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Abstract

Self-supervised learning (SSL)-based speech models are

extensively used for full-stack speech processing. However,

it has been observed that improving SSL-based speech rep-

resentations using unlabeled speech for content-related tasks

is challenging and computationally expensive. Recent at-

tempts have been made to address this issue with cost-effective

self-supervised fine-tuning (SSFT) approaches. Continuing in

this direction, a cost-effective SSFT method named ªLASER:

Learning by Aligning Self-supervised Representationsº is pre-

sented. LASER is based on the soft-DTW alignment loss with

temporal regularisation term. Experiments are conducted with

HuBERT and WavLM models and evaluated on the SUPERB

benchmark for two content-related tasks: automatic speech

recognition (ASR) and phoneme recognition (PR). A relative

improvement of 3.7% and 8.2% for HuBERT, and 4.1% and

11.7% for WavLM are observed, for the ASR and PR tasks re-

spectively, with only < 3 hours of fine-tuning on a single GPU.

Index Terms: self-supervised learning, self-supervised fine-

tuning, automatic speech recognition, alignment loss

1. Introduction

Self-supervised learning (SSL)-based speech models are be-

ing used for full-stack speech processing [1, 2, 3]. These

models are pre-trained on a large amount of unlabeled speech

data with a self-supervised objective referred to as a pretext

task. After pre-training, these models are then fine-tuned

for downstream tasks using labeled data, and can be useful

for many downstream speech applications such as automatic

speech recognition (ASR), speaker identification (SID), query-

by-example spoken term discovery (QbE), emotion recognition

(ER), speech enhancement (SE), and speaker diarisation (SD)

[4, 5]. SSL models allow for superior performance in down-

stream tasks compared to training models for those tasks from

scratch [2]. This emphasises the effectiveness of SSL in util-

ising pre-existing knowledge to achieve better results. How-

ever, it has been observed [2] that the performance of SSL-based

speech models on downstream tasks is often correlated with the

objective of the pretext tasks. For example, models trained on

top of HuBERT for speech separation achieve only marginal

improvement compared with the models trained from scratch.

To solve these issues, there have been a few attempts in the lit-

erature. One approach is to pre-train a model from scratch that

aligns with the downstream objective. For instance, WavLM [2]

is trained on noisy/overlapped speech to improve performance

on multi-speaker tasks, such as speaker diarisation and speech

separation. However, this approach is computationally expen-

sive because the model needs to be trained from scratch.

Another approach is to use cost-effective self-supervised

fine-tuning (SSFT) to fine-tune the pre-trained model based on

the requirements of the downstream tasks. Then these fine-

tuned models are used for further supervised fine-tuning us-

ing the labeled data for the downstream task (e.g. fine-tuning

for ASR task with CTC loss on characters). The term SSFT

was introduced in [6], where only audio data is used for fine-

tuning in self-supervised settings, rather than supervised fine-

tuning with labeled data. These approaches, in general, re-

quire a marginal amount of compute cost when compared to

pre-training . For instance, ContentVec [7] was proposed to im-

prove the performance on content-related tasks (ASR, PR, and

QbE) by disentangling speakers, in conjunction with the pre-

trained HuBERT model. However, ContentVec’s efficiency is

limited, requiring 19 hours of computation across 36 GPUs on

top of the pre-trained HuBERT model [8]. In the work [6], a

speaker-invariant clustering (SPIN) method for SSFT was pro-

posed. This method clusters speech representations and per-

forms swapped prediction between the original and speaker-

perturbed utterances [6]. SPIN requires a compute cost of less

than 1% of ContentVec’s compute cost, which demonstrates

the promising aspects of SSFT. Another recent SSFT method

for learning content-preserving representations is SCORE [9].

SCORE employs the correspondence training method [10, 11],

which involves learning similar representations from two differ-

ent instances of the same spoken content. Additionally, SCORE

utilizes the soft-DTW loss [12] to align the representations ob-

tained from original and perturbed speech. Correspondence

training [13, 14] ensures that the content is preserved while

other unnecessary information such as speaker, duration, etc are

marginalised. SCORE uses various speech perturbation tech-

niques to alter the duration and speaker information (by mod-

ifying pitch) of the utterance, which favours the learned rep-

resentations to be invariant to the speaker and duration while

the spoken content remains intact. Their approach involves two

instances of SSL models: one trainable and the other frozen,

serving to provide target outputs for the former, thus preventing

representation collapse [15]. Absence of a frozen SSL model

and training solely on soft-DTW alignment loss leads to a trivial

solution where all embeddings cluster tightly in the embedding

space [16], contributing to representation collapse [15, 16]. The

compute cost required by SCORE is less than 0.2 % of Con-

tentVec’s compute cost.

