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Modeling Pedestrian Crossing Behavior: A

Reinforcement Learning Approach with Sensory

Motor Constraints
Yueyang Wang, Aravinda Ramakrishnan Srinivasan, Yee Mun Lee, and Gustav Markkula

AbstractÐUnderstanding pedestrian behavior is crucial for
the safe deployment of Autonomous Vehicles (AVs) in urban
environments. Traditional pedestrian behavior models often fall
into two categories: mechanistic models, which do not generalize
well to complex environments, and machine-learned models,
which generally overlook sensory-motor constraints influencing
human behavior and which are thus prone to fail in un-
seen scenarios. We hypothesize that sensory-motor constraints,
fundamental to how humans perceive and interact with their
surroundings, are essential for realistic simulations. Thus, we
introduce a constrained reinforcement learning (RL) model that
simulates the crossing decision and locomotion of pedestrians.
Our model includes human sensory constraints, giving the agent
imperfect information about the environment, and human motor
constraints incorporated through a bio-mechanical model of
walking. We gathered data from a human-in-the-loop exper-
iment to understand pedestrian behavior. The findings reveal
several behavioral patterns not addressed by existing pedestrian
models, regarding how pedestrians adapt their walking speed
to the kinematics and behavior of the approaching vehicle.
Our model successfully captures these human-like walking speed
patterns, enabling us to understand these patterns as a trade-
off between time pressure and walking effort. Importantly, the
model with both sensory and motor constraints performed better
than models only incorporating one of the two. Additionally,
behavioral patterns related to external human-machine interfaces
and light conditions were also captured by the model. Overall, our
results not only demonstrate the potential of constrained RL in
modeling pedestrian behaviors but also highlight the importance
of sensory-motor mechanisms in modeling pedestrian-vehicle
interactions.

Index TermsÐReinforcement learning, Noisy perception, Road
user interaction, Pedestrian behavior, Sensory-motor constraints.

I. INTRODUCTION

A
UTONOMOUS vehicles (AVs) have attracted consider-

able attention from the public and play a crucial role in
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developing the intelligent transportation system of tomorrow.

A critical aspect of integrating AVs into the urban environment

is their ability to interact safely and smoothly with other road

users [1]. Among these road users, pedestrians exhibit complex

and often unpredictable behaviors. Thus, to improve the inter-

action between AVs and pedestrians, researchers have tried

different approaches. For example, external Human-Machine

Interfaces (eHMIs) have been proposed as a means to commu-

nicate AV intentions [2, 3], and their effectiveness has been

proven [4, 5]. Other researchers have tried to develop models

that can help us understand and predict pedestrian behavior

[6]. These models employs primarily two approaches: mecha-

nistic models and machine learning (ML) models. Mechanistic

models, including cognitive models grounded in psychology

and neuroscience, provide detailed insights into the cognitive

processes underlying pedestrian behaviors but often struggle

with the complexity and diversity of real-world scenarios

[7, 8]. ML models, in contrast, use data-driven techniques

to learn from large datasets and predict pedestrian move-

ments effectively. However, they require extensive labeled

data, lack interpretability, and sometimes do not generalize

well outside their training datasets [9, 10]. In addition, ML

models primarily aim to improve motion prediction accuracy

using metrics such as Root Mean Squared Error (RMSE)

and Average Displacement Error (ADE). However, accurate

motion prediction alone is not sufficient to ensure optimal AV

performance. AVs must also consider social interaction and

understand the decision-making processes of other road users.

By doing so, AVs can exhibit more adaptive and socially-

aware driving behaviors, leading to safer and more efficient

interactions in complex traffic environments [11].

Our previous work has focused on addressing these chal-

lenges by developing a pedestrian model that integrates the

strengths of both cognitive and ML approaches [12]. Specifi-

cally, we have explored the use of reinforcement learning (RL)

to model the binary decision of go/no-go in pedestrian crossing

scenarios when interacting with an approaching vehicle, in-

corporating theory about visual perception to capture realistic

human-like road crossing decisions.

In the present work, we aim to further this approach by

considering additional aspects of visual perception (eHMI

and lighting conditions), and crucially extending it with a

biomechanical model of walking, allowing us to address also

motor aspects of pedestrian behavior. By integrating these

sensory-motor mechanisms into RL models, we attempt to

capture a range of behavioral patterns observed in a controlled
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experiment on pedestrian road-crossing.

II. BACKGROUND

A. Pedestrian crossing behaviors

1) Observed behavioral patterns in pedestrian crossing:

In this paper, we define a behavioral pattern as a relationship

between a dependent variable that reflects pedestrian behavior

and an independent variable influencing it. Below, we in-

troduce several key behavioral patterns related to pedestrian

crossing as reported by previous literature. Some of these

behavioral patterns were modeled in our previous study [12],

while others remain less explored. One behavioral patterns

we modeled is the gap acceptance rate, which refers to the

rate at which pedestrians accept the time or distance gap

between themselves and approaching vehicles. Another is the

crossing initiation time (CIT), defined as the time between

the gap appearing and the pedestrian starting to cross. Both

gap acceptance and CIT increase with the time to arrival

(TTA) of the vehicle, as well as with the vehicle’s speed [13].

Another important behavioral patterns regarding the pedestrian

crossing speed, was not captured by our previous crossing

decision model [12]. This metric tends to decrease as the

time gap increases, suggesting a compensatory behavior where

pedestrians walk faster when accepting shorter gaps [14].

