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Abstract—Recent advancements in near-infrared 

spectroscopy (NIRS) and associated optical techniques have 

significantly contributed to the development of wearable 

neuroimaging devices capable of capturing real-time neuronal 

activity with enhanced spatial and temporal resolution.  

However, despite these advancements, calibration remains a 

persistent challenge due to variability in NIRS sensor design, 

which can significantly degrade data quality. In this paper we 

introduce a universal data-driven calibration method designed 

to enhance the precision and reliability of NIRS sensor 

measurement. The proposed method integrates gradient 

descent–based optimisation with constraint-guided clustering 

to iteratively minimise calibration errors under realistic usage 

conditions. To evaluate its effectiveness, the algorithm was 

tested using an in-silico phantom constructed in 

MATLAB/NIRFAST, demonstrating notable improvements in 

signal clarity and haemoglobin concentration estimation. 

Additionally, the approach exhibits robustness to motion 

artefacts, thereby improving measurement fidelity. These 

contributions advance the reliability and accessibility of 

wearable brain imaging systems, enabling broader 

applications in both neuroscience research and clinical 

diagnostics. 
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I. INTRODUCTION  

Functional Near-Infrared Spectroscopy (fNIRS) is a non-

invasive, mobile brain imaging method that uses optical 

methods to study regional oxygen consumption in the brain 

[1].  Calibration is a crucial step in fNIRS devices to ensure 

the accuracy, reliability, and validity of the data collection 

during neuroimaging reconstruction. Traditional calibration 

of wearable device using  a spectrophotometer in an optical 

phantom is typically performed by utilising a small set of 

representative samples to model the systematic difference 

between measured and reference value [2, 3]. However, 

many existing methods fail to account for potential sources 

of spectral deviation. Factors such as noise, sample 

heterogeneity, variations in optical sensor placement, 

difference in the optical path can introduce inaccuracies in  

absorption measurement within the brain tissue, ultimately 

degrading the overall measurement accuracy [4].  

 Data-driven calibration has become a widely accepted 

technology in various applications due to its effectiveness in 

addressing complex instrumental errors [5, 6]. However, 

data-driven calibration for Near-Infrared Spectroscopy 

(NIRS) wearable devices is challenging because of the high 

variability in real-world conditions (colour of hair, brain 

anatomy, motion artifacts), meanwhile the difficulty of 

collecting large, high-quality labelled datasets is a barrier to 

applying data-driven calibration.  In this paper, we present a 

data-driven calibration methodology leveraging machine 

learning optimisation to address the identified challenges. 

The proposed approach incorporates a constraint-based 

clustering algorithm using synthetic data and further refines 

through a gradient descent-based optimisation approach to 

enhance its precision and reliability. The primary advantage 

of a data-driven calibration approach lies in its ability to 

adaptively reduce noise while also preserving shifts in the 

detected spectrum. Unlike traditional hardware-based 

calibration, data-driven calibration continuously updates its 

coefficients based on the pre-trained constraints and 

clustering techniques, enabling adaptive adjustment of filter 

coefficient parameters. We evaluated our approach on 

customised designed NIRS sensor with two channels 

operating at 670nm wavelength and 810nm. We employed a 

meshed three-dimensional(3D) head model with a Jacobian 

matrices index to demonstrate the effectiveness of drift and 

noise correction in NIRS signals using this novel data-driven 

calibration method. These advancements significantly 

enhance the accuracy and reliability of NIRS measurements. 

 The main contributions of this paper are as follows: (1) 

the development and demonstration of a data-driven 

calibration utilising a machine learning optimisation to 

enhance calibration accuracy; and (2) the introduction of a 

theoretical framework for evaluating improvements in signal 

integrity by introducing Jacobian matrices index on 3D 

meshed brain simulation. 

II. MATERIALS AND METHOD 

A. Overview of NIRS 

While a conventional NIRS sensor provides a static 
'snapshot' of tissue oxygenation, NIRS sensor can also be 
used to capture dynamic time-series data across multiple 
NIRS source–detector pairs as the human engages in specific 
task. By quantifying task-evoked changes in 
oxyhaemoglobin (HbO) and deoxyhaemoglobin (HbR) 
concentrations—indicative of neurovascular coupling—
NIRS enables the generation of spatially resolved 
hemodynamic activation maps [1, 7, 8]. 

