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Risk Assessment of the UK Electricity Supply Network: A Preference-

based Decision Support Method 

Abstract 

The resilience and reliability of essential infrastructures, such as power grids, are critical for 

the smooth functioning of societies. With the rapid diffusion of electric vehicles (EVs), reliance 

on a stable and reliable electric power supply has significantly increased. This necessitates a 

comprehensive risk analysis framework to understand the reliability of electric power supply 

systems. Identifying crucial macro-level risks involves a certain degree of uncertainty and 

requires expert preference elicitation. It is also prominent for a reliable preference elicitation 

model to appropriately handle the subjective judgments of decision makers (DMs). In this 

study, a multi-criteria decision analysis (MCDA) perspective is adopted by integrating a 

spanning trees enumeration (STE) method with the best-worst method (BWM) to capture the 

hesitancy and uncertainty of DMs in identifying the most crucial risks in the UK electricity 

supply network system. This approach considers the existence of more than one possible best 

(i.e., the most favorable) or worst (i.e., the least favorable) criterion in the model. To validate 

the proposed STE-BWM model, a set of Monte Carlo simulations and a real-world application 

are implemented coupled with comparative and sensitivity analyses. The simulations are 

conducted under various defined numerical experiments, and the results indicate a satisfactory 

success rate of STE (i.e., 65.80%) in identifying the unique best or worst criterion in various 

experiments. The applicability of the proposed STE-BWM is shown in a case study of the UK 

electricity supply network risk assessment. 

Keywords: Best-worst method, decision analysis, electricity, energy, risk, spanning trees 

enumeration, uncertainty 

1. Introduction 

 

The UK has a long tradition of being on the front end of the NetZero transition. An example 

of this approach is the intention to gradually eliminate the sale of new petrol- and diesel-

powered cars and vans by 20351. Additionally, starting in 2035, all newly sold cars and vans 

will be required to produce zero emissions from their exhaust systems (UK Department for 

Transport, 2021). These ambitions along with technological advances in manufacturing 

 
1 Under the former Prime Minister Theresa May's government, the original target date was 2040. During Boris 
Johnson's tenure the date was brought forward to 2030, to be later delayed to 2035 by Rishi Sunak’s government. 
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processes have led to a significant reduction in the average price of electric vehicles (EVs), 

causing rapid growth in EV sales and a global increase in lithium-ion battery (LIB) production 

capacity (Lusty et al., 2022). These evolutions put additional pressure on the electric power 

supply and vehicle-to-grid (V2G) infrastructure to stay secure, reliable, and resilient. The UK 

electricity system is passive and complex, with previous research highlighting uncertainty over 

policy and lack of long-term vision as key sources of stakeholder risk (Connor et al., 2018). 

Part of the risk analysis requires expert judgments and preference elicitation, which are of an 

uncertain and subjective nature. In recent years, preference elicitation has gained the attention 

of researchers from various perspectives including information gathering (Voorberg et al. 

2021), modeling preferences (Baak, Goerigk, and Hartisch 2024; Bozóki and Tsyganok 2019), 

and evaluation and use (Nikou, Mezei, and Sarlin 2015; Boxebeld, Mouter, and Van Exel 

2024). However, real-world decision-making processes require dealing with subjective human 

judgments and circumstances in the decision-making context. Preference elicitation has been 

commonly applied in methods such as analytic hierarchy process (AHP) (Saaty 1980) and best-

worst method (BWM) (Rezaei 2015) to capture preferences of decision makers (DMs). Take 

an example of BWM  as a recent multi-criteria decision analysis (MCDA) method, in which a 

decision maker (DM) is asked to indicate which decision-making criterion he/she considers as 

the best and the other as the worst (Q. Wu et al. 2024). In the real world, applying the original 

BWM with subjective human judgements, choosing only one criterion as either the best or the 

worst without any level of hesitancy is not always straightforward for DMs. In other words, 

there might be a set of best and a set of worst criteria instead of just one single best or worst 

criterion.  

In this study, to deal with uncertainty, we propose a hybrid preference elicitation model 

combining the spanning trees enumeration (STE) method with BWM, namely STE-BWM. In 

the hybrid model, the STE offers an opportunity for DMs to indicate a range of the best and 

worst criteria. The STE part of the proposed approach concludes which criterion is the best or 

worst among the given set of potential best or worst criteria. The STE analysis is based on data 

already provided in the form of pairwise comparisons by DMs. The result of STE is then fed 

into the BWM to calculate the final weights and order of criteria.  

This study contributes to the literature by proposing a decision-support model that deals with 

uncertain preferences and empirically applies it to a real-world case study: the UK electricity 

supply network system risk assessment. To validate the performance of the proposed hybrid 

approach, a set of Monte Carlo simulations under various defined numerical experiments are 
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conducted. The simulation analysis is carried out by running numerical analyses in Python. 

The Python code is available via open access and provides a free decision support tool. This 

tool can be used by researchers and analysts to apply the STE analysis part of the hybrid 

approach to their problem, regardless of the scale of the decision-making model being analyzed 

(see Section 4). The results indicate a satisfactory success rate of the STE in identifying the 

unique best or worst criterion in various experiments out of a set of potential best or worst 

criteria. In addition to the numerical analysis, the applicability of the proposed STE-BWM in 

a real-world application is demonstrated. In this case study of the UK electricity supply 

network, it has been identified that Natural Disasters (ND), Climate Change (CC), Industrial 

Action (IA), Affordability (AF), Political Instability (PI), and Sabotage/Terrorism (ST) are the 

most crucial risks (Vafadarnikjoo et al. 2022; Vafadarnikjoo 2020). These identified risks are 

prioritized using the STE-BWM in this study. Our research contributes to the multiple criteria 

decision-making body of knowledge by achieving the following aims of the study:  

(I) To propose a preference elicitation STE-BWM to handle uncertainty in cases where 

decision makers might struggle to pick only one criterion due to uncertainty, 

hesitancy, or lack of information.  

(II) To empirically apply the hybrid STE-BWM in a real-world case of an electricity 

supply network risk prioritization model to show the applicability of the proposed 

method and to verify the most critical risks to the UK energy supply chain.  

(III) To conduct Monte Carlo simulations under various defined numerical experiments 

and provide a Python-based decision-support tool to facilitate STE analysis.  

In the rest of this paper, background and context will be discussed in Section 2, the proposed 

STE-BWM are described in Section 3. In Section 4, a Monte Carlo simulation analysis is 

conducted. To demonstrate the applicability of the method, the STE-BWM is applied in the 

UK electricity supply network risk assessment, and the empirical findings are presented in 

Section 5. Finally, Section 6 summarizes the paper. 

2. Background and context 

In this section, a background on preference elicitation models is provided. It is followed by a 

literature review on electricity supply network risks and their definition for the purpose of this 

study.  

2.1. Preference elicitation models in multi-criteria decision analysis 

This section reviews the relevant literature on preference elicitation models focusing on direct 

methods using rating scales in the MCDA area. Tversky and Kahneman (1991) presented a 
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reference-dependent theory of consumer choice which discusses the concept of loss aversion 

and analyzes its role in shaping preferences for choices. Sarin and Winkler (1992) proposed a 

preference model to deal with ambiguity of DMs by considering the probability of relevant 

decision-making events. Keeney and Raiffa (1993) offered a thorough overview of the 

decision-making process in the face of multiple incommensurable objectives. Recent research 

has changed our understanding of this problem. Ji et al. (2024) proposed a dependence 

assessment method based on BWM and cloud model and applied the social network trust graph 

to determine experts’ weights. De Almeida et al. (2024) studied how holistic evaluations (HE) 

information combines with information from the decomposition approach and what their 

implications are applying Flexible and Interactive Tradeoff (FITradeoff) method. De Morais 

Correia et al. (2022) ranked workstations for ergonomic interventions applying Strategic 

Options Development and Analysis (SODA), Value Focused-thinking (VFT), and FITradeoff 

method. A few researchers also integrated uncertain non-probabilistic theories with BWM to 

capture the uncertainties of DMs, such as spherical fuzzy sets (Haseli et al. 2024), calibrated 

fuzzy BWM (Lopez et al. 2023), and interval-valued intuitionistic fuzzy sets (Dong and Wan 

2024).    

 

2.2. Electricity supply network risks  

Electricity supply networks, as key critical infrastructures, are indispensable for our economy 

and society; however, they remain susceptible to various vulnerabilities and risks (Gong et al., 

2025). In 1990, the UK electricity industry was privatized and thus unbundled into generation, 

transmission, distribution, and retailing (Vlahos et al., 1998). We define the electricity supply 

network as the entire chain of electric power supply from upstream to downstream 

(Vafadarnikjoo et al., 2020). In previous studies, Kjolle et al. (2012) implemented a cross-

sector risk analysis to investigate the cascading impact of failure in the electric power supply 

in other infrastructures. Hammond and Waldron (2008) identified and ranked major risks in 

the UK electricity sector by considering various stakeholder groups and quantifying risks by 

multiplying the likelihood of each risk and its consequences. Silvast (2017) studied the 

electricity infrastructure and interruptions from a social science perspective and tried to answer 

how people and organizations react to these interruptions. Staid and Guikema (2015) provided 

an overview of the risks encountered by an offshore wind farm in the US.  

In the context of energy and MCDA, Cinelli et al. (2022) discussed the proper and improper 

use of MCDA methods in energy system analysis by proposing a decision-support system. Lin 

et al. (2018) identified risk elements of the New Energy Power System (NEPS) in China and 
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analyzed their internal influence relations based on D numbers and DEMATEL. Wu et al. 

(2018) evaluated renewable energy power sources in China applying a fuzzy AHP method and 

a cumulative prospect theory. Okoro and Kolios (2018) developed and applied a multiple 

criteria risk assessment framework in a complex oil and gas support structure. Bolsover (2015) 

employed Bayesian Network (BN) to monitor risks in real-time which would lead to a more 

efficient decision making in an offshore drilling rig. Chou and Ongkowijoyo (2014) proposed 

a risk-based approach to compare alternative renewable energy schemes. They applied a hybrid 

graphical matrix approach with a Monte Carlo simulation. Maxim (2014) prioritized 13 power 

generation technologies by considering 10 criteria using a weighted sum multi-attribute utility 

approach. Hunt et al. (2013) proposed a decision support framework tool based on MCDA for 

complex prediction of decision-making processes in the UK energy sources. Aplak and Sogut 

(2013) used game theory to evaluate the decision-making process of the industry and 

environment as two players based on the scope of energy management. The strategies were 

analyzed using MCDM methods to calculate the performance efficiency values. Ren et al. 