2) Sensory-motor mechanisms in pedestrian crossing:

Pedestrian crossing decisions are influenced by a variety of

sensory-motor mechanisms, which impact how pedestrians

perceive and interact with their environment. In this study, we

focused on noisy perception, looming aversion, time pressure,

walking effort, and ballistic speed control.

a) Noisy perception: Human perception of the world

is inherently noisy and imperfect [15]. This noisiness can

be due to several factors, such as individual differences in

sensory acuity [16] and environmental conditions (e.g., poor

lighting, weather). It has been argued that this visual limitation

affected the pedestrian crossing decision [17]. For example,

noisy perception can lead to errors in estimating the speed

and distance of oncoming vehicles, making it challenging for

pedestrians to accurately judge safe crossing opportunities.

b) Looming aversion: Visual looming describes the per-

ceived growth of an object’s size as it approaches [18]. The

aversion to looming refers to the tendency of individuals

to react more strongly to objects that appear to be rapidly

approaching [19]. This phenomenon is rooted in the perceptual

system’s sensitivity to motion cues that signal potential threats,

and influences pedestrian crossing decision. For example, [13]

explained speed-dependent gap acceptance behavior by using

looming aversion.

c) Time pressure: Time pressure has a significant effect

on pedestrian crossing behavior [13]. For example, when

pedestrians are under time constraints, either due to the rapid

approach of a vehicle or a short signal phase [14], they tend

to initiate crossing faster and adopt higher walking speeds.

d) Walking effort: Individuals choose their walking speed

accounting for not only the time but also the energy spent

on walking [20]. Researchers have considered the walking

effort in gait modeling works [21, 22]. However, the impact

of walking effort has not been extensively investigated in the

existing pedestrian modeling literature. Considering the trade-

off between the energy and time costs can help to better predict

the walking dynamics. For example, studies have shown that

older pedestrians often exhibit more conservative crossing

behaviors, partly due to the increased walking effort required

and the need to ensure their safety [23].

e) Ballistic speed control: Early researchers noted that

humans tend to adjust their sensorimotor movements through

intermittent, ballistic control, rather than continuous adjust-

ments [24, 25]. Here, we adopt this ballistic perspective in

the context of walking, assuming that each walking step is

ballistic. In reality, humans can to some extent alter their

walking trajectory in the middle of a walking step [26], but in

the present model we neglect this behavior.

B. Pedestrian crossing models

The development of models to predict and understand

pedestrian crossing behavior has been a significant focus of

research for many years. These models vary in complexity and

approaches, capturing different aspects of pedestrian decision-

making processes and walking dynamics.

1) Logistic regression models: Logistic regression models,

including more recent cognitive cue-based models like the

one proposed in [13], aim to predict whether a pedestrian

will cross the street under certain conditions. These models

typically consider factors such as vehicle speed, and distance

[27]. However, these models primarily focus on crossing de-

cisions without considering the subsequent walking dynamics,

making them difficult to integrate into more comprehensive

simulations of traffic and pedestrian behavior.

2) Mechanistic models: More complex mechanistic mod-

els, such as evidence accumulation models, simulate the hu-

man decision-making process by considering how pedestrians

gather information over time [28, 29]. These models attempt

to capture the gradual accumulation of sensory and contextual

data that leads to crossing decisions. They also provide a

deeper understanding of the cognitive processes involved, and

in some cases also include some limited consideration of

walking dynamics [8]. However, integrating multiple cognitive

theories into a unified model is challenging because these

theories often have differing assumptions, involve complex

interactions, require scalable and adaptable frameworks, and

increase model complexity, which can reduce practical usabil-

ity. This complexity makes it difficult to capture a broader

range of behaviors and apply such models to more complex

situations and environments [8].

3) Machine Learning Models: ML models leverage large

datasets and advanced algorithms to predict pedestrian behav-

ior with high accuracy and have shown good performance

in real-time pedestrian trajectory prediction [10]. While the

accuracy of these ML models can be impressive, they share

several limitations. First, they often act as ’black boxes’,

meaning they may fail to reveal the reasons or mechanisms

behind those behaviors [30]. In addition, the ’black box’ nature

of ML models in autonomous driving poses risks, as their

lack of transparency can lead to unexplainable mistakes [31].
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Second, high-level statistical accuracy does not guarantee that

the models capture those behaviors that matter to humans [32].

Third, the absence of a theoretical grounding of the behavior

can sometimes lead to performance issues. While they perform

well on the training data, they may struggle to generalise to

new and unseen data [33]. In addition, ML models heavily rely

on large training datasets. Whereas collecting such extensive

data under all possible road conditions is almost an impossible

task, leading to critical scenarios being underrepresented or

missing in most datasets [34].

4) Models based on (bounded) optimality: Another ap-

proach to modeling human behavior is bounded optimality

[8, 12, 35, 36], based on the assumption that humans behave

optimally with respect to a utility or cost function, but with

constraints imposed by the human cognition and body [37, 38].

By using RL as a method for solving the bounded optimality

problem, this approach integrates the strengths of both cogni-

tive models and ML models.

Different from traditional data-driven ML algorithms, which

typically learn directly from large datasets without itera-

tive interaction with the environment, RL offers a paradigm

wherein an agent interacts with a dynamic environment, and

the optimal policy will be derived through trial-and-error [39].

This approach is particularly suited for modeling tasks that

involve sequential decision-making, such as pedestrian cross-

ing. Crossing decisions require a series of interdependent

sensory and motor actions, as pedestrians continuously assess

environmental factors like vehicle speed and proximity, while

adjusting their own movements accordingly. By incorporat-

ing models of human sensory and motor mechanisms, RL

can be used to learn bounded optimal behavior under these

constraints.

Our previous work using this method captured the pedes-

trian crossing decisions when interacting with one vehicle, and

captured several observed behavioral patterns [12]. However,

research gaps remain in the previous model. Key questions

include whether our integrated cognitive and RL approach

can generalise to a wider range of situations and behavioral

patterns, and whether the model can be expanded to include

motor constraints, which would allow us to more accurately

represent the physical execution of walking actions during road

crossing.

III. METHODS

A. Experiment

To develop and test our model, we used a dataset from

an experiment conducted in the University of Leeds Highly

Immersive Kinematic Experimental Research (HIKER) labo-

ratory.

