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Abstract Winter Central Asian precipitation (WCAP) is increasingly replacing snowfall as a critical water

resource under global warming. Observations show a decline in WCAP from 1891 to 1946, followed by a

recovery from 1947 to the recent decade. However, the relative contributions of external forcing and internal

variability to these changes remain unclear. By analyzing observations and climate model simulations, this

study finds that greenhouse gas forcing favors increasing WCAP, potentially offsetting drying trends driven by

anthropogenic aerosols. Internal variability, primarily the phase transition of Atlantic Multidecadal Variability

(AMV), plays a dominant role in shaping WCAP trends. The AMV‐induced Rossby wave train, sustained by

extracting baroclinic energy from the background mean flow, triggers barotropic atmospheric circulation

anomalies that modulate WCAP. The cold‐to‐warm AMV phase transition (1891–1946) weakened the

externally forced upward precipitation trend, reducing it from 0.19 to−0.20 mmmonth−1 decade−1. In contrast,

the warm‐to‐cold phase transition (1947–1997) amplified the externally forced precipitation trend, increasing it

from 0.28 to 0.99 mm month−1 decade−1. Under the high‐emission future scenario, the time of emergence of

externally drivenWCAP increases is projected to occur between 2030 and 2060, at least a decade earlier than the

post‐2060 timeline projected under the medium‐emission scenario. These findings underscore the critical role of

AMV in shaping WCAP variability and highlight the necessity of emission reductions to delay the time when

externally driven precipitation increases exceed the region's adaptive capacity.

Plain Language Summary Winter snowfall and spring meltwater are crucial water resources for

water‐scarce Central Asia (CA). However, with global warming, snowfall is increasingly shifting to occur as

winter Central Asian precipitation (WCAP), influencing the region's hydrological cycle. Observations reveal a

decline in WCAP from 1891 to 1946, followed by a recovery afterward. This study examines the roles of

external forcing and internal variability in driving these trends. The findings indicate that external forcing

weakly increases WCAP over the entire period. Greenhouse gas forcing significantly accelerates the wetting

trend, while anthropogenic aerosol forcing contributes to drying. Internal variability, particularly the phase

transition of Atlantic Multidecadal Variability (AMV), dominates WCAP trends. During the cold‐to‐warm

phase transition of AMV, a barotropic high‐pressure system occupied CA as part of the Eurasian Rossby wave

train, suppressing local precipitation. This mechanism helps modulate WCAP changes within adaptive ranges.

Under high‐emission future scenario, the time when WCAP changes exceed these adaptive ranges is projected

to occur between 2030 and 2060, at least a decade earlier than under the medium‐emission scenario.

Considering the importance of WCAP in local agriculture, it is urgent to develop mitigation strategies that limit

global warming and delay the time of emergence of significant hydrological impacts.

1. Introduction

Central Asia (CA), one of the world's largest arid and semiarid regions, relies heavily on precipitation as a vital

water source for both ecosystems and human livelihoods (Han et al., 2016). However, the region receives sparse

annual precipitation, averaging approximately 300 mm, with around 70% concentrated in the spring and winter

(Feng et al., 2025; Wang et al., 2022). Global warming has accelerated the hydrological cycle and increased

atmospheric water vapor content (Held & Soden, 2006; Oki & Kanae, 2006), prompting numerous studies on

precipitation changes in CA (Lioubimtseva & Henebry, 2009; Luo et al., 2019). During the first half of the 20th

century, the region experienced a sharp multi‐decadal decline in annual precipitation, followed by an increase

until the 1980s, particularly in mountainous areas (Hu et al., 2017). Station observations also declare a significant

increase in winter Central Asian precipitation (WCAP) at a rate of 0.49 mm year−1 between 1960 and 1991 (S.
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Song & Bai, 2016). Although the general “warming–wetting” trend in CA is projected to intensify under Shared

Socio‐Economic Pathway 2 and Representative Concentration Pathway 4.5 (SSP2–4.5) future scenario, this does

not imply a transition to a “humid climate.” Enhanced potential evapotranspiration offsets much of precipitation

increases, maintaining the region's arid climate (Yan et al., 2022). While the precipitation intensity is expected to

increase significantly under 2°C global warming, limiting warming to 1.5°C could mitigate this intensification

(Peng et al., 2019). Although projections show robust increases in long‐term WCAP trends under various

emission scenarios throughout the 21st century, the number of consecutive dry days is also expected to rise

substantially under the high‐emission scenario (Zhu et al., 2020). Water resources in arid CA primarily originate

from winter snow accumulation and its subsequent spring melt. However, rising temperatures are increasing the

likelihood of cold‐season precipitation falling as rain rather than snow (Li et al., 2020). Therefore, understanding

changes in WCAP may be essential for developing effective strategies to address regional climate change and

ensure sustainable water resource management.

The mechanisms driving regional precipitation changes in CA under global warming are highly complex and

multifaceted (Yan et al., 2022). The wetting trend observed in eastern CA over the past five decades can be

attributed to the human‐induced meridional uneven warming pattern, which creates warm advection anomalies

and enhances moisture transport through changes in the subtropical westerly jet (SWJ) (Peng et al., 2018). As for

individual anthropogenic forcings, rising greenhouse gas emissions favor an equatorial shift of SWJ and increased

precipitation over CA (Jiang & Zhou, 2021). In contrast, aerosol emissions generally weaken the SWJ and

suppress precipitation over CA (Jiang & Zhou, 2021; F. Song et al., 2014), with sulfate aerosols causing an

equatorward shift of the SWJ due to mid‐latitude cooling, whereas absorbing black carbon drives a poleward shift

of the SWJ (Xie et al., 2022). Moreover, land cover changes also play a role in shaping precipitation changes.

Regions with significant vegetation and glacier cover have experienced the most pronounced increases in WCAP

due to higher atmospheric water vapor content under elevated temperatures. Conversely, non‐vegetated areas

have shown only half the precipitation increase observed in vegetated regions (Luo et al., 2019). Additionally,

long‐term oasis expansion has also enhanced summer precipitation in CA by modifying local land–atmosphere

interactions (Cai et al., 2019).