(2009) studied the causal interrelationships between risk elements in offshore installation 

operations using a Fuzzy Bayesian Network (FBN). Vafadarnikjoo et al. (2022) reviewed the 

risks in the UK electric power supply chains and identified the below risks as the most crucial 

ones by applying neutrosophic revised decision-making trial and evaluation laboratory (NR-

DEMATEL) method:   

 

2.2.1. Natural Disasters (ND) 

Natural Disasters (ND) are calamitous events of atmospheric, geological, or hydrological 

origin. These include storms, hurricanes, floods, earthquakes, droughts, tsunamis, landslides, 

volcanic eruptions, and wildfires. Their impact can be rapid or slow and can disrupt the supply 

chain or the operation of power generation units. In previous studies, methods other than 

MCDA have been applied to identify and assess the impact of disasters on power grids, such 

as social network analysis (He et al., 2025), mathematical modeling (Aldarajee et al., 2020), 

and probabilistic modeling (Opabola and Galasso, 2024). 

 

2.2.2. Climate Change (CC)  

Climate Change (CC) is a long-term alteration of the climate, mainly driven by manmade 

greenhouse gas (GHG) emissions. Changes in precipitation, cloud coverage, and wind patterns 

can impact hydropower generation as well as solar and wind power productivity. This can also 

threaten the capability of cooling thermal power stations to disrupt their operation. The 
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transformation and transportation of electricity can also be affected by the increased occurrence 

of extreme weather events (discussed in Section 2.2.1). Salam et al. (2024) reviewed the impact 

of climate change challenges on the electric power system and explored the role of microgrids 

in climate change mitigation and adaptation strategies.  

 

2.2.3. Industrial Action (IA)  

Industrial Action (IA) is regarded as a major cause of disruptions in energy supply and 

electricity generation. The electricity sector, as a state-controlled legacy, has connections with 

powerful labor unions. These unions may be regarded as the main barriers to the liberalization 

and privatization of the power sector, which is underway in many countries. Hence, the threat 

of coordinated industrial action often exists. It should be noted that disruptions caused by 

industrial action are considered short- or medium-term shocks (depending on the definition) 

(Chalvatzis 2012). As an example, in the oil market, the Venezuelan industrial action in 2002-

3 resulted in a gross peak supply loss of 2.6 mb/d (million barrels per day) and is regarded as 

one of the five most important disruptions of the past decades (Löschel, Moslener, and 

Rübbelke 2010).  

 

2.2.4. Affordability (AF) 

Affordability (AF) refers to the price of energy and capacity of households and business users 

to afford it. This demonstrates that the availability of energy is insufficient if it is available at 

very high prices. In business terms, it can lead to activity reduction or even elimination and 

loss of competitiveness in businesses that are not exposed to high prices. It is also related to 

vulnerable consumers, who may not be able to meet their basic energy needs, leading to what 

is known as energy poverty (Gonzalez-Eguino, 2015).  

 

2.2.5. Political Instability (PI) 

Political Instability (PI) refers to social unrest or geopolitical changes that affect the security 

of the energy supply chain and cause disruptions. Political instability can impact all aspects of 

the electricity supply system, including the supply, network, and demand. In addition to 

national politics and potential unrest, this risk can be linked to geopolitical changes with trade 

embargoes and resource nationalism. 

 

2.2.6. Sabotage and Terrorism (ST) 
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Sabotage and Terrorism (ST) make the electricity supply network confront the serious 

challenge of providing more security without compromising the inbuilt productivity benefits 

in highly complicated and interconnected power networks. Disruption of electricity supplies 

can have a catastrophic impact on national security. Power systems can never be completely 

safeguarded against a determined attack because the assets are widely dispersed. Nowadays, 

the increased usage of EVs can potentially pose risks on the electric grid via electric vehicle 

charging stations (Moghadasi et al., 2022). 

 

3. Proposed STE-BWM method 

 

The implementation steps for the hybrid use of STE and BWM (STE-BWM) are presented in 

Figure 1. The STE can be accomplished by either Enumerating All Spanning Trees (EAST) 

(Siraj et al., 2012) or Geometric Mean of All Spanning Trees (GMAST) (Lundy et al., 2017). 

Siraj et al. (2012) introduced the EAST method to obtain prioritization weights of criteria in 

pair-wise comparisons. The EAST procedure is explained in the following steps: 

 

Step 1: Obtain the criteria set 

 𝐶 = {𝐹1, 𝐹2, … , 𝐹𝑛} 
(1) 

Step 2: Acquire the pair-wise comparison matrix of criteria 

The obtained pair-wise comparisons can be either complete (without missing values) or 

incomplete (with missing values).   

 

 𝐴 = [𝑎𝑖𝑗]    𝑖, 𝑗 = 1,… , 𝑛 
(2) 

 

Step 3: Produce the corresponding graph of the pair-wise comparison matrix 

The graph can be produced by taking each criterion as a vertex then each non-empty, non-

diagonal element of the pair-wise comparison matrix reveals that there is an edge between the 

two related vertices as in Equation (3); (𝑖, 𝑗) represents an edge between vertex 𝑖 and 𝑗.  
 

 (𝑖, 𝑗) = { 𝑒𝑥𝑖𝑠𝑡𝑠, 𝑎𝑖𝑗 ∉ ∅𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡, 𝑎𝑖𝑗 ∈ ∅         𝑖 ≠ 𝑗 (3) 

 

Step 4: Generate all spanning trees 
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The total number of possible spanning trees (𝜂) can be calculated using Kirchhoff’s matrix-

tree theorem (Theorem A.3 in Appendix A). Subsequently, a Gray code algorithm (Appendix 

B) is used to generate all spanning trees. 

 

Step 5: Compute the weights of criteria from each spanning tree 

Knowing that each obtained spanning tree has (𝑛 − 1) edges. The weight of 𝑖𝑡ℎ criterion in 𝑘𝑡ℎ spanning tree (𝑤𝑖(𝑘)
) can be computed by solving a system of 𝑛 linear equations. For any 

spanning tree, the (𝑛 − 1) equations out of 𝑛 are constructed based on Equation (4) and the 

last one indicates the sum of weights must be equal to 1 as shown in Equation (5) 

 

 𝑤𝑖(𝑘) = 𝑎𝑖𝑗𝑤𝑗(𝑘)
   ∀𝑘 = 1,… , 𝜂    𝑖, 𝑗 = 1,… , 𝑛   𝑖 ≠ 𝑗 (4) 

 

 ∑ 𝑤𝑖(𝑘)𝑛𝑖=1 = 1       ∀𝑘 = 1,… , 𝜂 
(5) 

 

Step 6: Calculate the average of all weights and prioritize criteria 

Assuming 𝜂 is the total number of generated spanning trees then the final weights of criteria 

(𝑤𝑖) can be obtained based on the Equation (6) 

 

 𝑤𝑖 = ∑ 𝑤𝑖(𝑘)𝜂𝑘=1𝜂      ∀𝑖 = 1,… , 𝑛      
(6) 

In the proposed approach, the following steps should be followed: 
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Figure 1. Implementation steps of the STE-BWM 

 

Step 1: Identify the set of decision-making criteria. The identified criteria can be signified as 

shown in Equation (7). 

 𝑁 = {𝐶1 , 𝐶2 , … , 𝐶𝑛} 
(7) 

 

Step 2.1: Determine the set of best criteria (i.e., the most critical, most favorable, or most 

important group of criteria), and the set of worst criteria (i.e., the least critical; least favorable 

or least important group of criteria). The sets of the best and worst criteria are denoted by 𝛩 

and 𝛤 which are identical subsets of 𝑁 as represented in Equations (8) and (9), respectively. 

 𝛩 = {𝑀1, 𝑀2 , … ,𝑀𝑚}       𝛩 ⊂ 𝑁,𝛩 ≠ 𝛤 
(8) 

 

 𝛤 = {𝐿1, 𝐿2 , … , 𝐿𝑛−𝑚}       𝛤 ⊂ 𝑁, 𝛤 ≠ 𝛩 
(9) 

 

Step 2.2: Apply STE to obtain the best or/and worst criterion 

In this step, by applying STE (EAST or GMAST), the weights of each combination of the best 

and the worst criteria are calculated and the maximum weight in 𝛩 determines the best criterion 

and the minimum weight in 𝛤 determines the worst criterion. The maximum number of 
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calculations equals to 𝑚 × (𝑛 − 𝑚) because of |𝛩| = 𝑚 and |𝛤| = 𝑛 − 𝑚. For instance, if |𝛩| = 2 , and |𝛤| = 3 , then the STE calculations should be carried out 6 times (i.e., 2 × 3). 

 

Then, the rest of the analysis should be followed from Step 3 to 5 in the Linear BWM (L-

BWM) (Rezaei, 2016) as explained below: 

 

Step 3: Establishing the Best-to-Others (BO) preference vector using a 9-point scale  

In this stage, experts use the linguistic 1-9 rating scale (1 representing equally important to 9 

representing extremely more important) to construct a preference vector for the most critical 

risk (i.e., best) over other risks. A rating scale of 1 means equal preference, and 9 means 

extreme preference. The resulting BO vector can be represented as 𝐴𝐵 = (𝑎𝐵1, 𝑎𝐵2, … , 𝑎𝐵𝑛). 

The notation 𝑎𝐵1 denotes the preference of the most critical (i.e., the best) risk 𝐵 compared to 

risk 1 , and obviously, the value of 𝑎𝐵𝐵 will be 1. 

 

Step 4: Establishing the Others-to-Worst (OW) preference vector using a 9-point scale 

In this stage, experts use the linguistic 1-9 rating scale (1 representing equally important to 9 

representing extremely more important) to construct a preference vector of others to the worst 

(i.e., the least critical) risk. The OW vector can be represented as 𝐴𝑊 = (𝑎1𝑊, 𝑎2𝑊 , … , 𝑎𝑛𝑊)𝑇. 

In the OW vector, the notation 𝑎1𝑊 denotes the value of a verbal scale for a risk 1 over the 

worst (i.e., the least critical) risk 𝑊, and, naturally, the value of 𝑎𝑊𝑊   is equal to 1. 

