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Abstract

Automated generative design is increasingly used across engineering disciplines to accel-

erate innovation and reduce costs. Generative design offers the prospect of simplifying

manual design tasks by exploring the efficacy of solutions automatically. However, existing

generative design frameworks rely heavily on expensive optimisation procedures and

often produce customised solutions, lacking reusable generative rules that transfer across

different problems. This work presents a bioinspired generative design algorithm utilising

the concept of evolutionary development (EvoDevo). This evolves a set of developmental

rules that can be applied to different engineering problems to rapidly develop designs

without the need to run full optimisation procedures. In this approach, an initial design is

decomposed into simple entities called cells, which independently control their local growth

over a development cycle. In biology, the growth of cells is governed by a gene regulatory

network (GRN), but there is no single widely accepted model for this in artificial systems.

The GRN responds to the state of the cell induced by external stimuli in its environment,

which, in this application, is the loading regime on a bridge truss structure (but can be

generalised to any engineering structure). Two GRN models are investigated: graph neural

network (GNN) and graph-based Cartesian genetic programming (CGP) models. Both

GRN models are evolved using a novel genetic search algorithm for parameter search,

which can be re-used for other design problems. It is revealed that the CGP-based method

produces results similar to those obtained using the GNN-based methods while offering

more interpretability. In this work, it is shown that this EvoDevo approach is able to

produce near-optimal truss structures via growth mechanisms such as moving vertices or

changing edge features. The technique can be set up to provide design automation for a

range of engineering design tasks.

Keywords: generative design; evolutionary development; evolutionary algorithm; gene

regulatory network; neuroevolution; graph neural network; graph convolutional network;

cartesian genetic programming; genetic algorithm; truss optimization
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1. Introduction

In traditional design processes, a designer will take a project brief or specification

and use their expert knowledge to construct a solution and then test it to see whether it

meets the set of requirements. There is normally an iterative process between the design

and analysis stages before the part is sent to manufacturing. As a result of time, cost

and resource constraints, this approach can lead to design fixation or non-value-adding

tasks [1,2]. Generative design (GD) looks to address these issues via automation. Generally,

it can be summed up as a series of tools that use advanced algorithms and artificial

intelligence to create designs for a given set of criteria. This involves the exploration of

a vast number of design options, presenting a range of design solutions to the user for

selection [3]. The design solutions that emerge may be different from the general best

practice or from what may be possible to discover using manual design processes.

Some GD systems consist of both an expert system and an optimisation system [4].

The expert system emulates the expert’s knowledge and ability to generate and critique

solutions to a specific design problem. An optimisation system, however, improves designs

with respect to some objective criteria. Unlike traditional optimisation, where objectives

relate to weight or cost, for example, GD systems also optimise other criteria such as aes-

thetics or manufacturability. The optimisation task may not be concerned with discovering

global optima; instead, a multi-modal optimisation task can be performed to find multiple

solutions to a problem.

Commonly, topology optimisation acts as an engine to improve the design of a pre-

defined shape. GD not only deals with topology optimisation but also integrates other

techniques such as shape and size optimisation. This integration of different optimisation

techniques can often be a limitation to interoperability between the geometric representa-

tions required for topology and shape/size optimisation. Generally, topology optimisation

utilizes the finite element method (FEM), where the design space is discretised into simple

primitives called elements. This discretised geometry is discontinuous and can be difficult

to map back to the parametric computer-aided design (CAD) model (i.e., boundary repre-

sentation (B-Rep)) used for shape optimisation [4]. There can also be a high computational

cost associated with generating and analysing the large number of designs required for a

GD system. For small-to-medium-sized businesses with no access to high-performance

computing, this could represent a barrier to adoption.

Bioinspired GD systems apply features of biological systems to the design creation

process [5]. In this paper, inspiration is taken from the biological concept of evolutionary

development (EvoDevo) to evolve development rules that can be used to generate design

solutions for different engineering problems using evolutionary algorithms [6]. This can be

thought of as ªevolving the designer, not the designº. By encoding the development rules in

the genome of the evolutionary algorithm instead of in the design itself, a richer exploration

of the design space is possible. In this paper, this is applied to the automated design of

truss bridge structures, a popular benchmark in structural optimisation [7,8]. In EvoDevo,

an initial design is divided into basic units called cells, each containing an identical copy of

an artificial gene regulatory network (GRN) model. This GRN model governs the growth

of the structure through a set of developmental rules applied to each cell. The GRN model

itself is encoded in a genome, which is optimised using an evolutionary algorithm.

Learning from graph-structured data using graph neural networks (GNNs) offers a

promising approach, as GRN models reason over graphs, with trusses being naturally rep-

resentable in this format. However, the ªblack-boxº nature of neural network outputs can

make interpretation difficult. To address this, a novel configuration of a Cartesian genetic

programming (CGP)-based GRN model has been developed within the GNN paradigm, of-

fering more interpretable ªwhite boxº outputs. This paper explores both approaches. These
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GRNs are developed utilising an evolutionary search algorithm to regulate local develop-

ment mechanisms, including the movement of vertices or the alteration of link features.

The objective is to demonstrate that this EvoDevo framework can generate near-optimal

truss structures. Once the development rules are established, they may be repurposed to

address analogous engineering challenges, hence decreasing the computational expense of

the GD system for the end user and facilitating design automation.

The remainder of this paper proceeds as follows: Section 2 reviews prior work in GD,

focusing particularly on optimisation paradigms and geometric representations. The pro-

posed EvoDevo framework is proposed in Section 3 in detail. Section 4 describes the

experimental setup parameter settings and evaluation metrics. Section 5 demonstrates the

experimental results and compares the two proposed GRN controllers. Finally, Section 6

summarises the main findings, outlines the practical results and highlights directions for

future work.

2. Related Work

There are two areas of research to consider when applying GD to real-world engineer-

ing problems. The first is the learning algorithm, which is the means by which appropriate

GD is discovered. The second is the design representation, which is the means by which the

specific design problem is represented to the learning algorithm.

2.1. Gradient- vs. Non-Gradient-Based Methods

Gradient-based methods utilise sensitivities (i.e., gradient information) to explore

the design space for optimal solutions. Many such methods can efficiently solve high-

resolution problems requiring millions of design parameters using a small number of

function evaluations [9]. Common gradient-based methods include density-based (e.g.,

Solid Isotropic Material with Penalisation (SIMP)) [10] and level-set [11] methods.

For applications in GD, there are several limitations that make gradient-based ap-

proaches less attractive. GD systems require optimisation over a wide range of criteria

such as manufacturability or multi-physics performance criteria. Therefore, the calculation

of gradients may be infeasible due to numerical noise or a large number of variables [12],

or, simply, the required objective function may not be differentiable. Gradient-based ap-

proaches are also not robust to the noisy or discontinuous search spaces that can result

from the non-linearities of GD problems, and they are sensitive to the initial solution [12].

Non-gradient-based or black-box methods often utilise evolutionary algorithms to

obtain near-optimal solutions. Compared to gradient-based methods, non-gradient-based

methods tend to have higher computational costs due to the need to analyse large popu-

lations of designs, therefore needing many simulations. Non-gradient-based approaches

tend to be more robust to the limitations mentioned previously for gradient-based ap-

proaches. The use of non-gradient-based approaches allows for greater flexibility in terms

of application for GD [12,13]. The use of evolutionary algorithms for GD is desirable for

the multi-modal optimisation requirements of a GD system. Due to the population-based

approach, these methods are able to maintain populations of possible solutions that contain

diversity and meet the set objectives.