Research indicates that the internal variability of regional precipitation in CA is influenced by various climate

patterns. At the interannual timescale, the Pacific Decadal Oscillation (PDO), followed by the Southern Oscil-

lation Index, predominantly explains the primary mode of CA precipitation variability (Yan et al., 2022). Stronger

El Niño events favor persistent precipitation anomalies from the mature winter to the decaying summer through

large‐scale atmospheric convergence and divergence mechanisms (Z. Chen et al., 2022). At the interdecadal

timescale, the relationship between CA precipitation and El Niño can be modulated by the horseshoe‐like sea

surface temperature (SST) anomaly in the North Atlantic, particularly during the rapidly decaying El Niño epoch

(M. Yao et al., 2024). Besides, positive phases of tropical Pacific decadal variability could enhance moisture

transport to southeastern CA along the northwestern flank of the high sea‐level pressure over the Indo–Western

Pacific warm pool (Jiang et al., 2021). Additionally, summer precipitation in CA could also be shaped by the

Indian Ocean Basin Mode (IOBM), with their relationship further modulated by the Atlantic Multidecadal

Variability (AMV). Furthermore, AMV could also serve as a key driver of precipitation anomaly in CA by

affecting the amplitude and meridional movement of the SWJ (Wei & Yu, 2024).

Despite previous research on the drivers of precipitation changes in CA, the relative contributions of external

forcing and internal variability to WCAP trends remain unclear. This study aims to bridge this knowledge gap by

examining the roles of both external forcing and internal variability in shaping inter‐decadal WCAP changes. To

achieve this, we first disentangle external forcing signals from observed WCAP changes, enabling the recon-

struction of internal variability using dominant climate modes. Furthermore, we identify the threshold at which

climate change in CA surpasses the region's natural adaptive capacity. This study is guided by three central

questions: (a) To what extent do external forcing and internal variability contribute to the inter‐decadal variations

ofWCAP? (b)What are the physical mechanisms driving these inter‐decadal variations? (c) When and where will

the signals of WCAP changes surpass the background noise of internal variability? By answering these questions,

this study attempts to provide a comprehensive understanding of the dynamic interplay between external forcing

and internal variability in WCAP changes, offering critical insights for regional climate adaptation and mitigation

planning.
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2. Data and Methods

2.1. Observational and Model Data

We use the precipitation data from the Global Precipitation Climatology Centre (GPCC) monthly product version

2022 (Schneider et al., 2022), spanning January 1891 to December 2020, to analyze observed changes in the

monthly mean of WCAP and to extract its internal variability. To ensure the robustness of the results, we also

validate the findings using high‐resolution gridded precipitation data sets from the Climatic Research Unit (CRU)

(Harris et al., 2020). To verify the reliability of precipitation data sets, we also incorporate daily station obser-

vations from the Global Historical Climatology Network (GHCN) (Menne et al., 2012). The total number of rain

gauges peaked at over 600 during the 1990s but declined sharply after the dissolution of the Soviet Union in 1991

(Figure S1a in Supporting Information S1). Due to varying record lengths across stations, only those with at least

80% WCAP records are retained to estimate long‐term trends. Comparisons of precipitation trends between

GPCC and GHCN data sets show high consistency for the periods 1891–2014, pre‐1946, and post‐1946, con-

firming the reliability of GPCC data for analyzing WCAP trends, even with limited rain gauge coverage in the

early 1900s (Figures S1b–S1d in Supporting Information S1). Meanwhile, the differences in long‐term trends

between GPCC and CRU are minimal, further validating the robustness of GPCC data. SST data are sourced from

the Hadley Centre Sea Ice and SST data set (HadISST) (Rayner et al., 2003). Boreal winter variables are

calculated as the seasonal average from December of the current year to February of the following year. Agri-

cultural data, including rice‐harvested areas and associated emission values, are derived from the agricultural

product consumption and trade data set for the five Central Asian countries, covering the period from 1992 to

2016 (Yang & He, 2019).

We incorporate outputs from 10 climate models, each comprising up to 10 ensemble members, ensuring a

balanced analysis with a total of 55 ensemble members (Table S1 in Supporting Information S1). These models

are sourced from the Detection and Attribution Model Intercomparison Project (DAMIP) under Phase 6 of the

Coupled Model Intercomparison Project (CMIP6) (Gillett et al., 2016). Specifically, the historical simulations

include outputs driven by total external forcing, encompassing greenhouse gas (GHG), anthropogenic aerosol

(AER), and natural (NAT) forcings. Meanwhile, simulations forced by individual components are analyzed as

well to isolate their respective impacts. The historical simulations for each model are designed to reproduce

present‐day climate conditions from January 1890 to December 2014. For future projections, we employ the

SSP2–4.5 and SSP5–8.5 scenarios, which extend the simulations from January 2015 onward. The CMIP6 model

outputs analyzed in this study include precipitation, geopotential height, three‐dimensional wind fields, and

surface temperature. To ensure uniformity, all observations andmodel simulations are bilinearly interpolated onto

a 1° × 1° horizontal grid prior to analysis.

Considering the temporal coverage of both observational data and model outputs, we define the present‐day

climate as the period from 1891 to 2014 and the climatology as the baseline period from 1901 to 1950. Sensi-

tivity analyses confirm that the main conclusions of this study are robust against variations in the chosen

climatological baseline. For future climate projections, we focus on the period from 2015 to 2099 under the SSP

scenarios. To ensure continuity in the time series, data for winter 2014 is constructed using December 2014 from

the historical simulations and January–February 2015 from the SSP scenarios.

2.2. Rescaled MME

The multi‐model ensemble mean (MME) in all‐forcing or individual external forcing simulations effectively

reduces inter‐model uncertainty and offsets internal variability compared to single‐model outputs (Deser

et al., 2012; Tebaldi & Knutti, 2007). Accordingly, this study assumes that the externally forced response of

WCAP is represented by the MME of 55 ensemble members, consistent with previous studies (Deser et al., 2012;

Dong et al., 2022; Qin et al., 2020; Risser et al., 2024; Tebaldi & Knutti, 2007). To reconcile the amplitude

discrepancies between the model‐simulated response and the actual forced response, we first rescale the MME,

which represents the externally forced component due to GHG, AER, land use changes, and other external

forcings. This rescaling is performed by linearly regressing the MME onto the observed WCAP time series,

adjusting the amplitude through the regression intercept. This approach preserves the original shape of the

external forcing response while maintaining the integrity of internal variability (Dai et al., 2015; Jeong

et al., 2024; Steinman et al., 2015). The rescaling improves the alignment between the MME and observation,

reducing the Root Mean Squared Error (RMSE) from 1.84 to 1.58 (Figure 1d). After isolating the externally
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forced component via the rescaled MME, the internally unforced component, attributed to natural climate

variability, is derived by subtracting the rescaled externally forced response from the observedWCAP time series.

