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Abstract—Word error rate (WER) estimation aims to evaluate
the quality of an automatic speech recognition (ASR) system
without requiring ground truth labels. This task has gained in-
creasing attention as advanced ASR systems are trained on large
amounts of data. In this context, the computational efficiency of a
WER estimator becomes essential in practice. However, previous
works have not prioritised this aspect. In this paper, a Fast
estimator for WER (Fe-WER) using a self-supervised learning
representation (SSLR) is introduced. The estimator employs
average pooling over SSLR. Our results demonstrate that Fe-
WER outperformed a baseline relatively by 14.10% in root mean
square error and 1.22% in Pearson correlation coefficient on Ted-
Lium3. Moreover, a comparative analysis of the distributions
of target WER and WER estimates was conducted, including
an examination of the average values per speaker. Lastly, the
inference speed was approximately 3.4 times faster in the real-
time factor.

Index Terms—Word error rate, WER estimation, self-
supervised representation, multi-layer perceptrons, inference
speed

I. INTRODUCTION

Word error rate (WER) is a commonly used metric for

evaluating automatic speech recognition (ASR) systems. It is

the ratio of the number of substitution, insertion, and deletion

errors in a hypothesis to the number of words in a reference.

In some scenarios, it can be very useful to use a model to

estimate the WER of an ASR system’s output, especially when

the ground-truth transcript is not available. For example, a

WER estimation model can be used to rank hypotheses [13]

and to select unlabelled data for ASR self-training [3], [15],

[25]. Another use may be to filter out training data with high-

WER transcripts, especially when they are collected from the

internet. To achieve good ASR performance, data samples

with high-WER transcripts usually need to be excluded from

ASR training, particularly for recent ASR models, e.g., Whis-

per [19], that are trained with large amounts of data collected

from the internet. When dealing with large amounts of data,

the computational efficiency of a WER estimator becomes

important. One obvious solution to estimate the WER of an

ASR system’s output is to produce confidence scores from

the ASR system itself [14], [16]. This method does not require

building another model for WER. However, this has the risk of

bias and—as will be shown—does not perform well compared

to WER estimation methods. Additionally, it is not aligned

with WER due to the lack of prediction of deletion errors.

Recently, researchers have proposed methods to directly

estimate the WER of an ASR system’s output without the

need for ASR decoding. For example, e-WER3 [4] used

bidirectional long short-term memory (BiLSTM) networks to

extract features for speech, while the features for text were

averaged over tokens. Then, WER was directly estimated using

multi-layer perceptrons (MLP) with these features. Although it

has made impressive progress in estimating the WER of ASR

systems, there are still several questions that have not been

fully studied. Firstly, the e-WER3 model, though avoiding

ASR decoding, relies on BiLSTMs, which are computationally

intensive for long sequences like spoken utterances. This

limits their use in training with long speech. Secondly, the

performance of the estimator depends on the input features

for speech and text. Thus, different combinations of self-

supervised learning representations (SSLRs) for speech and

text need to be explored for optimal performance on the WER

estimation task. Lastly, performance needs to be analysed

across data attributes, such as utterance lengths and speakers

in addition to the evaluation metrics.

In this paper, a framework to build a Fast estimation model

for WER (Fe-WER) consisting of speech and text encoders,

feature aggregators and a WER estimator, is proposed. The

SSLRs aggregated by average pooling are used to directly

estimate WER with MLP. This framework will be explored

from accuracy and efficiency perspectives. The contributions

of this paper are as follows:

1) This paper proposes a WER estimation model using av-

erage pooling, Fe-WER, which outperforms the baseline

model in computational efficiency without performance

degradation.

2) Experimental evidence shows that the combination of

HuBERT [11] and XLM-R [6] achieves the best perfor-

mance in WER estimation.

3) A comparative analysis of the distributions of target

WER and WER estimates is presented including an

examination of the average values per speaker.



Fig. 1: Illustration of the proposed method for WER estimation

II. RELATED WORKS

A. WER Estimation

e-WER3 is a WER estimator for multiple languages. In [4],

hypotheses were generated by a conformer-based ASR system

[8] trained on LibriSpeech [18]. The features of utterances

and hypotheses were extracted using XLSR-53 [5] and XLM-

R [6]. The hidden states of a BiLSTM in both directions

over frame-level representations were concatenated to form an

utterance-level representation, while an transcript-level repre-

sentation was averaged over token-level representations. For

data selection, hypotheses whose WER was equal to 0 were

selected up to the sum of the numbers in the second and third

most frequent groups. The WER was predicted using fully

connected layers on top of the concatenated representation.