2.2. Representation of the Design

Within topology optimisation and GD, there have been many attempts to represent the

design domain (the structure of the design). Due to the computational cost of non-gradient-

based algorithms, the representation chosen for this is paramount, as it defines the search

space dimensionality. The chosen structural representation also constrains the possible

solutions and the ability to find optimal solutions [12]. For evolutionary algorithms,
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this representation is synonymous with the genotype. In the literature, the different

representations have been grouped into grid, geometric and indirect representations [13].

2.2.1. Grid Representation

In this representation, the design space is discretised by a grid. For evolutionary

algorithms, the genotype encodes properties for different locations on the grid. This

representation is commonly used in density-based topology optimisation [10]. The reso-

lution of the grid is often high; therefore, the number of grid elements can be controlled

within the millions to represent a specific geometry. For evolutionary methods, increasing

this grid increases not only the cost of computing a fitness value but also the size of the

chromosomes. This large number of grid elements generates an intractable search space,

which consequentially requires large computational resources to converge to the global

optima [14].

2.2.2. Geometric Representation

In geometric representations, the structure is represented by a set of shape primi-

tives/components, which can either be fixed or free to move. It is the parameters of these

primitives that are encoded in the genotype for evolutionary algorithms. The properties

of these shape primitives can be the position, thickness or shape of a structure or sub-

structure. The complexity of the solution depends on the number of primitives; hence,

the dimensionality of the search space can be greatly reduced compared to that of grid

representations [12].

The genotype of Voronoi representations encodes the coordinates and material proper-

ties of Voronoi cells. These representations allow for the subdivision of the design domain

into arbitrarily shaped polyhedra [15,16]. For level-set methods, the shape boundary is

defined by a level-set function. This representation has become widespread for gradient-

based optimisation, where it has the advantage of producing smooth, watertight geometry

compared to density-based approaches. There have been several approaches that have

utilised evolutionary algorithms with a level-set representation. Some of these approaches

have used beam-shaped components to construct the level-set boundary [17].

Other approaches have represented the structure as a graph. Encoded in the genotype

are the coordinates of the nodes and the properties of the edges (e.g., thickness). The edges

can be characterised as Bézier curves, allowing for a larger exploration of shape [18±20]

or beam elements, parameterising their shape and thickness [21,22]. This maintains a

direct link with the analysis model, similar to grid representations, thereby reducing

interoperability issues.

Constructive solid geometry (CSG) involves the use of simple primitives and Boolean

operations to create a more complex geometry. Several authors have proposed defining

nodes via boundary conditions and using a Delaunay triangulation to produce the edges of

the graphs [23,24]. Optimisation involves the parameterisation of these entities. Recently,

Wang et al. [14] showed how a CSG representation can be combined with additive manu-

facturing constraints in a GD system. Watson et al. [4] split the GD process into a topology

optimisation step on a grid representation, followed by a shape optimisation step on a

graph representation, where the graph was extracted from the grid representation using

image processing algorithms.

2.2.3. Indirect Representation

Compared to grid and geometric representations, where the structure is directly pa-

rameterised by the optimisation model, indirect representations instead look to implicitly

optimise these parameters via a generative model or development rules [12]. Their ben-

efit over grid and geometric representations is that they allow for the formation and
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re-deployment of problem-specific design patterns [12]. Although this could mean a high

computational cost initially in the formation of the generative model, once formed, the

ability to redeploy could alleviate the computational cost for the end-user.

Deep learning methods have recently been used in GD and topology optimisation.

Within the field of deep learning, there are several different types of generative models,

many of which have been used in the application of GD. Previous works have applied

variational autoencoders (VAEs) within topology optimisation to allow the network to

reconstruct optimal designs for given boundary conditions [25]. Others have used rein-

forcement learning via a proximal policy optimisation (PPO) model for wheel design [26].

The issue with deep learning methods is that they are not sample-efficient and require large

amounts of data that do not exist in the field of engineering. Many of these approaches

have utilised grid-based representations, which becomes computationally prohibitive when

moving to 3D voxels due to the cubic scaling factor [27]. Conversely, bioinspired algorithms

do not require large amounts of initial training data, and they are less dependent on the

extensive predefined structure or specific parametric assumptions found in many deep

learning algorithms.

The following approaches all take inspiration from different concepts and mechanisms

in biology to produce and control the developmental rules used to generate a design. Price

et al. [28] created heuristic growth rules for development in a bioinspired GD system.

Through cellular division and other plant growth analogies, a design with additive manu-

facturing constraints was grown from a single cell ªseedº to a mature organism by reacting

to external stimuli.

EvoDevo has been applied via Lindenmayer system (L-system) representations. Tiago

et al. [29] utilised L-systems to model the cellular division of truss structures for topology

optimisation. Artificial GRNs have also been used for EvoDevo in structural optimisation.

GRNs are the controllers in cells that switch genes on and off due to the state induced by

stimuli in the environment, allowing the cells to grow in a certain manner. This allows for

the development of an organism from a single cell to a fully developed organism. The use

of GRNs for the design of complex structures was first proposed by Steiner et al. [30].

The proposed GRN model included cellular division, cell specialisation into material and

void cells and the physical interactions of cells. Later, Steiner et al. [31] added chemotaxis

(the movement of cells relative to the concentration gradient of chemicals), cell adherence

and repellence.

Neuroevolution is the field of using evolutionary algorithms to optimise the param-

eters of neural network models [32]. Aulig et al. [33] used a state-based representation,

where a neuroevolutionary approach evolved the weights of feedforward neural networks

that mapped local sensory information to an update signal for the topology optimisation of

a grid-based structure. Others have used forms of the neuroevolution algorithm NeuroEvo-

lution of Augmenting Topologies (NEAT) [34] that can also evolve the topologies of neural

networks, as well as the weights and biases. Cheney et al. [35] used HyperNEAT [36]

for vibration design using a grid representation. Prior work by Hickinbotham et al. [37]

showed the ability to use a GRN evolved using NEAT to move node positions in a Warren

truss to produce solutions that are more optimal in minimising objective functions such as

the total strain energy and total volume. This combined the GRN approach with state-based

approaches and operated on a geometric representation of the design.

Furthermore, Cartesian genetic programming (CGP) [38,39] is a graph-based evolu-

tionary algorithm that allows for the efficient evolution of GRN structures. In general, CGP

employs fixed-size grids of nodes (including columns or rows), in which node inputs are

mostly from nodes in earlier columns. Also, the genomes in CGP comprise connection

genes and primitive functions that are optimised through an evolution process with a
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mutation operator [40]. CGP offers two practical advantages over other GRN models: com-

putational efficiency and interpretability. During optimisation, only the active sub-graph,

often a small fraction of the full genotype, is executed, so evaluation times decrease sig-

nificantly. In addition, CGP exposes clear routes between inputs and outputs, making the

resulting network easier to interpret than GRNs based on GNNs or other neural network

models [40,41].

This section highlights how gradient-based, non-gradient and indirect representations

each address different aspects of GD. In the next section, we translate these insights into a

new framework, detailing our cellular representation, growth mechanisms and the dual

GNN/CGP gene regulatory networks that drive development.

3. Proposed Method

3.1. Overview

Akin to Price et al. [28], the approach adopted here is to develop generative models

that encompass the development of an organism from a single cell to a fully developed

organism (Figure 1). The process starts with a minimal seed that meets the baseline

requirements. In each development step, each cell senses its local state via message passing

and aggregating information from neighbouring cells. This information is passed through

GRNs, which generate growth commands. These commands are necessary for changing

the global geometry and the cell states for the next steps. Through a loop of sensing,

decision and execution, the cells grow and end up with the optimised structure based on

the predefined fitness criteria.