In this work, a solution to overcome representation collapse

while learning content-preserving representations with the soft-

DTW alignment loss is proposed. Similar to [6, 9], a pair of

original speech and perturbed speech is generated, ensuring that

the underlying content remains the same while other factors

such as speaker and duration are altered. Using this pair, the

soft-DTW alignment loss is applied to match the temporal se-

quence obtained from the SSL model along with the temporal



regularisation term. Hence, the method is named as ªLASER:

Learning by Aligning Self-supervised Representationsº. The

temporal regularisation term assures that the embeddings are

not converged to a trivial solution as described in the work

[16], where embeddings of videos are learned with soft-DTW

as alignment loss and Contrastive-Inverse Difference Moment

(IDM) [16] as temporal regularisation term. For LASER fine-

tuning, the framework used in SCORE [9] is adapted for speech

perturbation and a modified version of Contrastive-IDM is used

as temporal regularisation. After LASER fine-tuning, the mod-

els are used for supervised fine-tuning and evaluation for two

content-related tasks, ASR and PR on the Speech processing

Universal PERformance Benchmark (SUPERB) [4]. LASER

fine-tuned SSL models are compared with the vanilla pre-

trained SSL models (HuBERT and WavLM) along with other

SSFT baselines. Later in Sec. 4.1, it is also demonstrated how

using only soft-DTW as the alignment loss leads to represen-

tation collapse, as evidenced by reduced performance on the

another content-related task QbE. This phenomenon was exten-

sively observed and discussed in the work by [16] in the context

of learning embeddings from videos. The main contributions of

this work are as follows:

1. A cost-effective content-preserving SSFT method based on

the soft-DTW alignment loss with temporal regularisation is

presented.

2. Improving performance of vanilla SSL models (HuBERT and

WavLM) on content-related tasks with only < 3 hours of

fine-tuning on a single GPU.

The rest of the paper structure is as follows: Sec. 2 intro-

duces the proposed method; Sec. 3 describes the experimental

details; Sec. 4 discusses the results, and finally, Sec. 5 con-

cludes the work.

2. Methodology

LASER makes use of correspondence training strategy. Self-

supervised representations obtained from original speech and

perturbed speech are aligned to match the common factor, i.e.

content representations. In the following, the SSL model under

consideration for fine-tuning (only top 2 layers of the Trans-

former, more details in Sec. 3.2) is represented by Mθ . Let Z =
{z1, z2, . . . , zm} be the sequence of embedding representations

for original speech, obtained from the final Transformer layer

of the model Mθ . Let Z′ = {z′1, z
′
2, . . . , z

′
n} be the represen-

tations obtained for the perturbed speech. These representation

are then projected to a lower-dimension and L2-normalised, de-

noted as X = {x1, x2, . . . , xm} and X ′ = {x′
1, x

′
2, . . . , x

′
n},

as shown in Fig. 1.

Now these representations can be aligned with a soft-DTW

loss [12, 17, 18], a differential version of the Dynamic Time

Warping (DTW) alignment metric. Soft-DTW is widely em-

ployed for time series data [19] and is increasingly used for

modelling in domains such as music [20] and speech [9]. In

[20], it has been utilized for multi-pitch estimation, and in [9],

it served as the alignment loss for content-preserving SSFT.

However, optimizing for soft-DTW loss alone can result in de-

generate solutions, as extensively discussed in the work [16].

To overcome this issue, in [16] a temporal regularisation term

Contrastive-IDM was successfully employed. Contrastive-IDM

optimizes for temporally disentangled representations, mean-

ing that frames that are far apart in time are linked to spa-

tially distant points in the embedding space, and vice versa. If

DX ∈ R
m×m is the self-distance matrix of X and is defined as
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Figure 1: LASER fine-tuning approach. The loss func-

tion is computed for the representations obtained from orig-

inal speech (X) and perturbed speech (X ′): L(X,X ′) =
soft-DTWγ(X,X ′) + α(f(X) + f(X ′)).