The Beer-Lambert Law (BLL) describes how the 
attenuation of light through a medium depends on its 
properties. The modified BLL (MBLL) extends this 
principle to account for light scattering, which is significant 
in biological tissues [9]. The law is mathematically 
represented as: 
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where: A(t, λ) is the attenuation at time t and wavelength λ;  
I!  is incident intensity on the sample at time t  and 
wavelength λ ; c#(t)  is concentration of the i  -th 
chromophore at time t in mol; ϵ#'  is molar extinction 



 

 

coefficient of the i -th chromophore at wavelength λ; and 
DPF(λ)  is differential pathlength factor at wavelength 
λ;G(λ) is scattering dependent light intensity loss parameter 
at wavelength λ. 

Local neural activity and the subsequent changes in cerebra 
blood flow are used to calculate the hemodynamic response 
of brain region activities, which indicate HbO begins to rise 
within 1-2 seconds. 

B. Experimental Data Collection 

 

In this project, two datasets were utilised. The first dataset 
was collected using an in-house NIRS sensor, where 
participants performed a hand-clenching task by clutching 
their hands for 10 seconds followed by a release. Each 
participant takes 10 trials. The resting dataset was used from 
a public available dataset [10]. Fig. 1 provides a detailed 
illustration of the experimental set-up for NIRS data 
collection.  The devices employed in this study operated 
using the continuous wave method.  Therefore, the 
differential path length factor (DPF) could not be measured 
directly. Instead, it was estimated using experimental value 
[4]. 

C. Function of Data-driven Calibration 

The proposed calibration algorithm updates the filter 
coefficients recursively to minimise the squared error 
between outputs. This method adapts dynamically to new 
data points, allowing for rapid convergence and effective 
handling of variations in input statistics using a gradient 
descent-based method. The adaptability of the gradient 
descent-based method allows the data acquisition system to 
effectively handle variations in input statistics and rapidly 
converge to optimal coefficients [11].  A Kalman Filter (KF) 
is used to estimate the state of a dynamic system from noisy 
measurements by predicting and updating states to minimise 
the squared error. Traditional KFs assume fixed noise 
statistics [12].  

As illustrated in Fig. 2, after preprocessing, the changes 
in oxy-haemoglobin (ΔHbO) and deoxy-haemoglobin 
(ΔHbR) concentrations are computed from the optical 
density data. These time series reflect how haemoglobin 
levels vary relative to the resting state baseline. The red 
dashed lines indicate information flowing from the 
hardware-based Calibration (and resting-state data) into the 
filter selection process, ultimately producing the filtered 
outputs. 

The blue arrows within the green box illustrate an 
internal feedback loop among different methods 
(constrained-clustering, gradient-descent optimisation) with 
iterative techniques. The data-driven algorithm employs a 
straightforward iterative approach to regulate filter 
coefficients, making it suitable for implementation in real-
time processing environments. This real-time capability 
enables researchers to observe the effects of minimising 
unwanted spectral deviation, facilitating more accurate 
analysis of fNIRS signals. 

The mathematical expression of the data-driven calibration, 
shown in Eq. (2), (3) and (4) share a structure similar to the 
original formulas proposed by Widrow et al.[13]. For this 
work, we adapted those formulas to align with gradient 
decent optimisation. 

,(�) = -.(�)/(�)                       (2) 

 where: ,(�) is the output of the filter at time �; -(�) =
0-!(�)  -�(�) …  -�2�(�)3.  is the vector of filter 
coefficients at time � , where 4  is the filter order; /(�) =
0/(�)  /(� − 1) …  /(� − 4 + 1)3. is the input vector at time 
. 

 6(�) = �(�) − ,(�)                             (3) 

where: 6(�)  is the error signal at time � ; �(�)  is the 
desired signal at time �. 

 -(� + 1) = -(�) + 7 /(�)6(�)                    (4) 

where: -(� + 1) is the updated coefficient vector; 7 is 
the step size (learning rate) for gradient descent of the 
algorithm. The convergence condition is                                         

0<μ<2/λmax 

Where λmax is the largest eigenvalue of the input signals’ 
autocorrelation matrix.  

 

 

The key part of data-driven calibration is shown in the 
pseudo-code Algorithm I. The implementation process 
comprised the following steps: 

1. Adjustment of the parameters: The selected filter 
parameters were determined by the noise type of each 
channel. For instrumental noise, the following parameters 
were selected: A moderate step size of μ = 0.01 and filter 
order of 10 were selected to accommodate stable yet 
consistent noise patterns. Physiological noise: A smaller step 
size (μ = 0.005) and a higher filter order (20) were employed 
in order to capture complex, low-frequency noise. In the case 
of a normal signal, a larger step size (μ = 0.02) and a lower 

Fig. 1 The benchtop setup. It includes  the source-

detector pair -enclosed within the marked black  

box, a voltmeter and digital oscillator, which used to 

evaluate circuit performance and signal integrity. 