Figure 1. Concept of a design growing from a seed. Growth is regulated through the continuous

interaction between external stimuli and the outputs of the GRN.

3.2. Cellular Representation

As discussed in Section 2.2, there are many different ways to represent the geometry for

GD. When the geometry is encoded directly into the genome of an evolutionary algorithm,

there are not many constraints on what geometries can be represented; however, scaling

to complex problems becomes a real and often insurmountable issue. Here, an indirect

representation is used, where the genome encodes a GRN represented by a neural network.

A key consideration for such a neural network-based GRN is its interaction with geometric

data. Traditional neural networks, due to their fixed input vector size, typically require

shapes to be described in regular, grid-like formats (e.g., pixels or voxels). Most 3D
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shape representations such as meshes or B-Reps do not have consistent or predefined

arrangements. To enable our GRN to operate directly on such irregular, graph-structured

cellular designs, this work leverages GNNs, which have been shown to be able to deal

with these kinds of irregular shape representations [42±46]. A geometric representation is

therefore constructed with these key limitations and advantages in mind.

As with [28,37], the design is divided into simple primitive entities called cells. As in

biology, these are the basic building blocks that together can be used to construct more

complex systems. Each of these cells is an independent entity that contains a local controller

via a GRN for growth but interacts with the global structure through its shared topology.

In this paper, cells are considered to only have structural properties and function. A

graph is constructed from these cellular entities and their shared topology. In this paper,

these cells also represent the finite elements used for the design’s analysis, which helps

to reduce interoperability issues, in a similar manner to some previous beam element

approaches [21,22].

For this initial study, truss structures are explored as the benchmark problems. To rep-

resent a truss structure, a heterogeneous graph of multiple node and edge types can be

used. Each node represents a distinct cell type, and the edge types represent different

adjacency information between the same and different cell types. This graph can have a

hierarchy, capturing features from local to global scales, as illustrated in Figure 2. In this

paper, two cell types are used, representing the vertices/nodes and edges/members of

the truss structure. These edge cells can be characterised as truss elements in a finite

element analysis (FEA) when solving statically indeterminate structures. All graph edges

are assumed to be undirected, although direction can also be encoded.

Figure 2. A heterogeneous graph representing a shape, unfurled into a hierarchy of cell types and

topologies. Cells can be represented as faces, edges or vertices; however, this paper focuses on the

edge and vertex representations.

3.3. Evolutionary Development

The EvoDevo algorithm consists of an evolution (evo) process and a development

(devo) process. The evo process optimises the GRN model in the shape of genomes.

The devo process can be thought of as the life-cycle of the design/organism. It is where

the cells of the design will change in terms of shape, size and topology as a sequence of

rules in order to adapt to the environment in which they are placed. Once the devo process

is complete, the organism, or, more specifically, the shared GRN of the cells, will be given

a reward based on its performance. The rewards of the organisms are then used in the

selection process in the evo process, which decides which organisms and their genetic

material are allowed to pass to the next generation.

3.4. Development

The development of a design/organism can be cast as a reinforcement learning prob-

lem, where the agent/GRN in each cell interacts with an environment and must produce

a sequence of actions (here, devo steps) that yields a trajectory in the objective space to
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maximise some cumulative reward. The problem is underpinned by assuming the Markov

property that the history of all previous states is encapsulated in the current state (e.g.,

the x and y coordinates of joints and the strain energy and material volume of members).

This means that, at any given devo step, a cell’s growth decision is only based on its

current and potential future states. It is also assumed that the environment is deterministic

and that no uncertainty exists between transitions from one state to another. The action

space is continuous, where the GRN needs to determine the appropriate values for a set of

continuous control parameters corresponding to a given growth mechanism.

3.4.1. Environment

In the proposed framework, the environment is the collection of problem-specific prop-

erties and constraints that influence the development of the designs. The actions update

the cell states at every development step and therefore change and define the search space.

The organism and its cells interact with stimuli in the environment, updating the cell states

in the process. The environment sets up the problem search space in which solutions

can be found. Therefore, knowledge of the problem is required to effectively define the

environment to ensure that the desired solutions are output from the system. The search

space is defined through the construction of different environmental elements. These

relate to the engineering discipline of interest, e.g., structural, thermal or manufacturing.

Within an environmental element, different variables can be added, such as stimuli, objec-

tives and constraints. In this paper, the focus is on the structural environmental element

that can be used to generate feedback for different structural analysis problems, with other

environmental elements being explored in future work.

In this paper, potential designs for statically determinate and indeterminate pin-jointed

truss structures are considered. The tension coefficient method and FEA with truss elements

are used to calculate the forces on these statically determinate and indeterminate truss

structures, respectively. An analytical method via the tension coefficient method is used

to speed up analysis where possible. The main objectives explored in this paper are to

minimise the total strain energy and the total volume of the designs, with the aim of

generating organisms with optimal stiffness-to-weight properties. A lower strain energy

value for a given load indicates a higher overall structural stiffness. The total strain energy

is the energy stored in a link as a result of its elastic deformation.

3.4.2. Growth Mechanisms

Each cell uses its GRN to make an independent decision on its local growth. Evolu-

tionary selection is used to maximise the design’s performance globally (by minimising an

objective function). The action space of this growth is parameterised by the growth mecha-

nisms available to the cell: different growth mechanisms allow for different explorations of

the design space in terms of shape, topology and size. These growth mechanisms can also

be linked to certain engineering disciplines and engineering knowledge. For performance,

it is important that there is a direct mapping between the cell and the growth mechanism

that acts upon it. This decreases the noise in the search space and allows for more gener-

alizable GRNs. In this contribution, the vertex/node cell type has the ability to change

its Cartesian coordinate position, and the edge cell type can alter its cross-sectional area.

These parameters can be altered in a continuous range of [−1, 1] at each devo step.

3.5. Gene Regulatory Network

In a single biological organism, the cells all share the same genome but have different

gene expression levels as a reaction to the local state of the cell. The GRN is the controller

in the cell that switches genes on and off due to stimuli in the environment, allowing for

the cell to grow in a certain manner in response. The development of an organism from a
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single cell to a fully developed organism occurs due to local responses on a cellular level

and independently of a global controller. In this work, inspiration is taken from gene

regulatory networks and their ability to dictate development without the influence of a

global controller using state-based information.

There are many different proxies for gene regulatory networks in the literature. These

can be classified into logical, continuous and single-molecule-level models. The different

classifications can be placed on a spectrum of ranging model complexities or speed of

analysis. Logical models tend to have a lower model complexity but suffer in terms of the

speed of analysis. Single-molecule-level models instead have a higher model complexity

leading to a lower speed of analysis. Continuous models, which include ordinary differen-

tial equations (ODEs), genetic programming and neural networks, lie somewhere in the

middle between the other two classifications. As with Hickinbotham et al. [37], the GRN

in the system is represented by a neural network. This supports a certain level of model

complexity, but, as multiple simulations would also need to be run, faster analysis speeds

would also be required.

One major difference from [37] is that a GNN is used instead of a simple feedforward

neural network for the GRN. There are several advantages of using a GNN for learning from

these kinds of data representations and shapes in general. As discussed previously, shapes

can be represented in graphical representations with topological relationships between

entities. GNNs are designed to process and learn from this graph-structured data, making

them a natural fit to the problem at hand. GNNs are also able to capture both the local

and global contexts within a graph. In the context of shape representations, this means

that GNNs can effectively capture the local geometric relationships between neighbouring

entities while also incorporating global shape information. GNNs can also learn from

hierarchical representations by propagating information across the graph, capturing and

aggregating features from local to global scales. This propagation of information or message

passing is very important, as it enables cell-to-cell communication. This communication is

not constrained to cells of the same type, meaning that cells are able to have different types

in the representation used here, e.g., both vertex and edge types, as shown in Figure 2,

enabling more flexibility and generalisation to the approach.

