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Abstract—During artificial neural network (ANN) training,
batch normalisation (BN) techniques improve training perfor-
mance algorithmically but create hardware implementation chal-
lenges. This paper aims to address this specific bottleneck within
the broader challenge of on-chip training. We propose an all-on-
chip artificial neural network (ANN) training framework that
utilises AMD’s Versal XCVC1902 heterogeneous SoC with a
purpose-built batch-normalisation (BN) accelerator to overcome
the two main barriers to edge computing: memory bandwidth
and batch normalisation layer latency. By hardwiring batch
normalisation calculation to form a hardware primitive and using
fixed-point arithmetic, the design improves batch normalisation
latency from tens of cycles to nine cycles, improving the efficiency
of the ANN training process. The hardware-software co-design
strategy demonstrates how deep processing unit cores, BN engine
based on FPGA fabric, and CPUs can be orchestrated through
a unifying abstraction, pointing toward application-specific SoCs
that hide low-level scheduling from machine learning developers.
The framework is evaluated as an application of real-time
functional near-infrared spectroscopy (fNIRS) signal reconstruc-
tion, where cloud off-loading is undesirable for privacy and
latency reasons. Although evaluated on fNIRS, the tiled batch
normalisation engine and zero-copy dataflow can be reused in
any ANN training that spends a significant fraction of time in
batch normalisation layers.

Index Terms—fNIRS, Edge Acceleration, Hardware/Software
Co-design, Optimisation, System-on-chip

I. Introduction

There is a growing demand for portable functional Near-

Infrared Spectroscopy (fNIRS) devices in clinical and research

settings for real-time haemodynamic signal processing, which

require low-power on-chip artificial neural network (ANN)

training support. Since fNIRS signals often contain personally

identifiable information [1], localised data processing reduces

the risk of data leakage while enabling the fine-tuning of

the personalised model, which is essential for the practical

implementation of the system.

However, system-on-chip architectures present significant

limitations for ANN training processes due to constrained

on-chip memory resources and insufficient computational

throughput to accommodate memory-intensive operations. The

primary performance bottleneck stems from batch normali-

sation (BN) operations, which require continuous statistical

parameter updates during training phases. For on-chip ANN

training, normalisation layers can consume 20.7% to 60.8%

of training time [2], due to the intrinsic serial computation in

BN such as the calculation of mean and variance of each layer.

These computations introduce significant computational over-

head and elevated power consumption profiles that adversely

impact deployment feasibility on on-chip architecture.

Previous acceleration solutions for on-chip implementation

have predominantly relied on floating point calculations [3],

which present significant limitations in energy consumption

and efficiency for ANN training. Current ANN training op-

timisation approaches focus on two main areas: improving

BN computation from floating-point to fix-point arithmetic

and reducing the overhead of two-pass data transfer in BN

calculation. For BN optimisation, DNNBuilder assigns accu-

mulation logic per layer based on operational count [4], while

DNNExplorer enhances initial ANN layers computation, but

it is unable to apply matrix accumulation for later layers [5].

For data transfer optimisation, researchers have developed

solutions such as TANGRAM to optimise data flow and reduce

power consumption [6]. To minimise off-chip transfers, several

methods focus on memory pattern searching to couple with

the increasing network scales [7]. The hardware-software co-

design paradigm enables the creation of hardware-aware data

flows that improve memory access patterns [8], frequently

reorganising matrix multiplications to optimise cache utili-

sation and data locality [9]–[12]. Binary Neural Networks

(BNNs) attempted to address both optimisation challenges

by quantising weights and activations to binary values, thus

drastically reducing the data transfer volume. However, this

extreme quantisation compromises the model’s accuracy, of-

ten leading to a measurable decline in accuracy degradation

compared to full-precision counterparts [13]. To the best of

our knowledge, this is the first work on unite BN computation

acceleration and memory transfer optimisation within a single

framework, which is an essential breakthrough that removes a

long-standing bottleneck in on-chip ANN training.

In this paper, we propose an efficient on-chip training frame-



work that leverages optimised matrix tiling strategies with a

dedicated BN engine to eliminate computational bottlenecks

via a hardware-aware abstraction layer. The principal contribu-

tions of this work are as follows. First, we present a hardware-

aware abstraction layer that automatically maps convolutional

layers to the on-chip deep processing unit, while routing

BN and other non-convolutional kernels to customise FPGA

logic, thereby enabling developers to focus on high-level

neural network design without engaging with the complexities

of system-on-chip (SoC) control and resource management.