Fig 2.   Data flow and system overview  

 



 

 

filter order (5) were selected, reflecting minimal noise 
interference. 

2. Filter Application: The filter coefficients were modified in 
real time in order to minimise the mean square error between 
the desired and actual signals, thereby replacing the original 
noisy signal with a filtered version. 

3. Error Calculation and Coefficient Update: This process 
guaranteed that the filter would remain responsive to 
changing measurement conditions. 

Subsequently, the filtered signals were subjected to 
processing through the MBLL, whereby optical density 
changes were converted into corresponding changes in 
haemoglobin concentration. This integration enhanced the 

accuracy and integrity of the data by reducing the impact of 
noise on the final measurements. 

III. RESULTS  

A. Experimental Setting 

The fNIRS data used in this paper were sourced from 
publicly available resting-state datasets [14] and grand truth 

used in [15]. Due to the large number of channels included 
in the data, some were visibly inconsistent with resting-state 
conditions. Thus, a preprocessing step was implemented to 
select stable channels representing the resting state.  

Constraint-based clustering automatically classifies and 
adapts different types of noise, enabling dynamic parameter 
adjustment. The training of constraint-based clustering uses 
synthetically generated noise, including five types of noise: 
white noise, Gaussian noise, step function noise, triangle 
noise and pink noise. White noise represents instrumental 
noise. It often originates from random electronic fluctuations 
within the fNIRS device and introduces variability to the 
signal, thereby obscuring genuine hemodynamic changes. 
Common in both instrumental and environmental contexts, 
Gaussian noise follows a normal distribution, with most 
noise values clustering around a mean. This probabilistic 
nature complicates the detection of subtle hemodynamic 
responses, thereby reducing measurement precision. Pink 
noise also known as 1/f noise, features a power spectrum 
with greater intensity at lower frequencies, reflecting slow 
physiological processes such as blood flow fluctuations and 
metabolic rhythms. Its presence in fNIRS data as underlying 
biological rhythms that contribute to hemodynamic 
responses. Step function noise is associated with motion 
artifacts, arising from abrupt signal changes caused by 
sudden subject movements, such as head shifts or probe 
adjustments. These artifacts disrupt the optical path length, 
causing transient signal distortions.  Triangle noise can 
represent systematic patterns, such as mechanical 
movements or physiological cycles, like breathing. Regular, 
repetitive movements modulate the optical signals, 
generating triangle waveforms in the data. 

The data-driven calibration method was systematically 

integrated into the Modified Beer–Lambert Law (MBLL) 

function within Homer3, an open-source neuroimaging 

analysis toolbox developed and maintained by the Boston 

University Neurophotonics Center [10]. Specifically, the 

calibration procedure was embedded in the modified 

hmrR_OD2Conc function, wherein it is applied to the 

optical time-series data prior to the conversion from optical 

density to chromophore concentration changes.  

 
An illustrative code excerpt demonstrating this 

implementation is presented in Fig. 3. This preprocessing 

step is designed to minimise signal noise and variability. 

The implementation process involves several critical stages, 

beginning with the specification of filter parameters, such as 

filter order and step size. Subsequently, filter coefficients 

are iteratively updated in accordance with the characteristics 

of the input signal. The original time-series data are then 

Fig. 3. The source code for constrained clustering for data-driven 

calibration approach in hmrR_OD2Conc function 

Algorithm I: Data_Driven_Calibration 

 

Procedure Data_Driven_Calibration(rawSignal, 

desiredSignal, learningRate, filterOrder, maxIterations) 

 if length(rawSignal) = 0 

        return "No data" 

    # Initialize filter coefficients and sample buffer with 

cluster processing data 

    w[1..filterOrder] = 0 

    x[1..filterOrder] = 0 

    # Adapt filter coefficients 

    for iter = 1 to maxIterations: 

        for n = 1 to length(rawSignal): 

            # Shift x, then insert new sample 

            for i = filterOrder down to 2: 

                x[i] = x[i-1] 

            x[1] = rawSignal[n] 

            # Compute output and error 

            y = 0 

            for i = 1 to filterOrder: 

                y += w[i] * x[i] 

            error = (desiredSignal != empty) ? 

