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ABSTRACT
Microclimate differences in water availability can drive seasonal water use and photosynthetic variation among co- occurring 
tropical tree species, especially in forests with strongly seasonal climates. We studied a tropical forest site in the Western 
Ghats, India, and characterised seasonal differences in photosynthetic CO2 assimilation rates (Anet) among nine tree species 
with contrasting leaf habit and topographic affinities: deciduous species in dry hilltops, dry- affinity evergreens on slopes and 
wet- affinity evergreens in valleys. Surface soil moisture was lowest in hilltops, intermediate on slopes and highest in valleys, 
with higher levels during the wet period compared to the dry period. As expected, deciduous species on dry hilltops showed 
higher photosynthetic rates at the thermal optimum (Topt) during the wet period, while evergreen species showed no overall 
seasonal differences. Interestingly, evergreen species with a dry affinity on hill slopes showed higher Anet at the thermal op-
timum during the dry period compared to the wet period, despite lower soil moisture. This suggests that these species either 
have sufficient water availability during the dry period or possess a warmer thermal niche preference/adaptation. Across 
species, stomatal conductance (gs) at Topt was generally higher during the wet period, except for one evergreen species. Our 
findings illustrate seasonal differences in photosynthesis among tropical tree species across different leaf habits and topo-
graphic affinities.
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1   |   Introduction

Globally, tropical forests exhibit diverse seasonal climate pat-
terns, ranging from aseasonal to strongly seasonal climates with 
distinct wet and dry periods (Carvalho et al. 2021). Seasonally 
dry tropical forests, in particular, experience contrasting condi-
tions of water availability and air temperature across seasons. 
This seasonality influences physiological processes among the 
tree species, which exhibit varying leaf habits and water affin-
ities (Rey- Sánchez et al. 2016). Furthermore, microclimate fac-
tors (Zhang et  al.  2023), such as topography and distribution 
of tree species, can modulate seasonal variations in vegetation 
(Schwartz et al. 2022). A better understanding of the seasonal 
variation in physiological processes among co- occurring tree 
species in these seasonally dry tropical forests could help us 
understand species' sensitivity to drought and future warming 
(Köpp Hollunder et al. 2022). For example, the extent of seasonal 
variation in photosynthesis – the primary carbon uptake process 
– is poorly understood, especially among adult trees exposed to 
diverse seasonal and microclimate- driven differences in water 
availability.

Seasonal variation in photosynthesis is driven by complex inter-
actions between environmental factors, including air tempera-
ture, water availability, light levels and daylength or photoperiod 
(Yamaguchi et  al.  2016). Biochemical mechanisms also play a 
role, involving adjustments in enzyme and photosystem pro-
teins, photosynthetic electron transport (Wada et  al.  2023) 
and mitochondrial respiration (Way and Yamori  2014). These 
factors are often reflected in leaf nitrogen content, leaf pig-
ments and leaf age/phenology (Yasumura et  al.  2006; Muller 
et al. 2011). For instance, leaf nitrogen content typically peaks 
during early growth stages before declining with senescence 
(Joshi et al. 2024). Similarly, leaf pigment content, particularly 
chlorophyll, peaks alongside leaf nitrogen, while carotenoids, 
which play a key role in photoprotection, show smaller seasonal 
changes (Shi et al. 2014; Peng et al. 2021; Wada et al. 2023). As 
leaves age beyond their peak growth period, photosynthetic 
capacity declines due to reductions in leaf pigment and nitro-
gen content (Yasumura et al. 2006). Among co- occurring tree 
species, especially in forests with high biodiversity, diverse 
phenology (Corredor- Londoño et  al.  2020; Devi et  al.  2023; 
Wada et  al.  2023) can lead to diverse seasonal patterns in 
photosynthesis.