In the proposed neural architecture, graph convolutional layers are used to filter and

aggregate state information from cells and their neighbouring cells. The graph neural

network operator [47] used is shown in Equation (1):

x′i = Wselfxi + Wnbr ∑
j∈N (i)

ej,i xj. (1)

where xi denotes the current feature vector of node i, and x′i is its updated feature vector

after one graph convolution operation. The set N (i) contains all nodes that share an edge

with node i in the graph. The learnable weight matrix Wself filters the target node’s own

features, while Wnbr filters the aggregated features received from the neighbouring nodes.

The scalar ej,i is the edge weight from node j to node i; it is set to 1 in the present study.

As previously stated, information can be propagated between different cell types.

Thus, vertex cells exchange messages not only with other vertices but also with edge cells.

Therefore, we decompose the neighbourhood into intra-type and inter-type sets:

x′i = Wselfxi + Wintra ∑
j∈Nintra(i)

ej,i xj + Winter ∑
k∈Ninter(i)

ek,i xk. (2)

Here, Nintra(i) contains neighbours of the same cell type as node i, whereas Ninter(i)

contains neighbours of a different type. The weight matrices Wintra and Winter can therefore
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learn distinct linear transformations between possibly different feature dimensions, so

cell-type Xk is not required to share the same feature size as Xi (Wnbr = Wintra + Winter).

For both types of neural network operators, a leaky Relu activation function [48]

and bias operator are used. The GRN also has a fully connected layer after the graph

convolutional layer. This uses a hyperbolic tangent or tanh function to give a continuous

output for the growth mechanism in the range [−1, 1]. The tanh function serves as a

stabilising mechanism that maintains equilibrium during development while permitting

both positive and negative modifications. The absence of the tanh function results in

significant output oscillations, causing simulation failures. For instance, Figure 3 shows

the architecture used to optimize the structure by changing the vertex positions and edge

cross-sectional areas simultaneously. This is constructed by two GRNs, one for the vertex

cells and one for the edge cells. The edge cells hold state information in terms of their strain

energy and volume. The vertex cells hold state information in terms of their Cartesian

coordinates. The edge cells are able to communicate their state information to adjacent

vertex cells. Therefore, the vertex cells make growth decisions based on their own state

and the state of adjacent vertex and edge cells. It is decided that the vertex cells should not

communicate their state to the edge cells, as it is assumed that the vertex position is not

necessary for the mapping of the edge state and its growth mechanism.

Figure 3. Hybrid control structure: two gene regulatory networks for vertex and edge cells with

neighbour message exchange. A vertex GRN updates node positions (∆x, ∆y), while an edge GRN

adjusts member areas ∆A.

3.6. GRN Implemented as Cartesian Genetic Programming (CGP)

Alongside the GNN, an alternative implementation of a GRN based on CGP is de-

signed. Compared to the GNN, CGP offers a human-readable way to encode a GRN with a

grid of nodes and logical operators in a linear chromosome. Each chromosome is simply

a vector of numbers that is interpreted to build a directed grid-based graph. The two-

dimensional grid consists of R rows and C columns, and each grid intersection hosts a

single computational node. The type of computation is determined by an operator chosen

from the primitive set such as addition, subtraction, multiplication and division. Every

node has exactly k inputs (generally k = 2) and one output. In CGP, there is a level-back

parameter L, which guarantees acyclicity. Node (r, c) can only read from primary inputs or

from nodes situated in columns c + 1, . . . , c + L. In CGP, genomes evolve under a (µ + λ)

mutation operator. Indeed, exploration and exploitation rely on point mutation; only with

probability ε is a field in the chromosome replaced (primitive or connection) or perturbed,

and crossover is omitted.



Algorithms 2025, 18, 467 11 of 34

To implement the CGP-based GRN, several CGP structures are instantiated that differ

in the number of inputs, the number of outputs and the way that neighbourhood statistics

are aggregated (similar to a GNN). Table 1 lists the exact settings used in these experiments;

all genomes share the same grid size, level-back and primitive set.

Table 1. Summary of CGP methods.

CGP Structure Inputs Outputs Purpose

edge 2 1 strain energy & volume→ ∆A
node 2 2 (x, y)→ (∆x, ∆y)

node±edge (hybrid) 2/2 2/1 two cgp controllers update hierarchically

The edge controller (row 1 of Table 1) is the minimal CGP structure. Each truss cell

receives only its own strain energy (SE) and volume (V) and returns a single increment

∆A for the cross-sectional area. Also, the node controller maps the current vertices/node

coordinates (x, y) to a displacement vector (∆x, ∆y). Ultimately, two hybrid node±edge

controllers co-evolve a pair of CGP controllers. node-cgp controls the node positions, and

edge-cgp adjusts the members’ cross-sectional areas.

3.7. Evolution and Selection

After each development step, the total normalised strain energy and volume (each is

normalised by its initial value) is recorded and summed to give the fitness F = SEn + Vn.

In addition, the incremental reward ∆F = Ft − Ft−1 is computed through all development

steps, resulting in overall progress rather than single-step jumps. This reward, which is

the summation of all ∆F over 10 development steps, is considered the criterion for ranking

the performance of each CGP controller and selecting the promising ones for the next

evolutionary generation. The selection of 10 steps is determined empirically as a balance

between performance enhancement and computational expense [49,50].

3.8. GRN Implemented as Neuroevolution (GNN)

To learn the growth rules that underpin development in different environments,

an evolutionary parameter search of the graph neural network GRNs is performed. Neu-

roevolution has been shown to be a powerful and flexible technique that can be used

in a wide range of reinforcement learning problems, especially those with complex and

continuous state and action spaces. Therefore, a novel neuroevolutionary genetic search

algorithm is proposed to implement this parameter search of the graph neural networks.

The genome of each organism in the population encodes the weights and biases of each

layer of its graph neural network (GRN). This genetic search algorithm evolves the GRN

through the process of mutation and selection. This genetic search algorithm can be seen in

Figure 4. The initial populations of the GRNs are parameterised by random weights and

biases. Each of these GRNs is placed in their own development loop, where they grow each

cell in an organism until a final design is produced. This final design has an associated

cumulative reward based on its performance in the environment relative to the predefined

objectives. A selection process is then undertaken, where the best performing GRN in terms

of this reward metric is passed to the next generation, and offspring are produced via the

mutation of the weights and bias parameters of the two parent GRNs.

The mutation rate ε dictates the probability of changing the weights and biases in

the GRN. It is randomly sampled from a Gaussian distribution with a mean of zero and a

standard deviation equal to the mutation rate. There is a dilemma between the exploration

and exploitation of the solution space. The process should not get stuck in local optima

or commit to certain GRN parameterisation too early in the generations. An adaptive
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mutation rate strategy is employed to allow for a wider exploration in the initial generations

with a larger probability of mutation occurring, with the mutation rate decreasing in the

later generations allowing for more fine-tuning of the better performing GRN. The mutation

rate ε can be computed as

ϵ =
ε0

1 + εtaper generationid

(3)

where ε0 is a hyperparameter denoting the initial mutation rate, εtaper controls the amount

in which the mutation rate is decreased each generation, and generationid is the identity of

the current generation.

Figure 4. Genetic search algorithm for evolving GRN.