The experiment is described in full in [40], below we

provide a summary for completeness. In this study, the task of

the participant was to cross the road between two approach-

ing vehicles safely ± as shown in panel (b) of Fig. 1. A

mixed design was used, with five within-participant variables:

(i) the initial speed v0 of the approaching vehicles (25/30

mph); (ii) the time gap t0 between the vehicles (3/5 s); (iii)

the yielding behavior of the second vehicle with a constant

deceleration rate a (yielding/non-yielding); (iv) the presence

of eHMI while yielding (present/absent); and (v) the time of

day (daytime/nighttime); and one between-participant variable:

participants’ age (younger/older) [40]. In this study, the eHMI

was presented as a cyan color light around the windscreen in

some of the yielding trials. Participants were informed that

the presence of eHMI means that the approaching vehicle

was signaling ‘I am yielding’. Prior to the experiment, all

participants signed the consent form agreeing to take part in

the study. Ethical approval was obtained from the University

of Leeds Research Committee.

The recorded data used from the experiment include par-

ticipants’ crossing decisions, CIT, and walking speeds; these

quantities were all estimated from a body tracker located on

the participant’s head, measuring XYZ position at a sampling

rate of 50 Hz. Furthermore, we classified crossing behaviors

in yielding scenarios as either early or late. This classification

relies on the concept of bimodal crossing, where pedestrian

responses can typically be categorized into two distinct modes

based on their timing relative to vehicle behaviors, with

pedestrians choosing to cross either well before a vehicle

slows down or waiting until it is clearly safe to do so [28].

In our study, early and late crossings are defined based on the

CIT of the pedestrian crossing. Specifically, early crossings

occur when crossings are initiated at the first peak of the

bimodal CIT distribution, while late crossings correspond to

those initiated at the second peak. The classification threshold

was determined based on vehicle deceleration: in yielding

scenarios, this point corresponds to the moment vehicle speed

drops to two-thirds of the initial speed. This threshold approx-

imately aligns with the lowest point between the two peaks.

For a more detailed explanation of this method, please refer

to [40]. It should be noted that the distinction between early

and late crossings is applicable only in yielding scenarios.

B. Model

1) Sensory-motor mechanisms: In this paper, we explore

the influence of four sensory-motor mechanisms on the cross-

ing behavior as detailed in Section II-A2, noisy perception,

visual looming, time pressure, walking effort and ballistic

speed control; as illustrated in Fig. 1) (a).

a) Noisy perception: The agent’s perception of environ-

mental distances includes a constant Gaussian angular noise,

σv, which affects the estimation of vehicle positions and

velocities. A higher σv means more noise in the agent’s

perception system. This model incorporates a Kalman filter to

adaptively refine these estimates, leveraging Bayesian methods

TABLE I
VEHICLE APPROACH SCENARIOS IN THE EXPERIMENT.

Scenario type v0 (mph) τ0 (s) a (m/s2)

Constant speed 25 3 N/A
25 5 N/A
30 3 N/A
30 5 N/A

Yielding 25 3 -2.3
25 5 -2.3
30 3 -2.3
30 5 -2.3
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Fig. 1. Panel (a) is the Model framework. Panel (b) is the virtual environment. Panel (c) is a schematic of the deceleration procedure used in this study. Panel
(d) is the walking model, adopted from [20].

to approximate the state of the environment refer to the

previous paper for mathematical details [12].

b) Visual looming: This phenomenon is mathematically

represented as inverse τÐthe ratio of a vehicle’s optical

expansion rate to its size on the observer’s retina, which is

an estimate of the inverse TTA [41, 42]. We defined looming

aversion as follows: L = c · 1
τ̂

, where c is the weight of the

looming aversion, if v > 0; otherwise 0, and t̂ Kalman-filter

estimated TTA of the vehicle. The higher c means the agent

has a stronger preference for avoiding visual looming.

c) Walking effort: To account for walking effort, we

adopt the biomechanical model of walking from [20]. The

equation for the new velocity v+
i

is:

v+
i
= v−

i
cos 2θ +

√
2ui sin 2θ (1)

where v−
i

is the initial walking speed, v+
i

is the new walking

speed after the action, and 2θ is the angle between two legs.

The term
√
2ui represents the velocity component due to the

exerted effort. The derivation of Equation 1 starts with the

assumption that the pedestrian’s leg motion can be described

as a pendulum (see panel (d) of Fig. 1), and that the speed

change is caused by the effort ui. This effort required for this

change is related to the kinetic energy:

ui =
1

2
m(∆v)2 (2)

and solving for ∆v: ∆v =
√

2ui/m. Since ui is effort per

unit mass, this simplifies to: ∆v =
√
2ui. Therefore, the effort

ui required for this change is given by:

ui =
(v− cos(2θ)− v+)

2

2 · sin2(2θ)
(3)

The total walking effort, Ew, is then calculated as: E = β ·ui,

where β is a parameter that scales the walking effort for

different individuals. A higher β means the agent has a

stronger preference for saving energy during crossing.

d) Ballistic speed control: As mentioned in Section

II-A2, we assumed that the agent adjust their movement using

the ballistic speed control. Therefore, upon selecting an action,

the agent employs ballistic speed control, which means the

agent maintains the acceleration rate a needed to change its

speed to the desired value, which is defined as a = Vt−Vt−1

t
,

where Vt and Vt−1 represent the velocities of the agent at

two consecutive decision points. The time interval Tstep is

calculated based on the relation between step length, velocity,

and frequency, with the preferred speed v and step length s
following the equation s = vped

0.42 [43]. Consequently, the

duration of a walking step is given b Tstep = vped
−0.58.

