3 = 0.50,

Ay = 10, ags =020, ays=0.80,

As = 10, as4 =0.88, ass5=0.12,
(12)

The baseline technologies are CES production functions with the parameters

specified in In this setting, inputs are perfect substitutes and yield
constant returns to scale. We illustrate the implied productive structure in

As it can be seen in this depiction, industry 4 plays an intermediary
role between the core of the economy and firm 5. However, firm 4 does not

17

p1=1,
p2 =1,
ps =1,
pa =1,
ps =1,

o1 =1
p2 =1
w3 =1,
pg=1
w5 =1



need any inputs from the core firms. Moreover, industry 5 only depends on firm
4 and itself. Finally, in addition to the demands functions already specified in

we add the two new demands Q¢ = 11000—2p3 and Q¢ = 11000—p3

for the new industries.

Figure 10: Implied productive structure in augmented economy

Notes: The arrows indicate purchasing relationships. For example 3 — 1 means industry 3
buys inputs from industry 1. The circular edges without arrow mean self-loops. Nodes 1, 2,
and 3 are core industries while 4 and 5 form the periphery.

5.1 Baseline dynamics

First, let us revise the baseline dynamics of the augmented model when no
shocks take place. shows that the enlarged model preserves consistent
learning and stability. Interestingly, industry 5 exhibits some price volatility,
mainly due to the potential limit-cycle dynamics induced by engaging only with
firm 4 and itself. Overall, the baseline dynamics are robust and consistent with
all the previous examples, providing a benchmark to measure the response of
the production network to exogenous shocks.

Figure 11: Baseline dynamics with five industries
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5.2 Demand shocks

We consider two types of demand shocks: increasing and decreasing its elasticity
by 50%. On the one hand, an example of an increase in elasticity is when more
substitutes are made available to the consumers, for instance, due to lower trade
tariffs or a patent’s expiration that enables more firms to produce the same or
similar product. On the other, an decrease in elasticity can be expected when a
good becomes more essential to consumers, for example, the ubiquity of smart
phones as support tools in everyday life. The shock is implemented by, first,
letting the model reach its baseline dynamics and, then, inducing the change.
Since firms need to adapt their prices and quantities to the new demands, it is
important to verify that learning remains consistent. In other words, industries
should be able to ‘find’ the location of the new demand and establish prices and
quantities in a new neighborhood on the affected demand curves. Once the new
steady state is reached, we measure the difference with respect to the baseline
case.

As a first example, let us demonstrate how firm 4 adapts to demand shocks.
shows the baseline and the two shocked demand curves. Industry 4
is able to adapt and learn consistently under both types of shocks. When the
demand becomes less elastic, the firm takes longer to learn and generates some
price volatility.

In a second example, we change the technology of firm 4 by setting py =
0.001, so its inputs become imperfect substitutes. Notice how, while the firm
learns consistently, the trajectory through which it adapts to a less elastic de-
mand is different from its linear-technology counterpart. shows that,
when the inputs are imperfect substitutes, the industry adjusts output volume
much less aggressively than when they are perfect substitutes. For the shock
that increases elasticity, the new steady state exhibits a higher price and lower
volume in industry 4 than in the first scenario.

Figure 12: Example of two shocks to firm 4 under different technologies

(a) Perfect substitutes (b) Imperfect substitutes
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The previous examples show that, while learning remains consistent in the
presence of demand shocks, factors such as the type of production technology
play an important role in shaping the adaptation path and, hence, how a pro-

19



duction network endogenously reorients itself. Next, let us examine the impact
that the shock to the demand of industry 4 has on the other firms. In[Figure 13|
we present the time series of the main output variables of every industry. The
vertical dotted line indicates the period in which the demand shock is intro-
duced.

The top panels display the responses to an increase in demand elasticity.
As expected, firm 4 is the first to adjust price and quantity. The shock has a
noticeable effect in the profits of industry 4’s clients: firms 2 and 5. Firm 1
also exhibits some response but it is hardly noticeable. Interestingly, industry
3, which is not a client of 4, displays a noticeable increment in profits. Overall,
these indirect impacts seem modest in the scales of the top panels, something
quite different from the outcomes of a reduced demand elasticity.

