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1. Introduction

Life Cycle Assessment (LCA) is one of the most widely

used methods for evaluating the environmental impact of

products and processes across their entire lifecycle [1]. As

global attention to sustainable development and environ-

mental protection intensifies, LCA has been widely adopted

in industry, academia, and policy-making [2]. LCA enables

a comprehensive assessment of potential environmental im-

pacts throughout a product’s or service’s life cycle, from

raw material acquisition through production, use, and dis-

posal, thereby helping decision-makers understand and to

take action towards reducing environmental burdens [3].

A key step in LCA methodology is Life Cycle Inventory

(LCI) analysis, which involves compiling a detailed inven-

tory of inputs (such as resources and energy flows) and out-

puts (such as emissions and other releases) for each unit

process in a product’s life cycle [4]. A comprehensive and

accurate LCI is the foundation for accurate LCA results.

However, the collection of LCI data can be challenging due

to the intensive nature of collecting field data and confiden-

tial reasons, which poses the major challenge in compiling

complete life cycle inventories [5].
∗Corresponding author
1#These authors contributed equally to this work.

To address this data challenge, researchers have devel-

oped methods to estimate missing LCA data based on avail-

able data. Canals et al. suggested using proxy datasets or

extrapolated data [6]. Olivetti et al. introduced the struc-

tured under-specification method, which allows for the in-

ference of missing information by leveraging structural re-

lationships between existing data [7]. Wernet et al. pi-

oneered the use of neural network models focusing on

molecular structure to predict the environmental burden of

chemical production [8]. Specifically, they utilized molec-

ular structures as input features, enabling the model to infer

environmental impacts based on the chemical properties of

substances. This approach was groundbreaking, and build-

ing on this, Song et al. developed a deep artificial neu-

ral network model that improved both the speed and accu-

racy of life cycle impact assessments for chemicals by us-

ing larger datasets and more complex network architectures

[9]. Hou et al. employed various machine learning mod-

els, including random forests and support vector machines,

to address the problem of missing ecotoxicity characteri-

zation factors for toxic chemicals in LCA [10]. Dai et al.

adopted Gaussian process regression models to quantify the

similarities between variables, addressing issues related to

data gaps in agricultural data and the quantification of sec-
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ondary data uncertainty [11]. However, due to the limited

availability of training data and the significant variability in

environmental impact factors across sectors, these machine

learning methods are mostly restricted to specific industries

and technological domains. Expanding the application to a

broader range of industries remains an ongoing challenge.

To overcome these limitations, Hou et al. proposed a

similarity-based link prediction method [12], which was

further optimized using the XGBoost model [13]. This

approach is considered state-of-the-art and aims to char-

acterize the relationship between known information (pre-

dictors) and missing information (response variables) using

existing LCI datasets. Although this method has improved

predictive capabilities, its reliability may still be compro-

mised in the absence of structured LCA data, as it relies on

low-precision proxy data or assumptions.

Despite these advances, there are still aspects that need to

be addressed: 1) Process Correlations: Existing methods

often treat industrial processes as independent entities, fail-

ing to capture the inherent correlations between different

processes in a product’s life cycle.2) Adaptation to New

Data: Many current approaches struggle to efficiently in-

corporate new data (i.e., data updates) as it becomes avail-

able, requiring full model retraining. 3) Targeted Data

Collection: Currently, there is insufficient guidance to help

determine which data should be prioritized for collection,

based on their influence on the precision of the LCI. 4) Uti-

lization of Process Information: Many methods, includ-

ing the latest XGBoost approach, rely solely on known flow

values, ignoring potentially additional valuable information

contained in process descriptions.