2) Reinforcement learning problem: Our RL environment is

an example of a Partially Observable Markov Decision Process

(POMDP), where the agent does not have direct access to

the true state; rather, it receives observations that may only

partially or noisily reflect the actual state. The POMDP is

represented by a tuple < S,A, T,R,O >, where S is a set of

states, A is a set of actions, T is the transition function, R is

the reward function and O is the set of possible observations

received by the agent.

a) State: At each time step t, the environment is in a

state st ∈ S, which includes the position and velocity of both

the pedestrian (agent) and two vehicles. All model variants in

our study share the same state space: the pedestrian’s position

xped, yped, the pedestrian’s velocity vped, the vehicles’ po-

sitions xveh1 , xveh2 , yveh1 , yveh2 , the vehicles’ velocities v1, v2,

and time step t. The simulation updates the state every 0.1 s, a

step size chosen as a tradeoff between the computational cost

and the accuracy to represent dynamic interactions between

vehicles and pedestrians.

b) Action: At the completion of each walking step Tstep,

the agent executes an action at from set A. In this study, the

action space in this study is A = {0.1, 0.2, . . . , 2} m/s. Each

action value corresponds to a different desired walking speed,

enabling the agent to adjust its velocity. Upon selecting an

action, the agent employs ballistic speed control, which means

the agent maintains the acceleration rate needed to change its

speed to the desired value, which is defined as a = Vt−Vt−1

t
.

After the decision is made, the simulation progresses until the

execution of the walking step is completed, at which point the

agent can make the next decision.

c) Transition: The transition function defines how the

current state st changes to the next state st+1 based on the
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action at. As the decision-making of the pedestrian is the

main focus of this study, in line with the experimental setup,

the vehicle in our simulation maintains a predefined behavior

pattern and does not dynamically respond to the pedestrian’s

actions. This approach allows us to isolate and analyze the

pedestrian’s decision-making process. The vehicle’s movement

follows kinematic equations with the speeds and accelerations

corresponding to the scenario in question. The pedestrian’s

walking speed is updated with the ballistic walking step

acceleration as explained above. The simulation ends when

a collision occurs or the agent crosses the road safely.

d) Reward: According to the experiment, we assumed

that the agent wanted to cross safely, while minimizing time

losses, energy losses, and any discomfort from experiencing

high levels of visual looming.

The reward function r was designed accordingly: r =
A−C −E − L, where A = 20− T if the agent successfully

crosses the road, otherwise A = 0, and where T is the

weighted time penalty, T = α · t, where t is the time elapsed

in the episode and α is the scaling factor of the time pressure;

with higher α making the agent more likely to cross the road

quickly; C is 20 if collision, otherwise 0; L = c · 1
τ̂

if v > 0,

otherwise 0, and E = β · ui, where E is the penalty for

walking effort. The reward r is bounded within the range

[−20,+20] to prevent extreme values from affecting the model

training. The value of 20 was initially determined through

manual testing of the model in a simplified scenario without

sensory-motor constraints, where the agent attempted to cross

the road as quickly as possible without colliding. This testing

helped establish a baseline for the reward scale, ensuring that

the reward values yielded qualitatively human-like pedestrian

behavior.

e) Observation: As previously mentioned, the agent ob-

serves their own state and Kalman estimates of the vehicle’s

state. Moreover, because we have trials with eHMI on the

vehicle, we also gave the input representing eHMI in the

model, with 0 for eHMI off and 1 for eHMI on. In addition,

since we have different parameters that influence the sensory-

motor process, i.e., σv, α, β and c, we also gave these

parameters as input to the RL policy, i.e., we are conditioning

the RL on these parameters [44, 45], which we refer to as non-

policy parameters to distinguish them from the parameters of

the policy neural network (connection weights and biases).

3) Different Model Variants: To explore how the various

mechanistic assumptions in the model affect the generated

pedestrian behavior, we tested different model variants:

SM: A model with all of the mechanistic assumptions

described above, including both sensory assumptions (visual

limitations and looming aversion) and motor assumptions

(walking effort and ballistic speed control)

S: A model with the sensory assumptions but not the motor

assumptions. When excluding the assumption about ballistic

speed control, a more conventional RL approach of directly

controlling the speed at each time step [46, 47, 48] was used.

M: A model with the motor assumptions but not the sensory

assumptions.

4) Reinforcement learning: Proximal Policy Optimization

(PPO) is a policy gradient RL algorithm that improves training

TABLE II
PPO MODEL CONFIGURATION

Parameter Description

Policy Network Multi-layer Perceptron (MLP)

Input Dimensions Varies by model variants

Learning Rate 3× 10
−4

Batch Size 64

Discount Factor 0.99

Network Structure Two hidden layers with 128 and 64 neurons
ReLU activation functions.

stability and reliability by using a clipped objective function

[49]. This method strikes a balance between exploration and

exploitation, ensuring that updates to the policy are not too

large. PPO is computationally efficient and straightforward to

implement, making it a popular choice for various reinforce-

ment learning tasks.

It should be noted that, in our study, PPO is used to learn an

optimal behavioral policy for the simulated pedestrian, inde-

pendent of the simulator study. The simulator study provides

data on human road-crossing behavioral patterns, while PPO

is applied separately to learn optimal behavior under different

sensory and motor constraints.

For our implementation, we used the Stable Baselines 3

(SB3) library [50]. The model was trained for 3 million envi-

ronment time steps using the PPO algorithm. The parameters

for training are shown in Table II. The reward and total loss

during training are shown in Fig. 2. Due to differences in

POMDP structure between models, their final reward and loss

values converge to different levels. As mentioned, we gave

non-policy parameters as additional input to the RL network;

for each new RL episode we sampled uniformly from these

ranges: [σv (0-10), α (0-4), β (0-10), and c (0-10)]. In practice,

this means that the RL is learning how the optimal policy

varies across this space of non-policy parameters.