To quantify the magnitude of internally generated precipitation variability, we use one standard deviation (1 std.)

as the measure, following the established practice in previous literature (Deser et al., 2012; Dong et al., 2022; Qin

et al., 2020; Risser et al., 2024; Tebaldi & Knutti, 2007). In the present study, we concentrate on multi‐decadal

scales by applying an 11‐year running average to the areal‐weighted regional mean WCAP anomaly time series.

The inter‐decadal WCAP trend is calculated using a 21‐year running trend based on the Theil‐Sen Median

method, a robust linear regression technique that minimizes the influence of outliers on the trend estimation. To

ensure the robustness of the results, alternative window sizes are also tested, including a 9‐year running average

for smoothing the data and a 19‐year running window for trend calculations. The detailed procedure for disen-

tangling externally forced and internally unforced precipitation changes is summarized in the green modules of

the flowchart (Figure S2 in Supporting Information S1).

2.3. Climate Mode Index

The monthly AMV index is defined as the detrended winter mean area‐averaged SST anomalies over the North

Atlantic basin (0°–65°N, 80°W–0°). As proposed by previous studies (Dai et al., 2015; Qin et al., 2020), we also

use the surface temperature outputs from historical simulations to separate the external and internal SST signals,

with the external signal represented by the MME and the internal signal represented by the residual of the

observation from the MME. Thus, the externally forced and internally generated AMV indices can be obtained

from the corresponding SST fields, as illustrated by the orange modules of the flowchart (Figure S2 in Supporting

Information S1).

The Interdecadal Pacific Oscillation (IPO) index is calculated as the difference between the SST anomalies

averaged over the central equatorial Pacific (10°S–10°N, 170°E−90°W) and the average of anomalies in the

Figure 1. (a) Long‐term trend map (unit: mm month−1 decade−1) of WCAP in 1891–2014. The dotted regions indicate

significance at the 90% level. (b) Probability density function of WCAP anomalies in the period of 1891–1931 (gray), 1932–

1972 (orange) and 1973–2014 (blue). (c) Long‐term trend (unit: mm month−1 decade−1) of WCAP for each member

(markers), MME (yellow line) and observation (blue line) in 1891–1946 and 1947–2014. The dots and solid lines represent

the earlier period, while the stars and dashed lines correspond to the later period. The colored dots and stars depict the values

of individual ensemble members, whereas the black dots and stars indicate the corresponding ensemble mean for each model.

(d) Observed WCAP anomaly (unit: mm month−1, gray solid line) and its 11‐year running averaged values (unit:

mm month−1, black line). The 11‐year running averaged externally forced component (unit: mm month−1, yellow dotted

line) and its rescaled values (unit: mm month−1, yellow solid line). The 11‐year running averaged internally generated

component (blue solid line). The vertical gray dashed line indicates the year of 1946.
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Northwest Pacific (25°N–45°N, 140°E−145°W) and Southwest Pacific (50°–15°S, 150°E−160°W). The PDO

index is obtained via extracting the principal component of the leading SST pattern through Empirical Orthogonal

Function (EOF) analysis at each grid point in the North Pacific basin (polewards of 20°N). The global mean SST

have been removed from SST anomalies. To capture low‐frequency variability, we apply an 11‐year running

mean to the monthly indices defined above. Besides, all correlation analyses in this study are conducted using

Pearson correlation coefficients.

2.4. Wave‐Activity Fluxes

The horizontal wave‐activity fluxes are introduced to diagnose the propagation of quasi‐stationary Rossby waves

(Takaya & Nakamura, 2001), which are defined as:

W =
1

2
⃒⃒
V⃗
⃒⃒⎧⎨⎩

U(ψ ʹ2
x − ψʹψʹ

xx) + V(ψ ʹ

xψ
ʹ

y − ψʹψ ʹ

xy)
U(ψ ʹ

xψ
ʹ

y − ψʹψ ʹ

xy) + V(ψ ʹ2
y − ψʹψ ʹ

yy) (1)

where V⃗ represents the horizontal wind velocity vector, U and V denote the zonal and meridional wind velocity,

respectively. ψ symbolizes the stream function. The primes and overbars signify the regressed anomalies onto the

normalized climate mode index and climatological mean‐state quantities, respectively.

2.5. Kinetic Energy and Available Potential Energy Conversion

The barotropic energy conversion of kinetic energy (CK) and baroclinic energy conversion of available potential

energy (CP) are introduced to diagnose the interactions between perturbations and the background mean flow

(Kosaka & Nakamura, 2006), which can be given by:

CK =
(vʹ2 − uʹ2)

2
(∂u
∂x

−
∂v

∂y
)⏟̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

CKx

−uʹvʹ (∂u
∂y

+
∂v

∂x
)⏟̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅⏟

CKy

(2)

CP =
Rf

Sp
uʹ tʹ

∂v

∂p⏟̅⏞⏞̅⏟
CPx

−
Rf

Sp
vʹtʹ

∂u

∂p⏟̅̅̅⏞⏞̅̅̅⏟
CPy

(3)

where u and v denote the zonal and meridional winds, respectively. Primes and overbars denote the same with

Equation 1. R denotes the gas constant, f the Coriolis parameter, S = (R/p) (Rt/Cpp − dt/dp) denotes the static

stability, Cp the specific heat at constant pressure, P the pressure, and t the temperature.

2.6. Time of Emergence

We use the signal‐to‐noise ratio (SNR) to quantify the relative amplitudes between the climate change signal and

natural variability noise, with units of 1 (Hawkins & Sutton, 2012). In this study, the signal is obtained from the

temporal average of a 21‐year running trend in each ensemble mean, while the noise is calculated as the 1 std. of

the observed residual trends, which represent the differences between the observed data and the corresponding

model's trends.