Seasonal differences in photosynthesis parameters also indi-
cate acclimation responses to seasonal environmental changes 
(Wittemann et al. 2022). Acclimation involves physiological, 
structural or biochemical adjustments that cause changes in 
the thermal optimum of photosynthesis (Topt), the photosyn-
thetic rate at thermal optimum (Aopt) and maximum rates of 
RuBP carboxylation, among other factors. Shifts in the thermal 
optima are associated with changes in rubisco carboxylation 
activation energy (Hikosaka et al. 2005; Borjigidai et al. 2006) 
and other temperature- dependent processes across different 
photosynthetic pathways (Yamori et al. 2014). Generally, trop-
ical tree species acclimate their photosynthesis to moderate 
warming, although to a lesser extent than temperate or boreal 
species (Slot and Winter  2017a; Wittemann et  al.  2022; Liu 
et al. 2024). The extent of acclimation varies among species; 
for example, low- elevation species acclimate more strongly 

to temperature increases than montane species (Wittemann 
et  al.  2022). In general, the thermal optimum of photosyn-
thesis increases with higher growth temperatures (Yamasaki 
et al. 2002; Hikosaka et al. 2005; Choury et al. 2022). While 
seasonal acclimation in Topt indicates species' strategy to max-
imise or maintain photosynthetic efficiency throughout the 
year (Kattge and Knorr 2007), most knowledge is derived from 
studies on crop plants or juvenile trees (Gjindali et  al. 2021; 
Gjindali and Johnson 2023). Therefore, a significant gap exists 
in research on adult trees in tropical forests with seasonal en-
vironmental variations.

Leaf- level studies characterising seasonal patterns commonly 
report a decline in photosynthetic rates during the season-
ally dry period, particularly for deciduous species (Eamus 
et  al.  1999; Zhang et  al.  2007). Leaf phenology and water 
availability are often identified as key factors explaining these 
seasonal variations (Eamus et  al.  1999; Zhang et  al.  2007). 
For instance, studies in Panama found reduced photosyn-
thetic rates during the dry season in tree seedlings (Craven 
et  al.  2011). Similar dry period declines were measured in 
Australian Acacia sp. juveniles (Montagu and Woo  1999). 
Leaf- level measurements of adult trees conducted in  situ at 
a tropical site in Thailand revealed consistent photosyn-
thetic rates throughout the year for one evergreen species, 
while two other evergreen species exhibited declines during 
the dry season (Ishida et  al.  2006). Similarly, a study in an 
Amazonian forest revealed a decline in photosynthetic rates 
among canopy trees during the dry season, while photosyn-
thetic rates of understory species were only slightly reduced 
during the same period (Santos et  al.  2018). Thus, a dry pe-
riod reduction in photosynthetic rate is commonly reported. 
In contrast, some studies have reported higher photosyn-
thetic rates during summer periods in deciduous tree species 
(Naidu and Swamy  1995) and seedlings of brevideciduous, 
deciduous and evergreen tree species in India (Abhilash and 
Devakumar 2023). These diverse responses suggest other re-
gional factors, such as microclimate, could influence the sea-
sonal differences in photosynthesis, particularly in seasonally 
dry tropical forests.

In addition to seasonal differences in photosynthetic rates, other 
aspects of gas exchange such as stomatal conductance to water 
vapour (gs) can exhibit seasonal variation. Under most com-
mon ambient conditions, stomatal conductance is closely linked 
with photosynthetic rates (Slot and Winter  2017b). However, 
at higher temperatures, gs responses are often decoupled from 
photosynthesis (Asargew et  al.  2024). The shape of the tem-
perature response of gs also varies. While a linear decrease in 
gs with increasing temperatures is observed (Urban et al. 2017; 
Eze et  al.  2024), some reports indicate increased gs at higher 
temperatures and, in some cases, a peaking response (Yamori 
et  al.  2006; Hernández et  al.  2020). Generally, gs tends to be 
higher during the wet period among deciduous trees (Grace 
et al. 1982), while some studies show that gs of evergreen spe-
cies do not vary significantly (Andriyas et al. 2021). However, 
trees in seasonal tropical forests, particularly adult trees, could 
potentially differ in their stomatal conductance strategies, es-
pecially during drier conditions. This seasonal variation may 
be due to the differences in air temperature, vapour pressure 
and water availability during dry and wet periods (Comita 
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and Engelbrecht  2009; Schwartz et  al.  2022), varied rooting 
depths (Stahl et  al.  2013) and soil water availability (Vourlitis 
et al. 2005; Schmitt et al. 2022). Thus, while the extant literature 
provides some insights on the seasonal differences in photosyn-
thesis, there is limited understanding of the seasonal differences 
in temperature response of photosynthesis among adult trees in 
a seasonally dry tropical forest.