In evolutionary algorithms, letting every GRN reproduce in every generation would

be wasteful. Instead, we adopt the elitist selection scheme used in Augmented Random

Search [51]. After each generation, individuals are ranked by their reward, and the top

k elites (a user-defined hyperparameter) are copied unchanged into the next generation.

The remaining population slots are filled by offspring generated through the mutation

of these k elites, ensuring an efficient exploitation of high-performing regions while still

permitting directed exploration.

3.9. Normalising Inputs

To be able to create a GRN that is able to generalise to new environments, the inputs

to the GRN (i.e., cell states) must be normalised. This also helps to ensure that one feature

type does not have dominance over another. Normalising the data is difficult, as it is

hard to define the minimum and maximum that will be achieved by each cell state feature.

A Z-normalisation scheme is applied across the features of each cell’s state to set the mean

µ to zero and the standard deviation σ to one for the organism at each development step.

X′ =
X− µ

σ
(4)

The moving average of µ and σ is computed at each development step and is used

to help normalise the cost features over the course of development. At each devo step

n ∈ {1, 2, . . . , N}, each objective fi(x) where i ∈ {1, 2, . . . , k} is normalised by the objective

at the initial devo step f 0
i (x).

f n
i (x) =

f n
i (x)

f 0
i (x)

(5)

The normalised objectives at each devo step f n
i (x) are then combined into a single

objective Fn
i (x).

Fn(x) =
k

∑
i=1

f n
i (x) (6)
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The reward metric is used to evaluate the organisms in the population. The reward is

defined as

R = −
N

∑
n=1

(

Fn(x)− F n−1(x)
)

(7)

This essentially defines a comparison of the single objective at devo step n against

the initial objective at devo step 0 for N devo steps. The minus sign inverts the sign of

the metric for maximisation. Algorithms 1 and 2 represent the neuroevolution procedure

described above. The algorithm consists of a two-level nested process: the inner process is

the devo stage, where the GRN (either the GNN or CGP) applies the developmental rules,

while the outer process (evo) involves the application of the mutation operator.

Algorithm 1 EVODEVOALGORITHMÐouter loop

Require: GRNType ∈ {CGP, GNN} ▷ choose the GRN model
1: EliteSize (number of top individuals to keep)
2: OffspringCount (new individuals per generation)
3: NumGenerations G
4: MaxDevSteps T
5: initialise Population← CREATEINITIALPOPULATION(EliteSize, GRNType)
6: for g = 1 to G do
7: for organism in Population do
8: organism.Fitness← DEVELOPORGANISM(organism, T, GRNType)
9: end for

10: EliteGroup← SELECTTOP(Population, EliteSize)
11: OffspringGroup← ∅

12: while size of OffspringGroup < OffspringCount do
13: Parent← RANDOMCHOICE(EliteGroup)
14: Child← MUTATEGENOME(Parent, GRNType)
15: add Child to OffspringGroup
16: end while
17: Population← EliteGroup ∪ OffspringGroup
18: end for

Algorithm 2 DEVELOPMENT LOOPÐinner loop

Require: Genome, MaxDevSteps T, GRNType
1: build initial SeedlingStructure
2: CumulativeFitness← 0
3: for t = 1 to T do
4: gather and normalise current cell states→ InputStates
5: if GRNType is CGP then
6: Actions← CGP(Genome, InputStates)
7: else
8: Actions← GNN(Genome, InputStates)
9: end if

10: apply Actions to update geometry and
11: recompute physics; update CumulativeFitness
12: end for
13: return CumulativeFitness

3.10. Seedling

The seedling describes the starting point from which the development of the organism

begins. This seedling can be thought of as the minimal viable structure required to start

interacting with the environment and defining load paths. The seedling is identical across

all organisms in every generation. This allows for a fair, objective comparison in the

evolutionary selection process. The initial structure of the seedling can be given to the GD
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system if further optimisation on a sub-optimal design is required. The geometries of this

seedling are not constrained, but, in this paper, as in [37], a Warren truss bridge is selected

as the seedling.

The proposed framework combines a heterogeneous graph representation with GNN

and CGP-based GRNs, with the parameters adjusted using neuroevolutionary search.

By combining cellular-level sensing, decision making and actuation within the EvoDevo

loop, the system can generate optimum truss architectures from a little seedling. The fol-

lowing section exhibits the use of these approaches to benchmark problems. Table 2

encapsulates the fundamental components of the EvoDevo algorithm and connects each

with its biological equivalent. This provides additional insights into the translation of

concepts between different domains for the remainder of this paper.

Table 2. Key EvoDevo concepts and their biological counterparts.

This Work Biological Analogue Purpose

Seedling truss Embryo Minimal viable structure that initiates growth.
Node/edge cells Somatic cells Local agents that sense state and apply growth rules.

GRN GRN Maps sensed state to growth commands for each cell.
GNN/CGP weights Genome Heritable code evolved by the genetic algorithm.
Development step Cell cycle One round of sensing, decision and growth.

Growth mechanism Cell growth (i) Move a node, (ii) resize an edge.
Fitness Fitness Global signal guiding evolution towards better performance.

Genetic algorithm Darwinian evolution Selects and mutates GRNs each generation.

4. Experiments

Two GRN varieties (a GNN and CGP) are implemented for the three experimental

treatments described here. Each experiment investigates the development of truss bridges,

although the approach is not limited to these types of problems. Every evolutionary

experiment, unless stated otherwise, uses the parameters in Table 3.

Table 3. Default evolutionary experiment parameters.

Development steps = 10 Generations = 150 Population size = 512

Top k = 32 Obj a 1: strain energy (se) Initial mutation rate (ε0) = 1.0

Mutation rate taper (εtap) = 0.4 Obj 2: volume (v)
a Objectives.

The number of best individuals that move forward each generation is fixed at k = 32

(6.25% of the population). Based on these work experiments, it is proven that smaller values

(k < 16) lead to premature convergence, while larger values (k > 64) slow progress [52,53].

In addition, Figure 5 illustrates how the mutation rate balances exploration and exploitation

over the evolutionary generation.

As stated in Section 3.2, two different cell types are used in the experiments: vertex

cells (nodes) and edge cells. Also, we apply a combination of node and edge cells as the

ultimate design scenario. The node cells are equivalent to the nodes in the truss, and the

edge cells are equivalent to the members. Each cell type has different growth mechanisms

available to them to globally change the structure. To test whether the GRN of each cell

type can learn growth mechanisms to minimise the objectives, the total strain energy and

total volume, a Warren truss with seven triangles and edges with equal cross-sectional

areas is used as the seedling. The environment consists of a 17 kN load placed on centre

vertex 4, with a pinned support at vertex 0 and a roller support at vertex 8. The bottom line



Algorithms 2025, 18, 467 15 of 34

of the vertices (0, 2, 4, 6 and 8) are constrained to prevent any movement. This seedling is

shown in Figure 6, where the colour of the edges represents the strain energy induced.
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Figure 5. Influence of initial mutation rate ε0 = 0 and taper coefficient εtap = 0.4 on overall mutation

rate over evolutionary generations.
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Figure 6. Seedling in single-load (17.0 kN) case environment with 9 nodes and 15 edges.

In the implementation of the GNN structure, the truss is represented as a graph

including n vertices and m edges, utilising three binary adjacency matrices in each method

(Table 4). All three matrices are static during the development steps and provide the

neighbourhood information needed for aggregation.

Table 4. Adjacency and incidence matrices used by the GNN controllers.