The definition of Time of Emergence (ToE) is analogous to SNR. In this context, the signal in ToE is quantified

using the rescaled MME of 11‐year running‐averaged WCAP anomalies, while the noise is determined through

two approaches: (a) 1 std. of the internal component, which is derived by subtracting the rescaled MME from the

observational data spanning 1891–2014, as previously mentioned; (b) the MME of 1 std. of piControl simulations

(any consecutive 500 years) from 10 CMIP6 models. By fixing external forcing at the 1850 level, the piControl

simulations can assess the models' internal variability in the absence of changes in external forcing. The ToE is

identified as the first year when the signal consistently emerges from the noise and persists through to the end of

the 21st century, following the previous definition (Hawkins & Sutton, 2012; Zhang et al., 2024). The SNR and

ToE definition procedures are also illustrated in the flowchart for clarity (Figure S2 in Supporting

Information S1).
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3. Results

3.1. Disentangling External and Internal Components of WCAP Changes

The spatial distribution of mean‐state WCAP during the historical period (1891–2014) features relatively higher

precipitation in the southeastern mountainous regions (Figure S3a in Supporting Information S1). This spatial

pattern is well reproduced by the 10 CMIP6 models used in this study, albeit with slightly larger amplitude in

MME (Figures S3a and S3b in Supporting Information S1). The spatial correlation coefficients between each

model and the observation all exceed 0.80 (Figure S3c in Supporting Information S1).

A general long‐term wetting trend has been observed across CA, with an average increase of

0.23 mm month−1 decade−1 based on the GPCC data set (Figure 1a). When dividing the historical period (1891–

2014) into three equal temporal segments, mean values of WCAP experience a decrease from 1.17 mm month−1

in 1891–1931 to−0.26 mmmonth−1 in middle period, followed by a sharp increase to 3.02 mmmonth−1 in 1973–

2014 (Figure 1b). Meanwhile, the std. of WCAP increases significantly, from 1.68 mmmonth−1 in the early 20th

century to 2.70 mm month−1 and 2.89 mm month−1 in the middle and late periods, respectively. This widening

variability is accompanied by more frequent extreme drought and precipitation events, as well as weakened peak

values (Figure 1b).

Decadal precipitation trends exhibit significant variability, characterized by a drying trend of

−0.82 mm month−1 decade−1 before 1946, followed by a wetting trend of 0.56 mm month−1 decade−1 afterward

(Figures 1b and 1c). These trend changes are also corroborated by the GHCN and CRU data sets (Figure S4 in

Supporting Information S1). Notably, the CMIP6 MME produces a slightly wetting trend of

0.17 mm month−1 decade−1 for the period 1891–1946 (Figure 1c). It indicates that the ensemble means of the

models may struggle to accurately simulate the observed drying prior to 1946. Nevertheless, several individual

model runs successfully replicate the observed drying trend before 1946 and the wetting trend after 1946. This is

further supported by the time series and trends of WCAP anomalies in individual runs and their ensemble means

(Figure S5 in Supporting Information S1). The limited performance of the MME in capturing early 20th‐century

drying is partly attributed to the dominant role of internal variability during this period. Since MME largely

reflects external forcing, it cancels out much of the internal variability inherent in any single realization

(Figure 1c, blue and yellow dotted lines).

The WCAP anomalies are further decomposed into externally forced and internally generated components.

Compared to the original external component derived directly from theMME of all‐forcing historical simulations,

the rescaled external component shows an increase of approximately 1.11 mm month−1, enhancing precipitation

response over CA without altering the overall shape. The internal component of observational WCAP closely

parallels the 11‐year running smoothed observed time series, implying the dominant role of internal variability in

observed changes (Figure 1d).

Throughout the study period, WCAP has experienced a wetting trend of 0.23 mm month−1 decade−1, driven by

external forcing as quantified by the rescaledMME value. This trend is estimated using the Theil‐Sen slope within

a 21‐year running window (Figure S6c in Supporting Information S1). The externally forced wetting trend in-

tensifies after 1946, with an increase of 0.28 mm month−1 decade−1 compared to 0.19 mm month−1 decade−1

before 1946.When comparing the internal variability, represented by its 1 std., against the externally forced trend,

the internal variability of 1.34 mmmonth−1 decade−1 emerges as the dominant factor in determining whether CA

becomes wetter or drier (Figure S6 in Supporting Information S1). The increasing precipitation trends attributed

to external forcing and the dominant influence of internal variability on WCAP trends remain consistent

regardless of the window size or data set used (Figure S6 in Supporting Information S1).

The externally forced precipitation trend can be further decomposed into responses to individual forcings, namely

GHG, AER, and NAT forcings. Here, we estimate the response to each forcing directly from the MME of the

corresponding historical simulations without applying rescaled adjustments. This is due to the absence of

observational responses to individual forcings and the negligible difference in precipitation trends between

rescaled and unadjusted estimates. GHG and AER forcings emerge as the dominant drivers of precipitation

changes in CA, consistent with previous studies (Jiang & Zhou, 2021; Risser et al., 2024). GHG forcing induces a

homogeneous increase in precipitation, with an areal‐weighted regional mean wetting trend of

0.21 mm month−1 decade−1, ranging from 0.11 to 0.28 mm month−1 decade−1 as inter‐model spread. However,

this increase is partially offset by the suppressive effect of AER forcing, which contributes a drying trend of
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−0.14 mm month−1 decade−1, with a robust inter‐model range of −0.04 to −0.25 mm month−1 decade−1

(Figures 2a and 2c–2e).

During the historical period, the 200‐hPa zonal wind response to GHG forcing was weak in the first half of the

20th century but gradually strengthened in the second half (Figure 3a). Meanwhile, the AER‐driven zonal wind

response substantially weakened over CA during the mid‐to‐late 20th century, exhibiting pronounced inter‐

decadal variability (Figure 3b). The vertically integrated meridional temperature gradient (MTG) provides a

clear explanation for the 200‐hPa zonal wind changes. Throughout the historical period, the negative MTG

induced by GHG forcing amplifies the climatological negative MTG in the mid‐latitudes, strengthening and

shifting the SWJ southward. This facilitates increased moisture transport to CA (Figures 3c and 3f). In contrast,

cooling effects caused by AER forcing weaken the mean‐state MTG around CA, leading to the northward shift of

SWJ away from CA. It could further decrease moisture transport from oceans and suppress WCAP (Figures 3d

and 3f). Here, the intensity and central latitude of SWJ are inferred from the maximum center of 200‐hPa zonal

wind trends, consistent with previous studies (Ding & Li, 2017; Dong et al., 2022; Lin et al., 2024).