 

Step 5: Finding the optimal weights of identified risks (𝑤1∗, 𝑤2∗, … , 𝑤𝑛∗)  
In this step, the optimized weight of each risk is calculated by minimizing the maximum 

absolute differences, as shown in the objective function of Model (1). 

 min 𝑚𝑎𝑥𝑗 {|𝑤𝐵 − 𝑎𝐵𝑗𝑤𝑗|, |𝑤𝑗 − 𝑎𝑗𝑊𝑤𝑊|} (1) 

 subject to  

 ∑𝑤𝑗𝑗 = 1  

 𝑤𝑗 ≥ 0 for all 𝑗  

 

Model (1) is converted into a linear programming problem, which can be represented as Model 

(2): 

 Min 𝜉𝐿 (2) 
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 subject to  

 |𝑤𝐵 − 𝑎𝐵𝑗𝑤𝑗| ≤ 𝜉𝐿 for all j  

 |𝑤𝑗 − 𝑎𝑗𝑊𝑤𝑊| ≤ 𝜉𝐿  for all j  

 ∑𝑤𝑗𝑗 = 1  

 𝑤𝑗 ≥ 0 for all 𝑗  

 

In Section 4, a Monte Carlo simulation is implemented to test the validity of the proposed STE-

BWM under various numerical experiments. 

 

4. Monte Carlo simulation analysis 

Simulation analysis was performed by running numerical analyses in Python. The Python code 

is available via open-access and provides a free decision support tool1. Monte Carlo simulation 

iterations are 10, 50, 250, and 1000. The simulation algorithm, experimental design, and 

simulation results are presented in the following sections. 

 

4.1. Simulation algorithm 

The proposed simulation algorithm has six steps. The simulation algorithm begins by initiating 

the parameters. Next, it randomly chooses the best and worst criteria based on the given values, 

then generates initial BO and OW vectors using randomly selected values from a 9-point scale. 

After that, it calculates input-based consistency to determine if consistency is achieved. If 

consistent, the algorithm applies the GMAST method to obtain weights for the criteria. Finally, 

it checks if the maximum number of iterations has been reached; if not, the process repeats, but 

if the maximum cycle is reached, it aggregates all weights. These steps are elaborated below 

and all the steps in the algorithm are illustrated in Figure 2.  

 
1 The codes are accessible at this link: https://github.com/AminVafadar/STE-BWM 
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Figure 2. The simulation process  

Step 1: Initiate the parameters 

The parameters include number of criteria (n), number of best criteria (|𝜃|), number of worst 

criteria (|𝛤|), and number of cycles (MCN). 

 

Step 2: Randomly choose the best and worst criteria given the values 

The best and worst criteria are chosen randomly considering predefined n, |𝜃| and |𝛤|. 
 

Step 3: Generate initial BO and OW vectors using randomly selected values from 9-point scale 

In this section, the generation of initial BO and OW vectors is explained. In this example, there 

are six criteria (𝑛 = 6), three best criteria (|𝜃| = 3), and one worst criterion (|𝛤| = 1). Thus, 

there are three BO vectors and one OW vector. 

 

I.  Randomly choose the three best criteria and one worst criterion 𝑁 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6}     thus       𝑛 = 6. 𝜃 = {𝐶2, 𝐶4, 𝐶5}     thus        |𝜃| = 3 and 𝛤 = {𝐶3}     thus     |𝛤| = 1 . 

Note that the criterion that belongs to the best set cannot belong to the worst set and vice versa. 
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II.  Each best criterion is equally preferred to themselves  

With reference to the importance 1-9 rating scale in Rezaei (2016), we use values of 1 as shown 

below:  

  𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 

BO vector 1 𝐶2  1     

BO vector 2 𝐶4    1   

BO vector 3 𝐶5     1  

     

III.  Generate a value for 𝑎𝐵𝑊 

Randomly choose a value from 3 to 9 (with reference to the importance 1-9 rating scale in 

Rezaei (2016)). In this example, assume that 𝑎23 = 𝑎43 = 𝑎53 = 8 

  𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 

BO vector 1 𝐶2  1 8    

BO vector 2 𝐶4   8 1   

BO vector 3 𝐶5   8  1  

 

 

IV.  Best criteria are equally important compared to each other 

The criteria 𝐶2, 𝐶4, 𝐶5 are the best criteria as shown in 𝜃 = {𝐶2, 𝐶4, 𝐶5}. Thus, they need to be 

equally important compared to each other.  

  𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 

BO vector 1 𝐶2  1 8 1 1  

BO vector 2 𝐶4  1 8 1 1  

BO vector 3 𝐶5  1 8 1 1  

 

V.  Generate the rest of the remaining values in BO vectors 

The remaining values are generated using values between 2 and 𝑎𝐵𝑊 − 1. Here, values between 

2 and 7 are randomly chosen for the rest of remaining values. 

  𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 

BO vector 1 𝐶2 7 1 8 1 1 5 

BO vector 2 𝐶4 6 1 8 1 1 3 

BO vector 3 𝐶5 4 1 8 1 1 6 
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VI.  To generate OW vector(s), use the 𝑎𝐵𝑊 values 

To compare the best criteria to the worst criterion, the value of 𝑎𝐵𝑊 = 8 is chosen. 

 OW vector 

 𝐶3 𝐶1  𝐶2 8 𝐶3  𝐶4 8 𝐶5 8 𝐶6  

VII.  Each worst criterion is equally preferred to themselves 

The criterion 𝐶3 as the selected worst criterion is equally important to itself and the value 

1 must be put it the OW vector. 

 OW vector 

 𝐶3 𝐶1  𝐶2 8 𝐶3 1 𝐶4 8 𝐶5 8 𝐶6  

VIII.  Worst criteria are equally important compared to each other 

In this example, we just have one worst criterion. Otherwise, their values would have also been 

one. 

 

IX.  Generate the rest of the remaining values in OW vectors 

The remaining values are generated using values between 2 and 𝑎𝐵𝑊 − 1. Here, values between 

2 and 7 are randomly chosen for the rest of remaining values. 
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 OW vector 

 𝐶3 𝐶1 5 𝐶2 8 𝐶3 1 𝐶4 8 𝐶5 8 𝐶6 6 

 

Step 4: Calculate input-based consistency 

Input-based consistency 𝐶𝑅𝐼 or the global input-based consistency ratio for all criteria is the 

maximum value of 𝐶𝑅𝑗𝐼 which are local consistency levels associated with each criterion (𝐶𝑗)  

(Liang et al. 2020).  

This is formulated as 𝐶𝑅𝐼 = max𝑗 𝐶𝑅𝑗𝐼 where 𝐶𝑅𝑗𝐼 = {|𝑎𝐵𝑗×𝑎𝑗𝑊−𝑎𝐵𝑊|𝑎𝐵𝑊×𝑎𝐵𝑊−𝑎𝐵𝑊 𝑎𝐵𝑊 > 10 𝑎𝐵𝑊 = 1 . 

 

Step 5: Apply GMAST and obtain weights 

Lundy et al. (2017) explored the quality of the GMAST method and indicated that as EAST 

fails to adhere to geometric properties, GMAST can outperform EAST in obtaining final 

weights. In GMAST, the same steps as EAST should be followed as explained in the proposed 

STE-BWM (Section 3) but for the final step geometric mean is employed using the geometric 

mean of all weights 𝑤𝑖 = √∏ 𝑤𝑖(𝑘)𝜂𝑘=1𝜂
     ∀𝑖 = 1,… , 𝑛  and ultimately to prioritize criteria in 

an descending order of obtained weights. 

 

Step 6: Check if maximum number of iterations is reached 

If yes, all the weights are aggregated using the geometric mean presented in 𝑤𝑖 = √∏ 𝑤𝑖(𝑘)𝜂𝑘=1𝜂
     ∀𝑖 = 1,… , 𝑛  . 
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4.2. Experimental designs 

The set of designed experiments considering all possible scenarios for the Monte Carlo 

simulations are illustrated in Table 1. The process of an experimental instance is depicted in 

Figure 3. 

Table 1. Designed experiments for the Monte Carlo simulations 𝑛 = 9 
|𝜃| 1 2 3 4 5 6 7 8 

|Γ| 
2 1 1 1 1 1 1 1 3 2 2 2 2 2 2  4 3 3 3 3 3   5 4 4 4 4    6 5 5 5     7 6 6      8 7       𝑛 = 8 

|𝜃|  1 2 3 4 5 6 7  

|Γ| 
2 1 1 1 1 1 1  3 2 2 2 2 2   4 3 3 3 3    5 4 4 4     6 5 5      7 6       𝑛 = 7 

|𝜃|   1 2 3 4 5 6   

 2 1 1 1 1 1   

 3 2 2 2 2    |Γ| 4 3 3 3     

 5 4 4      

 6 5       𝑛 = 6 
  |𝜃|      1 2 3 4 5    

|Γ| 2 1 1 1 1    3 2 2 2     4 3 3      5 4       𝑛 = 5 
|𝜃|     1 2 3 4     

 2 1 1 1     |Γ| 3 2 2      

 4 3       𝑛 = 4 
 |𝜃|       1 2 3      |Γ| 2 1 1      3 2       𝑛 = 3 

|𝜃|       1 2       |Γ| 2 1       

 

 

 

 



18 

 

 

Figure 3. An experimental instance (𝑛 = 6, |𝜃| = 3, |𝛤| = 1) 

 

4.3. Simulation results 

In cases where more than one best or worst criterion was available, Success (i.e., successful or 

100% success rate) means that both the unique best and worst criteria could be identified. 

Failure (i.e., unsuccessful or 0% success rate) means that none of the best or worst criteria can 

be uniquely identified. Mixed (i.e., 50% success rate) indicates that either the best or worst 

criterion was uniquely identified. Table 2 provides average success rate in identifying unique 

best and worst criteria when using aggregated weights of criteria by applying geometric mean 

in 10 iterations. Table 3 illustrates the same average success rates under 50 iterations. 

