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AbstractÐThis article presents a model predictive control
(MPC) based energy management strategy for electric vehicles
powered by hybrid power sources, focusing on their performance
improvements while running on fixed routines. The idea is to
utilize the historic operation data to improve the energy allocation
optimization solutions, with the goal of enhancing the energy
efficiency of electric vehicles running on fixed driving routes by
minimising losses through minimum battery current operations
and extending the vehicles’ driving range. Key contributions
include the formulation of a model predictive control based
energy allocation problem, and the implementation of convex
hull constrained MPC based on historic data. Simulation results
demonstrate the continual performance improvements in the
presence of uncertainties being introduced into the system.

I. INTRODUCTION

In the field of electric vehicle research, heavy-duty electric

vehicles is receiving more and more attention compared to

small vehicles. This is because small electric vehicles with

single energy storage systems are currently highly matured

in technology. Moreover, for heavy-duty electric vehicles and

high-performance electric sports cars, larger and more diverse

energy storage systems can be utilized to provide greater

energy output[1].

The hybrid energy storage system consisting of batteries and

supercapacitors is often seen in electric vehicle applications[2].

Battery are typically used as a main energy system with

high energy storage capacity, and supercapitor is used as

an auxiliary energy system with high power capability and

reversibility[3].

Popular energy management approaches for hybrid energy

electric vehicles include rule-based control, filtering control,

fuzzy logic control, model predictive control, etc[4]. Due

to the existence of unmodeled dynamics, sensor noise or

measurement errors, component limitations or failures, and

other uncertainties and disturbances, these energy management

approaches may not be as effective as claimed[5].

For application scenarios where electric vehicles run on

fixed routines, such as buses and logistic fleets, model pre-

dictive control offers a desirable framework where the cost

functions, constraints, and system model can be modified and

updated, thereby offering continual performance improvement

potentials[6].

This article designs an electric vehicle energy management

system based on model predictive control, suitable for electric

vehicle driving on fixed routine.. The convex hull of historical

data is used as a constraint for model predictive control.

II. ENERGY MANAGEMENT SYSTEM DESIGN

A. System Diagrams

The system diagram of the system is shown in Fig. 1. The

goal of this system design is to optimize the energy efficiency

of electric vehicles (EVs) that operate on repetitive routes. This

is achieved by minimizing the current drawn from the battery

while stabilizing the supercapacitor’s voltage at a reference

value.

The vehicle’s model receives speed and acceleration data to

compute the total power demand, which is sent to the high-

level MPC based planner, which is the focus of this paper. The

high level MPC planner provides reference signals (battery

current IB and supercapacitor voltage VSC) to the low-level

controller, which generates control signals.

Measurements from the hybrid energy storage system (IB
and VSC) are sent back to the low-level controller to the low-

level controller to form a closed-loop control system. The latter

is for energy management and operations control for the power

electronic circuit used in the hybrid energy storage system.

B. Vehicle’s Model

The vehicle is regared as a rigid body, so the longitudinal

dynamics of a vehicle that includes the various forces acting

on it during motion is considered. The longitudinal vehicle

modeling power balance equation is given as equation (1),

which is from [7].



Fig. 1. System Diagram
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In this equation, Pe is the power demand for every time step,

the unit of Pe is kw. ua is the vehicle speed in km/h, m is

the vehicle’s loaded mass in kg, f is the rolling resistance

coefficient, g is the gravitational acceleration in m/s
2
, ρ is

the air density in kg/m
3
, α is the road grade, CD is the

air resistance coefficient, g is the gravitational acceleration in

m/s2, A is the windward area of the vehicle in m2, δ is the

correction coefficient of the rotation mass, ηT is the efficiency

of the transmission system.

The speed and acceleration data utilized in this system are

based on the New York bus driving cycle because new york bus

is a type of heavy duty vehicle.The data can be accessed from

the U.S. Environmental Protection Agency official website[8]

and also the Powertrain Blockset of MATLAB Simulink which

is shown on Fig.2.

The speed and acceleration data from the driving cycle are

fed into the power balance equation and then the total power

demand at each time step can be calculated.