To ensure the agent did not learn trivial policies based on

limited experimental conditions, we trained the RL agent with

a wider range of kinematic conditions than the scenarios in

the experiment. The initial speed was sampled from a uniform

distribution between 8 m/s and 17 m/s, and the time gap was

sampled from a uniform distribution between 0.1 s and 10 s.

5) Fitting non-policy parameters: As previously men-

tioned, we defined the magnitude of noise in the perception

system, along with the weights for looming aversion, time

pressure, and walking effort constraints, as non-policy param-

eters. A priori, we do not know the correct values for the non-

policy parameters, which may also vary between participants

in the experiment. Additionally, considering the day and night

scenarios in the experiment, we hypothesized that visual

noise differs between these scenarios. Consequently, for each

participant, we wished to fit two σv values (one for day and

Fig. 2. Reward and training loss of different model variants.
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Fig. 3. Key behaviors in the experiment. Dark gray cells indicate statistically significant effects of the independent variable that were both observed in
the experiment and captured by the SM model. Light gray cells indicate effects observed experimentally but not captured by the SM model. The symbols
within the gray cells represent model variants that successfully reproduced the corresponding behavioral pattern: S (model with noisy perception and looming
aversion), M (model with walking effort and ballistic control), ±L (model without looming aversion), ±W (model without walking effort), ±B (model without
ballistic control), and ±NP (model without noisy perception).

one for night) and one value for each of the other three non-

policy parameters.

To fit these non-policy parameters to data, we used Bayesian

Optimization for Likelihood-Free Inference (BOLFI), a

method employed for parameter estimation in models where

the likelihood function is intractable or computationally ex-

pensive to evaluate [51]. This inference method has been

previously applied to RL-based simulation models of human

behavior [52, 53]. BOLFI requires the user to define a function

quantifying the discrepancy between simulated and observed

data, and employs a Gaussian process as a surrogate model to

approximate how this discrepancy function varies with model

parameter values.

In our study, we used BOLFI to find non-policy parameter

values minimizing the following discrepancy function:

Discrepancy = log

((

nny
∑

i=1

|g
i
− ĝ

i
|

gmax

)

+

(

ny
∑

i=1

|ei − êi|
emax

)

+





n
∑

i=1

∣

∣

∣CITi − ĈITi

∣

∣

∣

CITmax



+

(

n
∑

i=1

|vi − v̂i|
vmax

))

(4)

where the ˆ refer to model predictions, n, nny, ny are the

number of all trials, non-yielding trials, and yielding trials for

one participant.

Each term in Equation 4 represents the difference between

the average values of specific behavioral metrics under dif-

ferent kinematic conditions, as generated by various combina-

tions of non-policy parameter values in the simulation and

as observed in the human data, which our model aims to

reproduce. These metrics include the gap acceptance rate (the

frequency of crossing before the second vehicle in constant-

speed scenarios), early crossing rate (the frequency of crossing

early vs late in yielding scenarios, CIT, and average walking

speed. Dividing by the maximum observed value normalizes

the differences, as each metric can have a different value range.

We initialized BOLFI with uniform distributions for all the

non-policy parameters, in the ranges mentioned in Section

III-B4, and ran 80 optimization iterations, which was sufficient

to achieve convergence for all model variants.

6) Behavioral pattern analysis: The primary goal of this

analysis is to evaluate the similarity between simulated and

experimental outcomes. We focused on behavioral patterns of

the dependent variablesÐgap acceptance, early crossing rate,

crossing initiation time (CIT), and average walking speedÐas

functions of the independent variables: time of day, time gap,

vehicle speed, and eHMI. To identify statistically significant

behavioral patterns in the experimental data, we employed

Generalized Linear Mixed Models (GLMM) for binary de-

pendent variables (gap acceptance and early crossing rate)

and Linear Mixed Models (LMM) for continuous dependent

variables (CIT and average walking speed). The fixed effects

variables included time of day (day / night), Time Gap (3 s /

5 s), Speed (25 mph / 30 mph), and eHMI (on / off) where

applicable. Participant ID was included as a random effect

variable in all models. As we observed different pedestrian

behaviors in early and late crossing in yielding scenarios, we

used early or late crossing as an additional fixed effect in the

analysis of average crossing speed, coding 0 for late crossing

and 1 for early crossing.

To evaluate whether our simulation model captures these

behavioral patterns, we generate simulated datasets using the

parameter-fitted model, ensuring that the sample size matches

that of the original experiment. We then apply the same

statistical analysis to the simulated data and compare the

resulting patterns with those observed in the experimental

data. This approach allows us to systematically assess the

extent to which the simulated behavior aligns with real-world

observations.

Fig. 4. Gap acceptance rate in non-yielding scenarios and early crossing rate
in yielding scenarios as observed in human behavior and predicted by the
models.
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Fig. 5. Crossing Initiation Time (CIT) under different conditions. This figure shows the distribution of CIT under different conditions. The first row shows
human data, the second row presents the VLW model result (accounting for walking effort), and the third row shows the VL model result (without walking
effort). The blue lines within each violin plot represent the mean values. Notably, in the late crossing category for the VL model, no CIT data is available for
a 5-second time gap at 30 mph, indicating that no agents chose to cross late under this condition.

TABLE III
STATISTICAL ANALYSIS OF GAP ACCEPTANCE RATE IN NON-YIELDING

SCENARIOS AND EARLY CROSSING RATE IN YIELDING SCENARIOS IN THE

EXPERIMENT. (* p < 0.05, ** 0.01 > p > 0.001, *** p < 0.001).