Second, we demonstrate the practicality and efficiency of AI-

enabled SoC prototyping on the Versal XCVC1902 platform

with competitive inference throughput while reducing on-chip

power consumption by up to 40% compared to conventional

implementations. Finally, we design and experimentally val-

idate a real-time signal processing pipeline for functional

near-infrared spectroscopy (fNIRS), fully implemented on the

FPGA-SoC. The system achieves sub-millisecond latency and

operates within a low-power consumption, demonstrating the

effectiveness of the framework in enabling ultra-low-power,

high-performance biomedical applications.

II. Backgroud

A. Batch Normalisation

Batch normalisation (BN) is proposed to improve the ac-

curacy and convergence speed of DNN training by [14].

Generally, it is introduced to normalise activations in a mini-

batch by subtracting the batch mean and dividing by the batch

standard deviation, as shown in equation 1.

𝑥 (𝑖) =
𝑥 (𝑖) − 𝜇𝐵
√︃

𝜎2
𝐵
+ 𝜖

, 𝑦 (𝑖) = 𝛾𝑥 (𝑖) + 𝛽 (1)

While batch normalisation improves convergence and allows

for higher learning rates, it introduces additional memory

access and data movement, which can significantly affect energy

consumption.

B. Versal Adaptive SoC

Versal XCVC1902 utilise a full heterogeneous System-on-

Chip (SoC)–class Adaptable Compute Acceleration Platform

(ACAP) powered by the Versal ACAP architecture, which

offers advanced AI, ML, and DSP acceleration with specialised

hardware for real-time processing [15]. The adaptable logic and

on-chip memory allow developers to quickly test and iterate

designs without fabricating physical chips. The XCVC1902

includes a Processing System (PS) with a 2 GHz Dual-Core

Arm Cortex-A72 for general processing, a 400 MHz Dual-Core

Arm Cortex-R5F for real-time tasks, and a 1.25 GHz AI Engine

for ML acceleration. It features low-latency and packet-switched

fabric connections using a network-on-chip (NoC).

1) Deep Learning Unit: The Xilinx Deep Learning Unit

(DPU), a configurable IP block, runs on the PL to execute

convolutional neural networks in parallel. It features memory-

mapped AXI interfaces for status register configuration and

data access, helping to integrate into block designs. DPU

core architecture can be adjusted based on performance, PL

utilisation, and power specifications.

2) Xilinx Vitis AI: The Vitis AI workflow efficiently opti-

mises, compiles, and deploys AI models on FPGA and SoC

hardware. After quantising a pre-trained model using the Vitis

AI Quantizer, it is compiled with the Vitis AI compiler [16] and

deployed to a Xilinx hardware accelerator in PE. Although the

tool provides APIs for model loading, inference, and profiling,

optimising all ANN layers is challenging due to functional

constraints.

C. DAE Network

The Denoising Autoencoder (DAE) artificial network consists

of initial convolution layers with max-pooling, followed by four

upsampling layers, and a concluding convolution layer [17]. The

BN layers are used for accelerating ANN training to maintain a

reasonable gradient. In this paper, the input of ANN is raw light

intensity data with motion artefacts, outputting is the de-noised

data. For multi-channel fNIRS signals, sliding windows of 512

points create a 512x1 input vector for signal reconstruction.

The outputs are saved as CSV files for each channel, combined

to reconstruct the signal, and converted back using the MNE

python library for quality evaluation and calculation of the

haemodynamic response function (HRF).

III. Implementation

This paper presents a unified framework utilising a hardware-

aware abstraction layer as Python-based automatic mapping

pipeline with runtime support for optimised model deployment.

The framework’s input parameters include the application model

and hardware constraints, enabling automated optimisation and

code generation. The parallel scheduling simultaneously imple-

ments layer splitting into convolutional and non-convolutional

components; weight encoding involving weights and index

Huffman encoding for compression (as shown in Fig. 1 ) and

resizing with partitioning for task parallelism across accelerators

(i.e., DPU cores and BN engines). Convolutional layers are

flattened for processing as matrix multiplication. The BN

engine implementation adopts hardware-aware data with fixed-

point arithmetic to achieve reduced resource costs. The unified

framework is shown in Fig. 1, this framework enables bidirec-

tional data transfers between processing units and accelerators,

resulting in considerable performance improvement in speed

and reducing energy consumption, as shown in Fig. 1.