To address these challenges, a novel approach to LCI

completion using Neural Processes (NPs) [14] is proposed,

which is a state-of-the-art machine learning technique that

combines the strengths of neural networks (NNs) and Gaus-

sian processes (GPs). NPs define a distribution over func-

tions like GPs, providing natural uncertainty estimates,

which are crucial for reliable predictions. Additionally,

they leverage NNs to learn flexible and efficient represen-

tations, enabling them to capture complex patterns in data

that traditional GPs might struggle with. The proposed

method offers several advantages over existing approaches:

1). Incorporating Process Information: The approach

utilizes both process descriptions and known flow values,

potentially leading to more accurate and generalizable pre-

dictions. 2). Capturing Process Correlations: NPs can

learn and leverage the underlying relationships between dif-

ferent industrial processes, leading to more accurate pre-

dictions of missing LCI data. 3). Uncertainty Quantifi-

cation: The method provides natural uncertainty estimates

of LCA results based on different types of LCI data esti-

mated, crucial to quantify the uncertainty of the LCA and

to guide further data collection efforts. 4). Efficient Adap-

tation to New Data: The approach allows for the incorpo-

ration of new data without requiring full model retraining,

enabling continuous update of LCI datasets. 5). Adaptive

Data Completion via Active Learning: An active learn-

ing strategy is incorporated to guide data collection efforts

towards the most informative and relevant points, progres-

sively improving the accuracy of LCI data completion.

2. Problem Formulation

LCI data forms the foundation of LCA, providing de-

tailed information about the inputs and outputs of industrial

processes. Typically, LCI data can be structured as a matrix

where rows represent different flows (inputs and outputs)

and columns represent distinct unit processes. Each entry

in this matrix quantifies the amount of a specific flow asso-

ciated with a particular process.

The LCI completion problem arises when this dataset is

incomplete, containing missing entries that need to be pre-

dicted. Formally, given a set of observed process-flow pairs

C = {(xi, yi)}
nc

i=1
, where xi represents process characteristics

and yi represents flow values, the goal is to estimate miss-

ing entries. The objective is to identify a function f that can

predict any missing flow value y j for a given process x j:

ŷ j = f (C, x j), (1)

where C represents the observed process-flow pairs. It’s

important to note that xi typically consists of natural lan-

guage descriptions of the process, making it challenging to

directly use as input to mathematical equations. The flow

value yi, on the other hand, is a numerical values that can be

more readily incorporated into a machine learning pipeline.

Recently, Zhao et al. [13] approached this problem using

the XGBoost algorithm, a decision tree-based supervised

learning method. To circumvent the challenge of using pro-

cess descriptions, their approach avoids using x as input and

instead relies solely on the known flow values. For each

process j, let p j be the set of indices of missing flows, and

q j be the set of indices of known flows. The prediction

function f j for process j can be expressed:

ŷi j = f j({yk j : k ∈ q j}, i), for i ∈ p j. (2)

The XGBoost method [13] does not consider the inter-

dependencies between flows and processes, which do exist

in real-world LCI datasets at different levels of complex-

ity. Additionally, this approach lacks comprehensive uncer-

tainty quantification, crucial to quantifying the uncertainty

of each predicted LCI data value. Moreover, by not utilizing

the process characteristics x, the method may miss impor-

tant contextual information that could improve prediction

accuracy and generalization to new processes.

3. Methodology

The LCI completion problem is formulated as a stochas-

tic process over functions f : X → Y, where X represents

process characteristics and Y flow values. Given a set of

observed context points C = {(xi, yi)}
nc

i=1
and target points

T = {(x j, y j)}
nt

j=1
, a distribution over functions is learned to

predict flow values for processes with unknown values.

In this paper, NPs are used to solve the above LCI com-

pletion problem. Its architecture consists of three main

components: 1). Encoder: hθ : X × Y → R
d The encoder

maps each process-flow pair to a d-dimensional representa-

tion, where d is a hyperparameter determining the dimen-

sionality of the latent space. This encoding captures the
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essential features of each process-flow relationship. 2). Ag-

gregator: aϕ : Rd×nc → R
d The aggregator combines the in-

dividual representations into a single global representation,

allowing the model to capture dependencies between differ-

ent processes and flows. 3). Decoder: gψ : X × R
d → Y

The decoder uses the global representation to generate pre-

dictions for target processes, producing both the predicted

flow value and its associated uncertainty. For example, each

observed process-flow pair (xi, yi), is represented by:

ri = hθ(xi, yi). (3)

ri captures the essential features of the process-flow pair

(xi, yi). By learning these representations, the model can

learn various patterns in the LCI data without requiring

manual feature engineering. This flexibility is particularly

suitable in LCI completion, where relationships between

processes and flows can be complex and domain-specific.