Gap acceptance Early Crossing

Estimate Std. Error p-value Estimate Std. Error p-value

Intercept -19.409 1.965 < .001 *** 17.817 1.627 < .001 ***
Speed 0.371 0.09926 < .001 *** 0.426 0.090 < .001 ***
Time Gap 3.089 0.244 < .001 *** 2.576 0.173 < .001 ***
Time of Day -0.45262 0.217 0.037 * -0.410 0.194 0.035 *
eHMI / / / -0.330 0.194 0.0885

IV. RESULTS

All the behavioral patterns we focus on in this study are

summarized in Fig. 3, with the gray cells indicating the

statistically significant effects of the independent variable on

pedestrian behaviors observed in the experiment. The cells

with symbols mean that the corresponding model variant

captures that behavioral pattern.

A. Experimental results

In this section, we present the experimental findings for

the four behavioral metrics introduced in Section III-B5: gap

acceptance rate in non-yielding scenarios, early crossing rate

in yielding scenarios, CIT and average walking speed. We only

report statistically significant effects (p < 0.05) in this section.

1) Gap acceptance and early crossing rate: As can be seen

in the first row of Fig. 4, the gap acceptance rate and early

crossing rate showed the same pattern: Pedestrians were more

likely to cross when approaching vehicles were travelling at

30 mph compared to 25 mph (p < .001), and to cross with

a larger time gap (p < .001). These trends are consistent

with previous studies mentioned in Section II. Additionally,

pedestrians were more inclined to cross during the daytime

compared to nighttime (p < 0.05).

2) Crossing initiation time (CIT): As can be seen in the

first row of Fig. 5, pedestrians were more likely to cross

earlier when the speed of approaching vehicles was higher

(p < .001), and when the time gap was greater (p < .001).

These trends were consistent across the three categories.

In addition, pedestrians showed a smaller CIT at nighttime

compared to daytime in non-yielding and early crossing in

yielding scenarios. Conversely, in late crossing in yielding sce-

narios, pedestrians initiated crossing more slowly at nighttime

compared to daytime. Furthermore, from TABLE IV, eHMI

had an effect on CIT in late crossing scenarios (p < .001).

Specifically, when eHMI was on, pedestrians started to cross

earlier.

3) Average walking speed: From the first row of Fig. 6,

it can be seen that pedestrians crossed the road faster when

the time gap was smaller (p < .001). Pedestrians were also

more likely to cross faster during early crossings (p < .001).

Furthermore, the average crossing speed was also affected

by the eHMI (p < .001). Specifically, when eHMI was on,

pedestrians walked slower.

Overall, the experimental data showed 19 different statisti-

cally significant effects, shown as cells shaded gray in Fig. 3.

B. Model results

In this section we examine to what extent the three different

model variants were able to capture these observed effects;

this is also summarized in Fig. 3. The overall collision rate

in the experiment was 0.002, indicating that collisions were

rare. The collision rates for the SM, S, and M models were
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TABLE IV
STATISTICAL ANALYSIS OF CROSSING INITIATION TIME IN THE EXPERIMENT.

Non-yielding Early Crossing Late Crossing

Estimate Std. Error p-value Estimate Std. Error p-value Estimate Std. Error p-value

Intercept -0.439 0.099 < .001 *** -1.514 0.402 < .001 *** 1.435 0.425 < .001 ***
Speed 0.042 0.006 < .001 *** 0.099 0.028 < .001 *** 0.094 0.030 0.001 **
Time Gap 0.105 0.009 < .001 *** 0.197 0.041 < .001 *** 1.006 0.037 < .001 ***
Time of Day -0.062 0.014 < .001 *** -0.151 0.061 0.014 * 0.193 0.066 0.003 *
eHMI -0.105 0.061 0.087 -0.581 0.066 < .001 ***

Fig. 6. Average walking speed. This figure illustrates the average walking speeds for different crossing decisionsÐnon-yielding, early crossing, and late
crossingÐunder different vehicle speeds (25 mph and 30 mph) and eHMI conditions (on and off). Each pair of violins represents different vehicle speeds (25
mph and 30 mph) within the same time gap and eHMI on/off condition. The black dashed lines indicate the mean walking speed for each pair of violins.
This pairing method is used because the time of day did not have a significant effect on walking speed in the experiment.

TABLE V
STATISTICAL ANALYSIS OF PEDESTRIAN CROSSING SPEEDS IN THE

EXPERIMENT

Estimate Std. Error p-value

Intercept 1.359 0.037 < .001 ***
Speed -0.001 0.002 0.609
Time Gap -0.046 0.003 < .001 ***
Time of Day -0.004 0.005 0.447
Early cross 0.188 0.008 < .001 ***
eHMI -0.013 0.005 0.016 *

somewhat higher but still small, at 0.027, 0.044, and 0.040,

respectively. These values indicate that each model variant

could successfully learn to cross the road, with a relatively

low incidence of collisions.

1) Gap acceptance and early crossing rate: Rows 2-4 of

Fig. 4 show the gap acceptance behavior of the three model

variants: The experimental results for gap acceptance and

early crossing rates were best captured by the SM model.

This model captured all six behavioral patterns. In contrast,

the S and M models only captured two of these patterns:

the increases with increasing time gaps, but not the speed

or day/night effects. From Fig. 4, we can find that the S

model shows a higher crossing tendency under short time

gaps than the M model. This can be attributed to the lack of

walking effort and ballistic control assumptions in the S model,

enabling the agent to change speeds at each step without penal-

ties. In contrast, the M model integrates these assumptions,

which means that the agent of the M model must consider the

energetic cost of accelerating or decelerating when choosing

speeds. As a result, this model tends to demonstrate more

conservative behavior under similar conditions, leading to a

lower gap acceptance rate.

2) CIT: Rows 2-4 of Fig. 5 show the CIT of the three model

variants: The SM model exhibited the best performance by

accurately capturing four key behavioral patterns. It shows the

increase in CIT with both speed and time gaps in non-yielding

conditions, aligning closely with human data. In early crossing

conditions within yielding scenarios, it captured the speed-

dependent pattern, and in late crossing scenarios and illustrated

the relationship between CIT and time gaps in late crossing

scenarios. The S model captured two behavioral patterns: the

increase in CIT with time gaps in non-yielding and early

crossing conditions but failed to capture the patterns observed

in late crossing scenarios or the effects of daytime and eHMI.
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The M model only showed the increase in CIT with vehicle

speed.