Figure 13: Example of demand shocks to firm 4
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Notes: Top panels correspond to an increase in demand elasticity through a 50% change in
the slope coefficient. Bottom panels correspond to a reduction in demand elasticity through
a 50% change in the slope coeflicient.

The bottom panels in[Figure 13|show the change in the fundamental variables
after a shock that reduces demand elasticity in the final market of industry 4.
Fist, notice how the adaptation of firm 4 to a reduced demand elasticity is
qualitatively distinct from that displayed in the top panels. Under this shock,
industry 4 increases its price substantially and adjusts its output volume in a
‘boom and bust’ fashion, resulting in a modest net adjustment. Hence, most
of the profit gains from firm 4 come from price increases. In contrast with
the top panels, industry 3 experiences no change in profits, while all the other
firms exhibit some reduction. This illustrates the nuanced adaptation that can
emerge in an endogenous production network setting with consistent learning
and minimal knowledge. Appendix A provides detailed results on all inter-
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industry impacts from both types of demand shocks.

5.3 Changes in returns to scale

In this example, we examine the inter-industry impacts of deviating from the
constant-returns baseline: first towards increasing returns and, then, to de-
creasing returns to scale. A technological shock consists of modifying param-
eter p; = 1 from which prompts constant returns to scale in the
baseline. More specifically, we induce a change to increasing returns through
; = 1.05 and to decreasing returns throughy; = 0.95.

shows the inter-industry impacts of shocks to the returns to scale.
The top panels correspond to a switch to increasing returns while the bottom
panels to a shift to decreasing returns. There are various interesting outcomes
that are worth highlighting in this example. First, focusing on increasing re-
turns, we can see that direct and indirect impacts in terms of the sign of price
changes are heterogeneous (see . For instance, industry 1 reduces
its price by 18%, while all other firms increase it. Indirect price impacts also
depend on which industry is being shocked; and firm 2 stands out as the one
whose technology impacts most industries. In we can see that the
direction in which industries adjust quantities is the opposite to prices. This
highlights how specific firms may choose a different adaptation strategy to the
same type of shock. In the case of output volumes, it is clear that firm 2 is the
most impacted, as it systematically adjusts its quantity in more than 1% when
any of the other industries experiences a switch to increasing returns to scale.
In terms of profits, shows the winners and losers in each experiment,
with industry 1 being the most negatively affected (a loss of 30% in profit) when
firm 3 (its direct but not only client) starts operating under increasing returns.

When an industry switches to decreasing returns, one naturally expects a
drop in profits. This is the case for all industries (see , although the
size of the proportional loss varies significantly (between 5 and 30%). Never-
theless, we can also see that the indirect impacts lead to winners and losers.
For instance, firm 1 loses profits when either industries 2, 3, or 4 operate under
decreasing returns. In contrast, industry 4 makes more profits when firms 1
or 2 switch to decreasing returns. Arguably, this is because, under decreasing
returns, firms 1 and 2 need more inputs from industry 4, increasing the demand
for good 4 and, hence, its price (see price change of industry 4 in [Figure 14d)).
Another interesting outcome is that, when industries switch to decreasing re-
turns, all indirect impacts of more than 1% happen through the price channel,
not through output volumes. These results highlight heterogeneity in outcomes,
responses, and strategies adopted by firms. While they are derived from a par-
ticular hypothetical case, they are insightful with regards to the complexity of
the formation of production networks and their adaptation to shocks.
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Figure 14: Inter-industry impacts from changes in returns to scale
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Notes: The entries in the matrices denote proportional changes in the steady-state outcomes
after the shock. They show changes that are greater than 0.01 (1%) in absolute value. Top
panels correspond to increasing returns. Bottom panels denote the impact from switching to
decreasing returns to scale.

5.4 Technological innovation

A way to conceptualize technological change is by modifying the nature of the
interaction between the inputs of a productive process, i.e., changing the produc-
tion function of an industry. As we have previously argued, specific functional
forms of production technologies are typically assumed in the literature, in part,
to make models solvable. Furthermore, given the high reliance of such model-
ing choices, rational-equilibrium models become fragile to modifications to the
production function, and unable to analyze, for example, the impact of shifts in
the production technology during the dynamics of the model.