These representations are then aggregated into a global

latent variable:

z = aϕ({r1, ..., rnc
}). (4)

The latent variable z encapsulates information from all ob-

served process-flow pairs, allowing the model to capture

dependencies between different processes and flows. The

decoder generates predictions for target processes:

ŷ j = gψ(x j, z). (5)

To capture uncertainty, the output is modeled as a Gaussian

distribution: p(y j|x j, z) = N(y j|µ j, σ
2
j
), where µ j and σ2

j
are

produced by the decoder.

This formulation allows us to capture complex relation-

ships between processes and flows while providing uncer-

tainty estimates, addressing key limitations of previous ap-

proaches. The stochastic nature of NPs enables them to

model the potential noise in the data, which is crucial for

reliable environmental impact assessments.

Compared to the XGBoost used by Zhao et al. [13] and

other regression-based approaches, NPs offer several signif-

icant advantages for LCI completion. Firstly, NPs capture

global dependencies across all processes and flows through

the latent variable z, providing a holistic view of the data,

while XGBoost treats each variable independently. This

global context allows NPs to better understand and lever-

age the interconnections within the LCI data. Additionally,

NPs provide natural uncertainty estimates, which are cru-

cial to understand the accuracy and confidence of the pre-

dicted values, whereas XGBoost requires additional tech-

niques to quantify uncertainties. The adaptability of NPs is

another key advantage; they can easily incorporate new data

without full retraining, making them very suitable for LCI

databases which are continuously being updated, and where

new updates can change the LCA results significantly. In

contrast, XGBoost typically requires retraining of the entire

new datasets to incorporate new information, which can be

computationally expensive and time-consuming. Further-

more, NPs excel in representation learning, developing flex-

ible representations of processes and flows that can capture

more complex relationships than the fixed feature represen-

tations used in XGBoost.

3.1. Implementation, Training, and Analysis

The encoder and decoder are implemented as multi-layer

perceptrons (MLPs) with Rectified Linear Unit (ReLU) ac-

tivation function. MLPs are for their ability to approximate

complex functions, making them suitable for capturing the

intricate relationships in LCI data. The ReLU helps miti-

gate the vanishing gradient during the model training, al-

lowing for more effective training ofdeep networks .

The aggregator uses a permutation-invariant mean oper-

ation: z = 1
nc

∑nc

i=1
ri. A permutation-invariant operation

is chosen because the order of processes in an LCI dataset

should not affect the predictions. This property ensures that

the model’s output remains consistent regardless of how the

input data is arranged, which is crucial for the reliability and

reproducibility of LCA results.

Training is performed using variational inference, maxi-

mizing the evidence lower bound (ELBO):

L = Eq(z|C,T )[log p(yT |xT , z)]−KL(q(z|C, T )||p(z|C)).(6)

Variational inference, a method from Bayesian statistics,

is used to approximate the true posterior distribution over

the latent variables.This approach allows us to balance the

model’s fit to the observed data with its uncertainty in pre-

dictions. The ELBO provides a tractable objective for opti-

mization, combining two key terms: 1). The expected log-

likelihood Eq(z|C,T )[log p(yT |xT , z)], which measures how

well the model fits the observed data, and 2). The Kullback-

Leibler (KL) divergence KL(q(z|C, T )||p(z|C)), which acts

as a regularization term, encouraging the learned posterior

q(z|C, T ) to stay close to prior p(z|C), preventing overfitting.

This formulation allows the model to be trained in a way

that naturally balances accuracy and generalization, which

is particularly important in the context of LCI data where

overfitting to sparse observations could lead to unreliable

predictions. The computational complexity of the method

is O(mn) for both training and inference, where m is the

number of flows and n is the number of processes. This

is comparable to the XGBoost approach, but offers greater

flexibility in handling missing data patterns, particularly in

an incremental manner.