3) Average walking speed: Rows 2-4 of Fig. 6 show the

average walking speed of the three model variants: The SM

model captured all three behavioral patterns successfully. The

M model captured two behavioral patterns: the pattern where

the agent walked slower in late crossing conditions and with

larger time gaps. However, the S model did not capture any

of the observed patterns related to average crossing speed.

4) The pedestrian speed profile: Fig. 7 shows the speed

profile of the experiment and the three model variants. It can

be seen that the integration of walking effort and ballistic

speed control in the SM and M models generated smooth,

bell-shaped, human-like walking speed curves. These models

captured the gradual acceleration and deceleration phases,

resulting in a more realistic representation of pedestrian be-

havior. Whereas, for the S model, shown in the third row

of Fig. 7, using direct speed control [46, 47, 48] rather

than the biomechanical model of walking, there were abrupt

fluctuations in the agent’s walking speed. This is unrealistic

for human locomotion, and as a result, the human-like speed

profile was not captured by this model.

Fig. 7. Average walking speed profile of the experiment, and different model
variants. Gray lines are the randomly selected speed curves and black lines
are the averaged speed curves of all conditions. The blue dashed lines denote
the road curbs, and the walking direction is from left to right.

V. DISCUSSION

A. Main findings

In this study, we developed a pedestrian crossing decision

model that integrates RL with sensory-motor mechanisms to

simulate human-like road crossing behavior. We identified

three main findings:

First, as shown in Fig. 3, the SM model variant captures

most of the behavioral patterns observed in the human data,

including the gap acceptance and early crossing behavior, the

relation between the CIT and time gap and vehicle speed, and

the behavioral patterns related to the average crossing speed.

Second, unlike previous models, considering the cognitive

process, which mostly focused on the binary ’go’ or ’not go’

decision, our model captures the entire locomotion process

of crossing the road, which can be beneficial to pedestrian

behavior simulation and prediction.

Third, building on our previous crossing decision model,

which primarily integrated visual limitations with RL, the

model proposed here successfully captured several behavioral

patterns related to motor aspects of pedestrian locomotion, the

day/ night difference and the effect of eHMI, without losing

the ability of the simpler model to capture sensory-related

behavioral patterns. This is promising, since it shows the

extensibility of the overall approach of combining mechanistic

modeling of sensory-motor aspects with RL, suggesting that

it may be generalizable to more complex traffic scenarios.

To make the model more generalizable to more complex

scenarios, a more advanced perception model is needed to

sense the surrounding information including multiple vehicles

and infrastructures. Additionally, we have not considered the

attention mechanism in our model, which is also required for

a more generalizable model.

B. Impact of sensory-motor constraints on the pedestrian

crossing locomotion

1) Human-like walking speed pattern: Our SM model, with

the integration of walking effort and ballistic speed control

mechanisms, successfully captured the observed behavioral

patterns regarding average walking speed and showed similar

walking speed profile. Previous studies argued that the relation

between the time gap and the crossing speed was caused by

the time pressure. However, when comparing the S model and

M model, we found that the model with time pressure but

without walking effort and ballistic speed control assumptions

could not generate that speed pattern. Therefore, we argue that

the time gap-dependent walking speed pattern is the result of

both the time pressure and motor aspects, modelled here in

terms of walking effort and ballistic speed control.

In addition, the comparison between the S and M models

further highlights the necessity of modeling human motor

control to accurately simulate pedestrian locomotion. An in-

teresting question for future work is determining the level of

detail needed in the motor components of pedestrian crossing

models, given that human locomotion is more complex than

we have modeled and that more sophisticated human biome-

chanical simulations have been modelled by RL [54].

2) Day-night time difference in gap acceptance and early

crossing rate: The SM model captures the day-night time

difference in gap acceptance and early crossing rate by

fitting each participant with individual values for the non-

policy parameters of perceptual noise and looming aversion.

This approach allowed us to account for variations in visual

perception between day and night scenarios. We initially

hypothesized that higher crossing rates during the daytime

were due to smaller visual noise. However, we found no clear

correlation was present between σv value and gap acceptance

rate, suggesting that the gap acceptance of the model depends

on a non-trivial interaction between σv and one or more of

the other non-policy parameters.
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3) Ablation Study on Sensory-Motor Constraints: Although

we have compared the results of the S and M models, each

of these two models still include two of the four main model

assumptions. To further understand which assumptions have

the most significant effect on the model’s crossing behavior,

we also conducted an ablation study involving four model

variants, each excluding just one of the four components. As

shown in Fig. 3, it can be observed that removing either the

looming aversion or the ballistic control assumption led to the

loss of eight behavioral patterns that were captured by the

SM model. In contrast, removing either the walking effort

or the noisy perception component resulted in the loss of

six behavioral patterns. These findings suggest that looming

aversion and ballistic control have a more substantial influence

on crossing decisions and pedestrian behavior than the other

two components.

An interesting aspect of our bounded optimality approach

is its interpretability compared to data-driven neural network

models. In our previous work, we found that the speed-depen-

dent gap acceptance pattern could be attributed to the noisy

perception assumption [12]. However, in the current study, we

observed that even without this assumption, the model was

still able to generate this behavioral pattern (although not the

CIT speed-dependencies captured by the SM model). The rea-

son for this difference may be because, in the current frame-

work, we model the entire crossing phase, meaning the gap

acceptance behavior emerges as a consequence of the entire

sequential decision-making process. By contrast, our earlier

work focused only on the initial go or not go decision. Ad-

ditionally, the current model incorporates assumptions about

the motor constraints, which were not included in the earlier

study. While our method is certainly more interpretable than

fully data-driven models, by providing insights into what near-

optimal behavior looks like under various human constraints, it

may not always be immediately obvious why the obtained be-

havior is near-optimal. Understanding the interaction between

various human constraint assumptions in our model is non-

trivial, highlighting the need to further refine our framework to

enhance our understanding of pedestrian behavior dynamics,

potentially leading to more robust and transparent decision-

making models in the future.