In this section, we demonstrate that, through our learning approach, the
model remains robust to ‘swaps’ of production technologies as firms consistently
learn new prices and quantities as they reach new steady states. For the sake of
this example, we only show the case of a technological disruption in industry 4,
and provide all the other cases in Appendix A. The shock consists if swapping the
production function from one where inputs are substitutes to another where they
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are closer to complements. We implement this change by modifying parameter
ps4 from 1 to 4. Of course, this example of a sudden change in the nature
of technology is not realistic in the sense that production technologies evolve
gradually, often through an imitation/emulation process; although there could
be examples in which a technology is suddenly replaced for strategic reasons of
the firm.

shows the dynamics induced by the technological change in in-
dustry 4. Notice that, in terms of profit, industry 4 experiences a sudden drop
but quickly recovers to a slightly lower lever. This drop is due to the fact that
the technological change is exogenous, for example, as it would take place when
a new regulation forces companies to adopt specific machines and practices to
comply with new environmental standards. In addition, notice that the shock
introduces high price volatility in industries 2, 3, and 5. When firm 4’s inputs
become more complementary, it leads to a higher price and output volume; and
to a slight drop in the output of firms 2 and 5. Overall, despite the indirect im-
pacts through an output reduction and higher price volatility , all firms adjust
well in terms of profits.

Figure 15: Example of firm 4 changing its technology from substitutes to com-
plements
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5.5 Industry shutdown

Now we look at the case in which an industry closes down and the endogenous
production networks adapts. First, we demonstrate this shock with the example
of closing down industry 4. Then, we provide the inter-industry impacts of
shutting down each of the firms. As in our previous example, one could argue
that an industry closure would be a gradual process. Nevertheless, and while
a gradual closure would be easy to implement, it is still useful to learn from a
stylized example when firm 4 closes overnight.

The top panels in show the dynamics of the fundamentals when
industry 4 shuts down. In terms of prices, we can see that all industries adjust,
some with a positive and others with a negative direction, and in varying mag-
nitudes. The responses of industries 2 and 5 stand out as they seem to follow
a two-phase process; apparently monotonic for industry 2 and punctuated for
industry 5. In terms of output volumes, as expected, industry 5 is the one that
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experiences the largest change. Industry 2 also exhibits a substantial drop in
quantity, while firms 1 and 3 display a moderate change. Finally, in terms of
profits, we can see that firm 5 drops almost to zero, while firm 2 experiences a
severe transient drop, with an eventual recovery to nearly its pre-shock profits.

Figure 16: Example of firm 4 suddenly shutting down
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Notes: Top panels correspond to industry 4 shutdown. Bottom panels display inter-industry
impacts. The entries in the matrices denote proportional changes in the steady-state outcomes
after the shock. They show changes that are greater than 0.01 (1%) in absolute value.

The bottom panels in show the inter-industry impacts of shutting
down each one at a time. The diagonal elements in these matrices are empty be-
cause they correspond to the closing industry. Overall, we can see that impacts
are heterogeneous across industries and transmission channels. For example,
prices can increase or decrease depending on which industry shuts down and
who are the impacted ones. With exception of industry 3 during the closure of
firm 1, industries usually reduce their output volumes. In terms of profits, an
industry shutdown can translate into gains or losses, again, depending on who
closes and who is impacted.

5.6 Transient shocks

So far, shocks have been implemented as structural changes that remain after
the fact. However, another important phenomenon that tests the resilience of
production networks is a transient shock. This is inherently a dynamical prob-
lem, and one for which procedurally explicit models are well suited. Through the
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following examples, we would like to show how industries adapt to a transient
demand shock and how these adaptations propagate to the other industries.

For this example, we increase demand elasticity temporarily. After 500 pe-
riods, the shocked demand reverts to its original elasticity. shows,
in each row, the time series of the fundamental variables as a single industry’s
demand is being temporarily shocked. The transient shock is active during the
periods that fall between the two dashed vertical lines. Here, we are interested
in seeing differences in responses between variables, direct impacts, indirect
impacts, and ability to re-establish the pre-shock steady state.