The result was 0.14 in root mean square error (RMSE) and

0.66 in Pearson correlation coefficient (PCC) on the English

corpus, Ted-Lium3 [10], which was improved relatively by 9%

in PCC from e-WER2.

B. Sequence-level Representation

In [21], a sentence-level representation was suggested for

NLP tasks, such as semantic textual similarity (STS) between

sentences. The representation, called SBERT, was learned

using a Siamese or a triplet model—often referred to as a two-

tower architecture [12], [26]—with classification, regression

and triplet objective functions. One of the SSLRs, BERT [7],

was adopted and converted into a fixed-length representation

for a sentence through different pooling strategies. The results

showed that the average pooling strategy outperformed the

others, such as using a special token for classification of

BERT. In addition to SBERT, the average pooling strategy for

utterance-level representation has gained popularity in many

other tasks, such as speaker identification, intent classification

and emotion recognition [23], [24].

III. FAST WORD ERROR RATE ESTIMATION

A. Architecture

Fe-WER (see Fig. 1) is based on a two-tower architecture,

which maps different representations into a shared space to

capture the similarity between two inputs. The proposed model

consists of two aggregators—one for speech and another

for text—and fully connected layers that perform the WER

estimation. The aggregators convert the features extracted

by SSLRs into sequence-level representations. These two

sequence-level representations are concatenated and input to

an MLP consisting of fully connected layers with a rectified

linear unit (ReLU) activation function. A sigmoid function is

applied to the output. The WER estimate ŴER is defined:

ŴER ≙MLP(concat(p(f(s)), p(g(t))))

where p is a function of average pooling, f(⋅) and g(⋅) are

encoders for speech and text, respectively, and s and t are a

spoken utterance and an automatic transcript, respectively.

B. Training Objective

The mean squared error (MSE) between WER and ŴER is

used as the objective function to train the MLP, where WER

represents the error rate between references and hypotheses

and ŴER is the estimation by the model.

MSE ≙ ∑
N

i≙1
(WERi − ŴERi)2

N

where N is the number of instances in a dataset and i is the

index of an instance.

C. Weighted Word Error Rate Estimate

The word error rate can be weighted by the number of

words in a reference transcript, denoted as WERwrd. For the

weighted WER estimation on a dataset, it is weighted by

duration instead of the number of words in the reference. The

weighted WER estimate is defined as follows:

ŴERdur ≙ ∑
N

i≙1
(ŴERi ×Durationi)
∑

N

i≙1
(Durationi)

where i is the index of a pair consisting of an utterance and

its corresponding hypothesis.

D. Evaluation Metrics

PCC and RMSE are used as evaluation metrics. A PCC

value close to 1 indicates that two variables change in the same

direction, while a value close -1 indicates that they change in

opposite directions.

∑
N

i≙1
(WERi − µWER)(ŴERi − µŴER)√

∑
N

i≙1
(WERi − µWER)2∑N

i≙1
(ŴERi − µŴER)2

where µWER is the mean of WER. Lastly, the ratio between

the weighted WERwrd and ŴERdur is also measured.

WERR ≙ ∣WERwrd − ŴERdur∣
WERwrd

.



TABLE I: Statistics of the sets of data selected. Hypotheses were generated by Whisper large-v2.

Dataset #seg. total dur. (h) avg. dur. avg. #wrd. avg. WER std. dev. of WER WERwrd

eval 842 1.41 6.05 16.72 0.1429 0.1997 0.1088
dev 1034 1.70 5.93 17.72 0.1532 0.2247 0.1225
train 123255 200.55 5.86 17.04 0.2434 0.3209 0.2029

IV. EXPERIMENT SETUP

A. Data

TED-LIUM3 (TL3) [10] was used as the ASR corpus for

WER estimation. For transcribing the corpus, Whisper large-

v2 1 was employed for reproducibility, as it demonstrated

comparable performance on TL3 and is publicly available.