DX(i, j) = ||xi − xj ||
2, then the Contrastive-IDM (f(X)) for

X is defined as follows:

f(X) =

m
∑

i=1

m
∑

j=1

yijW (i, j)max(0, λ−DX(i, j))

+(1− yij)
1

W (i, j)
DX(i, j),

yij =

{

1, |i− j| ≥ σ

0, |i− j| < σ

(1)

In Eq. 1, W (i, j) = (i − j)2 + 1 and σ represents the

window size for separating temporally distant frames. As seen,

f(X) penalizes temporally distant embeddings when the dis-

tance between them in the embedding space is smaller than the

margin λ, using a scaling factor W (i, j). It promotes tempo-

rally close frames to be proximate in the embedding space, with

a scaling factor of 1
W (i,j)

. However, empirically, lower values

of σ have been found to yield optimal performance (will be dis-

cussed in more detail in Sec. 3.4). The value of σ is set to 1 for

the remainder of this work. When σ = 1, Eq. 1 can be rewritten

as:

f(X) =

m
∑

i=1

m
∑

j=1

yijW (i, j)max(0, λ−DX(i, j))

yij =

{

1, i ̸= j

0, i = j

(2)

When σ = 1, f(X) only pushes away the embeddings

of the temporally away frames in the embeddings space with

weight factor W (i, j), proportional to the indexes of the frame,

preventing them to converge to a trivial solution. Now, the final

loss, which is the sum of soft-DTW and temporal regularisation

term for both X and X ′ can be written as:

L(X,X ′) = soft-DTWγ(X,X ′) + α(
f(X)

m2
+

f(X ′)

n2
) (3)

Here, α is the regularisation weight and γ is the smoothing

factor of soft-DTW. A normalized version of soft-DTW [18, 16]

is used in this work 1. Since the embedding representations can

vary in length, the temporal regularization term is normalized

1https://github.com/trquhuytin/LAV-CVPR21



Algorithm 1 LASER fine-tuning

1: Mθ = SSL model (with learnable top 2 layers only)

2: Fµ = Linear projection layer + L-2 Normalisation

3: Total samples in the dataset = Nsamp

4: Si = ith speech utterance

5: while Not Converged do

6: for i=1 to Nsamp do

7: Si
p = SpeedPerturbation(Si)

8: Si
p = PitchShift(Si

p)
9: Z = Mθ(Si), Z

′ = Mθ(Si
p)

10: X = Fµ(Z), X ′ = Fµ(Z
′)

11: L = soft-DTWγ(X,X ′) + α( f(X)

m2 + f(X′)

n2 )

12: Gradient computation ∂L
∂θ

, ∂L
∂µ

13: Update θ and µ to minimize L

with m2 and n2 for f(X) and f(X ′) respectively. Here, m
and n are the sequence lengths of X and X ′ respectively. The

normalization term for temporal regularization involves squar-

ing the lengths because the value of f(X) exhibits quadratic

growth with respect to the sequence length. The entire LASER

algorithm is describe in Algo. 1

3. Experimental Setup

3.1. Dataset and speech perturbations

Following earlier work on SSFT (SCORE [9], SPIN [6]), and

for a fair comparison with baseline models, LibriSpeech’s [21]

train-clean-100 hours of data is used for LASER fine-tuning.

To obtain the required perturbed speech, the approach used

in SCORE [9] is adapted. SCORE employs data augmenta-

tions commonly used in ASR [22], such as speed perturbations

and pitch shifting. Torchaudio [23] is used for these perturba-

tions, with SpeedPerturbation and PitchShift func-

tions under torchaudio.transforms2.

3.2. Details of model (Mθ)

In this study, two different SSL speech models are used in

experiments, namely the BASE versions of both HuBERT

and WavLM, with each having roughly 95 million parameters.

These models consist of multi-layer CNN models at the front-

end, followed by 12 Transformer layers. The output from the

final layer of Transformer block of the SSL models are 768-

dimensional sequence of vectors. Consistent with the recent

baselines, only the top two layers of the Transformer (11th and

12th) are fine-tuned (≈ 14 million) since most SSL models en-

code phonetic information in top layers [24]. In [9, 6], it has

been demonstrated that training parameters in more layers does

not help for content-related tasks. Additionally, training more

layers defeats the purpose of this study as a cost-effective alter-

native. S3PRL toolkit3 [4] is used for all the experiments. The

code for the soft-DTW and temporal regularisation is adapted

from [16].

3.3. Details of model head (Fµ)

The 768-dimensional representations obtained from the SSL

models are projected in to lower-dimensional (256) represen-

tations with a linear projection layer and then L2-normalised

[6, 9].