Addressing this gap, we studied nine tree species in India's 
Central Western Ghats forest, a global biodiversity hotspot 
that experiences distinct dry, warm summer periods followed 
by four- month- long monsoons. This region has not been ex-
tensively studied for its photosynthetic thermal sensitivity or 
seasonal patterns. Topography, water availability and micro-
climate differences across the Western Ghats landscape (Das 
et al. 2015) create distinct microhabitats. Wet- affinity, gener-
ally evergreen species occur in low- lying valleys; deciduous 
trees are found on higher elevation hilltops with shallow soils; 
and relatively dry- affinity evergreen species inhabit hill slopes 
with intermediate water availability (Pascal 1988; Krishnadas 
et al. 2016). The topographic differences further diversify the 
seasonal water availability as well as the environmental tem-
perature experienced by species depending on their position 
along the hill slopes. This leads to the question: How do mi-
crohabitat and thermal niche differences relate to variation in 
photosynthetic thermal sensitivity among co- occurring tree 
species?

To characterise seasonal differences in photosynthesis and 
stomatal conductance thermal sensitivity, we measured in-
stantaneous CO2 assimilation rate and stomatal conductance 
temperature response curves for a set of nine tree species 
during two seasons. At the thermal optimum, photosynthetic 
rates are at their maximum potential (Aopt) under saturating 
irradiance, ambient CO2 concentration and relative humidity 
(RH). Hence, Aopt during the dry and wet periods can provide 
a measure of seasonal variation in photosynthesis. As an indi-
cator of stomatal conductance variation, we measured the gs 
rate at Topt, representing the optimal gs under the most likely 
leaf environment and the highest photosynthetic rate condi-
tions during the two study periods. Our study addresses the 
following questions:

a. In a seasonal tropical forest, to what extent do photosyn-
thetic rates and stomatal conductance temperature re-
sponses differ among co- occurring tree species between 
dry and wet seasons?

b. Are seasonal differences in photosynthetic rates and sto-
matal conductance related to different topographic posi-
tions of species?

We hypothesise that photosynthetic rates for all species will be 
higher during the wet period. We further hypothesise that pho-
tosynthetic rate differences between wet and dry periods will be 
largest in hilltop deciduous species, intermediate in hill slope 
species and lowest in valley species. We expect Topt to increase 
during the dry period, as previously observed in seedlings 
(Kositsup et  al.  2008; Slot and Winter  2017a) and in response 
to experimental warming (Crous et  al.  2022). Additionally, 

we expect stomatal conductance at Topt to be generally higher 
during the wet period, but the magnitude of seasonal differences 
may vary among species across different water access strategies 
and topographic affinities.