The transcribed data were highly imbalanced due to the high

volume of WER 0. To address this issue, hypotheses with a

WER of 0 were filtered out based on the WER distribution, as

described in Section II-A. Additionally, utterances with lengths

up to 10 seconds were selected, and WER was clamped be-

tween 0% and 100%. Whisper’s text normaliser was modified

to prevent the replacement of numeric expressions with Arabic

numerals. The statistics of the selected data are summarised

in Table I.

B. Self-supervised Learning Representations

SSLRs for utterances and hypotheses were selected based

on their performance on benchmarks including Speech pro-

cessing Universal PERformance Benchmark (SUPERB) [24],

General Language Understanding Evaluation (GLUE) [23] and

SuperGLUE [22]. These benchmarks assess models on various

tasks, such as phoneme recognition and paraphrase detection.

Additionally, two models used for WER estimation with

BiLSTM [4] were included. Summary information on these

models, including model size and the number of parameters,

is provided in Table II.

TABLE II: Summary information of SSLRs.

Type Model Abbr. Size #Parameters

Utterance

data2vec [1] DA Large 313M
HuBERT [11] HU Large 316M
WavLM [2] WA Large 317M
XLSR-53 [5] XS Large 315M

Transcript

DeBERTa-V3 [9] DE Large 283M
GPT-2 [20] GP Medium 355M
RoBERTa [17] RO Large 355M
XLM-R [6] XM Large 560M

C. Baseline WER Estimators

The proposed model was compared with two baselines: a

method using a confidence score (WER-CS) and another with

BiLSTM. First, for sequence-level confidence scoring, the log

probability of Whisper large-v2 over the output tokens was

averaged and subtracted from 1. For decoding, two strategies

were employed: greedy decoding only and full decoding. The

1https://github.com/openai/whisper

full decoding strategy included a beam size of 5, greedy

decoding with the 5 best hypotheses and sampling temperature

settings ranging from 0 to 1 in increments of 0.2. Second,

another method using BiLSTM was implemented for the sec-

ond baseline. A single-layer BiLSTM was used to aggregate

SSLR representations, with the input and hidden feature sizes

matching the size of the inputs. For further details, readers can

refer to e-WER3 [4].

D. Fe-WER

Average pooling over the frame or token dimension was

used as the aggregator. Hyperparameters were selected via grid

search. The Fe-WER includes an MLP with 2 hidden layers

and 1 output layer, activated by ReLU and Sigmoid functions,

respectively. Each layer’s output is normalised, and dropout

(0.1) is applied to the hidden layers. The fully connected

layers consist of 3 layers with 600, 32, and 1 nodes on top of

2048-dimensional input features. The model was trained with

an Adam optimiser (learning rate: 1e-3), a cosine annealing

scheduler and early stopping at 40 epochs.

V. RESULTS

First, BiLSTM and average pooling are compared across

different combinations of SSLRs. Next, the WER estimation

models with the best SSLR combination are compared with

a baseline using confidence scoring. This is followed by an

analysis of WER estimation at the utterance level and a

comparison of inference speed.

A. Aggregators

Aggregators using BiLSTM and average pooling were com-

pared with combinations of SSLRs in Section IV-B. First,

RMSE and PCC tend to improve with average pooling in 13

out of 16 combinations. Second, the best combinations are DA

and XM for BiLSTM and HU and XM for average pooling.

The latter outperformed the former by 0.0099 in RMSE

and 0.0228 in PCC on TL3 dev. Results are summarised in

Table III.

B. Comparison with Baselines

The proposed model, which uses an average pooling ag-

gregator with HU and XM, is compared to two baselines:

WER-CS and a model using BiLSTM with DA and XM.

First, the two decoding strategies described in Section IV-C

were applied to WER-CS with Whisper large-v2. However, it

performed worse than the other models in both metrics with all

strategies. The proposed model outperformed the baselines in

RMSE and PCC by at least 14.10% and 1.22%, respectively.

The comparison results are shown in Table IV.



TABLE III: Results of BiLSTM and Average pooling aggre-

gators with different SSLRs combinations on TL3 dev. All

models were trained with three seeds.