The SWJ response to AER forcing reveals nonlinear changes throughout the historical period (Figure 3f). Before

1946, the southward shift and strengthening of the SWJ associated with AER forcing enhancedWCAP. However,

after 1946, the AER‐driven SWJ response partially offset the wetting effects of GHG forcing, as a stronger

northward shift of the AER‐induced SWJ reduced moisture transport to CA, thereby suppressing WCAP

(Figure 3f). The mechanisms behind these changes may be traced to the Eurasian industrialization process. From

preindustrial times to the mid‐20th century, increased European anthropogenic aerosol emissions cooled the

Figure 2. (a) The 21‐year running WCAP trends attributed to GHG (unit: mm month−1 decade−1, blue), AER (unit: mm month−1 decade−1, green), and NAT (unit:

mm month−1 decade−1, yellow) forcings. The shadings indicate the range of inter‐model 25th–75th percentiles. (b) The 21‐year running WCAP trend attributed to the

sum of three forcings in panel (a) (unit: mm month−1 decade−1, dark blue) and total external forcing (unit: mm month−1 decade−1, yellow). The residual (unit:

mmmonth−1 decade−1, gray) is defined as the difference between total externally forced component and the sum of three individual forcing components. The number in

the legend indicates the correlation coefficient between the sum of three individual forcings and total external component. The shadings indicate the range of inter‐model

25th–75th percentiles. (c) Generalized extreme value‐fitted probability density functions (unit: mm month−1 decade−1, curves) and raw histograms (unit:

mm month−1 decade−1, serrated lines) of 21‐year running WCAP trends driven by GHG (blue), AER (green), and NAT (yellow) forcings. The dots and solid lines

represent the mean and inter‐model 25th–75th percentile range, respectively. (d) The spatial distribution of WCAP trends in 1891–2014 attributed to GHG forcing. The

dotted regions indicate significance at the 90% level. The number in the upper right corner indicates the areal‐weighted regional mean trend and its 25th–75th percentile

range. (e, f) Same as (d), but for AER and NAT forcing, respectively.
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Atlantic–Eurasian region, intensifying the climatological MTG across mid‐latitude Eurasia (Undorf et al., 2018).

This intensified MTG caused a southward shift of the SWJ, enhancing WCAP. However, after the mid‐20th

century, reductions in aerosol emissions in Europe, coupled with increased emissions from lower‐latitude re-

gions such as East and South Asia, reversed this trend. These shifts weakened the mean‐state MTG over CA,

driving the SWJ northward and reducing WCAP (Dong et al., 2022; Undorf et al., 2018).

The NAT forcing exerts little effect on the WCAP trend, contributing an average of only 0.01 mm month−1

decade−1 during the whole period, with an inter‐model range spanning from−0.06 to 0.06 mmmonth−1 decade−1

(Figures 2a and 2f). However, a pronounced precipitation reduction attributed to NAT forcing occurred between

1985 and 1990, likely driven by consecutive volcanic eruptions during the 1980s, such as the El Chichón eruption

Figure 3. (a) 11‐year running averaged 200‐hPa zonal wind anomalies averaged from 40° to 90°E driven by GHG forcing (unit: m s−1, shading) in 1891–2014. The

climatology is defined as the mean over the period from 1901 to 1950. (b) Same as (a), but for AER forcing. (c) The 200‐hPa zonal wind trend (unit: m s−1 decade−1,

contour) and vertically integrated MTG trend (−∂T
∂y
, unit: 10−6K decade−1m−1 hPa−1, shading) attributed to GHG forcing in 1891–2014. The shading values are shown

only above 90% significance level. (d, e) Same as (c), but for AER and all forcing, respectively. (f) The averaged intensify (unit: m s−1 decade−1, bar) and latitude (unit:

degree, number) of maximum 200‐hPa zonal wind trends from 40°E to 90°E before 1946 (blue), after 1946 (green) and in the whole period of 1891–2014 (yellow)

attributed to GHG, AER, and all forcing simulations. The upward and downward arrows (or equal sign) represent the northward and southward (or stationary) displacement

of the subtropical westerly jet relative to that in the historical simulation, respectively.
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in 1982 and the Kliuchevskoi eruptions from 1984 to 1987, which may favor drier conditions in CA (Anchu-

kaitis, 2012; Man et al., 2014). The overall externally forced precipitation trends can be well captured by the sum

of the individual components driven by GHG, AER, and NAT forcings, with a significant correlation coefficient

of 0.64 (Figure 2b). The residual, defined as the difference between the total externally forced component and the

combined contributions of three individual forcings, remains close to zero for most of the study period, except

after the 1990s. This anomalous rise in residuals may be attributed to significant land use and land cover changes

in CA during 1990–2009 (X. Chen et al., 2013). Following the collapse of the Soviet Union in 1991, extensive

areas of abandoned farmland were converted back to natural vegetation (Lioubimtseva et al., 2005), altering the

landscape and intensifying the hydrological cycle in the region.

The generalized extreme value (GEV)‐fitted probability density functions, along with raw histograms of 21‐year

running trends for the three single‐forcing components, are shown in Figure 2c. These results indicate that the

GHG‐driven increase in WCAP can reach up to 1.00 mm month−1 decade−1, significantly exceeding the AER‐

induced decrease of −0.5 mm month−1 decade−1. The bell curve for NAT forcing is nearly symmetric around

zero, reflecting its oscillatory effect on precipitation with year‐to‐year fluctuations (Figure 2c). Similar findings

could be obtained when the curves are fitted using Gaussian distributions or kernel density estimators.

3.2. Influence of Internal Variability on WCAP Changes

In the previous sub‐section, we decompose the observed WCAP time series into externally forced and internally

generated components. The externally forced component is further disaggregated into three individual forcing

components. In this sub‐section, we investigate the extent to which internal variability can be attributed to major

multi‐decadal climate modes, including AMV, PDO, and IPO.