2   |   Materials and Methods

2.1   |   Study Site and Tree Species

We conducted in situ measurements in a forest site located in 
a typical Central Western Ghats landscape of Uttara Kannada 
district, Karnataka, India (14.479157° N, 74.758304° E, 523 m 
asl; Figure  1). The study site features undulating terrain, 
with elevations ranging from 500 to 550 m in valleys to about 
550–600 m on the ridges. We selected a set of three species in 
each of the three topographic positions. On hilltops that are 
characterised by sparsely distributed deciduous tree species, 
we chose Careya arborea Roxb. (Lecythidaceae), Terminalia 
chebula Retz. (Combretaceae) and T. paniculata B.Heyne 
ex Roth (Combretaceae) – all deciduous. Along the hill 
slopes with drier soils, we selected three evergreen species: 
Memecylon umbellatum Burm.f. (Melastomataceae), Psydrax 
dicoccos (Gaertn.) Merr. Rubiaceae and Tetrapilus dioicus 
Roxb. (Oleaceae). Last, in the wetter valleys, we selected three 
evergreen species: Hopea ponga Wall. (Dipterocarpaceae), 
Knema attenuata (Hook.f. & Th.) Warb. (Myristicaceae) and 
Garcinia cambogioides var. cambogioides (Clusiaceae). Hilltop 
trees such as C. arborea and T. paniculata are associated with 
wildfire- prone areas, while T. chebula occurs in mixed decidu-
ous forests, with Central Western Ghats being its most suitable 
habitat (Kailash et  al.  2022). On hill slopes, M. umbellatum 
characterises mid- elevation forests in Northern Western 
Ghats, associating with Syzygium spp. and Actinodaphne 
spp., occurring up to 1000 m in wet and dry forests (Shigwan 
et al. 2024), and often co- occurring with T. dioicus. In valleys, 
Hopea spp. typify undisturbed evergreen forests and can also 
be observed to create monodominant patches near the study 
site. K. attenuata and G. cambogioides var. cambogioides char-
acterise wetter valleys.

In our study site, deciduous species predominantly occupy 
hilltops and open areas, while evergreen species dominate 
slopes and valleys, revealing a clear topographical segregation. 
Conversely, it is hard to find deciduous species on hillslopes 
and valley regions. This segregation limited our ability to make 
direct comparisons across all zones for deciduous and ever-
green types. The nine selected species collectively represent 
some of the most common trees in this ecosystem (Pascal 1988) 
and reflect general patterns of water affinity across the Western 
Ghats landscape (Krishnadas et  al.  2021), closely linked to 
topographic positions. Due to the terrain and characteristic 
distribution of trees along the slope, branches from about 2–5 m 
above ground were accessible for measurement. For each in-
dividual tree sampled, we selected a branch for measurement, 
bent it towards the ground without damaging or detaching it 
from the tree and stabilised it using ropes to permit access for 
leaf measurements. We measured at least three biological rep-
licates or individual trees per species, sampling the same indi-
viduals during the wet and dry period campaigns.
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2.2   |   Sampling Periods

We conducted measurements during two periods: the early 
post- monsoon period in 2020 and the dry summer period in 
2021. The early post- monsoon campaign – referred to as ‘wet 
period’ was conducted from November to mid- December 2020, 
which is about 1–1.5 months after the 4- month- long monsoon 
rains (Figure 1A). The second campaign lasted from the end of 
March to mid- April 2021 and coincided with the early to mid- 
summer period (hereafter referred to as summer). The sum-
mer period is characterised by < 100 mm rainfall per month for 
about 4–5 months (from December to mid- May, until the onset 
of monsoon). Typically, during the latter part of April and early 
May, air temperatures reach their highest levels in this area. 
The mean maximum air temperature of the summer period is 
38.4°C which is about 4°C warmer than the post- monsoon pe-
riod (34°C). Relative humidity during the summer period was 
~70.4% (59.6–82.3) while for the post- monsoon period, it was 
75.6% (65.3–87.0). The total mean annual precipitation for the 
site is about 4000 mm. Temperature and precipitation data are 
from a WatchDog 2000 automated weather station (Spectrum 
Technologies) set up in the study site. Vapour pressure defi-
cit (VPD) remains stable at 2 kPa throughout the day during 

the wet period but varies from 2 to 3 kPa in the dry period. 
Supplementary Figure  S1 illustrates the diurnal variations in 
air temperature, RH and leaf- to- air VPD between dry and wet 
periods.