A. Hardware-aware Abstraction

The proposed framework provides a hardware-aware ab-

straction layer that front-loads platform-specific optimisations,

such as intelligent memory placement and customised BN

engines into the Ryzen AI workflow. The abstraction layer and

the Ryzen AI runtime jointly handle SoC scheduling, power

tuning, and resource arbitration. This design choice allows

researchers to focus on high-level neural network exploration

while enabling the speed and energy efficiency gains of tightly

coupled accelerator and processing units.
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Fig. 1. Flow chart of ANN deployment

The hardware-aware layer abstraction is shown in the grey-

shaded subsystem in Fig. 1. Through hardware-aware abstrac-

tion, all devices are orchestrated by AMD’s Ryzen AI platform,

which layers ONNX Runtime with the Vitis AI Execution

Provider (VAI-EP). At compile time, VAI-EP quantises the

network and decomposes the graph, routing compute-intensive

kernels to the Versal convolutional processing unit while retain-

ing control flow on the Cortex-A72 processing system. Crucially,

Ryzen AI exposes zero-copy shared buffers, enabling the

frequent bidirectional exchanges demanded by the framework

to incur negligible transfer overhead.

B. Accelerate Batch Normalisation Engine

Instead of relying on simplified methods such as folded batch

normalisation, layer fusion, or online normalisation, this work

introduces a tilled engine that deploys 32 multiple BN units in

parallel (as shown in Fig. 2). Fig. 2 shows the finite state machine

for data transfer between the convolutional kernels and the BN

engine. The optimised state machine of the BN engine costs a

maximum of 9 clock cycles delay.

C. Memory Transfer Optimisation

For on-chip training, the convolutional layer and the BN layer

are implemented as separate hardware modules within a unified

architecture comprising the DPU and BN engine. The block

diagram of the integrated framework with processing units, the

DPU and the BN engine is presented in Fig. 3. Convolutional

operations are executed by the DPU cores on the Versal chip.

While the BN engine is performed within field programmable

logic (FPGA) fabric. The pseudocode for the data orchestration

process is outlined in Algorithm 1.

Overall, the design uses a customised operational method

based on vectorised computation and parallel data transfer to

meet the computational demands of on-chip training.

Fig. 2. Batch-norm Engine Architecture

IV. Experiments and Results

A. Test Setting

We used an AMD AI PC with an AMD Ryzen9 7940HS

processor [18] and an Nvidia GB202 GPU (RTX5090) as

our baseline to compare the implementation with the Versal

XCVC1902. AMD Ryzen9 7940HS processor features spe-

cialised hardware with utilised Inference Processing Units

(IPUs) for enhanced AI tasks. Nvidia GB202 has 575-watt power

consumption with 21760 cores. Our test focuses on the energy

consumption and accuracy under optimisation implementations

to demonstrate on-chip network training efficiency.

The Model inference performance is used fNIRS datasets

from a finger-tapping experiment (MNE toolbox [19]) and

a simulated fNIRS dataset (MNE’s simulate_nirs_raw

function). The experimental data, from five subjects thumb

tapping, were pre-processed with Homer2’s tools [20]. The

Simulated datasets with spike-like and baseline shift artefacts



Fig. 3. Programmable Logic and Programmable System Interaction

Algorithm 1 Control Pathway for BN engine with Parallel

Processing

1: Initialize: 𝐿𝑜𝑢𝑡 ← ∅
2: Wait for input data: Receive 4 × 32 values into 𝑙𝑎𝑛𝑒𝑏𝑢 𝑓

buffer.

3: Start computation: Trigger 32 parallel 𝑏𝑛𝑐𝑜𝑚𝑝𝑢𝑡𝑒 in-

stances.