III. MODEL PREDICTIVE CONTROL FORMULATION

A. Process Model

To effectively manage the energy exchange between these

battery and supercapitor, mathematical models must capture

their internal characteristics, such as the state of charge (SOC),

power, internal resistance. These models provide the foun-

dation for simulating the system’s behaviour under different

operating conditions and form the basis for control system

design. The nonlinear equations for the battery and superca-

pacitor are shown as equation(2) and (3), which is from[9]:

SȮCB =
VOC −

√

V 2
OC

− 4RBPB

2RBQB

(2)

Fig. 2. NYBC Drive Cycle
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2
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(3)

The linearization process is used to make the battery and

supercapacitor model suitable for state-space equations. The

linearized equations can be written in a standard matrix form

as equation (4) and (5) given below, where K1 and K2 are

constants, δ1 and δ2 are the system uncertainties:

[

SOCB(t+ 1)
SOCsc(t+ 1)

]

=

[

AB + δ1 0
0 Asc + δ2

] [

SOCB(t)
SOCsc(t)

]

+

[

BB 0
0 BSC

] [

PB(t)
Psc(t)

]

+

[

K1

K2

]

(4)
[

SOCB(t)
VSC(t)

]

=

[

CB 0
0 CSC

] [

SOCB(t)
SOCSC(t)

]

(5)

The input variables, state variables and output variables are

x(t) =

[

SOCB(t)
SOCSC(t)

]

, u(t) =

[

PBB(t)
PSC(t)

]

,

y(t) =

[

IB(t)
VSC(t)

]

(6)



B. Cost function

The cost function consists primarily of three components:

the square of the battery current, the rate of change of current,

and the difference between the supercapacitor’s operating

voltage and its reference voltage[9]. The cost function is

expressed by the following equation (7).

J = min

P
∑

i=1

[

w1 (IB(k + i | k))
2
+ w2

(

dIbat(k + i | k)

dt

)2

+ w3 (VSC(k + i | k)− VSC,ref)
2
]

(7)

The values of w1, w2, w3 are selected based on a trade-off

between energy efficiency, battery health, and system stability

according to[10]. The reference voltage for the supercapacitor

is set to 0.75VSC,MAX[9].

Since the supercapacitor’s voltage is proportional to its

SOC, this cost function can also be used to regulate the

supercapacitor’s SOC, ensuring system readiness to meet

the power demands. Minimizing the current drawn from the

battery reduces energy losses in the form of heat and reduces

the load on the battery, thus extending its life[11].

C. Constraints

The SOC for both the battery and the supercapacitor must

be maintained within predefined safe limits to avoid damage,

ensure efficient operation, and extend the lifespan of the energy

storage devices. They are defined as:

SoCB,min ≤ SOCB ≤ SOCB, max (8)

SOCSC,min ≤ SOCSC ≤ SOCSC,max (9)

The battery SOC ranges from 0.1 to 0.99 - such operating

range is chosen for this research so that the investigation

covers various conditions including those under extreme cases.

For the supercapacitor, operating below 50% SOC reduces

efficiency and increases internal resistance, which may affect

its ability to provide rapid power response. To ensure both

efficiency and fast response, its SOC is set between 0.5 and

0.99.

The power delivered by the battery and the supercapacitor

are constrained to prevent overstressing either component.

They are defined as:

PB, min ≤ PB ≤ PB, max (10)

PSC, min ≤ PSC ≤ PSC, max (11)

PB + PSC = Pdemand (12)

The battery supplies up to 90% and the supercapacitor up to

60% of the maximum load power. The PB, max and PSC are

calculated through that percentage. Pdemand is already calcu-

lated through the previous process according to equation1. The

maximum load demand is calculated based on driving cycle

data and the vehicle model. This setting can avoid excessive

use of a single energy source[2].

IV. HISTORICAL DATA HANDLING METHOD

The control solutions of conventional MPC may not be the

most effective, considering the uncertainties introduced into

the system. This paper, therefore, addresses this and Fig. 3

and 4 illustrates the core of the algorithm used in this paper,

which is to optimize the control input under the framework

of model predictive control with the convex hull constraints

based on the historic data and the strategy of variable priority

positioning in the convex hull[12]. This convex hull defines a

multidimensional space covering the actual possible states of

the system, providing a feasible region for the optimization

process.

Fig. 3. Historical Data Handling in MPC Based Energy Storage Management

The yellow box part in Fig. 3 and 4 constitutes a core

contribution of the algorithm applied in this paper. Equation

(13) and its constraints are used to ensure that the predicted

state remains within the convex hull formed by historical data.

x̂(t+ p|t) denotes the prediction of the future state at time t.
Each xi corresponds to a known historical state, indexed by

i, representing different sampling points.

x̂(t+ p|t) =

t−1
∑

i=0

αixi + S (S ≥ 0) (13)

The coefficient αi denotes the weight assigned to each

historical state in forming the predicted state x̂(t+ p|t) and α
needs to meet the following requirements.

t−1
∑

i=1

αi = 1(αi ≥ 0) (14)

The non-negativity in equation (14) prevents any historical

state from being assigned a negative weight, maintaining phys-

ical relevance in the prediction. The normalization constraint



Fig. 4. Historical Data Handling Process

equation (14) forming x̂(t + p|t) a convex combination of

historical states.