 

Table 2. Average success rate in 10 iterations (✓=success, ✗=failure, ✓/✗=mixed) 𝑛 = 9 
|𝜃| Average Success Rate (%) 

1 2 3 4 5 6 7 8 

60.0 |Γ| 
1 – ✓ ✓ ✓ ✓ ✓ ✓ ✗ 

2 ✓ ✓ ✗ ✓/✗ ✓ ✓ ✗ – 

3 ✓ ✗ ✓/✗ ✓ ✓ ✗ – – 

4 ✓ ✓ ✓ ✓ ✗ – – – 

5 ✓ ✓ ✓ ✗ – – – – 

6 ✓ ✓ ✗ – – – – – 

7 ✓ ✗ – – – – – – 

8 ✗ – – – – – – – 𝑛 = 8 1 2 3 4 5 6 7 8 

56.5 |Γ| 1 – ✓ ✓ ✓ ✓ ✓ ✗ – 

2 ✓ ✓ ✓ ✓/✗ ✓/✗ ✗ – – 
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3 ✓ ✓/✗ ✓ ✓ ✗ – – – 

4 ✓ ✓/✗ ✓ ✗ – – – – 

5 ✓ ✓ ✗ – – – – – 

6 ✓ ✗ – – – – – – 

7 ✗ – – – – – – – 𝑛 = 7 1 2 3 4 5 6 7 8 

56.4 |Γ| 
1 – ✓ ✓ ✓ ✓ ✗ – – 

2 ✓ ✓ ✓ ✓ ✗ – – – 

3 ✓ ✓ ✓ ✗ – – – – 

4 ✓ ✓/✗ ✗ – – – – – 

5 ✓ ✗ – – – – – – 

6 ✗ – – – – – – – 𝑛 = 6 1 2 3 4 5 6 7 8 

53.3 |Γ| 
1 – ✓ ✓ ✓ ✗ – – – 

2 ✓ ✓ ✓ ✗ – – – – 

3 ✓ ✓ ✗ – – – – – 

4 ✓ ✗ – – – – – – 

5 ✗ – – – – – – – 𝑛 = 5 1 2 3 4 5 6 7 8 

45.8 |Γ| 1 – ✓ ✓ ✗ – – – – 

2 ✓ ✓ ✗ – – – – – 

3 ✓ ✗ – – – – – – 

4 ✗ – – – – – – – 𝑛 = 4 1 2 3 4 5 6 7 8 

33.3 |Γ| 1 – ✓ ✗ – – – – – 

2 ✓ ✗ – – – – – – 

3 ✗ – – – – – – – 𝑛 = 3 1 2 3 4 5 6 7 8 

0.0 |Γ| 1 – ✗ – – – – – – 

2 ✗ – – – – – – – 

 

 

As can be seen in Table 2, the average success rate is 60% under 𝑛 = 9 . This value is calculated 

by taking the average of success rates under various parameter values for |Θ| and |Γ| when 𝑛 =9. For example, under the parameter settings of |Γ| = 1 and 𝑛 = 9 where |Θ| = 2,…8, the 

average success rate is 85.71% (i.e., 6 successes out of 7 cases). The average success rate for |Γ| = 2, 𝑛 = 9, and |Θ| = 1,…7 is 64.29%. By taking the other average success rates under 𝑛 = 9 and various possible values for |Θ| and |Γ|, the average value of 60% can be computed 

which is the average of 85.71%, 64.29%, 58.33%, 80%, 75%, 66.67%, 50% and 0%. For the 

sake of simplicity, merely the final average success rates are presented in Tables 2 and 3. 

 

 

Table 3. Average success rate in 50 iterations (✓=success, ✗=failure, ✓/✗=mixed) 

 𝑛 = 9 
|𝜃| Average Success Rate (%) 

1 2 3 4 5 6 7 8 
65.8 |Γ| 1 – ✓ ✓ ✓ ✓ ✓ ✓ ✗ 
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2 ✓ ✓ ✓ ✓ ✓ ✓ ✗ – 

3 ✓ ✓ ✓ ✓ ✓ ✗ – – 

4 ✓ ✓ ✓ ✓ ✗ – – – 

5 ✓ ✓ ✓ ✗ – – – – 

6 ✓ ✓ ✗ – – – – – 

7 ✓ ✗ – – – – – – 

8 ✗ – – – – – – – 𝑛 = 8 1 2 3 4 5 6 7 8 

62.6 |Γ| 
1 – ✓ ✓ ✓ ✓ ✓ ✗ – 

2 ✓ ✓ ✓ ✓ ✓ ✗ – – 

3 ✓ ✓ ✓ ✓ ✗ – – – 

4 ✓ ✓ ✓ ✗ – – – – 

5 ✓ ✓ ✗ – – – – – 

6 ✓ ✗ – – – – – – 

7 ✗ – – – – – – – 𝑛 = 7 1 2 3 4 5 6 7 8 

58.6 |Γ| 
1 – ✓ ✓ ✓ ✓ ✗ – – 

2 ✓ ✓ ✓ ✓ ✗ – – – 

3 ✓ ✓ ✓ ✗ – – – – 

4 ✓ ✓ ✗ – – – – – 

5 ✓ ✗ – – – – – – 

6 ✗ – – – – – – – 𝑛 = 6 1 2 3 4 5 6 7 8 

53.3 |Γ| 
1 – ✓ ✓ ✓ ✗ – – – 

2 ✓ ✓ ✓ ✗ – – – – 

3 ✓ ✓ ✗ – – – – – 

4 ✓ ✗ – – – – – – 

5 ✗ – – – – – – – 𝑛 = 5 1 2 3 4 5 6 7 8 

45.8 |Γ| 1 – ✓ ✓ ✗ – – – – 

2 ✓ ✓ ✗ – – – – – 

3 ✓ ✗ – – – – – – 

4 ✗ – – – – – – – 𝑛 = 4 1 2 3 4 5 6 7 8 

33.3 |Γ| 1 – ✓ ✗ – – – – – 

2 ✓ ✗ – – – – – – 

3 ✗ – – – – – – – 𝑛 = 3 1 2 3 4 5 6 7 8 

0.0 |Γ| 1 – ✗ – – – – – – 

2 ✗ – – – – – – – 

 

Figure 4 and Figure 5 show the average success rates under various number of criteria (𝑛) and 

number of best criteria (|Θ|) in 10 and 50 iterations, respectively. 
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Figure 4. Average success rate for varying criteria and best criteria numbers (10 iterations)  

 

 

 

Figure 5. Average success rate for varying criteria and best criteria numbers (50 iterations) 
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Figure 6 and Figure 7 show the average success rates under various number of criteria (𝑛) and 

number of worst criteria (|Γ|) in 10 and 50 iterations, respectively. 

 

 

Figure 6. Average success rate for varying criteria and worst criteria numbers (10 iterations)  
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Figure 7. Average success rate for varying criteria and worst criteria numbers (50 iterations) 

 

The results show that (1) STE is unable to identify the best or worst criterion when all the 

criteria are either the best or worst. This means that no free criterion (i.e., neither the best nor 

worst) exists. However, in real-world decision-making environment, it barely happens that 

there would be no free criterion. (2) STE is fully effective in other cases with free criteria. (3) 

With an increase in the number of iterations, the success rate in identifying the best and worst 

criteria grows regardless of the number of criteria. This is evident from 10 to 50 iterations. (4) 

The optimum number of iterations is 50, as the average success rate stabilizes and does not 

change by increasing to 250 or 1000. (5) The maximum success rate is 65.80%, including non-

free cases, and the success rate is 100%, excluding non-free cases (50 iterations, n=9). For 

baseline analysis, the traditional BWM is considered but since it needs only one best and one 

worst criterion, it will not allow selecting multiple best or worst criteria in the simulations. 

However, we applied Fuzzy BWM as the baseline comparison method in our case study 

analysis (Section 5.4).  The analysis of the application of the proposed STE-BWM in the case 

study of the UK electricity supply network system is discussed in Section 5. 

 

5. Empirical findings in the UK electricity supply network system 

In a vulnerability assessment of the UK electric power supply (Vafadarnikjoo et al., 2022), six 

prominent risks are identified: affordability, natural disasters, industrial action, climate change, 
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political instability, sabotage, and terrorism. Table 4 presents the most and least important risks 

identified by five experts. To collect data, 16 experts with rich knowledge and expertise in the 

UK energy domain were contacted, and 5 responses were received (31% response rate). The 

BO and OW vectors are listed in Tables 5 and 6, respectively. The BO and OW vectors are 

based on the preferences of the experts.  

 

Table 4. Most and least important risks determined by experts 

 
Identified as most important 

by experts 

Identified as least important 

by experts 

AF: Affordability 1  

ND: Natural Disasters 4  

IA: Industrial Action  1, 5 

CC: Climate Change 2, 3, 5  

ST: Sabotage/Terrorism 4 3 

PI: Political Instability  2, 4 

 

The values of consistency ratio are all within an acceptable threshold lower than 0.1 (Liang et 

al. 2020).  

 
Table 5. Best-to-others (BO) vectors 

Experts 
The most 

critical risk 
PI ND IA CC ST AF 1 AF 1 3 5 2 4 1 2 CC 9 8 3 1 9 5 3 CC 5 3 3 1 4 7 4 

ND 7 1 4 3 1 5 

ST 7 1 4 3 1 5 5 CC 6 2 8 1 2 3 

 

Table 6. Others-to-worst (OW) vectors 

Experts 1 2 3 4 5 

The least 

critical risk 
IA PI ST PI IA 

ND 2 6 4 7 7 

CC 3 9 9 5 9 

ST 1 5 1 7 7 

AF 5 7 5 4 5 

PI 4 1 3 1 3 

IA 1 5 5 3 1 

 

As can be seen in Table 4; expert 4, hesitated to choose only one best criterion (i.e., the most 

critical risk) between Natural Disasters (ND) and Sabotage and Terrorism (ST); that is why 
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both were selected. Thus, following the proposed steps of the STE-BWM explained in Section 

3, the best criterion for expert 4 can be realized. 

 

Step 1: The identified set of risks are 𝑁 = {𝐴𝐹, 𝑁𝐷, 𝐼𝐴, 𝐶𝐶, 𝑆𝑇, 𝑃𝐼} 
 

Step 2: The set of best and worst risks based on expert 4 are 𝛩 = {𝑁𝐷, 𝑆𝑇} (i.e., |𝛩| = 2) and 𝛤 = {𝑃𝐼} (i.e., |𝛤| = 1), respectively. Thus, the STE calculations must be performed twice 

(i.e., |𝛩| × |𝛤| = 2 ). One time for ND and PI and the second for ST and PI. These analyses 

are presented in the following sections (sections 5.1, 5.2 and 5.3). 

 

5.1. The STE analysis for natural disasters (ND) and political instability (PI) 

The STE analyses for ND and PI based on EAST and GMAST are explained in this section. 