2.3   |   CO2 Assimilation Rate Temperature Response 
Measurements

We measured the temperature response of the CO2 assimila-
tion rate, Anet, using a portable infrared gas analyser (IRGA) 
Li- 6400 XT (LiCor) with a fluorescence leaf chamber (Li- 
6400- 40). We measured low to mid- canopy, fully mature and 
healthy leaves from sun- exposed branches of adult trees from 
about 2–5 m above ground. A typical measurement sequence 
involved gradual heating of the leaves in the leaf chamber to 
different temperature points. The target leaf temperatures 
were: 20°C, 24°C, 28°C, 32°C, 36°C, 40°C, 44°C and 48°C. The 
irradiance level was set to 1000 μ mol m−2 s−1, CO2 concentra-
tion to 400 μ mol mol−1. External PAR (photosynthetically ac-
tive radiation) sensor data recorded by the instrument during 
the temperature response measurement were used to indicate 
microhabitat light levels.

FIGURE 1    |    (A) Monthly air temperature (primary ordinate) and precipitation (secondary ordinate) of the study site in the Western Ghats, India. 
Data are monthly averages calculated using the data from a WatchDog 2000 weather station collected during 2020–2021. The map (B) shows the 
location of the study site in India and the Western Ghats boundary. Panel C shows surface soil moisture for three points corresponding to the three 
topographic groups measured in the subsequent year. Panel D shows mean surface soil moisture for the three strata derived from data in Panel C.

 13993054, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ppl.70410 by U

niversity O
f L

eeds T
he B

rotherton L
ibrary, W

iley O
nline L

ibrary on [23/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



5 of 13

To prevent moisture condensation in the IRGA, we set the low-
est leaf temperature at 5°C above the dewpoint, which limited 
the lower temperatures that we were able to measure. We al-
lowed leaves to stabilise at the initial chamber condition for at 
least 10 min. Following stabilisation, data were recorded after at 
least 6–7 min of stable conditions. After data logging, the cham-
ber air was set to ~4°C higher temperature followed by a similar 
stabilisation sequence.

While we attempted to reach the nominally highest tempera-
tures the instrument can reach, leaf temperatures often re-
mained lower than the highest possible chamber temperature 
due to evapotranspirative cooling, limiting the upper end of the 
temperature range we could measure. The leaf temperature 
(Tleaf) range for the summer period was 21.4°C–45.0°C and 
for the post- monsoon period, it was 23.2°C–41.1°C. RH of the 
chamber air was maintained at around 60% ± 5%. However, at 
temperatures above 35°C, during both dry and wet period cam-
paigns, RH levels dropped to around 40%. To estimate photosyn-
thesis temperature response parameters, we fitted June et al.'s 
(June et al. 2004) model to the CO2 assimilation rate response 
as follows:

Where Anet is the photosynthetic CO2 assimilation rate at a given 
leaf temperature, CO2 concentration and irradiance level. Topt is 
the thermal optimum of Anet and Aopt is the Anet at the thermal 
optimum or the maximum CO2 assimilation rate. Parameter Ω, 
which represents the width of the curve peak, is the tempera-
ture difference between Topt and the temperature at which Anet 
drops to 37% of its value at Topt; at both supra and sub optimal 
temperatures. Compared to the parabolic temperature response 
curve of Cunningham and Read (2002), the asymmetric peaked 
function of June et al.'s (2004) provided a better fit to our data, 
particularly in capturing the peak (Topt). Temperature response 
curves were fitted for each species × period, combining replicate 
individual tree measurements (Figure 2, Panel A). Species mean 
Topt was calculated by fitting curves to individual tree replicate 
data separately. In contrast, the curves shown in Figure 2, Panel 
A represents combined fits obtained by pooling all replicate 
tree data.

To test the effect of temperature on stomatal conductance (gs), 
linear models with and without a quadratic term were com-
pared using Akaike information criterion (Cavanaugh and 
Neath 2019), and the best fit model was used. We present plots 
of gs against leaf temperature Tleaf to highlight the diversity 
of physiological responses observed. Since gs is influenced by 
both leaf temperature dynamics and environmental variables 
– including water vapour exchange between the leaf and sur-
rounding air, we modelled gs using Tleaf as the primary predic-
tor. The best- fit linear or quadratic relationships were selected 
based on the AIC value. To account for corresponding changes 
in leaf- to- air vapour pressure deficit (VPD) across temperature 
gradients, we fitted a linear regression model between VPD and 
Tleaf. Using this model, we calculated VPD values for each Tleaf 
measurement and plotted them as secondary abscissa. Figure 3 
demonstrates the VPD levels achieved through relative humidity 