3.2. Adaptive LCI Completion with Active Learning

LCI databases are continually evolving, with new pro-

cesses and updated measurements becoming available over

time. To address this dynamic nature and maximize the effi-

ciency of data collection efforts, an active learning strategy

is incorporated. This approach allows for the iterative im-

provement of the model and guides data collection efforts,

focusing on the most informative data points.

After initial training on the observed data XΩ, the most

informative missing entries are iteratively selected for

querying. An acquisition function is then proposed to bal-

ance the uncertainty of predictive values with the potential

accuracy improvement of the model.

a(i, j) = σi j + λ · E[|∆Y |i j], (7)

where: σi j is the predicted uncertainty for i flows of j pro-

cess, directly obtained from the Neural Processesmodel;



Wei W. Xing  et al. / Procedia CIRP 135 (2025) 136–141 139

E[|∆Y |i j] is the expected magnitude of change in all LCI

target data to be predicted if (i, j) were observed; λ is a

trade-off parameter balancing prioritizing the challenging

values (with high predictive uncertainty) of those that po-

tentially improve the model.

This acquisition function combines two key principles of

active learning: 1. Uncertainty sampling: By including σi j,

entries where the model is most uncertain are prioritized,

potentially leading to the greatest improvement in model

performance. 2. Expected model change: E[|∆Y |i j] priori-

tizes entries that are expected to have the largest improve-

ment on the target LCI values, ensuring that the data col-

lection efforts focus on influential entries. E[|∆Y |i j] is esti-

mated using the current model’s predictions and their uncer-

tainties, E[|∆Y |i j] ≈
∑

k,l |
∂µkl

∂xi j
| · σi j, where

∂µkl

∂xi j
captures the

influence of entry (i, j) on other entries in the matrix. This

term is computed using automatic differentiation, leverag-

ing the end-to-end differentiable nature of the NP model.

For models where the computation is infeasible, This term

can be approximated using Monte Carlo sampling or simply

set λ = 0 to focus solely on uncertainty. At each iteration,

the entry with the highest acquisition score is selected:

(i∗, j∗) = argmax
(i, j)�Ω

a(i, j). (8)

Compared to traditional static methods in LCI comple-

tion, the active learning strategy offers several advantages:

1. Adaptive data collection: The approach dynamically ad-

justs its focus based on the current state of the model and

LCI matrix, ensuring optimally informative data collection

throughout the process. 2. Uncertainty quantification: By

incorporating uncertainty estimates,Areas of high uncer-

tainty can be identified and prioritized,, leading to more ro-

bust LCI completions in less time. 3. System-wide impact

assessment: Considering the expected change in the entire

LCI matrix allows us to prioritize entries with far-reaching

effects, potentially leading to more efficient improvements

in overall accuracy. 4. Iterative refinement: The approach

allows for continuous model improvement as new data is

collected, without requiring complete recomputation or re-

training. 5. Scalability: By focusing on the most informa-

tive data points, the method is suitable for large-scale LCI

databases where the data collection is impractical.

This adaptive approach represents a significant advance-

ment in addressing the evolving nature of LCI databases

and the need for efficient, targeted data collection in LCA.

4. Experiments and Results

The proposed Neural Processes model was evaluated us-

ing the Tiangong database2, a comprehensive set of unit

process data (UPR)[15]. The basic compositions of this

database are the individual processes in human activity and

their input-output exchange with the environment (elemen-

tary exchange) and technological systems (intermediate ex-

change). Each process typically refers to a specific activity,

such as production, transportation, or waste disposal. For

example, it could involve the production of 1 kg of cement.

2https://www.tiangong.earth/zh/data

Flows in the process are categorized into two types: inter-

mediate flows and elementary flows. Intermediate flows are

material transfers between processes that are not directly

exchanged with the environment. Elementary flows are di-

rectly exchanged with the environment, such as emissions

or resource extraction. After preprocessing to remove du-

plicates and extraneous processes, the final dataset contains

3,804 unique processes (UPR) and 2,969 distinct flows, re-

sulting in a sparse matrix with 0.3916% non-zero elements.