4) Importance of integrated sensory-motor modeling: Nei-

ther the S model nor the M model captured as many behav-

ioral patterns as the SM model. This suggests that modeling

realistic pedestrian crossing patterns requires a comprehensive

understanding of the constraints faced by humans. The SM

model’s success in capturing a wide range of patterns can be

attributed to its incorporation of both sensory and motor mech-

anisms. Our comparison of models with different assumptions

demonstrates that only by fully grasping and modeling these

complex sensory-motor interactions can we achieve a more

accurate and human-like behavioral model.

C. Implications and limitations

In this study, although vehicles exhibit predefined behavior,

the scenarios include both the pedestrian interacting with the

yielding and non-yielding vehicle, which means the pedestrian

understands both interaction types. However, the pedestrian

only interacts with the vehicles that come from one direction.

Therefore, our model is most applicable to scenarios where

a pedestrian crosses a single-lane road with oncoming traffic

from one direction. Additionally, neither our experiment nor

the RL environment indicated that the pedestrian had the

priority of way, and no traffic signals were present. As such,

the model is best suited for uncontrolled crosswalk settings.

Our model successfully captures many observed behavioral

patterns in such scenario, which suggests that it may be

useful for a number of potential practical applications. It can

contribute to the prediction of pedestrian behavior in real-

time AV algorithms, enhancing the ability of AVs to interact

safely and effectively with pedestrians [6]. Furthermore, the

model can be integrated into virtual testing environments,

providing a valuable tool for evaluating AV systems under

various pedestrian crossing scenarios [1]. This can facilitate

the development of more robust and reliable AV technologies,

ultimately contributing to safer road environments. Addition-

ally, the model has broader applications in traffic safety

modeling. Accurately simulating pedestrian behavior can help

the design of safer road infrastructures and traffic management

systems, improving overall traffic safety and efficiency [1, 6].

However, not all of the behavioral patterns observed in

the empirical study were captured by our SM model. We

calculated the effect size (Cohen’s d and Cohen’s h) for

each statistically significant variable. The effect sizes for the

missing behavioral patterns were relatively small (< 0.40),

suggesting that these variables do not have a substantial impact

on the behavioral metrics. An exception was the effect of

the time gap on CIT in early crossing scenarios in yielding

conditions, where discrepancies may arise from the bimodal

pattern criteria derived from experimental data not aligning

well with the model’s bimodal patterns. Furthermore, in the

empirical study, there were statistically significant differences

between young and old participants in CIT for non-yielding

scenarios and in CIT for late crossings in yielding scenarios

[40]. Preliminary tests with the SM model indicated that it

could not easily capture these effects, possibly because we

have not identified the most sensitive sensory-motor mecha-

nism affecting these age groups differently. In this study, the

pedestrian agent’s movement is restricted to selecting speeds

in one direction only, and trajectory similarity is not the

main focus of this study. Future improvement will include

giving the pedestrian agent greater freedom of action, such as

heading direction, to make the model generate more human-

like behavior.

Additionally, the experimental data we used was collected

in a VR environment, where the pedestrian might behave

differently when compared to the real world. Although the

pedestrian crossing behaviors observed in our pedestrian VR

simulator have been shown to be largely similar to those in

real-world environments [55], to improve the applicability of

our model to real-world autonomous vehicle (AV) applications

and increase the generalizability of the observed behaviors,

we plan to extend our model to address naturalistic datasets,

where more diverse scenarios are available. For example, this

study focuses on the scenario where a pedestrian interacts with
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two approaching vehicles. In future work, we aim to model

more complex behaviors, such as crowd-crossing dynamics,

by training a multi-agent policy with an advanced perception

model in an environment with more road users. This approach

will allow us to capture a broader range of pedestrian behaviors

and interactions, thereby improving the model’s utility for real-

world AV applications.

VI. CONCLUSION

This research presents an RL model that incorporates

sensory-motor mechanisms aimed at simulating human-like

pedestrian crossing behavior, which is important for the safe

deployment of AVs in urban environments, and also has

applications in traffic safety more broadly. The experimental

findings of this study reveal that pedestrians’ crossing rates

and walking speeds vary in response to time gaps and vehicle

speeds, and differ between day and night conditions, as well as

with the presence of eHMI. Our model successfully integrated

a range of sensory-motor constraints, including visual limi-

tations, looming aversion, time pressure, walking effort, and

ballistic speed control, allowing it to replicate the interaction

and locomotion patterns observed in the experiment. We find

that empirically observed time-gap-dependent walking speed

patterns can be understood as arising from a trade-off between

time pressure and walking effort, captured by our model. The

ability of our model to simulate a large number of observed

behavioral patterns highlights the versatility of RL in modeling

complex human behaviors. It provides insights into the effect

of sensory-motor mechanisms on pedestrian-vehicle interac-

tions. Notably, the model extends the behavioral patterns

captured in previous studies, demonstrating its capability to

generalize across more complex pedestrian behaviors and sce-

narios. While the model replicates many observed behavioral

patterns, it has limitations, such as capturing the influence of

eHMI on CIT, and some CIT patterns in yielding scenarios.

Nonetheless, by providing a more accurate representation of

pedestrian behavior, this research not only contributes to the

field of pedestrian behavior modeling but also has the potential

to improve AV algorithms and virtual testing environments,

ultimately enhancing the coexistence of AVs and pedestrians

in shared spaces.
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