(1)Anet

(

Tleaf
)

= Aopt × e
−

(

Tleaf−Topt

Ω

)2

FIGURE 2    |    Photosynthetic CO2 assimilation rate temperature re-
sponse curves (panel A, 3 × 3 grid) for 9 tree species in the Western Ghats, 
India, measured in situ. Blue components represent the wet period, and 
red components are for the dry period. Panel B shows the species aver-
age Aopt, which is the maximum net CO2 assimilation rate at the thermal 
optimum (peaks of curves in Panel A). Measurements were conducted 
at an irradiance of 1000 μ mol m−2 s−1, [CO2] of 400 μ mol mol−1 and RH 
was maintained in the range of 50%–60%. Open circles in Panel B in-
dicate evergreen species with significant seasonal differences in Aopt. 
Codes for the species shown in Panel B are in parentheses as follows: 
Terminalia paniculata (TP), Terminalia chebula (TC), Careya arborea 
(CA), Psydrax dicoccos (PD), Tetrapilus dioicus (TD), Memecylon umbel-
latum (MU), Hopea ponga (HP), Knema attenuata (KA) and Garcinia 
cambogioides var. cambogioides (GC).
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RH control in the leaf chamber, while Supplementary Figure S1 
illustrates diurnal VPD fluctuations recorded at the study site.

Several studies highlight the concerns about errors in leaf tem-
perature measurements using poorly insulated thermocouples 
commonly used in IRGA Li- 6400 (Mott and Peak  2011; Still 
et al. 2019; Garen et al. 2022). However, Docherty et al. (2023) 
tested the differences in temperature response parameters de-
rived from measurements using an instrument with a higher 
amount of bias (Li- 6400) versus a relatively lower bias (Li- 6800) 
and found no statistical difference. In our study, since the mea-
surement temperature spanned the achievable range and the 
Anet commonly declined beyond the maximum Anet at Topt, the 
absolute values of Aopt should not be affected by the instrument 
temperature bias. While we recognise that the actual values of 
Topt could be more directly affected, these effects should be sim-
ilar in the data collected since the measurement was conducted 
using the same instrument. Hence, species- wide differences that 
we report can nonetheless be interpreted with caution.

2.4   |   Surface Soil Moisture

Three TMT- 4 Standard dataloggers (Wild et al. 2019; TOMST) 
in the subsequent year (2023–2024) demonstrate marked sea-
sonal differences in surface soil moisture (15- min frequency at 
a depth of 8 cm below the soil surface) across the possible topo-
graphic strata. Calibration coefficients for the soil bulk density 
range 1.25–1.28 g/cm3 were used to convert the readings into 

volumetric soil moisture. The loggers were situated strategically, 
representing hilltop, slope and valley areas, and set to capture 
data at a 15- min frequency at a depth of 8 cm below the soil 
surface.

Surface soil moisture levels were generally lowest in hilltops, 
followed by slopes and highest in valley regions (Figure 1C,D). 
For all three strata, soil moisture was seasonally different and 
was higher during the wet period compared to the dry period. 
The largest seasonal difference in surface soil moisture was re-
corded in the valley and slope positions, whereas, for hilltops, in 
contrast, experienced the lowest seasonal difference. Dry period 
soil moisture levels in the valley area were comparable with wet 
period slope levels.