4: for each 𝑏𝑛𝑐𝑜𝑚𝑝𝑢𝑡𝑒 instance (1 to 32) do

5: Perform batch normalization using:

6: 𝑁𝑜𝑢𝑡 = 𝛾
𝐿𝑖𝑛−𝜇√
𝜎2+𝜖

+ 𝛽
7: Newton-Raphson Approximation for Square Root:

8: 𝑥0 = 1/
√
𝜎2 + 𝜖

9: 𝑥𝑛+1 =
1
2
(𝑥𝑛 + 𝜎2+𝜖

𝑥𝑛
)

10: (Iterate for 2 steps for sufficient precision)

11: end for

12: Wait for all 𝑏𝑛𝑐𝑜𝑚𝑝𝑢𝑡𝑒 outputs to complete (9-cycle

latency).

13: Aggregate results: Concatenate results into a batch of 128-

bit.

14: Store results: Write to output FIFO buffer.

15: Transmit results: Send results to output stream in 4 beats.

16: return 𝐿𝑜𝑢𝑡

=0

were added as noise using a Laplace distribution. This diverse

dataset tested model robustness against noise and artefacts.

The model was developed, trained, and evaluated with

PyTorch. Training occurred over 50 epochs with a batch size

of 32, using the Adam optimiser with a 0.001 learning rate

and MSE as the loss function. Inference used a batch size of

1. Float precision was used for Ryzen9 and Nvidia RTX5090,

while INT8 precision quantisation was used for the Ryzen9

with IPU, and Versal SOC for better speed and power efficiency

comparison. The DPU and the tilling engine used the Vitis-

AI runtime with compiled ‘.xmodel‘ files. The ONNX runtime

was also used for GPU and Ryzen9 processors to maintain test

consistency.

To quantify energy consumption, we used AMD’s Board

Evaluation and Management (BEAM) utility, which reports

hardware-level real-time power metrics. The power draw was

continuously recorded for 60 s and the mean value was reported

over this interval. Because BEAM measures the aggregate power

of the entire device, the power attributable to the model was

computed only by the difference between the average power

during processing and the average power in the idle state. In

addition, the board’s cooling system operates a dedicated fan

rated at 18 W, which runs at maximum speed during model

execution; accordingly, a further 18 W was subtracted from the

measured average to isolate model-specific power consumption.

B. Baseline Benchmark

In this work, CIFAR10 is adopted as a benchmark dataset [21]

due to lacking standard image reconstruction benchmarks in

fNIRS. The dataset includes 60,000 images in 10 categories. The

architecture of DAE, UNet [22] and 3D-UNet [23] have adapted

for the classification of CIFA10. The baseline benchmark is

used for CIFAR10 dataset. The timing analysis result of the

modified BN engine acceleration is shown in Fig 4. As illustrated

in the Fig 4, the bn_control finite-state machine accepts a

burst of four 128-bit AXI-Stream words while both s_valid

and s_ready are asserted. Immediately after the last input

beat, a single-cycle start_pulse is generated, which si-

multaneously enables all 32 parallel bn_compute instances.

Because the batch-normalisation datapath is fully pipelined, its

latency is constant and equal to nine clock cycles; this gap is

visible between the start_pulse and the first assertion of

m_valid. Once computation completes, the processed batch

is streamed out in four consecutive beats on m_tdata whilst

m_ready remains high, after which the controller returns to

the IDLE state, making the datapath immediately available

for the next transaction. The trace therefore confirms both the

correct handshake behaviour and the fixed-latency property of

the design.

TABLE I
BNN(INT8) performance and power consumption using BN engine

method on Versal XCVC1902

Model FPS SoC Power (W) Inference Time (ms)

DAE 4755.47 10.47 0.21
UNet 2626.58 5.56 0.38
3D-UNet 11.4406 11.37 87.41

Table I summarises the performance characteristics of three

INT8-quantised networks: DAE, UNet, and 3D-UNet, running

on a Versal XCVC1902 with the proposed BN engine. The

first column lists the effective processing rate in frames per



Fig. 4. Behavioural simulation of the bn_control module for one batch.

second (FPS), where one frame corresponds to a single CIFAR-

10 image; FPS is therefore a direct measure of throughput.

The average on-chip power drawn during steady-state inference

is given in the second column. The final column reports the

inference time per sample, which is simply the reciprocal of

the FPS (time = 1000/FPS in milliseconds). Under these

conditions, the DAE achieves the highest throughput at 4755FPS

with an inference time of 0.21ms, while 3D-UNet, due to its

much larger computational workload, operates at only 11.4FPS

and 87.4ms per image despite drawing comparable power.