In the simulation implementation, the convex hull is formed

by solving the minimum polyhedron containing the historical

data set and then the control solution is effectively confined to

the convex hull area. The existence of the convex hull provides

an adaptive feasibility guarantee for the controller, preventing

the control solution from deviating from the actual working

conditions during execution.

This paper also further introduces the optimization strategy

of ºvariables are preferentially positioned inside the convex

hullº, but also introduces slack variables S, which allow the

control solution to violate the constraints within a certain range

to identify a more effective control effect. In complex load

environments, this relaxation mechanism provides controllable

fault tolerance, allowing the system to find a feasible solution

with a smaller error when facing strict constraints or extreme

working conditions.

V. RESULT AND ANALYSIS

In this section, the performance of battery current and

supercapacitor voltage under different disturbance conditions

and control iterations is analyzed to evaluate the effective-

ness and convergence of the control algorithm in achieving

energy management over multiple iterations. Figure 5 and

Figure 6 shows the variation in battery current under ideal

control(without disturbance), disturbance addition, and five

iterations. The maximum voltage of the supercapacitor is 1400

V, so 75% of the maximum voltage will be 1050 V.

Under ideal scenario, battery current and supercapacitor

voltage follow the desired trajectories smoothly optimized by

conventional MPC with no disturbances. Then with the added

disturbances, the system experiences significant fluctuations,

especially in battery current peaks and supercapacitor voltage

spikes, indicating that the disturbance had a large impact on

the control system.

However, with the enabling of historical data handling

control algorithm, as iterations proceed, these deviations is

effectively mitigated from their ideal control scenarios, with

both battery current and voltage closely approaching the ideal

control solutions. This shows that the control strategy success-

fully suppressed the fluctuations caused by the disturbance in

multiple iterations, demonstrating improved adaptability and

stability.

Fig. 5. Battery Current

Tables I summarize the reduction in battery current and

supercapacitor voltage errors over multiple iterations. The

MAE and MAPE calculations in this table only consider data

when the vehicle is in motion. Data from when the vehicle is

stopped is excluded, as its calculation results are meaningless.

Initially, both battery current and voltage errors are relatively

high, with significant mean absolute error (MAE) and mean

absolute percentage error (MAPE) values, reflecting the impact

of disturbances.

As the iteration progresses, these errors decrease substan-

tially. By the fifth iteration, both battery current and voltage

errors have reduced significantly compared with the conven-

tional MPC and the first iteration, with lower MAE and

MAPE values indicating improved accuracy. The MAPE of

battery current decrease from 9.37% to 5.62% and the MAPE

of supercapacitor voltage decrease from 0.467% to 0.092%.

This progressive reduction indicates the convergence of the

control strategy, which effectively dampens the fluctuations

and stabilizes the battery current and supercapacitor voltage.

Although MAPE of battery current is still higher than 5%, it’s

much smaller than the first iteration.

This result demonstrates the convergence and robustness of

the control algorithm. The continual error reduction highlights

the control strategy’s effectiveness in minimizing fluctuations,



Fig. 6. Supercapacitor Voltage

stabilizing battery current and supercapacitor voltage, enhanc-

ing energy efficiency, reducing battery stress, and ensuring a

stable power supply and voltage stability from the supercapac-

itor.

TABLE I

Control Iterations Battery Current Supercapacitor Voltage

MAE MAPE (%) MAE MAPE (%)

1 20.87 9.37 4.73 0.467
2 13.44 8.14 3.52 0.332
3 10.53 7.25 2.60 0.280
4 9.81 6.09 1.72 0.166
5 8.76 5.62 0.88 0.092

VI. CONCLUSION

This article designs an electric vehicle energy management

system based on MPC, including MPC formulation and im-

plementation. The convex hull of historical data is used as

a constraint for model predictive control, which improves the

control performance of real-time control under disturbance and

uncertainty. This energy management system is suitable for

electric vehicle driving scenarios with repeated routes, such

as buses.

This research illustrates the effectiveness of the proposed

historical data handling MPC algorithm. The iterative reduc-

tion in errors for both battery current and supercapacitor

voltage indicates a well-functioning control system that adapts

to disturbances and optimizes energy management in real

time. This performance improvement can be achieved within 5

iterations, which highlights the robustness and adaptability of

the control strategy, making it highly suitable for applications

in electric vehicles operating under variable load conditions.
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