AN ∈ {0, 1} n×n node±node adjacency: AN [i, j] = 1 if vertices i and j share a member

AE ∈ {0, 1}m×m edge±edge adjacency: AE[p, q] = 1 if members p and q share a vertex

ANE ∈ {0, 1} n×m node±edge incidence: ANE[i, p] = 1 if vertex i is an endpoint of member p

As shown in Figure 7, the node-only GNN method converts each vertex’s position

(xi, yi) and the state of its neighbourhood into the final vertex translation (∆xi, ∆yi). Each

vertex begins with the vector of ni = [xi, yi]
⊤. Neighbour information comes from two
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sums: (i) the Edge-neigh sum (ANEE), which adds the strain energy and volume of all edges

connected to the vertex, and (ii) the Node-neigh sum AN N, which adds the x, y coordinates

of the neighbouring vertices. Then, these two vectors are concatenated. The vertex and the

neighbour features are linearly projected by W0 ∈ R
2×2 and W1 ∈ R

4×2, respectively. Then,

these two results are added with bias b0.

hi = LReLU
(

W0 ni + W1

[

ANEE ∥ AN N
]

i
+ b0

)

(8)

Node-only GNN controller

Node features

x, y 

Self W₀
ℝ2×2

Edge-neigh sum

(ANEE) 

Concatenate

edge ⊕ node 

Node-neigh sum

(ANN) 

Neigh W₁
ℝ4×2

+ bias b₀
ℝ2 LeakyReLU

Output W₂
ℝ2×2

b₁∈ℝ2
tanh Δx, Δy

Figure 7. The node-only GNN: This combines coordinates and aggregated neighbour/edge features

and then uses linear projections, a leaky ReLU and a final linear tanh function to output (∆xi, ∆yi).

The weight matrices form the evolvable genome.

The matrices W0, W1 and W2 with the biases b0 and b1 are considered the learnable

parameters, evolved by the GA during the optimisation process. The output with weights

W2 ∈ R
2×2 and bias b1, followed by a tanh function, produces the vertex movements

(∆xi, ∆yi).

(∆xi, ∆yi) = tanh
(

W2 hi + b1

)

(9)

The edge-only GNN (Figure 8) calculates the cross-sectional update (∆Aj) for each

edge of the truss. Each member starts with the feature vector ej = [SEj, Vj]
⊤, including

the strain energy and volume. The raw edge features are mapped by W0 ∈ R
2×2, and the

summed features of adjacent members, (AEE)j, are transformed by W1 ∈ R
2×2. These two

results are added together; a bias b0 is also included, and the whole output goes through a

leaky ReLU function:

hj = LReLU
(

W0 ej + W1 (AEE)j + b0

)

. (10)

Edge-only GNN controller

Edge features

SE, V

Self W₀
ℝ2×2

Edge-neigh sum

(AEE)

Neigh W₁
ℝ2×2

+ bias b₀
ℝ2 LeakyReLU

Output W₂
ℝ2×1

b₁∈ℝ1
tanh ΔA

Figure 8. The edge-only GNN: This combines strain energy, volume and neighbour features and

then uses linear projections, a leaky ReLU and a final tanh function to output the cross-sectional area

update (∆Ai). The weight matrices form the evolvable genome.

The final linear layer with weights W2 ∈ R
2×1 and bias b1 ∈ R, followed by a tanh

activation function, calculates the cross-sectional area for each edge member (j):

∆Aj = tanh
(

W2 hj + b1

)

. (11)
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Finally, Figure 9 shows two parallel GNN controllers for the node±edge method. It

consists of two node-only and edge-only methods that update the edge cross-sectional area

∆Aj and joints (∆xi, ∆yi) in parallel.

hE
j = LReLU

(

W0 ej + W1(AEE)j + b0

)

,

∆Aj = 10 tanh
(

W4 hE
j + b4

)

hN
i = LReLU

(

W2 ni + W3

[

ANEE ∥ AN N
]

i
+ b2

)

,

(∆xi, ∆yi) = 10 tanh
(

W5 hN
i + b5

)

(12)

where ej = [SEj, Vj]
⊤ and ni = [xi, yi]

⊤. In addition, the dashed grey arrow in Figure 9

defines the one-way path (ANEE) from edges to nodes; concluding the edge branch itself

does not depend on node data during the process. All six weight matrices and four biases

are learnable parameters that the GA tunes during the optimisation process.

Node–Edge GNN controller

Edge features

SE, V 

Self W₀
ℝ2×2

Edge-neigh sum

(ANEE) 

A_NE·E

Edge-neigh sum

(AEE) 

Neigh W₁
ℝ2×2

+ bias b₀
ℝ2 LeakyReLU

Output W₄
ℝ2×1

b₄∈ℝ
tanh ΔA

Node features

x, y 

Self W₂
ℝ2×2

Concatenate

edge ⊕ node

Node-neigh sum

(ANN) 

Neigh W₃
ℝ4×2

+ bias b₂
ℝ2 LeakyReLU

Output W₅
ℝ2×2

b₅∈ℝ2
tanh Δx, Δy

Figure 9. Hybrid node±edge GNN: The blue path maps edge features and their neighbours to the

cross-sectional update (∆Ai), and the red path maps vertex coordinates plus node/edge neighbours

to (∆xi, ∆yi). The weight matrices form the evolvable genome.

In the CGP implementation, three methods are employed: node, edge, and node±edge

methods. The initial two methods employ a single CGP controller, whereas the final method

(node±edge) utilizes two interconnected CGP controllers, with each responsible for node

position and cross-sectional changes. The structures of the CGP controllers are outlined in

Table 5.

Table 5. Cartesian genetic programming parameters used for each method.

Methods nin nout ncol nrow Lback Primitive Set ²

CGP_edge 2 1 8 2 3 {Add, Sub, Mul, Const}
CGP_node 2 2 8 2 3 {Add, Sub, Mul, Const}

CGP_node±edge (edge) 2 1 8 2 3
{Add, Sub, Mul, Const}

CGP_node±edge (node) 2 2 8 2 3
² Primitive set abbreviations: Add(x, y) = x + y, Sub(x, y) = x− y, Mul(x, y) = x · y, Const = constant float.

nin and nout denote the numbers of inputs and outputs, respectively. In addition, nrow

and ncol specify the CGP grid dimensions (rows and columns). Finally, Lback (levels-back)

defines the maximum number of previous columns that a node can take as input.



Algorithms 2025, 18, 467 18 of 34

4.1. Edge-Only EvoDevo

The first experiment investigated how the edge cells (GNN and CGP) could grow to

minimise the objectives. The reward metric combined the total strain energy and volume

objectives with equal weighting. The strain energy and volume of the edge cell were given

as the input to the GRN, and the output was a delta change in the edge’s cross-sectional

area, where the cross-sectional area of an edge could not decrease by more than 1% of its

original value. For each GNN- and CGP-based method, 15 independent runs were applied.

4.2. Node-Only EvoDevo

The second experiment investigated the node (vertex) cell interactions. Although the

control variables were changed to the coordinates, the same reward metric was applied.

Each cell’s GRN took its current x and y positions (as input) and generated ∆x and ∆y,

which moved the nodes. Similar to the edge experiments, 15 independent runs were carried

out for both the GNN- and CGP-based controllers.

4.3. Node-Edge EvoDevo

The third and final experiment employed the node±edge method, in which the node

positions and member areas were updated simultaneously at every development step.

In the CGP version, two coupled controllers were used: one adjusted the cross-sectional

areas, and the other moved the vertices. Therefore, the configuration evolved in a single

cycle (single development step). The GNN-based method performed both tasks within a

single network.