Step 1: The identified set of risks are 𝐶 = {𝐴𝐹, 𝑁𝐷, 𝐼𝐴, 𝐶𝐶, 𝑆𝑇, 𝑃𝐼}  
 

Step 2: Based on the pair-wise comparison vectors provided by expert 4 for ND (i.e., the best 

risk), and PI (i.e., the worst risk) as shown in Tables 5 and 6, the incomplete pair-wise 

comparison matrix 𝐴 can be obtained (Table 7). The scale used is from 1-9 in the BWM 

(Rezaei, 2016).  

 

Table 7. The incomplete pair-wise comparison matrix A by expert 4 (ND and PI) 

  1 2 3 4 5 6 

  AF ND IA CC ST PI 1 AF 1 0.20    4 2 ND 5 1 4 3 1 7 3 IA  0.25 1   3 4 CC  0.33  1  5 5 ST  1.00   1 7 6 PI 0.25 0.14 0.33 0.20 0.14 1 

 

Step 3: The corresponding graph 𝐺 of the pair-wise comparison matrix 𝐴 (Table 7) is produced 

as shown in Figure 8. 
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Figure 8. The undirected (a), and directed (b) graph G of the matrix A (ND and PI)  

 

Step 4: The Kirchhoff’s matrix-tree theorem (Theorem A.3 in Appendix A) is used to obtain 

the total number of spanning trees. It is known that for each tree, 𝑛 − 1 = 6 − 1 = 5 edges are 

needed and as can be seen in Figure 8, the obtained graphs have 9 edges. The total number of 

spanning trees can be obtained as 𝜂 = 48 using the Kirchhoff’s matrix-tree theorem. 

Furthermore, the degree matrix and adjacency matrix of graph 𝐺 are shown in Equation (10) 

and (11), respectively.  

 

                                 𝐷(𝐺) = [  
   2 0 0 0 0 00 5 0 0 0 00000

0000
2 0 0 00 2 0 00 0 2 00 0 0 5]  

    (10) 
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 𝐴(𝐺) = [  
   0 1 0 0 0 11 0 1 1 1 10001

1111
0 0 0 10 0 0 10 0 0 11 1 1 0]  

    (11) 

 

Then, the Laplacian matrix of graph 𝐺 is obtained as represented in Equation (12). 

 

 𝐿(𝐺) = 

 

2 -1 0 0 0 -1 

-1 5 -1 -1 -1 -1 

0 -1 2 0 0 -1 

0 -1 0 2 0 -1 
0 -1 0 0 2 -1 

-1 -1 -1 -1 -1 5 
 

(12) 

 𝐿∗(𝐺) can be attained by omitting any row and the corresponding column of the Laplacian 

matrix (for instance, by removing row 1 and column 1 or row 2 and column 2 and so on). 

Then, |𝐿∗(𝐺)| = 48 which is the total number of spanning trees for the graph G (Figure 8) of 

the incomplete pairwise comparison matrix A (Table 7). Ultimately, the Gray code algorithm 

is used to generate all 48 spanning trees (Appendix B). 

 

Step 5: the weights of six risks in each of the 48 spanning trees are calculated. The weight of 𝑖𝑡ℎ risk (𝑖 = 1, … , 6) in 𝑘𝑡ℎ spanning tree (𝑘 = 1,… ,48) is denoted as 𝑤𝑖(𝑘)
 and computed based 

on Equations (4) and (5). All weights are shown in Table 8.  

 

Table 8. Weights of risks in all spanning trees (ND and PI) 

  weights 

No. Arcs in spanning trees 1: AF 2: ND 3: IA 4: CC 5: ST 6: PI 

1 a21, a26, a36, a25, a24 0.0644 0.3221 0.1380 0.1074 0.3221 0.0460 

2 a21, a26, a25, a24, a23 0.0683 0.3417 0.0854 0.1139 0.3417 0.0488 
3 a21, a36, a25, a24, a23 0.0698 0.3488 0.0872 0.1163 0.3488 0.0291 

4 a21, a26, a36, a24, a56 0.0644 0.3221 0.1380 0.1074 0.3221 0.0460 

5 a21, a36, a25, a24, a56 0.0644 0.3221 0.1380 0.1074 0.3221 0.0460 

6 a21, a26, a36, a25, a46 0.0574 0.2869 0.1230 0.2049 0.2869 0.0410 
7 a21, a36, a25, a24, a46 0.0714 0.3571 0.0714 0.1190 0.3571 0.0238 

8 a21, a36, a25, a24, a16 0.0732 0.3659 0.0549 0.1220 0.3659 0.0183 

9 a26, a36, a25, a24, a16 0.1644 0.2877 0.1233 0.0959 0.2877 0.0411 
10 a21, a36, a24, a56, a23 0.0816 0.4082 0.1020 0.1361 0.2381 0.0340 

11 a21, a25, a24, a56, a23 0.0683 0.3417 0.0854 0.1139 0.3417 0.0488 

12 a21, a26, a24, a56, a23 0.0683 0.3417 0.0854 0.1139 0.3417 0.0488 
13 a21, a24, a46, a56, a23 0.0863 0.4317 0.1079 0.1439 0.2014 0.0288 

14 a21, a25, a46, a56, a23 0.0605 0.3024 0.0756 0.2160 0.3024 0.0432 

15 a21, a36, a46, a56, a23 0.0789 0.3947 0.0987 0.1645 0.2303 0.0329 



28 

 

16 a21, a26, a46, a56, a23 0.0605 0.3024 0.0756 0.2160 0.3024 0.0432 
17 a24, a16, a46, a56, a23 0.1119 0.4196 0.1049 0.1399 0.1958 0.0280 

18 a25, a16, a46, a56, a23 0.1553 0.2718 0.0680 0.1942 0.2718 0.0388 

19 a36, a16, a46, a56, a23 0.1250 0.3750 0.0938 0.1563 0.2188 0.0313 

20 a26, a16, a46, a56, a23 0.1553 0.2718 0.0680 0.1942 0.2718 0.0388 
21 a21, a16, a46, a56, a23 0.0952 0.4762 0.1190 0.1190 0.1667 0.0238 

22 a21, a36, a25, a46, a23 0.0678 0.3390 0.0847 0.1412 0.3390 0.0282 

23 a21, a25, a24, a46, a23 0.0702 0.3509 0.0877 0.1170 0.3509 0.0234 
24 a21, a26, a25, a46, a23 0.0605 0.3024 0.0756 0.2160 0.3024 0.0432 

25 a26, a25, a24, a16, a23 0.1733 0.3032 0.0758 0.1011 0.3032 0.0433 

26 a36, a25, a24, a16, a23 0.1111 0.3333 0.0833 0.1111 0.3333 0.0278 
27 a21, a25, a24, a16, a23 0.0706 0.3529 0.0882 0.1176 0.3529 0.0176 

28 a21, a36, a25, a46, a56 0.0574 0.2869 0.1230 0.2049 0.2869 0.0410 

29 a21, a36, a24, a46, a56 0.0882 0.4412 0.0882 0.1471 0.2059 0.0294 

30 a21, a26, a36, a46, a56 0.0574 0.2869 0.1230 0.2049 0.2869 0.0410 
31 a26, a36, a24, a16, a56 0.1644 0.2877 0.1233 0.0959 0.2877 0.0411 

32 a36, a25, a24, a16, a56 0.1644 0.2877 0.1233 0.0959 0.2877 0.0411 

33 a21, a36, a24, a16, a56 0.0960 0.4800 0.0720 0.1600 0.1680 0.0240 

34 a26, a36, a25, a16, a46 0.1481 0.2593 0.1111 0.1852 0.2593 0.0370 

35 a36, a25, a24, a16, a46 0.0930 0.3488 0.0698 0.1163 0.3488 0.0233 

36 a21, a36, a25, a16, a46 0.0755 0.3774 0.0566 0.0943 0.3774 0.0189 
37 a25, a24, a16, a56, a23 0.1733 0.3032 0.0758 0.1011 0.3032 0.0433 

38 a36, a24, a16, a56, a23 0.1290 0.3871 0.0968 0.1290 0.2258 0.0323 

39 a26, a24, a16, a56, a23 0.1733 0.3032 0.0758 0.1011 0.3032 0.0433 

40 a21, a24, a16, a56, a23 0.0916 0.4580 0.1145 0.1527 0.1603 0.0229 
41 a25, a24, a16, a46, a23 0.0914 0.3429 0.0857 0.1143 0.3429 0.0229 

42 a36, a25, a16, a46, a23 0.1081 0.3243 0.0811 0.1351 0.3243 0.0270 

43 a26, a25, a16, a46, a23 0.1553 0.2718 0.0680 0.1942 0.2718 0.0388 
44 a21, a25, a16, a46, a23 0.0727 0.3636 0.0909 0.0909 0.3636 0.0182 

45 a36, a24, a16, a46, a56 0.1143 0.4286 0.0857 0.1429 0.2000 0.0286 

46 a36, a25, a16, a46, a56 0.1481 0.2593 0.1111 0.1852 0.2593 0.0370 

47 a26, a36, a16, a46, a56 0.1481 0.2593 0.1111 0.1852 0.2593 0.0370 
48 a21, a36, a16, a46, a56 0.1000 0.5000 0.0750 0.1250 0.1750 0.0250 

 

Step 6: Finally, by obtaining the arithmetic average of all weights for each risk (i.e., EAST) or 

geometric average (i.e., GMAST), the final weight of each risk can be obtained as shown in 

Table 9.  

Table 9. Average weights of all spanning trees and rankings of risks (ND and PI) 

 AF ND IA CC ST PI 

EAST 0.1010 0.3444 0.0938 0.1410 0.2858 0.0341 

Ranking 4 1 5 3 2 6 

GMAST 0.0943 0.3392 0.0913 0.1360 0.2788 0.0327 

Ranking 4 1 5 3 2 6 

 

 

5.2. The STE analysis for sabotage/terrorism (ST) and political instability (PI) 

The STE analyses for ST and PI based on EAST and GMAST are explained in this section. 

 

Step 1: The identified set of risks are 𝐶 = {𝐴𝐹, 𝑁𝐷, 𝐼𝐴, 𝐶𝐶, 𝑆𝑇, 𝑃𝐼}  
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Step 2: The incomplete pair-wise comparison matrix 𝐴 can be obtained as shown in Table 10. 

It is constructed based on provided pair-wise comparison vectors by expert 4 for ST (i.e., the 

best risk), and PI (i.e., the worst risk) as shown in Table 5 and Table 6. 