C. Energy Consumption Analysis

Additionally, our platform delivers the fastest inference time

at 0.21 ms (as shown in Table I ), significantly outperforming

other similar encoder-decoder ANN architectures (i.e. UNet

and 3D-UNet). Such rapid processing is vital for real-time

applications. Furthermore, the platform demonstrates excellent

power efficiency, requiring only a few milliwatts per image

processing. This represents a considerable improvement over

the UNet and 3D-UNet without a purpose-built BN engine,

making it highly suitable for low-power systems, as shown

in Fig. 5. Although 3D-UNet and UNet share an encoder-

decoder architecture, their memory transfer mechanisms are not

optimised for processing fNIRS signals. By uniting a purpose-

built BN engine with optimised memory transfer, the proposed

framework delivers a balanced on-chip training solution that

offers significant advantages for high-performance, real-time,

and resource-constrained applications.

Fig. 5. Energy consumption graph measured with BEAM tool by AMD

D. fNIRS Signal Processing

The haemodynamic response function (HRF) is used to map

brain activity by indicating changes in blood flow, volume, and

oxygenation after neural activity [24]. As depicted in Eq. 2,

the HRF peaks shortly after neural activity begins and then

gradually returns to baseline.

ℎ(𝑡) = 𝑡𝑎1−1𝑒−(𝑡/𝑏1−1)

𝑏
𝑎1

1
Γ(𝑎1)

− 𝑐 · 𝑡
𝑎1−1𝑒−(𝑡/𝑏1−1)

𝑏
𝑎1

1
Γ(𝑎1)

(2)

The parameters 𝑎1, 𝑏1, 𝑎2, and 𝑏2 shape the response curve,

with 𝑡 as time. The equation models the initial blood flow

increase and a delayed undershoot. Traditionally, brain activity

maps are created by interpolating HRF parameters from multiple

fNIRS channels. We propose DAE network to estimate HRF

and minimise motion artefacts, outperforming conventional

methods. The process generates time series or spatial maps of

estimated brain activity using the HRF model on reconstructed

fNIRS data. Figure 6 shows HRF activation patterns during

a finger-tapping task for ”tapping left” and ”tapping right”

conditions. The quality of the map is assessed by comparing

the reconstruction results with the truth of the ground. An

initial model had a baseline shift, reducing light intensity

and eliminating weaker responses, while the DAE model with

optimised BN accurately reconstructed most responses with

high similarity to the ground truth.

The energy consumption of the DAE network training in

CIFAR-10 using a Nvidia GPU and our BN engine is illustrated

in Table II, demonstrating the performance of the engine in

reducing zero copy latency and much lower power consumption

while maintaining high accuracy.

TABLE II
Performance Comparison between Different Devices

Device Average Power

(W)

BN back-

propagation

Time (ms)

MSE

GPU 226.65 0.84 GroundTruth

Accelerator 48.74 1.8e-5 9.11919e-07

V. Conclusion

In this work, we address a long-standing bottleneck in

edge computing for efficient on-device training when batch

normalisation dominates training cost. The paper introduces

a custom BN engine, implemented in FPGA fabric, reducing

BN latency from tens of cycles to 9 cycles. It supports

32 parallel BN units, optimising performance for real-time



Fig. 6. Topographical map of haemoglobin concentration changes during finger-
tapping tasks.

applications. It demonstrates that the framework of a biomedical

application (functional near-infrared spectroscopy), achieves

sub-millisecond latency and preserving data privacy by doing

all computation locally. By keeping fNIRS signals and training

computation on-chip, this work enhances patient privacy and

supports real-time brain monitoring in clinical or wearable

devices. While evaluated on fNIRS data, the BN engine and

SoC deployment framework are reusable across DAEs and

UNets, making this a versatile platform for edge computing

in ANN-based applications. Importantly, this platform enables

developers to deploy high-level ANN models without dealing

with hardware complexities. Supports runtime scheduling,

quantisation, and memory tuning via AMD’s Vitis AI stack.

In the BN engine, memory transfer will be evaluated and the

performance on live NIRS sensors to test robustness to real-

time motion artefact detection and fast image reconstruction.
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