5. Results and Discussion

5.1. Edge-Only Results

Figure 10 shows the final structure that achieved the highest reward in the edge

method among the 15 runs. According to the findings in Figure 10, despite the similar

structure of these two optimal controllers, the GNN yields slightly lighter components,

resulting in a lower volume. Nonetheless, the developmental steps exhibit significant

variation. CGP shows a fast reduction in energy and volume, while the GNN represents a

gradual decline in all criteria. The CGP controller update rule for each edge is

∆A = se2
(

5 se− v
) (

5 se2 − se v− v
)2

(13)

where se is the strain energy in the structure, and v is the volume. The linear term 5 se− v

shows the direction of changes (negative or positive). For instance, if a member stores a

lot of strain energy (5 se > v), the term is positive, and the cross-section grows, whereas if

the member carries little energy relative to its volume (5 se < v), it becomes negative, and

the member is thinned. The factors se2 and
(

5 se2 − se v− v
)2

set how big the area change

should be. They make the change large when a member is highly stressed and thin and

small when the member already has a good balance between strain energy and volume.
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Step 10 | E=0.310 V=355.416 C=1.896
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0
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Method: edge

Figure 10. Cont.
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Figure 10. Metrics related to the highest reward structures obtained by the edge-only method after

10 development steps. (Left): GNN controller. (Right): CGP controller. (Top row): best performing

structure. (Second row): change in strain energy E through devo. (Third row): change in volume V

through devo. (Fourth row): change in cost C = E + V through devo.

5.2. Node-Only Results

Figure 11 shows the structure that achieved the highest reward across the runs for both

the GNN and CGP controllers. As shown, both the GNN and CGP controllers followed

almost the same trajectories. The total volume increased as a result of the node’s relocation,

which resulted in the extension of some edges. Conversely, strain energy exhibited a

distinct trend and decreased throughout the developmental steps. The results indicate that

the controller incorporated a minimal amount of material while achieving greater stiffness,

demonstrating an effective trade-off. The CGP controller update rule for each node (x and

y position) is

∆x = x
(

2x− y(2x + y) + y
) (

3x− y(2x + y) + y
)

∆y = (y2 − x2)
(

y + 1
)

(14)

The controller preserves truss symmetry, as shown by the variable x in the ∆x equation,

resulting in zero horizontal displacement for any node on the vertical axis (x = 0). However,

on the vertical axis, because y + 1 > 0 is positive for all vertices, the sign of the update

is controlled by y2 − x2. Nodes with y2
> x2 (located near the centre, where x is small)

move upward, whereas nodes with y2
< x2 (near the supports, where x is large) move

downward. Consequently, the initially flat top chord arches after 10 development steps

(Figure 11), with the centre nodes elevated and the outer nodes dropped.
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Figure 11. Metrics related to the highest reward structures obtained by the node-only method after

10 development steps. (Left): GNN controller. (Right): CGP controller. Rows as described in

Figure 10.

5.3. Node±Edge Results

Figure 12 illustrates the way in which the node±edge controllers modify the truss struc-

ture. The CGP implements a considerable first adjustment, reducing both the strain energy

and volume; however, it subsequently shows minimal improvements. The GNN controller,

by comparison, decreases the energy and volume more gradually while maintaining this

trend across all development steps, ultimately resulting in a lower overall cost. Therefore,

Figure 12 demonstrates a potential trade-off: CGP is beneficial when only a limited number

of development steps is feasible, whereas the GNN provides superior performance with

long runs (development steps).

In addition, based on Equation (15), the coupled CGP controllers applied one rule to

each edge (regarding one output) and two rules to each node in each development step, as

in the following equation:

∆A = 2 se2
(

3 se− v
)

∆x = x y ∆y = y2 − x2
(15)

Regarding the edge update ∆A, the term 2 se2 enhances the updates for highly stressed

members, while the linear term 3 se− v determines the sign (positive or negative). The edges

whose strain energy is higher than one-third of their volume become thicker, while the

rest become thinner. This is the same ªenergy-to-volume balanceº logic that was seen in

the edge-only rule (Equation (13)), where 5 se− v played the same role with a different

coefficient. Regarding the vertex rules, they were the same as in the node-only experiment,

with ∆y = y2 − x2 raising the centre nodes and lowering the outer ones, making an

arch shape.
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Figure 12. Metrics related to the highest reward structures obtained by the node±edge method

after 10 development steps. (Left): GNN controller. (Right): CGP controller. Rows as described in

Figure 10.

5.4. Comparison Between GNN and CGP

Table 6 and Figure 13 depict the best reward obtained from 15 independent runs for

each CGP and GNN controller. A clear trend is evident: expanding the control space

from the edge method to the node method and ultimately to the combined node±edge

method consistently increases the mean reward for both the CGP (0.10 ↣ 0.39) and GNN

(0.10 ↣ 0.43) controllers. The GNN-based node±edge method has the highest reward

score (0.50), but it also has the widest variance, revealing irregular stagnation in the

local minimum. In contrast, the GNN-based node±edge variations and all three CGP

methods have less variance, producing highly reproducible results. Overall, it is shown

that a trade-off exists between performance (reward) and consistency in the GNN and

CGP controllers. Furthermore, the CGP-based approaches are integrated as a white box,

allowing the expert to interpret modifications based on the acquired equations. The full

development trajectories from the 15 runs of the best CGP and GNN controllers (for each

method) are presented in Appendix A and Appendix B, respectively. These figures illustrate

the evolution of the truss during all 10 developmental stages for the edge-only, node-only

and combined node±edge methodologies, demonstrating how each strategy incrementally

transforms the truss structure.

Table 6. Summary statistics of best rewards achieved over 15 runs per method.

Method Num_Runs Mean Std Min Max

cgp_edge 15 0.098 0.003 0.094 0.102
cgp_node 15 0.282 0.005 0.277 0.291

cgp_node_edge 15 0.389 0.021 0.364 0.447
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Table 6. Cont.

Method Num_Runs Mean Std Min Max

gnn_edge 15 0.103 0.002 0.095 0.104
gnn_node 15 0.291 0.001 0.289 0.292

gnn_node_edge 15 0.425 0.075 0.291 0.500
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Figure 13. Distribution of the best reward obtained by each algorithm over 15 independent runs.

The box shows the inter-quartile range, the horizontal line is the median, and the individual circles

represent single runs. The circle’s colour varies for each method.

5.5. Generalisation to a New Environment

One of the most important aspects of an indirect representation for generative design

systems is the ability of the development rules to generalize to new problems that differ

from the one on which they were evolved. To investigate this capability, two additional

ªseedlingº truss benchmarks are created (Figure 14). All the load cases are applied simul-

taneously to the structure. The first environment is a multi-load, 9 × 15 truss (Figure 14a)

in which three point loads of 10 kN, 17 kN and 17 kN are applied to the original 9-vertex,

15-edge Warren seedling introduced in Section 4. The second environment is a single-load

17 × 30 truss (Figure 14b) in which a single 17 kN point load is applied in the middle of

the 17-vertex, 30-edge Warren seedling. For each of the two new seedling environments,

both GRN controllers (GNN and CGP) are trained and compared with the best node±edge

controllers previously evolved on the original single-load 9 × 15 truss. The controller

structures and all Evo/Devo parameters are set as described in Section 4 wherever possible.