High levels of internal variability are primarily located around the margins of deserts in central CA, while lower

values are concentrated within desert areas (Figure 4a). Among the climate modes examined, AMV stands out

with a significant negative correlation coefficient of−0.74 (p< 0.001), whereas IPO and PDO exhibit statistically

insignificant correlations. Notably, not only does the spatially averaged internal component of WCAP correlate

strongly with AMV, but this relationship is also consistent across individual grid points (Figure 4b). Further

Pearson correlation analysis indicates that the positive phase of AMV is significantly associated with suppressed

WCAP, accompanied by anomalous subsidence across most of CA, except for western and southeastern edge

regions (Figures 4c and 4d). Consequently, AMV is identified as the primary factor to regress the internal

component.

The AMV has undergone three phase transitions since early 20th century: a negative‐to‐positive transition around

1925, a positive‐to‐negative transition around 1966, and another negative‐to‐positive transition around 1997

(Figure 4e). The cold‐to‐warm AMV phase shift induces a decreasing WCAP trend of −0.39 mm month−1 deca-

de−1, with values declining from−0.09 to−1.22 mmmonth−1 between 1891 and 1946. Conversely, the warm‐to‐

cold AMV phase transition from 1947 to 1997 leads to an increasingWCAP trend of 0.90 mmmonth−1 decade−1,

with values rising from−1.49 to 0.22 mmmonth−1 (Figure 4e). Prior to regression, we normalize the AMV index

and smooth all variables using an 11‐year running average. The reconstructed internal component effectively

captures the variance of observed internal variability, with a goodness‐of‐fit of 0.55 and an error bias of 1.06.

However, it slightly underestimates the amplitude of the sharp decline between 1930 and 1950 (Figure 4e).

Additionally, the WCAP anomaly time series (black line in Figure 4e), reconstructed by combining the rescaled

externally forced component and the reconstructed internal component, exhibits a strong correlation with ob-

servations, with a correlation coefficient of 0.78. The reconstruction reveals a decreasing trend of

−0.20 mm month−1 decade−1 before 1946, followed by an increasing trend of 0.99 mm month−1 decade−1

afterward.

Furthermore, we isolate the unforced natural component of AMV by subtracting the externally forced MME of

AMV from the observed AMV index. This unforced component is applied to the reconstruction as well, achieving

a goodness‐of‐fit of 0.54 and an error bias of 1.07 (Figure 4f). Its performance closely aligns with that of the

original AMV index (Figure 4e), indicating that the influence of AMV on WCAP may primarily be driven by

internal variability rather than external forcing. This conclusion is also supported by the negligible difference

between AMV and its internal component, except after the 2000s, when anthropogenic impacts became more

pronounced (Figures 4e and 4f).
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Figure 4. (a) One standard deviation for the internal component of the WCAP changes (unit: mm month−1 decade−1). (b) Correlation of internal component of WCAP

anomalies and AMV index at each grid over CA. The dotted regions indicate significance at the 90% level. (c, d) Same as (b), but for 500‐hPa vertical pressure velocity

and precipitation, respectively. (e) Time series of AMV index (yellow line) and internally generated component of WCAP anomalies in the observation (dark blue).

AMV‐based reconstructed time series of internally generated component (light blue) and WCAP anomalies (red line). The numbers in the left legend and at upper right

corner indicate the correlation coefficient and goodness‐of‐fit (square correlation) between AMV and internally generated component of observed WCAP anomalies,

respectively. The number in the right legend indicates the correlation coefficient and RMSE of WCAP between in observation and reconstruction. (f) Same as (e), but

AMV is furtherly separated into externally forced (AMV_EXT) and internal (AMV_INT) components. The reconstruction of internally generated component (light

blue) and WCAP anomalies (red line) is based on the AMV_INT. All variables are averaged at 11‐year running window.
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We further investigate the dynamic mechanisms underlying the remote control of AMV phase transition on

WCAP trends. Figures 5a and 5b illustrate an eastward‐propagating barotropic Rossby wave train initiated by

AMV, originating from the subtropical Atlantic. This wave train propagates along the Eurasian westerly jet

stream, then splitting into two branches upon encountering the continents. One branch continues eastward toward

CA, while the other propagates southeastward toward North Africa and the Red Sea. The barotropic high‐pressure

system occupying over CA leads to a reduction in WCAP, consistent with previous results (Figures 4c and 4d).

The regression on the internal component shares a similar origin and propagation path for the wave train as

observed in the regression with AMV index (Figure 5). This indicates that the Rossby wave train induced by

AMV may play a significant role in shaping CA's atmospheric circulation anomalies and modulating the internal

variability of WCAP.

To further investigate the maintenance mechanisms of this Eurasian Rossby wave train, we analyze regressions of

vertically integrated kinetic energy and available potential energy conversion against internal variability

Figure 5. (a) Regression of 500‐hPa geopotential height (unit: m, shading) and 200‐hPa zonal wind (unit: m s−1, contour, only

value of±0.25 is shown) against AMV index. (b) Regression of 200‐hPa geopotential height (unit: m, shading) against AMV

index, and the corresponding wave activity flux (unit: m2 s−2, vector). The shading and vector values are shown only above

90% significance level. (c, d) Same as (a, b), but for regression against INT. All variables are averaged at 11‐year running

window.

Figure 6. (a) Regression of vertically integrated conversion of kinetic energy (unit: W m−2) against INT. (c, e) Same as (a), but for its zonal and meridional components,

respectively. (b, d, f) Same as (a, c, e), bur for available potential energy and its zonal and meridional components (unit: Wm−2), respectively. All variables are averaged

at 11‐year running window.
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(Figure 6). The most prominent CP over the Atlantic aligns with the origin of the wave train. East of the prime

meridian, CP values alternate between positive and negative along the SWJ, with positive anomalies over North

Africa and Afghanistan, and negative anomalies over Saudi Arabia and North India (Figures 5c and 6b). The

dominant contribution to CP comes from its meridional component, which significantly supplies the baroclinic

energy necessary to sustain the wave train. In contrast, the contribution of CK, primarily from its zonal

component, is minimal and could largely be disregarded (Figure 6). Notably, the net energy gain along the wave

train's propagation path exceeds the energy loss, implying that the wave train effectively extracts energy from the

background mean flow. The barotropic high‐pressure system over CA, as part of the Rossby wave train induced

by AMV, could be maintained by the energy sourced from the background SWJ. This persistent system sup-

presses WCAP during the cold‐to‐warm phase transition of AMV, providing a mechanistic explanation for the

observed precipitation trends.