 

Table 10. The incomplete pair-wise comparison matrix A by expert 4 (ST and PI) 

  1 2 3 4 5 6 

  AF ND IA CC ST PI 1 AF 1    0.20 4 2 ND  1   1.00 7 3 IA   1  0.25 3 4 CC    1 0.33 5 5 ST 5 1 4 3 1 7 6 PI 0.25 0.14 0.33 0.20 0.14 1 

 

 

Step 3: The corresponding graph 𝐺 of the pair-wise comparison matrix 𝐴 (Table 10) is 

produced as shown in Figure 9. 
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Figure 9. The undirected (a) and directed (b) graph G of the matrix A (ST and PI) 

 

Step 4: The Kirchhoff’s matrix-tree theorem (Theorem A.3 in Appendix A) is used to obtain 

the total number of spanning trees as 𝜂 = 48. According to the Kirchhoff’s matrix-tree 

theorem, the degree matrix and adjacency matrix of graph 𝐺 are shown in Equation (13) and 

(14), respectively.  

 

         𝐷(𝐺) = [  
   2 0 0 0 0 00 2 0 0 0 00000

0000
2 0 0 00 2 0 00 0 5 00 0 0 5]  

    (13) 

 

 

         𝐴(𝐺) = [  
   0 0 0 0 1 10 0 0 0 1 10011

0011
0 0 1 10 0 1 11 1 0 11 1 1 0]  

    (14) 

 

Then, the Laplacian matrix of graph 𝐺 is obtained as represented in Equation (15). 

 

 𝐿(𝐺) = 

 

2 0 0 0 -1 -1 

0 2 0 0 -1 -1 
0 0 2 0 -1 -1 

0 0 0 2 -1 -1 

-1 -1 -1 -1 5 -1 

-1 -1 -1 -1 -1 5 
 

(15) 

 𝐿∗(𝐺) can be obtained by omitting any row and the corresponding column of the Laplacian 

matrix. As a result, |𝐿∗(𝐺)| = 48 which is the total number of spanning trees for the graph 𝐺  

(Figure 9) of the incomplete pairwise comparison matrix 𝐴 (Table 10). Finally, a Gray code 

algorithm is used to generate all the 48 spanning trees (Appendix B). 

 

Step 5: The weights of six risks in each of the 48 spanning trees are calculated. The weight of 𝑖𝑡ℎ risk (𝑖 = 1, … , 6) in 𝑘𝑡ℎ spanning tree (𝑘 = 1,… ,48) is denoted as 𝑤𝑖(𝑘)
 and computed based 

on Equations (4) and (5). All weights are shown in Table 11.  
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Table 11. Weights of risks in all spanning trees (ST and PI) 

  weights 

No. Arcs in spanning trees 1: AF 2: ND 3: IA 4: CC 5: ST 6: PI 

1 a16, a26, a36, a46, a56 0.1481 0.2593 0.1111 0.1852 0.2593 0.0370 
2 a16, a26, a36, a46, a54 0.1143 0.2000 0.0857 0.1429 0.4286 0.0286 

3 a16, a26, a36, a56, a54 0.1644 0.2877 0.1233 0.0959 0.2877 0.0411 

4 a16, a26, a36, a46, a53 0.1250 0.2188 0.0938 0.1563 0.3750 0.0313 

5 a16, a26, a46, a56, a53 0.1553 0.2718 0.0680 0.1942 0.2718 0.0388 
6 a16, a26, a36, a46, a52 0.1481 0.2593 0.1111 0.1852 0.2593 0.0370 

7 a16, a36, a46, a56, a52 0.1481 0.2593 0.1111 0.1852 0.2593 0.0370 

8 a16, a26, a36, a46, a51 0.1000 0.1750 0.0750 0.1250 0.5000 0.0250 
9 a26, a36, a46, a56, a51 0.0574 0.2869 0.1230 0.2049 0.2869 0.0410 

10 a16, a26, a56, a53, a54 0.1733 0.3032 0.0758 0.1011 0.3032 0.0433 

11 a16, a26, a46, a53, a54 0.1119 0.1958 0.1049 0.1399 0.4196 0.0280 
12 a16, a26, a36, a53, a54 0.1290 0.2258 0.0968 0.1290 0.3871 0.0323 

13 a16, a56, a52, a53, a54 0.1733 0.3032 0.0758 0.1011 0.3032 0.0433 

14 a16, a46, a52, a53, a54 0.0914 0.3429 0.0857 0.1143 0.3429 0.0229 

15 a16, a36, a52, a53, a54 0.1111 0.3333 0.0833 0.1111 0.3333 0.0278 

16 a16, a26, a52, a53, a54 0.1733 0.3032 0.0758 0.1011 0.3032 0.0433 

17 a56, a51, a52, a53, a54 0.0683 0.3417 0.0854 0.1139 0.3417 0.0488 

18 a46, a51, a52, a53, a54 0.0702 0.3509 0.0877 0.1170 0.3509 0.0234 
19 a36, a51, a52, a53, a54 0.0698 0.3488 0.0872 0.1163 0.3488 0.0291 

20 a26, a51, a52, a53, a54 0.0683 0.3417 0.0854 0.1139 0.3417 0.0488 

21 a16, a51, a52, a53, a54 0.0706 0.3529 0.0882 0.1176 0.3529 0.0176 

22 a16, a36, a46, a52, a54 0.0930 0.3488 0.0698 0.1163 0.3488 0.0233 
23 a16, a36, a56, a52, a54 0.1644 0.2877 0.1233 0.0959 0.2877 0.0411 

24 a16, a26, a36, a52, a54 0.1644 0.2877 0.1233 0.0959 0.2877 0.0411 

25 a26, a36, a46, a51, a54 0.0882 0.2059 0.0882 0.1471 0.4411 0.0294 
26 a26, a36, a56, a51, a54 0.0644 0.3221 0.1380 0.1074 0.3221 0.0460 

27 a16, a26, a36, a51, a54 0.0960 0.1680 0.0720 0.1600 0.4800 0.0240 

28 a16, a36, a46, a52, a53 0.1081 0.3243 0.0811 0.1351 0.3243 0.0270 
29 a16, a46, a56, a52, a53 0.1553 0.2718 0.0680 0.1942 0.2718 0.0388 

30 a16, a26, a46, a52, a53 0.1553 0.2718 0.0680 0.1942 0.2718 0.0388 

31 a26, a36, a46, a51, a53 0.0789 0.2303 0.0987 0.1645 0.3947 0.0329 

32 a26, a46, a56, a51, a53 0.0605 0.3024 0.0756 0.2160 0.3024 0.0432 
33 a16, a26, a46, a51, a53 0.0952 0.1667 0.1190 0.1190 0.4762 0.0238 

34 a26, a36, a46, a51, a52 0.0574 0.2869 0.1230 0.2049 0.2869 0.0410 

35 a36, a46, a56, a51, a52 0.0574 0.2869 0.1230 0.2049 0.2869 0.0410 
36 a16, a36, a46, a51, a52 0.0755 0.3774 0.0566 0.0943 0.3774 0.0189 

37 a26, a56, a51, a53, a54 0.0683 0.3417 0.0854 0.1139 0.3417 0.0488 

38 a26, a46, a51, a53, a54 0.0863 0.2014 0.1079 0.1439 0.4317 0.0288 
39 a26, a36, a51, a53, a54 0.0816 0.2381 0.1020 0.1361 0.4082 0.0340 

40 a16, a26, a51, a53, a54 0.0916 0.1603 0.1145 0.1527 0.4580 0.0229 

41 a36, a56, a51, a52, a54 0.0644 0.3221 0.1380 0.1074 0.3221 0.0460 

42 a36, a46, a51, a52, a54 0.0714 0.3571 0.0714 0.1190 0.3571 0.0238 
43 a26, a36, a51, a52, a54 0.0644 0.3221 0.1380 0.1074 0.3221 0.0460 

44 a16, a36, a51, a52, a54 0.0732 0.3659 0.0549 0.1220 0.3659 0.0183 

45 a46, a56, a51, a52, a53 0.0605 0.3024 0.0756 0.2160 0.3024 0.0432 
46 a36, a46, a51, a52, a53 0.0678 0.3390 0.0847 0.1412 0.3390 0.0282 

47 a26, a46, a51, a52, a53 0.0605 0.3024 0.0756 0.2160 0.3024 0.0432 

48 a16, a46, a51, a52, a53 0.0727 0.3636 0.0909 0.0909 0.3636 0.0182 
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Step 6: The final weight of each risk can be obtained via EAST and GMAST as shown in Table 

12. 

Table 12. Average weights of all spanning trees and rankings of risks (ST and PI) 

 AF ND IA CC ST PI 

EAST 0.1010 0.2858 0.0938 0.1410 0.3444 0.0341 

Ranking 4 2 5 3 1 6 

GMAST 0.0943 0.2788 0.0913 0.1360 0.3392 0.0327 

Ranking 4 2 5 3 1 6 

 

5.3. STE results 

The obtained results and rankings from the STE analysis for Natural Disasters (ND) and 

Political Instability (PI) (Table 9), and for Sabotage and Terrorism (ST) and Political Instability 

(PI) (Table 12), are incorporated to reach a conclusion that which one of Natural Disasters 

(ND) or Sabotage and Terrorism (ST) should be the best risk based on the data obtained from 

expert 4. The aggregated weights and final rankings obtained from STE (i.e., EAST and 

GMAST methods) are presented in Table 13.  

 

Table 13. Aggregated weights and final rankings from STE analysis 

  EAST   

  ND and PI ST and PI Average Ranking 

AF 𝑤1 0.1010065335 0.1010065335 0.1010065335 4 

ND 𝑤2 0.3443855204 0.2857569085 0.3150712145 1 

IA 𝑤3 0.0937656585 0.0937656585 0.0937656585 5 

CC 𝑤4 0.1409772290 0.1409772290 0.1409772290 3 

ST 𝑤5 0.2857569085 0.3443848954 0.3150709020 2 

PI 𝑤6 0.0341081492 0.0341081492 0.0341081492 6 

  GMAST   

  ND and PI ST and PI Average Ranking 

AF 𝑤1 0.0942570944 0.0942570944 0.0942570944 4 

ND 𝑤2 0.3391580310 0.2788162447 0.3089871379 1 

IA 𝑤3 0.0912640382 0.0912640382 0.0912640382 5 

CC 𝑤4 0.1360483960 0.1360483960 0.1360483960 3 

ST 𝑤5 0.2788162447 0.3391575505 0.3089868976 2 

PI 𝑤6 0.0327443216 0.0327443216 0.0327443216 6 

 

As it is shown in Table 13, Natural Disasters (ND) has a bit higher weight compared to the 

weight of Sabotage and Terrorism (ST) in both EAST and GMAST methods. Thus, in the 

BWM analysis the Natural Disasters (ND) should be chosen as the most important (best) risk 

suggested by expert 4.  