Table 7 shows the differences in the performance of the trained and frozen (untrained)

GNN/CGP controllers on the two new seedling benchmarks. In Environment #1, the

9 × 15 truss with three point loads, both the trained GNN and CGP controllers perform

better than the untrained controllers. The trained GNN lowers the cost mainly by decreasing

the volume, while the trained CGP achieves the best cost by largely reducing the strain

energy. In addition, the gap between the trained and untrained GNNs is smaller than that

between the CGPs, showing that the untrained GNN works better. In Environment #2,

the larger 17 × 30 truss with a single mid-span load, the outputs of the trained and untrained

controllers are more similar. Although the untrained GNN outperforms the untrained CGP,
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after training, the CGP again delivers the lowest cost, just as in Environment #1. These

results illustrate that the generalisation characteristics of both the CGP and GNN controllers

vary when changing the structure and parameters of the environments. Figures 15±18

show the final truss geometries and the evolution of energy, volume and cost over the ten

developmental steps.
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Figure 14. Seedling truss used for generalisation experiments: (a) three point loads with 9 vertices

and 15 edges; (b) single central load with 17 vertices and 30 edges. Numbers inside the circles denote

node indices, while numbers along the edge members denote edge indices.
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Figure 15. GNN behaviour in Environment #1 (three loads and 9 × 15 truss). (Left): trained controller;

(right): untrained controller. (Top plots) show the final geometry after ten devo steps with strain

energy E, volume V and cost. (Lower plots) trace E, V and cost over the ten devo steps.
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Figure 16. CGP behaviour in Environment #1 (three loads and 9 × 15 truss). (Left): trained controller;

(right): untrained controller. (Top plots) show the final geometry after ten devo steps with strain

energy E, volume V and cost. (Lower plots) trace E, V and cost over the ten devo steps.

Table 7. Performance of GNN and CGP controllers on the two new seedling benchmarks for the

generalisation test.

Seedling GRN Criteria Trained Controller Untrained Controller

Environment #1

GNN
Energy 0.590 0.6358
Volume 235.704 307.848

Cost 1.310 1.556

CGP
Energy 0.476 3.631
Volume 268.678 94.577

Cost 1.267 4.449

Environment #2

GNN
Energy 1.381 1.732
Volume 529.189 642.085

Cost 1.469 1.816

CGP
Energy 1.201 1.459
Volume 585.465 518.154

Cost 1.440 1.500

0 25 50 75 100 125 150 175 200
0

20

Step 10 | E=1.381 V=529.189 C=1.470

Method: node-edge

0 25 50 75 100 125 150 175 200
0

20

Step 10 | E=1.733 V=642.086 C=1.816

Method: node-edge

Figure 17. Cont.
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Figure 17. GNN behaviour in Environment #2 (one load and 17 × 30 truss). (Left): trained controller;

(right): untrained controller. (Top plots) show the final geometry after ten devo steps with strain

energy E, volume V and cost. (Lower plots) trace E, V and cost over the ten devo steps.
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Figure 18. CGP behaviour in Environment #2 (one load and 17 × 30 truss). (Left): trained controller;

(right): untrained controller. (Top plots) show the final geometry after ten devo steps with strain

energy E, volume V and cost. (Lower plots) trace E, V and cost over the ten devo steps.

5.6. Comparison with Other Topology Optimisation Methods

To benchmark the GNN-based truss against established continuum methods, the topol-

ogy optimisation study in [54] is referred to. This work utilises SolidWorks, ANSYS Mechan-



Algorithms 2025, 18, 467 26 of 34

ical and ABAQUS software (https://www.3ds.com/products/simulia/abaqus (accessed

on 11 June 2025)) to optimise three structures, including a small bridge with dimensions

of 2555× 500× 600 mm that carries a 800 kN distributed bottom load. The weight of the

GNN-based truss is estimated and compared to the weight results derived by Solidworks,

ANSYS and ABAQUS using the seedling parameters in Table 8 extracted from [54]. Table 9

shows the weights of the small bridge after optimisation compared to those of the GNN-

based truss. For the GNN-based truss, the initial cross-sectional area of 75 mm is used.

The resulting weight of the GNN-based truss is marginally comparable to the weights of

the three methods reported in [54].

Table 8. Seedling and material parameters used in the GNN truss run.

Parameters Value

Span 2500.0 mm
Height 500.0 mm

Young’s modulus 210.0 GPa
Density ρ 7700.0 kg/m3

Poisson ratio ν 0.28

As shown in Figure 19, after ten development steps, the GNN-based truss has a total

volume of V = 538, 357.169 mm3. Substitution into Equation (16) with ρ = 7700 kg/m3

and g = 9.81 m/s2 gives a final self-weight of W = 40.66 N.

V = 538, 357.169 mm3, ρ = 7700 kg/m3, g = 9.81 m/s2,

m = V ρ× 10−9 = 4.14535 kg,

W = m g = 40.66 N.

(16)
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Figure 19. GNN-based truss outputs for energy, volume and cost after ten development steps based

on the parameters in [54].

https://www.3ds.com/products/simulia/abaqus
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Table 9. Optimised weights of the small bridge and GNN-based truss.

Solver/Method Final Weight

SolidWorks 49.7
ANSYS 55.5

ABAQUS 43.26

GNN-based truss 40.666

6. Conclusions and Future Works

A new bioinspired generative design system was proposed that utilizes the concepts of

previous indirect representation approaches such as cellular representations, evolutionary develop-

ment, gene regulatory networks and state-based models. The approach involves representing the

design as a heterogeneous graph, where the nodes represent different cell types. These cells make

growth decisions via a stateful GRN to minimize some global objectives. The novelty lies in the

genetic search algorithm established to evolve graph neural networks and the Cartesian genetic

programming that can learn re-deployable developmental rules for engineering problems. These

approaches were tested on truss structures and were shown to be able to optimise designs in terms

of shape and size by changing the vertex positions and edge cross-sectional areas of the truss

structures. These growth mechanisms were able to be used individually or in unison to provide

better performance. The results revealed that, although GNN exhibited superior performance in

terms of accumulated reward compared to CGP, the outcomes were nearly identical. However,

CGP provided the opportunity to interpret the evolution and identify the pathway that correlated

inputs with outputs in truss structures via their output equations.

The growth mechanisms investigated in this paper affected the shape and size of the

design structure. A future avenue of work would be to investigate methods for exploring

the design space via a topology change. One way of doing this would be by using a

cellular division growth mechanism, or the topology of the initial seedling could also

be altered. As only truss structures were used, the proposed system should be applied

to other engineering problems and structures to highlight that it is not limited to these

structures. In the experiments undertaken in Section 5, a fixed number of devo steps was

used. This number was selected empirically after preliminary trials showed a reasonable

balance between additional performance gains and computational cost. In the future,

more systematic research is required to deterministically define an appropriate value for

this parameter. Research could also look into organism behaviour in detail to develop a

criterion for when it should stop growing, similar to how the end of a sentence can be

predicted in natural language processing (NLP). To achieve a more thorough benchmark,

the suggested generative design framework must be assessed in conjunction with proven

topology optimisation methods, thus clarifying its performance relative to that of standard

engineering software. More work is also needed to improve the generalisability of the

pre-trained seeds so that a user would only need to run a development loop for a new

environment. Performance could possibly be improved by training the GRN on a larger

dataset of different environments. Future work could also look into using multi/many-

objective evolutionary algorithms to generate a diverse range of solutions from a pre-trained

seed. This cellular representation is agnostic and could be used to represent other entities

in a supply chain or manufacturing process, for example.
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Figure A1. Development sequence over 10 development steps for the best edge-based CGP controller.
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Figure A2. Development sequence over 10 development steps for the best node-based CGP controller.
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Figure A3. Development sequence over 10 development steps for the best the node±edge-based

CGP controller.
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Figure A4. Development sequence over 10 development steps for the best edge-based GNN controller.
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Figure A5. Development sequence over 10 development steps for the best node-based GNN controller.
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Figure A6. Development sequence over 10 development steps for the best the node±edge-based

GNN controller.
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