SSLR BiLSTM Average Pooling

Utt. Hyp. RMSE↓ PCC↑ RMSE↓ PCC↑

DA DE .1185±.001 .8490±.004 .1213±.000 .8425±.001
DA GP .1254±.005 .8405±.008 .1185±.001 .8512±.002
DA RO .1193±.002 .8491±.008 .1190±.002 .8486±.004
DA XM .1111±.008 .8700±.018 .1137±.001 .8637±.002

HU DE .1216±.002 .8398±.004 .1105±.002 .8702±.005
HU GP .1233±.002 .8387±.005 .1093±.001 .8741±.001
HU RO .1227±.004 .8363±.011 .1123±.003 .8676±.006
HU XM .1212±.011 .8418±.032 .1012±.003 .8928±.007

WA DE .1289±.005 .8200±.014 .1164±.002 .8551±.003
WA GP .1270±.003 .8245±.009 .1111±.002 .8709±.006
WA RO .1210±.004 .8420±.013 .1167±.002 .8561±.004
WA XM .1172±.005 .8520±.015 .1099±.002 .8734±.005

XS DE .1289±.003 .8191±.011 .1216±.002 .8412±.006
XS GP .1200±.003 .8467±.008 .1155±.001 .8585±.002
XS RO .1285±.003 .8226±.006 .1161±.003 .8567±.007
XS XM .1199±.005 .8474±.009 .1101±.001 .8717±.003

TABLE IV: RMSE and PCC of baseline systems on TL3 eval.

WERwrd is a target WER weighted by words. ŴERdur is the

WER estimate weighted by duration. † is the proposed method.

RMSE↓ PCC↑ WERwrd ŴERdur WERR↓

WER-CS
+ full 0.2611 0.5654 8.40% 31.85% 2.7916
+ greedy 0.2546 0.6944 10.88% 33.34% 2.0643

BiLSTM
+ DA,XM 0.1071 0.8793 10.88% 10.96% 0.0073

†Avg. Pool.
+ HU,XM 0.0920 0.8900 10.88% 10.39% 0.0450

C. Distributions of Target WER and WER Estimates

The histograms of target WERs and WER estimates on

TL3 eval are visualised in Fig. 2. The distribution of Fe-WER

estimates is similar to that of the target WERs. However, the

frequency of target WERs peaks in the [0.00, 0.02) range in

Fig. 2(a), while the estimates peak in the [0.04, 0.08) range

in Fig. 2(b). This discrepancy may be due to the Sigmoid

function outputting small values rather than 0. Additionally,

WER estimates around 0.2 are less frequent than target WERs.

In this range, three or more insertions in a row are frequently

observed in the hypotheses. Recognising these words as one

insertion error could have led to the low estimates.

(a) target WER (b) WER estimate

Fig. 2: Histograms on TL3 eval

D. Average Target WER and WER Estimate per Speaker

The distributions of average target WER and WER estimate

per speaker are similar (See Fig. 3). The high average target

WER of Speaker 5 is due to majority of shorter utterances,

which have low resolution of WER. For example, the WER

of a spoken utterance for a word is 0 or at least 100%. For

Speaker 16, the average WER estimate is higher than the

average WER target. The phenomenon of high WER estimate

was discussed in Section V-C.

Fig. 3: Average WER per each speaker

E. Inference Speed

The inference time of the WER estimators was measured

on a single NVIDIA RTX A6000 GPU with a batch size of

1, including the encoding time. The model using BiLSTM

had an inference time of 18.64 seconds, while the proposed

method’s inference time was significantly shorter at 5.42 sec-

onds, reducing the inference time by approximately 70.92%.

The details are summarised in Table V.

TABLE V: RTF of BiLSTM and Avg. Pool. with HU and XM

on TL3 eval. Total duration is about 5223 seconds. RTF: total

time ÷ total duration. † is the proposed method.

BiLSTM †Avg. Pool.

Feature extraction
+ utterance 2.72
+ transcript 0.93
Aggregation 5.28 ϵ

Feedforward 9.71 1.77

Total 18.64 5.42

RTF 0.003569 0.001038

VI. CONCLUSION

In this paper, a Fast WER estimator is proposed. The

proposed model consists of SSLR encoders for speech and

text, aggregators using average pooling and an MLP estimator.

The WER estimator outperforms the BiLSTM baseline by

relative 14.10% and 1.22% in RMSE and PCC, respectively.

Moreover, the experimental results show that the inference

speed has been significantly improved, being 3.4 times faster

than the BiLSTM baseline, without performance degradation.
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