2.5   |   Data Analysis

Data analysis was conducted in R version 4.4.3 (R Core 
Team 2025). For the temperature response function, we used the 
‘nls’ function of the ‘stats’ package to fit Anet temperature func-
tion to Equation (1). Topt and Aopt were calculated from the fitted 
models. Species- level seasonal differences in parameter means 
were tested using paired T- tests. Two- way repeated measure lin-
ear mixed- effect analysis of variance (ANOVA) models explain-
ing Aopt, Topt and gs at Topt variation were fitted using the ‘lme’ 
function in the ‘nlme’ package (Pinheiro et  al.  2018). Season, 
species and leaf habit (deciduous and evergreen) were included 
as fixed effects and individuals (trees) were included as a ran-
dom effect in the models. Supplementary Section S2 presents 
all model fits. All means are presented with ± SEs and signifi-
cant results are presented for 95% confidence interval (CI = 95%, 
α = 0.05).

3   |   Results

3.1   |   Thermal Optima of Photosynthetic CO2 
Assimilation Rate

The average optimal temperature for CO2 assimilation rate, 
combining the values from the nine tree species, showed no 
seasonal difference between the wet (30.43°C ± 0.39°C) and dry 
(30.93°C ± 0.31°C) periods (t49 = 0.99, p = 0.325). Species mean 
Topt was close to the mean maximum air temperature during the 
wet period (Supplementary Figure S3), whereas during the dry 
period, species mean Topt was about 3°C below the mean max-
imum air temperature. Topt differences were significantly re-
lated to species (F9 = 8.21, p < 0.001), but not to season (F3 = 3.2, 
p = 0.07) Additionally, the mixed- effects model showed no 
significant interaction between species and season (F9 = 1.81, 
p = 0.106; Supplementary Section S2 and Figure 3).

3.2   |   CO2 Assimilation Rate at Thermal Optimum 
(Aopt)

Species- level Anet temperature response curves are presented 
in Figure 2A. The mean Aopt combining all nine species mea-
sured was similar during the wet and dry periods at 9.68 ± 0.59 
and 9.71 ± 0.83 μ mol CO2 m−2 s−1, respectively, with no seasonal 

FIGURE 3    |    Temperature response of stomatal conductance (gs) 
to water for nine tree species in the Western Ghats, India, measured 
in situ, during post- monsoon wet and summer dry periods. VPD corre-
sponding to the datapoint is represented in the secondary x- axis based 
on a model of gs, Tleaf and VPD. Curves are linear or quadratic fits (best 
fit selected based on AIC).
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difference. The mixed- effects model for Aopt showed a signifi-
cant species effect (F8 = 24.8, p < 0.001) but no season effects 
(F1 = 0.003, p = 0.95). However, the interactive effect (F8 = 8.9, 
p < 0.001) of season and species was significant, indicating that 
seasonal differences in Aopt were species dependent. Testing leaf 
habit as a fixed effect, the Aopt model showed a significant effect 
of leaf habit (F1 = 13.7, p < 0.001) and the interaction between 
leaf habit and season (F1 = 10.1, p = 0.002). Season alone, how-
ever, was not a significant predictor (F1 = 0.003, p = 0.95). Results 
from mixed- effects models are in Supplementary Section S2.

Aopt also differed significantly between deciduous and ever-
green categories (F1 = 11.9, p = 0.001). Categorising the species 
by leaf habit (i.e., deciduous and evergreen) revealed distinct 
patterns. Specifically, deciduous species showed significant sea-
sonal variation (t14 = 2.85, p = 0.012) with higher Aopt during the 
wet period (13.78 ± 1.17 μ mol CO2 m−2 s−1) compared to the dry 
summer period (9.93 ± 0.67 μ mol CO2 m−2 s−1), while evergreens 
did not change over the two seasons.

Although Aopt was comparable between evergreen and de-
ciduous species during the dry period, Aopt of deciduous spe-
cies (13.78 ± 1.17 μ mol CO2 m−2 s−1) was higher (t16 = 4.53, 
p < 0.001) than that of evergreen species (7.56 ± 0.72 μ mol 
CO2 m−2 s−1) during the wet period. Evergreen species further 
showed two distinct responses that depended on their typical 
topographic position. For three evergreen species, character-
istic of wet valleys, Aopt did not differ seasonally between dry 
(6.45 ± 0.81 μ mol CO2 m−2 s−1) and wet periods (6.01 ± 1.1 μ mol 
CO2 m−2 s−1). In contrast, three slope- affiliated evergreens dif-
fered seasonally significantly with higher Aopt during the dry 
period (12.36 ± 0.47 μ mol CO2 m−2 s−1) compared to the wet 
(8.95 ± 0.74 μ mol CO2 m−2 s−1).