 

5.4. Baseline comparison with Fuzzy BWM 
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In this section, the Fuzzy BWM (F-BWM) (Dong et al., 2021) is utilized to determine the most 

important criterion based on expert four’s input, as presented in Table 14. We used the below 

scale to convert 1-9 scale in BWM to the Trapezoidal Fuzzy Number (TFN) in F-BWM 

proposed by Dong et al. (2021).   

 

Table 14. Original BWM scale fuzzy linguistic equivalent (adapted from Roy and Shaw, 2022) 

Numerical scale 
Linguistic scale for the 

importance 
TFN scale 

1 Equally important (EI) (1 , 1, 1) 

2-3 Weakly important (WI) (2 3⁄  , 1, 3 2⁄ ) 

4-5 Fairly important (FI) (3 2⁄  , 2, 5 2⁄ ) 

6-7 Very important (VI) (5 2⁄  , 3, 7 2⁄ ) 

8-9 Absolutely important (AI) (7 2⁄  , 4, 9 2⁄ ) 

 

The results indicate that F- BWM could not distinguish a single best criterion and assigns equal 

ranks to both ND and ST (see Table 15). In this case, getting the average of weights would not 

be useful to identify the best criterion in F-BWM. This analysis and comparison with the STE 

analysis as presented in Table 13 shows the suitability of the proposed approach in dealing 

with situations where there are multiple best or worst criteria and methods like F-BWM are not 

capable of distinguishing this difference. 

 

Table 15. Results of the baseline F-BWM method 

 ND (best) and PI (worst) ST (best) and PI (worst)  

Risks 
Fuzzy weights 

Crisp 

weights 
Fuzzy weights 

Crisp 

weights 
Ranking 

AF (0.0 , 0.1267, 0.1193) 0.1043 (0.0 , 0.1267, 0.1193) 0.1043 3 

ND (0.0 , 0.2424, 0.2595) 0.2049 (0.0 , 0.2424, 0.2595) 0.2049 1 

IA (0.0 , 0.1021, 0.1193) 0.0879 (0.0 , 0.1021, 0.1193) 0.0879 4 

CC (0.0 , 0.2038, 0.1964) 0.1686 (0.0 , 0.2038, 0.1964) 0.1686 2 

ST (0.0 , 0.2424, 0.2595) 0.2049 (0.0 , 0.2424, 0.2595) 0.2049 1 

PI (0.0 , 0.0826, 0.0631) 0.0656 (0.0 , 0.0826, 0.0631) 0.0656 5 

 

 

 

5.5. Comparison of results and sensitivity analysis  
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In this section, we apply various BWM approaches including the linear BWM (Rezaei, 2016) 

and STE (STE-L-BWM), non-linear BWM (Rezaei, 2015) and STE (STE-NL-BWM), the 

Neutrosophic-enhanced BWM (Vafadarnikjoo et al., 2020) and STE (STE-NE-BWM), F-

BWM (Dong et al., 2021) and STE (STE-F-BWM) as well as STE-GMAST and STE-EAST 

methods using the data provided in Table 5 and Table 6. We provide a comparative analysis of 

the aggregated weights from five experts. For various BWM implementations, we used the 

outcome of the STE analysis using EAST and GMAST methods (Table 13). This analysis 

presumes that the participating experts possess comparable levels of knowledge and 

professional insight. Consequently, each expert is assigned equivalent significance in the 

research methodology. The obtained weights from the applied methods and the final ranking 

of the risks are aggregated and presented in Table 16 and Figure 10.  

 

Table 16. Risk significance evaluation and consolidated overall ranking 

Risk 

categories 

STE-

EAST 
STE-

GMAST 

STE-L-

BWM 

STE-

NL-
BWM 

STE-

NE-
BWM 

STE-F-

BWM 
Average 

Final 

ranks 

AF 0.1611 0.1521 0.1447 0.1794 0.1824 0.1325 0.1587 3 

ND 0.1757 0.1703 0.1810 0.1752 0.1726 0.1594 0.1724 2 

IA 0.0999 0.0953 0.1189 0.1319 0.0843 0.1218 0.1087 5 
CC 0.3179 0.3102 0.3023 0.2455 0.2889 0.1949 0.2766 1 

ST 0.1425 0.1386 0.1467 0.1570 0.1586 0.1257 0.1448 4 

PI 0.1030 0.0999 0.1064 0.1110 0.1131 0.1033 0.1061 6 

 

 

 

 

Figure 10. Risk scores across methods and categories with averages and final ranks 
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We conduct sensitivity analyses to better understand the impacts of our findings. Our approach 

attributes various weights to the six methods under 100 simulated scenarios. For each weight 

scenario, a new aggregated risk score is calculated considering 𝑤 ∈ [0,1] and ∑ 𝑤𝑖6𝑖=1 = 1 as 

shown in Equation (16). A Rank Stability matrix is generated, and it shows frequency of each 

rank per risk. For example, for the IA risk, it ranks 5th 58 times and 6th 42 times (see Table 17). 

A Spearman’s rank correlation coefficient is used to assess how well the order of one set of 

ranking matches another (King and Eckersley, 2019). Then, the average of all Spearman’s rank 

correlation coefficients across the 100 simulations is computed. 

 

 𝑁𝑒𝑤 𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑤1 ∙ 𝑆𝑇𝐸 − 𝐸𝐴𝑆𝑇𝑖 + 𝑤2 ∙ 𝑆𝑇𝐸 − 𝐺𝑀𝐴𝑆𝑇𝑖 + ⋯+ 𝑤6 ∙ 𝑆𝑇𝐸 − 𝐹 − 𝐵𝑊𝑀𝑖         (16) 

 

As presented in Table 17, the proposed model produces robust and stable risk rankings under 

variations in method weights. The average Spearman’s correlation of 0.975 indicates that the 

rankings are highly consistent across scenarios. This shows overall robustness in the ranking 

structure. 

Table 17. Rank stability matrix for sensitivity analysis of methods’ weights 

Risks Frequency of each rank (out of 100) 

AF [0,  1,  99,  0 , 0,  0] 

ND [0,  99,  1,  0,  0,  0] 

IA [0,  0,  0,  0,  58,  42] 

CC [100,  0,  0,  0,  0,  0] 

ST [0,  0,  0,  100,  0,  0] 

PI [0,  0,  0,  0,  42,  58] 

Average Spearman’s correlation: 0.975 

 

We also conduct a second sensitivity analysis to examine the effect of the experts’ weights 

variation. For each method, 100 simulations are run by generating random non-negative 

weights for the experts (summing to 1). New average scores as the weighted sum of expert 

scores are computed and new rankings are obtained. Table 18 summarizes this analysis for 

STE-EAST, STE-GMAST and STE-L-BWM. 

 

Table 18. Rank stability matrix for sensitivity analysis of experts’ weights 

 STE-EAST STE-GMAST STE-L-BWM 
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Risks 
Frequency of each rank 

(out of 100) 

Frequency of each rank 

(out of 100) 

Frequency of each rank 

(out of 100) 

AF [1,  33,  22,  42 , 2,  0] [2,  42,  22,  29 , 5,  0] [1,  22,  15,  41 , 21,  0] 

ND [3,  61,  25,  11,  0,  0] [3,  54,  23,  20, 0,  0] [8,  61,  12,  17, 2,  0] 

IA [0,  2,  2,  12,  42,  42] [0,  0,  5,  15, 39,  41] [0,  8,  12,  15, 39,  26] 

CC [96,  2,  2,  0,  0,  0] [95,  1,  4,  0, 0,  0] [91,  4,  5,  0, 0,  0] 

ST [0,  2,  41,  24,  23,  10] [0,  3,  26,  25, 25,  21] [0,  5,  42,  21, 16,  16] 

PI [0,  0,  8,  11,  33,  48] [0,  0,  20,  11, 31,  38] [0,  0,  14,  6, 22,  58] 

Average Spearman’s 

correlation 
0.854 0.817 0.763 

 

The sensitivity analysis shows high frequencies at the original ranks (i.e., CC at rank 1 and ND 

at rank 2). 

 

5.6 Discussion 

The final aggregated ranking shows that Climate Change (CC) has the highest importance 

followed by Natural Disasters (ND) which are the top priority risks in the UK electricity 

networks. Incorporating estimates until the end of the century, energy network firms use the 

Met Office UK Climate Projection (UKCP18) tool for long-term climate change adaptation 

planning since infrastructure usually lasts 30-80 years. The Energy Networks Association 

(ENA) asked the Met Office in 2020 to assess current research and UKCP18 data to get further 

knowledge of the effects of climate change on energy infrastructure. This report has led future 

mitigation plans and shaped present risk evaluations. The ENA group identified climate 

hazards and natural disasters as the two highest risks to energy network assets: continuous 

rainfall generating floods, very high temperatures, and cycles of severe rainfall followed by 

drought times (Energy Networks Association, 2021).  

To enhance the robustness of our study’s outcomes, we have cross-referenced our findings with 

industry risk registers maintained by the UK electricity network operators and regulators (e.g., 

Ofgem and the ENA) to validate our findings. Table 19 compares our findings in terms of 

ranking of the identified risks with equivalent risk categories as well as priorities inferred from 

sources such as Ofgem’s RIIO-T2 framework, National Grid’s climate adaptation reports and 

ENA publications.  

 



37 

 

Table 19. Comparison of study risk rankings with industry risk register priorities in the UK 

electricity networks 

Risk 
Study 

ranking 

Industry risk 

register 

equivalent 

Industry 

priority 
Notes 

CC (Climate 

Change) 
1 

Extreme 

weather 

High (rank 

1-2) 

Strong alignment. Climate 

hazards are identified as posing 

the highest risk to energy network 

assets (Energy Networks 

Association, 2021; National Grid 

Electricity Distribution, 2024) 

ND (Natural 

Disasters) 
2 

Flooding, 

Storms 

High (rank 

1-2) 

Strong alignment. Precipitation 

and Sea level rise are listed as 

high risks (National Grid 

Electricity Distribution, 2024) 

AF (Affordability) 3 Cost pressures 
Medium 

(rank 3-4) 

Moderate alignment. National 

Grid emphasizes on affordable 

energy (National Grid, 2024). 