2https://pytorch.org/audio/stable/transforms.html
3https://github.com/s3prl/s3prl

3.4. Loss function

For soft-DTW loss, the value of γ is taken as 0.1, a standard

choice in the literature [9, 16]. To obtain the optimal val-

ues for the temporal regularisation term, a grid search over σ
(window), α (regularisation weight), and λ (margin) is per-

formed using another content-related task QbE from the SU-

PERB benchmark, as it requires no extra training. For QbE,

conventional supervised phoneme posteriorgram are replaced

with SSL representations [4]. The evaluation on the test set is

performed by running DTW on the final layer and obtain a score

for each query-document pair. The best values of σ, α, and λ
are selected based on performance of the final layer on test set

from QUESST 2014 [25] data. The evaluation metric for QbE

task on SUPERB benchmark is maximum term weighted value

(MTWV in %) [4]. The best value for σ was found do be 1 for

both HuBERT and WavLM model. For HuBERT, the best value

for α and λ was found to be 0.4 and 1.1. For WavLM, the best

value for α and λ was found to be 0.15 and 1.

3.5. LASER fine-tuning

The model is fine-tuned for 3.6K updates (≈ 1 epoch) with 1k

warm-up updates. One epoch was found to be sufficient for

convergence and further training did not improve. An effective

batch size of 8 (batch size × gradient accumulation step) is used

with AdamW [26] optimizer and a learning rate of 2.0e − 5.

LASER fine-tuning takes < 3 hours on a single A100 GPU4.

3.6. Evaluation on the SUPERB benchmark

After LASER fine-tuning, the SSL models are evaluated on the

SUPERB benchmark for two content-related tasks: ASR and

PR. SUPERB benchmark tasks use the weighted sum of fea-

tures from all the layers, coupled with a model head. The model

head itself is task dependent. The weights for the layer and

model head are fine-tuned with the labels associated with the

downstream task. For ASR, the model head consists of a 2-

layer 1024-unit Bi-LSTM network with CTC loss on characters

[4]. LibriSpeech train-clean-100/dev-clean/test-clean subsets

are used for training/validation/testing for ASR [4]. The perfor-

mance of ASR is evaluated without an external language model,

to ensure a fair comparison between different SSL model types.

For PR, the model head is a frame-wise linear transformation

with CTC loss. The same datasets as used for ASR are adopted

for training/validation/testing of PR task. More details are avail-

able at SUPERB benchmark [4]. For both ASR and PR, Adam

optimizer is used with learning rate of 1.0e − 4 and 5.0e − 4,

respectively. All other parameter settings are available at SU-

PERB benchmark [4]. We run each experimental setup 5 times

and report the results with mean and standard deviation. The

evaluation metric for ASR and PR are word error rate (WER in

%) and phoneme error rate (PER in %) respectively.

4. Results and Discussions

Table 1 shows the amount of processed speech (training steps

× effective batch duration) for various models during their pre-

training and SSFT stage. Among them, LASER and SCORE are

the best methods with least amount of processed speech in SSFT

stage. For the performance on the downstream tasks, LASER

is compared with the cost-effective baselines such as SPIN[6]

and SCORE [9] along with a stronger baseline ContentVec500

4https://github.com/Trikaldarshi/LASER.git



Table 1: Processed speech during training in ªpre-trainingº

stage and in ªSSFTº stage for various SSL models and their

fine-tuned versions. Processed speech is defined as ªtrain-

ing steps × effective batch durationº to quantify machine-

independent training costs [6].

Model

Training

Processed Speech (hours)

Pre-training SSFT

HuBERT [8] 506K 0

WavLM [2] 1439K 0

ContentVec500 [7] 506K 76K

HuBERT + SPIN256 [6] 506K 356

WavLM + SPIN256 [6] 1439K 356

HuBERT + SCORE [9] 506K 100

WavLM + SCORE [9] 1439K 100

HuBERT + LASER 506K 100

WavLM + LASER 1439K 100

Table 2: Results of the proposed LASER fine-tuning of HuBERT

and WavLM models along with baseline methods on SUPERB

benchmark. The baseline methods include the BASE version

of HuBERT and WavLM models, along with SSFT based SPIN

and SCORE models. The downstream tasks include ASR and

PR, which are evaluated on word error rate (WER in %) and

phoneme error rate (PER in %) respectively.