Following Zhao et al. [13], the LCI dataset is split into

training and test sets. Ten processes are randomly selected

for the test set, with the remaining 3,794 processes serving

as the training set. For test processes, the missing data ratio

of 1%, 5%, 10%, 20%, 30%, 50%, and 70% were selected

to represent typical rates of incompleteness in LCI datasets.

These rates span from minor gaps (1%-10%) to severe data

scarcity (50%-70%), providing a balanced range to evalu-

ate the model’s performance under varying conditions and

ensure its applicability across diverse scenarios.

The non-missing flow values serve as input for the model

to predict the missing values. The method is compared with

the state-of-the-art LCI completion using XGBoost [13],

evaluating model accuracy using Normalized Root Mean

Square Error (NRMSE), Normalized Mean Square Error

(NMSE), and Normalized Mean Absolute Error (NMAE).

To ensure robustness, each experiment is repeated 10 times,

and the average errors are reported.

4.1. Prediction Accuracy at Different Missing Data Ratio

Figure 1 compares the performance of the NP model

and XGBoost across different missing data ratio. The NP

model demonstrates superior robustness and consistency in

handling missing data, with its error remaining relatively

stable as the missing ratio increases, while XGBoost’s er-

rors rise significantly. As the missing ratio exceeds 5%,

the NP model’s advantage becomes evident, outperforming

XGBoost across NRMSE, NMSE, and NMAE metrics. An

exception occurs at the 20% missing ratio, where XGBoost

slightly outperforms the NP model in terms of NMAE only.

This could be attributed to XGBoost’s tree-based structure

capturing subtle variations more effectively. However, the

NP model’s superior performance in NRMSE and NMSE

suggests it is better at suppressing large errors. At the

extreme 70% missing ratio, the NP model demonstrates

significant improvements over XGBoost. The NMSE of

the NP model is approximately 1E-06, while that of XG-

Boost is around 1.1E-04, representing an improvement of

about 99.09%. The NP model also outperforms XGBoost

in NMAE at this high missing ratio, underscoring its ro-

bustness and accuracy in challenging scenarios.

Overall, the NP model exhibits stronger performance

across most scenarios, particularly at high missing data ra-

tio, surpassing XGBoost in both predictive accuracy and

consistency. This performance advantage is crucial for

practical LCI completion tasks, which often involve sub-

stantial amounts of missing data.
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Figure 1. Preidcive errors (NRMSE, NMSE, and NMAE) under different missing data ratio.

Figure 2. Predictive errors (NRMSE, NMSE, and NMAE) with increasing number of known processes.

4.2. Prediction Accuracy With Varying Training Data Sizes

To evaluate the method’s adaptability to different training

data sample sizes, simulating real-world scenarios of vary-

ing data availability, an experiment was conducted with in-

crementally increasing training set sizes. A fixed test set of

10 processes and a consistent missing data ratio of 5% were

maintained to ensure comparability across set sizes.

Starting with a baseline of 10% of the known processes

(379 processes), the training set is gradually expanded to

the full 3,794 processes in nine steps, each increasing by ap-

proximately 10% (except the final step). Figure 2 shows the

model predictions’ accuracy in terms of NRMSE, NMSE,

and NMAE as the number of known processes grows.

The results show that the NP model consistently out-

performs XGBoost across all training set sizes, especially

as the number of known processes increases, with the NP

model demonstrating a significant advantage in all metrics.

When the training data is small, both models perform simi-

larly, but as the number of known processes grows, the NP

model’s advantage becomes more apparent. Notably, when

the NP model is trained on only about 40% of the train-

ing set (approximately 1,517 processes), its performance

already rivals that of XGBoost on the full dataset, high-

lighting its superior ability to extract and generalize patterns

from limited data. As the training set approaches the full

dataset (3,794 processes), the NP model’s performance im-

proves further, achieving NMSE 5.6E-10, NRMSE 2.36E-

5, and NMAE 2.3E-05, accuracy improved by more than

90% compared to XGBoost.