Ofgem discussed the impacts of 

affordability and debt issues on 

the market reflecting on 

stakeholders’ comments (Ofgem, 

2024). 

ST (Sabotage and 

Terrorism) 
4 

Physical 

security threats 

Medium-

Low (rank 

4-5) 

Partial alignment. Security is 

heightened using Critical 

National Infrastructure (CNI) 

level 2 to 3 classifications and 

compliance with the National 

Protective Security Authority 

(NPSA) guidance (Ofgem, 2025). 

IA (Industrial 

Action) 
5 Strikes 

Low (rank 

5-6) 

Good alignment. Strikes are not 

assessed as a priority due to 

measures that are already in place 

(Ofgem, 2024).  
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PI (Political 

Instability) 
6 

Geopolitical, 

Regulatory 

instability 

Low (rank 

5-6) 

Good alignment. Ofgem 

emphasized a stable RIIO-2 

framework and managed external 

risks as geopolitical risks are less 

immediate (RIIO-2 Framework 

Report, 2025) 

 

We observe that the emphasis on climate resilience and extreme weather in industry studies, 

such as the National Grid’s Climate Change Adaptation Report 2024 (National Grid Electricity 

Distribution, 2024) or Ofgem's RIIO-T2 framework, is consistent with the high priority given 

to Climate Change (CC) and Natural Disasters (ND) in our rankings. In terms of impact and 

likelihood, climate change is a top risk, and long-term planning and business operations 

incorporate high-priority mitigation and adaptation measures. Research literature findings also 

emphasize the importance of natural disasters impact on the resilience of the UK energy supply 

network (Espinoza et al., 2016; Wang et al., 2015). More recently, Souto et al. (2024) and 

Manning et al. (2025) single out a range of extreme weather events as the main drivers of power 

outages in the UK.  

6. Conclusion 

 

As suggested, our study makes two contributions to the literature. First, we proposed and 

applied the STE-BWM to analyze various risks in the UK electricity network. Applying STE 

offers an opportunity for DMs to suggest more than one best or worst criterion. The proposed 

method is capable of calculating which criteria are the best and worst based on pair-wise 

comparisons already provided by DMs. In the BWM, a DM selects one decision-making 

criterion as the best criterion (i.e., the most favorable) and another decision-making criterion 

as the worst one (least favorable). In the real world, it would not always be straightforward for 

DMs applying BWM to confidently identify only one criterion as either the best or worst 

criterion. In other words, there might be a set of potential best and a set of potential worst 

criteria with some level of hesitancy. This is likely due to DMs encountering uncertainty, 

hesitancy, or a lack of information. In this situation, we applied the hybrid decision support 

method in both theoretical and simulated experiments and practical settings in the UK 

electricity supply network risk assessment. Second, we applied the method to a real case. This 

application enables this study to identify climate change and natural disasters as the main risk 
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categories that can hinder the reliability of the UK electricity network system. The findings are 

summarized as follows: 

● The study’s results emphasized climate change and natural disasters as the most 

significant concern for the reliability of the UK’s electricity system. 

● The proposed STE-BWM can help integrate uncertainty into the decision-making 

process. Identification of the best and worst criteria if the experts involved are not fully 

confident in choosing only one best and/or one worst. The Monte Carlo Simulation 

validates the ability of the STE with a success rate of 100% when there is at least one 

free criterion.  

However, similar to other studies, there are some limitations to our study. First, as with the 

other MCDA methods, we collected the views of a limited number of experts. This can be 

explained by the constraints associated with identifying and recruiting experts from 

multidisciplinary fields, such as the risks in energy supply network management. Therefore, 

there was a preference for a small pool of experts rather than a larger pool of respondents 

without the necessary expertise.  Future research can incorporate Artificial Intelligence (AI) 

and Machine Learning (ML) approaches within decision support systems to extrapolate inputs 

from a small number of experts to broader contexts, ensuring robustness in the analysis. 

Furthermore, future research can investigate the application of this method in specific new 

technologies, such as smart microgrids, to determine how the results can be affected by the size 

of the network and situational awareness.   

 

 

Appendix A: Preliminaries-Graph Theory 

Definition A.1. cycle (Hein 2001).  A cycle is a path with equal beginning and ending vertices, 

where no edges occur more than once.  

 

Definition A.2. connected graph (Hein 2001).  If there is a path between every pair of vertices, 

then the graph is named a connected graph. 

 

Definition A.3. subgraphs (Benjamin, Chartrand, and Zhang 2015). A graph 𝐻 is named a 

subgraph of a graph 𝐺 if every vertex and edge of 𝐻 is a vertex and edge of 𝐺. 
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Definition A.4. spanning subgraphs (Benjamin, Chartrand, and Zhang 2015). If the subgraph 𝐻 of a graph 𝐺, has the same vertices as 𝐺, then 𝐻 is a spanning subgraph of 𝐺. 

 

Definition A.5. trees (Benjamin, Chartrand, and Zhang 2015). A tree is a connected graph that 

contains no cycles. It is common to signify a tree by 𝑇.  

 

Theorem A.1. A graph 𝐺 is a tree if and only if every two vertices of 𝐺 are connected by only 

one path (Benjamin, Chartrand, and Zhang 2015). 

 

Definition A.6. spanning trees (B. Y. Wu and Chao 2004). A spanning tree of a graph 𝐺 is a 

subgraph of 𝐺 which is a tree and includes all the vertices in 𝐺.  

 

Definition A.7. a branch and a chord  (Chakraborty et al. 2019). Let 𝐺 be a connected graph 

then an edge in a spanning tree 𝑇 of 𝐺 is named a branch and an edge of 𝐺 which is absent in 

the given spanning tree 𝑇 is named chord.  

 

Definition A.8. directed graphs or digraphs (Bang-Jensen and Gutin 2006). A digraph 𝐷 that 

is often written as 𝐷 = (𝑉, 𝐴) includes a non-empty finite set 𝑉(𝐷) of elements (vertices) and 

a finite set 𝐴(𝐷) of ordered pairs of distinct vertices (arcs). 𝑉(𝐷) and 𝐴(𝐷) named vertex set 

and arc set respectively.  In Figure A.1., a digraph 𝐷 is depicted as an example. The 𝑉(𝐷) and 𝐴(𝐷) in this example are as follows: 𝑉(𝐷) = {𝑥, 𝑦, 𝑧, 𝑡, 𝑢, 𝑣, 𝑤} 𝐴(𝐷) = {(𝑥, 𝑦), (𝑦, 𝑧), (𝑦, 𝑡), (𝑧, 𝑡), (𝑡, 𝑢), (𝑢, 𝑣), (𝑢, 𝑤), (𝑤, 𝑢)} 

 

 
 

Figure A.1. A digraph D 

 

In digraphs, for an arc like (𝑦, 𝑧) the first vertex 𝑦 is called tail and the second vertex is named 

head (i.e., 𝑧). It is also said that 𝑦 dominates 𝑧 or 𝑧 is dominated by 𝑦. An arc (𝑦, 𝑧) is often 

signified as 𝑦𝑧 (Bang-Jensen and Gutin 2018). In this paper, the arc (𝑦, 𝑧) is shown as 𝑎𝑦𝑧.  
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Theorem A.2. Cayley’s tree formula. Cayley (1889) introduced the formula 𝑛𝑛−2 for counting 

the number of spanning trees in a complete graph with order n (𝐾𝑛). For instance, for a 𝐾4 

graph, 44−2 = 16 spanning trees can be obtained as shown in Figure A.2.  

 

 
 

Figure A.2. All spanning trees of a complete graph 𝐾4 

Definition A.9. degree matrix (Chartrand, Lesniak, and Zhang 2011). Let 𝐺 be a graph with 𝑉(𝐺) = {𝑣1, 𝑣2, … , 𝑣𝑛}, then the degree matrix 𝐷(𝐺) = [𝑑𝑖𝑗] is a diagonal 𝑛 × 𝑛 matrix with 

diagonal values as are shown in Equation A.1. 

  

 
𝑑𝑖𝑗 = {𝑑𝑒𝑔𝑣𝑖 , 𝑖𝑓 𝑖 = 𝑗0, 𝑖𝑓 𝑖 ≠ 𝑗 

 

(A.1) 

 

Definition A.10. adjacency matrix (Siraj, Mikhailov, and Keane 2012). Let 𝐺 be a graph with 𝑉(𝐺) = {𝑣1, 𝑣2, … , 𝑣𝑛}, then the adjacency matrix 𝐴(𝐺) = [𝑐𝑖𝑗] where each element 𝑐𝑖𝑗 

represents the number of edges from vertex 𝑣𝑖 to vertex 𝑣𝑗. 

 

Theorem A.3. Kirchhoff’s matrix-tree theorem (Chartrand, Lesniak, and Zhang 2011). Let 𝐺 

be a labelled graph with adjacency matrix 𝐴(𝐺) and degree matrix 𝐷(𝐺), then the absolute 
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value of any cofactor of the Laplacian matrix 𝐷(𝐺) − 𝐴(𝐺) results in the number of distinct 

spanning trees of 𝐺. The Kirchhoff’s matrix-tree theorem helps determine the number of 

distinct spanning trees of labelled graphs in general and not only in complete graphs.  

 

Appendix B: Gray code algorithm  

There are several algorithms in the literature for generating all possible spanning trees in 

undirected graphs, as reviewed by Chakraborty et al. (2019). In this research, we used the Gray 

code algorithm developed by Naskar et al. (2009) using Gray codes. First, an initial tree 𝑇0 

must be generated by any method such as Breadth-First Traversal (Hein 2001). The 𝑇0 is 

comprised of 𝑛 − 1 branches and 𝑚 − (𝑛 − 1) chords. Then, 2𝑚−(𝑛−1) binary representations 

are produced each of length 𝑚 − (𝑛 − 1) namely Gray codes. Subsequently, combination of 𝑛 − 1 branches and 𝑚 − (𝑛 − 1) chords are calculated for each Gray code in a way that output 

will contain (𝑛 − 1) edges. Finally, each combination should be checked to determine if there 

is no cycle, and it is a spanning tree.  
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