3.3. Future Projections and Time of Emergence

The above analysis has elaborated on the contributions of individual forcing and internal variability to WCAP

changes during the historical period (1891–2014). Building on this, we extend the analytical framework to future

projections (2015–2099), exploring the sensitivity of WCAP trends to varying emission scenarios across different

models and time periods.

Precipitation trends exhibit notable variability among models in the all‐forcing historical simulations, with

externally forced 21‐year running WCAP trends ranging from 0.13 to 0.44 mm month−1 decade−1. These

simulated trends align well with the observation, demonstrating that the models effectively capture historical

precipitation changes (Figure 7a). When comparing historical outputs with projections under two future emission

scenarios, the MME wetting trend strengthens with increasing greenhouse gas emission intensity. The widest

range and maximum MME values are observed under the SSP5–8.5 scenario, with trends ranging from 0.71 to

2.48 mm month−1 decade−1. This suggests that intensified greenhouse gas emissions not only amplify WCAP

wetting trends but also introduce greater uncertainties (Figure 7a). Under the SSP5–8.5 scenario, the projected

wetting trends are nearly four times higher than those in the historical simulations and twice as high as those under

the SSP2–4.5 scenario, highlighting the substantial impact of emission pathways on future WCAP changes

(Figure 7a).

The variance in precipitation variability is further assessed across three scenarios reflecting natural adaptive

capacity (Figure 7b). While MME and trend ranges are relatively consistent across scenarios, the SSP5–8.5

scenario exhibits slightly larger variability, with the 1 std. of 21‐year running WCAP internal trends in the

temporal dimension ranging from 0.53 to 1.85 mm month−1 decade−1 (Figure 7b). To assess the relative

amplitude of externally forced responses versus internal variability, the SNR of 21‐year running WCAP trends is

further used as an indicator. In the historical simulation, internal variability generally obscures the externally

forced response, with no model achieving an SNR greater than 1. However, in future projections, both the trend

signal and SNR increase, particularly under the SSP5–8.5 scenario, where the MME SNR reaches up to 1.22. This

highlights the increasing dominance of externally forced changes and the growing likelihood that inter‐decadal

trends driven by anthropogenic climate change will surpass the natural variability range in the future (Figure 7c).

The ToE marks the point at which the SNR of the 11‐year running WCAP anomalies consistently exceeds 1,

indicating that the wetting signal has emerged from the internal noise. This also implies that natural regulation can

no longer reverse the external effects of climate change on WCAP. Compared to SNR, ToE provides a more

intuitive reference for understanding when externally forced wetting trends break through natural variability. The

regional averaged ToE for CA is identified as 2018 for the SSP2–4.5 scenario and 2015 for the SSP5–8.5 scenario

(Figure 7d). The relative contributions of external forcing in both scenarios increase sharply in the late twentieth

century, with a particularly strong impact on the wetting trend under the SSP5–8.5 scenario.

Excluding the regions of southwestern CA, where the ToE has already occurred before 2010, the ToE mainly

occurs after the 2060s under the SSP2–4.5 scenario. In contrast, under the SSP5–8.5 scenario, the ToE is projected

to occur between 2040 and 2060 in central CA and as early as the 2030s in eastern CA, with at least a decade's

difference between the two scenarios (Figures 7e and 7f). Note that the areal‐averaged ToE signal may be

somewhat advanced by the climate changes that have already occurred before 2010, which leads to a less pro-

nounced contrast in regional mean results between the two scenarios (Figure 7d). The earlier ToE in the SSP5–8.5

scenario highlights the accelerated influence of high‐emission pathways, resulting in the earlier breaching of the
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Figure 7. (a) The violin and scatter plot of 21‐year running externally forced WCAP trends (unit: mm month−1 decade−1) for each model, MME and observation in

historical simulations (1891–2014), SSP2–4.5 (2015–2099), and SSP5–8.5 (2015–2099) scenarios. (b, c) Same as (a), but for one standard deviation (unit:

mm month−1 decade−1) and the ratio between panels (a) and (b). (d) The 11‐year running averaged time series of externally forced WCAP anomalies (unit: mm) in

historical simulations (black), SSP2–4.5 (yellow) and SSP5–8.5 (purple) scenarios. The shadings indicate the corresponding one standard deviation among models. The

inset figure is to clarify the ToE. The yellow and purple vertical lines for SSP2–4.5 and SSP5–8.5 scenarios indicate year of 2018 and 2015, respectively. (e) The spatial

distribution of ToE under SSP2–4.5 scenario at each grid over CA. (f) Same as (e), but under SSP5–8.5 scenario.
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natural variability boundaries by external climate change (Abatzoglou et al., 2019; Lyu et al., 2014; Williams

et al., 2024). In other words, the delayed ToE in the SSP2–4.5 scenario underscores the role of emission re-

ductions in mitigating the impacts of climate change (S. Chen et al., 2024).

Similar ToE results could be obtained when the internal noise is calculated using piControl simulations (Figure S7

in Supporting Information S1). Besides, the sensitive analysis of various SNR thresholds to determine ToE is also

conducted (Figure S7d in Supporting Information S1). As the SNR thresholds increase, the external forcing

response faces greater difficulty in emerging from the internal variability. This results in a slower emergence of

severer risks and a delayed ToE across CA, shifting from the 2030s to post‐2060. Notably, using a SNR of 2 to

identify ToE of WCAP may be unreasonable, as it causes a slower exposure of the entire CA under the high‐

emission scenario compared to the medium‐emission scenario, which is inconsistent with actual projections

(Figure S7d in Supporting Information S1).

4. Summary and Discussion

In this study, the WCAP trend has been decomposed into the externally forced trend and internal component

whose 1 std. represents the multi‐decadal variability of WCAP. The rescaled external component, derived from

the MME of 55 CMIP6 ensemble members, exhibits a consistent increasing trend in WCAP, peaking after the

2000s. This finding indicates that external forcing generally favors increased WCAP over the historical period.

Further decomposition of external forcing into GHG, AER, and NAT forcings reveals that GHG forcing pre-

dominantly drives the wetting trend. This influence of GHG forcing primarily manifests through the southward

shift of the SWJ and enhanced moisture transport throughout the historical period, effectively counteracting the

drying effect caused by AER forcing. The contribution of NAT forcing is negligible, with an average effect close

to zero over the long term.