Let us begin with the direct impacts on prices. The first column of
shows that all industries whose demand has been shocked drop their prices and
recover once the demand goes back to its original elasticity. The price responses,
however, are heterogeneous in both quantitative and qualitative terms. Quan-
titatively, it is clear that industry 3 is the most reactive, while industry 1 is
the least sensitive one. Qualitatively speaking, some industries quickly reach
a new steady state within the shock period, and then learn another one once
the shock has been removed. Other industries do not learn so fast. This yields
dip-and-recovery trajectories that denote the differences in learning rates. In
terms of indirect price effects, a transient shock to industry 1 introduces price
volatility in industry 3. Interestingly, this volatility does not dissipate after the
shock has been removed. Similar dynamics can be seen in the indirect impact
that demand for industry 5 has on firm 2.

Output volumes exhibit very interesting dynamics as, in contrast to prices,
industries may adapt upwards or downwards. For instance, industries 1, 2,
and 5 drop their quantities during the transient and increase them afterwards,
with the distinction that industry 5 overshoots production after its demand
recovers its original elasticity. Industry 3, in contrast, increases its production
slightly during the transient, then overshoots production after the shock, to
finally reach a new steady state with higher volume than the pre-shock level.
Industry 4, on the other hand, drastically increases production immediately
after the shock, then adjusts downwards, and then repeats the pattern after the
demand elasticity is reestablished. Finally, in terms of indirect impacts, we can
see that the responses of non-shocked industries are modest compared to those
generated through prices. However, in cases like industry 2, it is possible to
observe a slow declining response when shocking the demands of firms 4 and 5.

Overall, industries seem to be resilient in terms of profits in this example. In
most cases, the post-shock profits reach levels similar to the pre-shock ones. One
case that stands out is industry 4 in the bottom right panel of [Figure 17 where
the demand of industry 5 is shocked. In this case, we can see that the indirect
impact of this shock on industry 4 has a permanent effect in terms of lower profits
after recovery. Appendix A provides detailed quantitative information on the
inter-industry impacts generated in this example. What is important to take
from this exercise is that, when production networks emerge in a context with
minimal knowledge and learning, transient shocks can lead to new steady states
with long-term implications. Furthermore, the transmission channels and the
nature of the response of a firm or industry seems highly dependent on factors
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such as the implied productive structure, the nature of technology, the current
steady-state, and the relevant demands.
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Figure 17: Example of responses to transient demand shocks
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6 Investigating upstream and downstream shock
propagation

The analysis and assessment of the downstream versus upstream propagation
of shocks has a long tradition. Downstream propagation refers to how shocks
to a supplier affect its customers, while upstream propagation involves how
shocks to a customer impact its supplier. In economists have approached this
problem through rational-equilibrium models and Leontief-inverse models (e.g.,
Acemoglu et al| (2015)); [Ferrari (2023)) for a comprehensive survey) as well as
procedural ones (e.g., Inoue and Todo| (2019alb)); [Pichler et al. (2021)); Pich-
ler and Farmer| (2022)); [Bugert and Lasch| (2023])). The typical questions in this
topic concern whether shocks are amplified or dissipated in either direction. Ac-
cording to (Acemoglu et al|[2015), in special case of Cobb-Douglas production
function and customer preference, upstream propagation is stronger than down-
stream propagation for demand-side shocks, while downstream propagation is
stronger for the supply side. Empirically, |[Kisat and Phan| (2020) concluded
that the demand shock of India’s 2016 demonetization affects the downstream
customers substantially, while has no meaningful effect on upstream suppliers.
Other studies did not compare upstream versus downstream but focus on a
single type of propagation, and investigate the different firm size or order of
disruptions. [Yoshiyuki and Daisuke| (2022) studies the upstream propagation
caused by demand shocks in different firm size. Boehm et al.| (2019) investigates
downstream negative shock caused by the Tohoku earthquake in Japan in 2011
and show how this shock propagates to customers in unaffected regions. In sum-
mary, there seems to be much more nuance to this problem and no one-fit-all
solution can be applied to all contexts.

To contribute to this discussion, we apply our model to a larger network
where the notion of distances between industries is explicit. The experiments
consists of implementing demand and supply shocks to study their propagation
across firms that are at different distances from the source of the shock. Our
intention is to exemplify the level of nuance that can emerge in the context
of the endogenous formation of production networks under bounded rationality
and limited information.