However, in the range of 2200–2600 known processes,

a slight performance degradation is observed in the NP

model. This is likely due to the addition of less infor-

Figure 3. Comparison between active learning and random sampling.

mative or redundant processes, which introduce noise and

temporarily hinder the model’s learning. Unlike XGBoost,

which relies heavily on data volume, the NP model is more

sensitive to data quality. Despite this, the NP model quickly

recovers and continues to improve as the training set grows.

This behavior highlights the importance of data quality in

NP-based approaches. While increasing training data quan-

tity does not always guarantee better performance, the NP

model’s ability to generalize effectively from high-quality

data makes it suitable for LCI data collection scenarios.

4.3. Prediction Accuracy With Adaptive Data Acquisition

In the simulation,it was assumed that only a limited sub-

set of data points could be acquired. The dataset used for

this study exhibits sparsity and variability, reflecting chal-

lenges encountered in real-world industrial applications,

where certain processes have incomplete or unavailable

records. This simulation is also applicable to scenarios in
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which data collection efforts are constrained by economic

or operational limitations. The active learning approach

was compared with random sampling, using 2,794 fully

observed processes as training data and 10 processes with

80% missing data as the test set. During the 6 rounds of

experiments, an additional 10% of the missing data is in-

crementally selected for completion in each round, evalu-

ating the model’s performance by measuring the NMSE of

the predicted remaining missing flows in the test set.

Figure 3 illustrates the MSE of the model’s predictions

after each iteration. Both methods started with an MSE of

approximately 4.2E-4, but active learning quickly demon-

strated superior performance. At 70% missing data, active

learning reduced the MSE to 2.8E-4, while random sam-

pling remained around 4.1E-4. This performance gap con-

tinued to widen as iterations progressed. At lower missing

data ratio, active learning showed more significant improve-

ments. For example, at 20% missing data, the MSE was

reduced to 1.3E-4, while random sampling remained above

3.1E-4. This resulted in a 58.06% improvement in accuracy

with active learning.

In terms of efficiency, active learning achieves higher ac-

curacy at a 70% missing data ratio compared to random

sampling at a 20% missing data ratio, while also reducing

the query count by approximately 50%. This translates di-

rectly to cost savings in real-world scenarios, where each

query may represent an expensive or time-consuming data

acquisition process. The consistent superior performance

of active learning over random sampling underscores the

value of intelligent data selection in LCI completion tasks.

By identifying the most relevant data points, active learning

enables faster improvements in model performance, mak-

ing it particularly valuable in scenarios where data is avail-

able but challenging or costly to obtain.

This approach not only improves model accuracy but

also optimizes resource allocation in data collection efforts,

addressing one of the problems in LCA studies, which is the

amount of resources required to collect the large amounts of

data needed. By focusing on the most impactful and rele-

vant data points, active learning provides a more efficient

and cost-effective approach to enhancing LCI completion,

particularly valuable in resource-intensive scenarios.

5. Conclusion

In this study, a novel NP-based approach is presented

to enhance LCI data completion, which showed a signif-

icant improvement in accuracy (10x), compared to state-

of-the-art methods, with less data (and time) requirements.

In addition, the approach introduces a technique for selec-

tive data collection among unknown processes/flows via ac-

tive learning to allow similar predictive accuracy with 50%

less missing data.The findings have significant implications

for the field of Life Cycle Engineering (LCE) and broader

LCA. By addressing the challenge of incomplete LCI data,

the proposed approach provides a scalable solution that re-

duces the reliance on comprehensive data collection, mak-

ing LCA more accessible and reliable for industrial applica-

tions and policy evaluations. However, the adaptability of

the method to databases with significantly d ifferent struc-

tures remains a challenge. Future work will focus on en-

hancing the robustness of the model, particularly in han-

dling diverse data distributions and missing data patterns.
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