The internal variability component of the WCAP trend is more pronounced than its external forcing counterpart.

Specifically, the standard deviation of internal variability (1.34 mm month−1 decade−1) significantly outweighs

the average trend of the external component (0.23 mm month−1 decade−1). This internal variability can be well

reconstructed by AMV, which exhibits a strong negative correlation with WCAP anomalies. The cold‐to‐warm

AMV phase transition from 1891 to 1946 suppressed the externally forced upward precipitation trend, reversing it

from 0.19 to−0.20 mmmonth−1 decade−1, which contributed to the drying trends over CA observed before 1946.

In contrast, the subsequent warm‐to‐cold AMV phase shift from 1947 to 1997 amplified the externally forced

precipitation trend, increasing it from 0.28 to 0.99 mm month−1 decade−1, resulting in a pronounced wetting

trend. From a dynamic perspective, the positive phase of the AMV can trigger a Rossby wave train that suppresses

precipitation in CA by establishing a barotropic high‐pressure system. This eastward‐propagating wave train

along the Eurasian westerly jet is sustained through baroclinic energy extraction from the background mean flow.

The mechanisms underlying the externally forced and internally generated changes in WCAP are summarized in

Figure 8.

Future climate projections under the SSP2–4.5 and SSP5–8.5 scenarios indicate a substantial increase in the

influence of external forcing on WCAP wetting trends, while the role of internal variability is expected to remain

relatively stable. Notably, only under the SSP5–8.5 scenario does the MME SNR during the period 2015–2099

exceed 1. This indicates more severe and urgent climate risks, as the stronger wetting trends driven by external

forcing in high‐emission scenarios exert a greater modulation on WCAP than natural variability. In other words,

the ToE, the point at which precipitation changes driven by external forcing surpass the range of natural climate

variability and self‐adaptation, occurs at least a decade earlier in scenarios with higher carbon dioxide emissions.

Specifically, under the SSP5–8.5 scenario, the ToE is projected to occur in the 2030s over eastern CA and be-

tween 2040 and 2060 over central CA. In contrast, under the SSP2–4.5 scenario, the ToE is expected to occur after

2060.

As a global “breadbasket” producing rice, wheat, and maize (Swinnen et al., 2017; Yu et al., 2020), WCAP plays a

crucial role in sustaining agricultural productivity and ensuring food security across the world. Here, we further

find that the internal variability of WCAP may serve as an indicator of local rice cultivation, including harvested

area and associated emissions (measured as carbon dioxide equivalent), for both the current and subsequent years.

These relationships are evidenced by significant correlation coefficients of 0.74 and 0.77 (p< 0.05), respectively.

Among the five CA countries, the strongest indicator relationships are observed in Kazakhstan and Uzbekistan.

This finding highlights the potential utility of AMV, which can effectively reconstruct WCAP's internal
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variability, for improving grain cultivation and storage predictions in CA. Future studies could delve deeper into

the integration of AMV‐driven internal variability with agricultural planning models to bolster the resilience of

agricultural production systems under changing climatic conditions.

The external forcing and internal variability disentanglement framework applied to WCAP in this study can also

be extended to other regions and climate variables that are closely tied to human livelihoods. For instance, it could

be applied to investigate precipitation changes in other semi‐arid or monsoon regions, or to analyze trends in

temperature extremes or drought severity. A concrete example is the increasing wildfire risk in the southwestern

United States, which is influenced by a combination of external forcings (e.g., greenhouse gas emissions) and

large‐scale climate drivers (e.g., PDO). By applying this framework, it is possible to quantitatively assess how the

regional fire weather index responds to both human‐induced climate change and natural variability, providing a

more comprehensive understanding of its long‐term dynamics. Moreover, this framework provides valuable

insights for climate risk assessments by pinpointing regions and timeframes where externally forced changes

surpass the bounds of internal variability. This can help identify the timing and magnitude of emerging climate

risks, enabling more targeted adaptation and mitigation strategies. By highlighting when and where the climate

system may exceed its natural variability, this framework may support proactive decision‐making to reduce

vulnerabilities and enhance resilience to future climate change impacts. Notably, rescaling model outputs may be

a necessary prerequisite for reliable signal separation, given that CMIP6 models not only inadequately represent

internal variability but also exhibit systematic biases. For instance, CMIP models generally underestimate both

total winter wet‐day precipitation and extreme precipitation trends over CA (Liu et al., 2022; J. Yao &

Chen, 2015). In the present study, models with greater dry biases tend to simulate less pronounced wetting trends

than observed (Figure S8 in Supporting Information S1). These biases can potentially distort the estimation of the

forced signal, highlighting the importance of bias adjustment to ensure the robustness of attribution results

(Figure 1 and Figure S5 in Supporting Information S1).

In the present study, AMV has been identified as the key factor influencing the internal variability ofWCAP, with

its influence likely to persist over the coming decades. This finding underscores the potential of leveraging AMV

to effectively reduce uncertainty in near‐term projections of WCAP. Incorporating potential AMV phase tran-

sitions into climate models could provide a more accurate projection of future precipitation trends in the region,

thereby enhancing predictive capabilities. To build on these insights, future research could focus on developing

methodologies that integrate AMV signals with other climate drivers to refine projections and better inform

adaptation strategies for water resource management in CA.

Figure 8. Schematic diagram illustrating the underlying mechanisms driving drying and wetting conditions over CA

(a) before and (b) after 1946. The diagram includes position changes of subtropical westerly jet (SWJ), phase transition of

AMV, precipitation trends over CA and the 200‐hPa Rossby wave train induced by the AMV phase transition. Red (blue)

shadings in the North Atlantic indicate cold‐to‐warm (warm‐to‐cold) phase transition of AMV. Blue curves indicate the

Rossby wave train paths. The letter A (C) indicates atmospheric anticyclone (cyclone) anomalies. Green shading, blue

dashed and yellow dashed ovals denote the SWJ responses to all‐forcing, individual GHG and AER forcing, respectively.

Yellow sun symbol and downward arrow over CA denote drying conditions and anomalous descending trends, respectively.

Blue rain symbol and upward arrow over CA denote wetting conditions and anomalous ascending trends, respectively.
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