6.1 Implied productive structure

We specify an economy with 50 industries and a sparse productive structure. By
sparse productive structure we mean that each firm uses a reduced subset inputs.
Hence, the distance between two firms can be measured through the smallest
number of intermediate inputs flowing from one firm to the other (the distance
may vary depending if the flow is upwards of downwards). We specify the
implied productive structure so that it preserves real-world features observed in
supply chains, for example, sparsity and power-law input distribution (Atalay
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et all |2011[)E| [Figure 18al illustrates the implied productive structure. The
width of each arrow represents the magnitude of input share coefficients in the
production function. shows the emerging production network, which
we discuss ahead.

Figure 18: Synthetic network structure

(b) Edges weighted by normalized vol-
ume inflows of the emerged production
network

(a) Edges weighted by input shares of
production function

Notes: The left panel shows the implied productive structure, with each arrow representing
the need for a specific input. The arrow width is proportional to the corresponding parameter
in the production function. The right panel shows the emerging production network. The
edge width is proportional to the normalized value inflow of the corresponding input. The
red edges highlight the largest discrepancies (top 10%) between the endogenous production
network and the implied productive structure.

Fach industry can use its own inputs as well. The diameter of the implied
productive structure is 6 (i.e., the largest minimum amount of inputs between
two industries). In total, there are 249 supplier-client potential relationshipsEl
The average number of inputs used by an industry is 3.98. The firm with most
diversity of potential inputs could be supplied by 15 different firms.

6.2 Production technologies

We use CES production functions for all the firms. Once the set of inputs are
determined for a firm, we draw random parameters a; ; from a log-normal dis-
tribution and normalize them so they add up to one. We set A; = 100 for

"More complex or sophisticated industries require more types of inputs, which turn them
into hubs.

8They are potential relationships because firms may decide not to purchase all their avail-
able input types as they may be substitutable.
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all firms, ¢; = 0.01 to induce imperfect substitutability /complementarity, and
p; = 1 for constant returns to scale. Finally, each industry has a linear demand
function given by Q¢(P;) = a; —b; P;, where b; = 10 and q; is uniformly sampled
from [1000, 15000] and normalized by the number of inputs that the firm uses
(the normalization accelerates consistent learning). Under this parameteriza-
tion, baseline simulations converge to a steady state. illustrates the
evolution of prices, quantities, and profits.

shows the emerging production network in terms of steady-state
value flows between industries. The red arrows highlight the top 10% largest
discrepancies between the production network and the implied productive struc-
ture, suggesting that imputing production-function parameters directly from
observed value flows (a common practice) could be misleading. These differ-
ences emphasize the importance of modeling endogenous production networks
to capture real-world responses and reorientation behavior.

Figure 19: Dynamics in the synthetic economy
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6.3 Experimental design

We design two sets of experiments for supply-side and demand-side shocks. For
supply shocks, we increase the productivity of a single industry via total factor
productivity and analyze its downstream propagation (to customer industries).
For demand shocks, we increase the aggregate demand through the intercept
parameter and study upstream impacts (to supplier industries). The magnitude
of the parameter change in every experiment is 20%. We perform one supply
and one demand shock for each industry in the dataset, with each experiment
consisting of 30 independent realizations. We present our results in terms of the
average values across simulations.

The outcome variables of interest are the same as in our previous examples:
price, output volumes, and profit. We report proportional differences between
the baseline (calibrated) and the shocked scenariosﬂ To study the propagation
of shocks, we stratify the results according to the distance from the source by
using the implied productive structure (i.e., the smallest number of intermediate

9Proportional differences are necessary due to large differences in flow values between
pairs of industries. However, focusing on a particular pair could benefit from looking at raw
differences.
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goods from one industry to another)m

6.4 Results

First, we look at the impact of the shocks on the intervened firms. These results
show differentiated responses across firms and outcome variables. [Figure 20|
compares the mean proportional change on prices, output volumes, and profits of
the intervened firms. The top panels show responses to productivity shocks and
the bottom ones display responses to demand shocks. The mean is represented
by a solid point. The translucid dots correspond to individual firms, and these
points are randomly placed along the horizontal axis to exhibit the structure of
the data.