(desiredSignal[n] - y) : -y 

            # Update coefficients 

            for i = 1 to filterOrder: 

                w[i] += learningRate * error * x[i] 

    # Generate final calibrated signal 

    calibratedSignal = array(length(rawSignal)) 

    x[1..filterOrder] = 0 

    for n = 1 to length(rawSignal): 

        for i = filterOrder down to 2: 

            x[i] = x[i-1] 

        x[1] = rawSignal[n] 

        outVal = 0 

        for i = 1 to filterOrder: 

            outVal += w[i] * x[i] 

        calibratedSignal[n] = outVal 

    return calibratedSignal 

EndProcedure 

 

 



 

 

replaced with the filtered output, resulting in a significant 

reduction in signal deviation and enhanced signal fidelity 

for concentration computation. The result of data features 

using clustering method is shown in Fig.4. 

 

B. Clustering analysis  

  

Improper modification of filter coefficient parameters can 
result in signal distortion, which highlights the need for 
effective parameter optimisation [19]. Because NIRS data 
often includes dynamic changes over time, a sliding window 
technique is used to segment the data. This involves dividing 
the data into overlapping windows with a specified 
‘window_size’ and ‘step_size’. The sliding window method 
can focus on localised patterns within each segment [15, 16], 
the process calculates statistical features, which include the 
mean and standard deviation for each segment. By analysing 
the extracted features, the method employs constraint-based 
clustering to group the data windows into different clusters. 
And the number of clusters here is set to three, which 
assumes the dataset includes distinct patterns, such as 
unlinked signals and actual signals. The clustering method 

helps to sort the data based on similarities in their statistical 
properties.  

The data pattern in Cluster 1 in Fig.5 shows regular 
fluctuations in amplitude, suggesting a periodic character 
similar to physiological data, such as breathing or heartbeats, 
which exhibit smoother transitions and regular intervals. In 
contrast, Cluster 3 displays more erratic amplitude changes, 
indicating environmental light inference or instrumental. 
Environmental noise can come from surrounding sounds or 
vibrations, while instrumental noise may result from 
electrical interference or equipment vibrations. These 
patterns are more irregular and lack periodicity, 
distinguishing them from the smoother, rhythmic 
physiological data. Thus, Cluster 1 is likely physiological 
data, and Cluster 3 represents environmental stray light 
caused crosstalk. Unlike current researchers only focus on 
the physiological signals that they are interested in. This 
approach is particularly beneficial in including 
environmental noise due to device limitations or external 
factors. 

C. Quality Evaluation within Homer3 

The improved performance of signal deviation in Homer3 

using data-driven calibrations is evidence in Fig. 6. The 

upper panel shows the raw signal prior to the 

implementation of calibration techniques, while the lower 

panel illustrates the signal after applying the data-driven 

calibration technique.  

The unfiltered signal (upper diagram) shows fluctuations 

and noise artifacts at 118s, with baseline drift that can 

obscure key findings of neuroactivities. This baseline drift 

likely originates from instrumental or physiological sources, 

complicating the interpretation of hemodynamic responses, 

thus resulting in the wrong presentation of neural activities. 

As seen in the second plot, the signal becomes smoother and 

more regular, with reduced amplitude fluctuations. This 

indicates reduced signal deviation, allowing for accurate 

neural activity representation. This is crucial to ensuring that 

subtle variations in HbO and HbR concentrations are not 

obscured by noise, thereby enabling researchers to 

accurately measure changes in brain activities using NIRS. 

 

D. In-Silicon Phantom for Enhanced fNIRS Data 

Analysis 

For evaluating enhanced simulation and parameter 

optimisation in fNIRS, we create  3D meshes from 

segmented brain CT scans. Each anatomical feature relevant 

Fig. 4 Clustering Results of NIRS data 

(a) 

(b) 

Fig. 5  The clustering features of NIRS signals.  
(a) Cluster1 feature. (b) Cluter2 feature. 

 

Fig. 6: Concentration change of HbO of  a paired source-detector 

(green line indicates HbR and yellow line HbO ) 



 

 

to the study, such as the skull, skin, grey matter, and white 

matter, is segmented to reflect its unique optical properties. 

The segmented images are used to generate a tetrahedral 

mesh, ensuring that the mesh accurately represents the 

complex geometries of the human head, as shown in Fig. 7. 

Parameters such as tetrahedron size is 5mm and the quality 

is 5 to balance between computational efficiency and 

simulation accuracy. 