Model
ASR

(WER) ↓
PR

(PER) ↓

HuBERT [8]♣ 6.42 ± 0.08 5.02 ± 0

WavLM [2]♣ 6.17 ± 0.02 4.85 ± 0

HuBERT [8]♢ 6.42 5.41

WavLM [2]♢ 6.21 4.84

ContentVec500 [7]♢ 5.70 4.54

HuBERT + SPIN256 [6]♢ 6.34 4.39

WavLM + SPIN256 [6]♢ 5.88 4.18

HuBERT + SCORE [9]♢ 6.35 ± 0.07 4.84 ± 0

WavLM + SCORE [9]♢ 6.15 ± 0.04 4.72 ± 0

HuBERT + LASER 6.18 ± 0.08 4.61 ± 0

WavLM + LASER 5.92 ± 0.06 4.28 ± 0

♣ Results when we run the SUPERB [4] recipes for Hu-

BERT and WavLM for fair comparison.
♢ Reported results are from their respective work and

SUPERB leaderboard [4] as of 11/03/2024 (https:

//superbbenchmark.org/leaderboard).

[7], which uses 76K hours of processed speech compared to the

LASER which uses only 100 hrs in SSFT stage.

Table 2 shows the results for ASR and PR, for vanilla pre-

trained SSL models (HuBERT and WavLM) along with the

cost-effective baselines (SPIN and SCORE). From Table 2, it

can be observed that LASER outperforms SCORE for both

ASR and PR tasks with the same amount of processed speech

in SSFT stage. When compared with the vanilla SSL models,

LASER shows a relative improvement of 3.7% and 8.2% for

HuBERT, and 4.1% and 11.7% for WavLM for ASR and PR

tasks respectively. LASER provides competitive results with

SPIN on ASR task, using only one third of the processed speech

used by SPIN. For HuBERT model, LASER outperforms SPIN

on ASR task. For WavLM model, there is no significant dif-

ference in WER between SPIN (5.88) and LASER (5.92 ±

0.06), assuming equivalent standard deviations, suggesting that

Table 3: Performance on the QbE task of the SUPERB bench-

mark with vanilla pre-trained SSL models and their fine-tuned

versions with soft-DTWγ(X,X ′) and soft-DTWγ(X,X ′) with

regularisation α(f(X)/m2 + f(X ′)/n2).

Loss Model QbE(MTWV) ↑

–
HuBERT 7.19

WavLM 9.15

soft-DTWγ(X,X ′)
HuBERT 5.17

WavLM 4.44

soft-DTWγ(X,X ′)
+ α(f(X)/m2 + f(X ′)/n2)

HuBERT 8.91

WavLM 9.27

LASER performs similar to SPIN. However, SPIN does better

than LASER on the PR task for both HuBERT and WavLM

models. The comparison between ContentVec and LASER re-

veals a trade-off between performance and cost-effectiveness.

The performance gap on the PR task is marginal for ContentVec

(4.54) and LASER (4.61), with LASER using only < 0.2 % of

compute cost required by ContentVec during SSFT stage. How-

ever, in ASR, ContentVec outperforms all baselines, includ-

ing LASER, though it requires a higher computational cost of

76K hours of processed speech. This comparison underscores

LASER’s ability to deliver impressive results while minimizing

resource expenditure, making it a compelling option for various

content-related downstream applications.

4.1. Analysing the impact of regularisation

To measure the usefulness of temporal regularisation, an ab-

lation study is conducted. HuBERT and WavLM models are

LASER fine-tuned in the same manner as described in Sections

2 and 3, with and without using the temporal regularization term

in the loss function (Eq. 3). The hyperparameter values are

used as described in Sec. 3.4. The reported results are for the

test set of the QbE task of the SUPERB benchmark by run-

ning DTW on the final layer. From Table 3, it can be observed

that after fine-tuning only with soft-DTW, the performance of

the fine-tuned HuBERT decreases from 7.19 to 5.17, and fine-

tuned WavLM decreases from 9.15 to 4.44, indicating that the

representations have collapsed. On the other hand, adding the

regularisation term improves the performance for both models.

This improvement also translates to the improvements in other

content-related tasks such as ASR and PR, as shown in Table 2.

5. Conclusions

A cost-effective SSFT method named ªLASERº is presented

for improving content representations. LASER fine-tuning is

based on the correspondence training strategy with soft-DTW

alignment loss and temporal regularisation. The efficacy of tem-

poral regularization in preventing representation collapse is suc-

cessfully demonstrated. LASER outperformed the recent base-

line SCORE on both ASR and PR task for both HuBERT and

WavLM models, which also uses soft-DTW alignment but with-

out any regularisation term. LASER provides competitive re-

sults with SPIN with only one third of the processed speech. In

future work, we plan to use more sophisticated speech perturba-

tion techniques. Additionally, we plan to explore LASER fine-

tuning on out-of-domain data and its associated downstream

tasks for acoustic model adaptation [27].
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