Figure 20: Proportional-change responses across intervened industries
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Following a positive supply shock, the intervened firms increase productivity,
leading to lower marginal costs. This cost reduction enables firms to decrease
prices while simultaneously expand output volumes, resulting in increased prof-
its and higher sales. In contrast, when firms experience positive demand shocks,

10The stratification works in the following way. For a given distance, we identify those
industry pairs with a one-way shortest path (in the implied productive structure) to the source
industry (the intervened firm) and measure the outcome of the experiment. To measure the
distances, we count the minimum number of intermediate industries required to connect two
industries in a specific direction. Given a directed arrow from 4 to j, where industry ¢ is the
customer and industry j is the supplier, distance 1 indicates a direct customer-supplier link
with no intermediates. Distance 2 implies firm i buys from one intermediate industry which,
in turn, purchases from industry j, and so forth. The identified shortest paths in the implied
productive structure are analyzed separately for upstream and downstream direction.
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they generate profit increases through a different channel: the simultaneous in-
crease of price and output volume.

Next, let us shift our attention to indirect effects through propagation dy-
namics. shows the average proportional change across non-intervened
firms, pooled in groups defined by the distance from the source (means are dots
and standard errors are denoted with vertical lines).

Figure 21: Proportional-change responses across non-intervened industrie
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The magnitude of the indirect effects is smaller compared to direct effects.
The results presented in reveal distinct propagation patterns across
productivity and demand shocks, and upstream and downstream propagation.
For instance, in terms of prices, the proportional impact of productivity shocks
increases monotonically with the distance from the source, supporting the idea of
the amplification of indirect effects. However, demand shocks show a different—
U-shaped—pattern, suggesting that the relationship between indirect impact and
distance may be non-linear. Both productivity and demand shocks exhibit a neg-
ative association between indirect impact and distance, indicating a consistent
amplification in terms of magnitude. Furthermore, for downstream propaga-
tion, the absolute size of the impact among distance-5 industries if considerably
larger than among firms in shorter distances. Finally, another interesting result
is that, in this example, a productivity increase generates positive average im-
pacts in terms of profits among the direct clients and suppliers of the intervened
firms. This is not the case among industries with distances of more than one
from the source.

Comparing the two types of shocks, shows that demand shocks
generate proportional effects with larger magnitude, especially in prices and
profits at distance 1. Further analysis reveals a strong correlation (r = 0.78)

10Due to limited observations, we excluded data points at distance 4 for upstream shocks.
This filtering ensures reliable statistical estimates across distance groups.

32



between intervened firms’ input diversity and their differential sensitivity to de-
mand versus productivity shocks. illustrates this relationship through
a scatter plot, where the x-axis represents input diversity and y-axis shows the
largest absolute difference between proportional effects caused by demand and
productivity shocks.

Industries with higher input diversity (particularly above 20) show the largest
disparities in their responses through profit changes rather than price changes,
particularly in downstream industries. However, in less connected industries
(particular under 10), these disparities are heterogeneous and can appeared in
prices or profits, and in upstream or downstream. There is an important lesson
to be taken from It is commonly argued that economic complexity—
understood as economic processes that use more diverse inputs—is a key driver of
growth and, hence, industrialization policies should aspire to increase it. While
such policies, indeed, may augment economic sophistication, they may also ex-
pose production networks and the economy to more vulnerabilities, given that
industries that use more diverse inputs tend to be more susceptible to indirect
shocks. Therefore, it is important to think in terms of the resilience that poli-
cies may destroy when solely focusing on promoting economic complexity. In
doing so, endogenous production network models should play a key role in as-
sessing such risks and other unintended consequences that may arise as a result
of industrial policy.
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Figure 22: Input diversity versus absolute difference between demand and pro-
ductivity impacts
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Notes: Each data point represents an individual industry and is calculated by taking the
absolute difference between proportional changes by demand shocks and productivity shocks
to, finally, obtain the maximum value across all distances and variables (price, volume, and
profit). For each data point, the color distinguishes between upstream and downstream, while
the marker differentiates between price, volume, or profit change being the largest effect caused
by the intervened industry.

7 Discussion, limitations, and conclusion

This study introduces a novel model for understanding the formation of produc-
tion networks. By incorporating reinforcement learning and allowing firms to op-
erate with minimal knowledge about production functions, our model overcomes
major limitations of existing approaches such as relying on equilibrium assump-
tions, fixing exogenous networks, assuming rationality and perfect knowledge,
and setting fixed and mostly homogeneous production functions. This approach
offers significant insights into the dynamics of network formation and the impact
of different types shocks, their transmission channels (upstream or downstream),
and their adjustment mechanisms (prices and volumes). The model is robust
across different technology specifications and allows the construction and testing
of nuanced counterfactual scenarios.