 
Following mesh creation, each tissue type, properties 

such as HbO and HbR concentration, water fraction, scatter 
amplitude, and scatter power are assigned based on empirical 
data [17], shown in Table I.  

TABLE I. OPTICAL PROPERTIES OF DIFFERENT HEAD LAYERS 

 
HbT 

(mM) 

So2 

(%) 

Water 

(fraction) 

Scatter 

Amplitude 

Scatter 

Power 

Skin 0.06 75 0.5 2 0.5 

Bone 0.049 80 0.15 1.4 1.4 

CSF 0.001 90 0.99 0.5 0.2 

White 

Matter 
0.076 71 0.78 0.76 0.54 

Grey 

Matter 
0.076 71 0.78 0.76 0.54 

This simulation is designed to evaluate the improvements 
achieved through data driven calibration enhancement. First, 
boundary data is generated using the Finite Element Method. 
Boundary data is generated for different wavelengths of NIR 
light. This data forms the basis for analysing light 
propagation and absorption in the tissue. To test the 
robustness of the simulation framework, hypoxic conditions 
are modelled by systematically altering the oxygenation 
levels within the brain regions in the mesh. This part of the 
simulation helps in understanding how changes in brain 
oxygenation could be detected and quantified using the data-
driven calibration approach. 

In this paper, we utilise Jacobian matrices as the evaluation 
matrix for indicating changes in light intensities to variations 
in tissue properties, enabling a detailed analysis of light 
absorption based on a calibration method. This mathematical 
model quantifies how changes in tissue properties affect light 
absorption and scattering, improving the accuracy of 
calculating changes of blood flow to the brain region.  

The relationship between light intensity and tissue 
chromophore concentrations can be expressed as: 

∆9 = : . ∆<                            (5) 

Where ΔI: Measured changes in light intensity at the 
detectors. :: Jacobian matrix, describing the sensitivity of 
light intensity to changes in chromophore concentrations. Δ< 
Changes in chromophore concentrations (HbO and HbR). 

For a given optical measurement system in Eq. 5, Where, 
I_1,I_(2,…,) I_n are light intensity at n detectors: 

 

� =
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⎢
⎡
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                             (6) 

 
The application of Jacobian matrices in simulations 

allows for controlled adjustments of noise variables, 
effectively demonstrating how data-driven calibration 
techniques can be incorporated. Fig. 8 illustrates the results 
of using Jacobian matrices to analyse changes in the 
concentrations of tissue oxygenation index (TOI), which 
defined in eq.(7).  

 

VW9 =  KLM
KLMXKLO

                          (7) 

 The colour scale represents the magnitude of changes in 
tissue oxygenation. The blue colour indicates a decrease in 
oxygenation in that point. In this project, we only use one 
pair of detector and source, so the majority of the tissue area 
shows no change in oxygenation (highlighted in yellow). The 
spatial difference in the detected changes across the three 
subplots is due to the varying distance between source and 
detector pairs. The variability demonstrates the data-driven 
calibration successfully captured measurable changes in 
oxygenation.  

IV. CONCLUSION 

This paper presents the development and validation of  a 
data-driven calibration algorithm designed to enhance the 
quality of NIRS data. The integration of a data-driven 
calibration approach presents a significant advancement in 
fNIRS measurements by introducing a machine learning 
optimisation capable of effectively correcting baseline drifts 
in NIRS signals. This innovative method improves the 
precision of optical measurement, facilitating more accurate 
interpretations of neural activities.  

Another accomplishment was the development of a 
digital in-silico phantom using MATLAB/NIRFAST [18]. 
This model enabled the simulation of NIRS signal 
acquisition under various controlled conditions, serving as a 
versatile tool for testing and refining the methodologies 

Fig. 7 3D meshed head mode 

Fig. 8 Changes in tissue oxygenation in Jacobian matics at source-

detect pair 



 

 

developed in this project. While not directly employed to 
validate the adaptive algorithm, the in-silico phantom  

V.  FUTURE WORK 

Future work should focus on exploring advanced filtering 
algorithms to enhance real-time mitigation methods for 
baseline shift reduction strategies in various sensors. 
Integrating these algorithms into existing NIRS frameworks 
could improve the system’s ability to manage variations, 
thereby increasing the precision of detecting subtle HbO and 
HbR concentration changes. Additionally, expanding the 
validation of the data driven calibration using diverse 
experimental datasets will be essential to strengthen its 
generalisability. Validation across various experimental 
conditions will ensure the robust applicability of the 
algorithm, facilitating its adoption in a wide range of fNIRS 
applications.    
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