We introduce the concept of consistent learning, which entails that firms
find a price-quantity point on their end-consumer demand curve under uncer-
tainty and operate in its neighborhood. Consistent learning allows steady-state
production networks to emerge endogenously. After investigating these network
with numerical examples of three and five firms, and across different types of
production functions and shocks, we bring our model closer to important is-
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sues about supply chains such as the upstream and downstream transmission of
shocks. Our experiments with a larger theoretical economy show that, on aver-
age, the potential amplification of indirect impacts depends on the adjustment
mechanism, the nature of the shock (productivity or demand), and may not be
linear.

The differential impacts of demand and productivity shocks reveal important
characteristics of shock propagation in production networks. Demand shocks
generate larger network effects in magnitude compared to productivity shocks,
particularly evident in price and profit responses. This asymmetry could be
attributed to several mechanisms. First, demand shocks directly affect revenue
streams, triggering immediate adjustments in firms’ pricing and production
decisions. Second, a stronger response to demand shocks among highly con-
nected nodes suggests that these shocks are amplified through network linkages.
This amplification might occur because demand changes cascade both upstream
through input requirements and downstream through price adjustments. These
findings highlight how the network structure not only transmits but also trans-
forms different types of economic shocks, with implications for understanding
aggregate fluctuations and designing targeted economic interventions.

While this is the first model that is able to explain the endogenous forma-
tion of production network with minimal knowledge and learning, it also has
limitations that need to be addressed in future work, especially with regard to
its empirical application. Fitting the model to real-world data would assume
some knowledge about the parameters of the production functions of the in-
dustries. Potentially, these parameters could be estimated by fitting the model
to an empirical network such as an IO table. However, this exercise can prove
challenging as the interactions between inputs can make the emerging network
topology highly sensitive to the choice of parameters. Furthermore, one needs
to consider constraints to the parameter space in order to avoid extreme val-
ues/volatility in the outputs that may hinder consistent learning and, hence,
reaching a steady state. The specification of these constraints needs to be done
careful as it may prevent finding the set of parameters that yields good fitting.
Hence, an adequate fitting procedure needs to be carefully considered if one
does not know the firm’s production functions parameters; something that we
leave for follow-up work.

Overall, this study contributes to the understanding of production network
dynamics by offering a model that brings us closer to real-world conditions and
behavioral realities. It provides a robust framework for exploring how firms
adapt to various shocks and technological changes, paving the way for future
research and policy implications aimed at enhancing the resilience and efficiency
of production networks.
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8 Appendix A: Inter-industry impacts

Figure 8.1: Inter-industry impacts from demand shocks
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Notes: The entries in the matrices denote proportional changes in the steady-state outcomes
after the shock. They show changes that are greater than 0.01 (1%) in absolute value. Top
panels correspond to an increase in demand elasticity through a 50% change in the slope
coefficient. Bottom panels correspond to a decrease in demand elasticity through a 50%
change in the slope coefficient.



Figure 8.2: Inter-industry impacts from technological changes

(a) Prices (b) Output volumes (c) Profits

1| 009 1 030 002 608 1| 02
. 0.9 . 007 2] 008 <030
£, £, £,
g g g
z E E
R 009 P 009, P

s Eo¥o) 012 s Yol s Yol

5 1 5

2 3 2 4 3
impacted industry impacted industry impacted industry

Notes: The entries in the matrices denote proportional changes in the steady-state outcomes
after the shock. They show changes that are greater than 1% in absolute value. The shock
consists of changing the production function from a linear one to a Leontief one.

Figure 8.3: Production network reorientation after recovery
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Notes: The entries in the matrices denote proportional changes in the value flows between
industry pairs after the market demand recovers its original elasticity. They show changes
that are greater than 0.01 (1%) in absolute value.



9 Appendix B: Scaling up

Figure 9.1: Consistent learning in a larger economy (100 firms)
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Figure 9.2: Dynamics in a larger economy (100 firms)
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