Leaf- level PAR data didn't explain Aopt variation (p = 0.49). 
Surface soil moisture significantly influenced Aopt (F2 = 11.15, 
p = 0.0046) without seasonal effects, partially explaining Aopt 
differences among species. The three evergreen species with 
seasonal differences are often associated with drier sites and are 
found on the hill slopes. In contrast, hilltop- associated decidu-
ous species showed higher Aopt during the wet period. Overall, 
deciduous species and three dry- affinity evergreen species on 
the slopes showed significant and contrasting seasonal differ-
ences in Aopt.

3.3   |   Differences in Stomatal Conductance at 
Thermal Optimum

The response of stomatal conductance to temperature var-
ied across species (Figure 3). At Topt, gs differed across species 
(F8 = 3.9, p = 0.027) but not between the dry and wet periods, 
indicating distinct species responses. Deciduous hilltop species 
showed lower gs during the dry period, indicating that these spe-
cies regulate stomatal water losses during the dry period. The gs 
response of three valley- associated evergreen species did not dif-
fer seasonally. For slope- associated evergreen species, the gs re-
sponse was mixed. Specifically, while Tetrapilus dioicus showed 
no seasonal difference, the other species (Psydrax dicoccos and 
Memecylon umbellatum) showed higher gs during the dry period 
(particularly clear in Psydrax dicoccos).

4   |   Discussion

We conducted in situ measurements of seasonal differences in 
photosynthetic rates at thermal optimum, Aopt and gs at Topt 
among co- occurring tropical forest tree species in the Western 
Ghats, India, to characterise seasonal plasticity in photosyn-
thetic rates. Deciduous species consistently showed higher Aopt 
in the wet period driven by higher stomatal conductance rates 
when water was abundant. In contrast, seasonal changes in Aopt 
and gs for the evergreen species examined were contingent on 
topographic position. In contrast to what was seen in the de-
ciduous species, the evergreen species from the hill slopes had 
higher Aopt in the dry summer period. The evergreen species 
from the valley that did not experience water limitations even 
in the dry season did not show any seasonal changes in Aopt and 
gs. Our results demonstrate complex effects of seasonal climate 
variability in water availability, microclimate conditions, pheno-
logical habits and thermal acclimation of photosynthesis.

4.1   |   Topographic Position Influence on 
Photosynthetic Seasonality

Aopt of trees from the three habitats probed, hilltops, slopes 
and valley areas, differed distinctly (Figure  4). Aopt variation 
across topography was similar to studies in the tropics (Harris 
and Medina 2013) and temperate sites (Tange 1996). Along the 
slope, surface water availability varies, especially during the dry 
season. Surface water availability was lowest at the hilltop, in-
termediate on the hill slope and highest in the valley areas. Our 
results from surface soil moisture measurement revealed that 
hilltop soils are exposed to less variable water levels between 
the two periods, while water in soils on slopes, as well as valley 
areas, increases significantly during the wet period. Although 
surface soil moisture showed a significant effect on Aopt, the 
relationship did not show the effect of seasons. This indicates 
diverse rooting and seasonally different water access depths for 
these species that need to be explored further.

4.2   |   Some Evergreens Photosynthesise Optimally 
During Warm Periods Instead of the Wet Period

We found notable species- wide dry and wet period differences 
in photosynthetic rates at thermal optima among co- occurring 
tree species. Consistent with previous studies, Aopt of decidu-
ous tree species was higher during the wet period, suggesting 
that these species harness water availability during the wet pe-
riods to maximise photosynthesis (Eamus et  al.  1999; Craven 
et  al.  2011). Similarly, seedling studies involving evergreen 
and deciduous species in Panama and Australia have reported 
higher photosynthetic rates during wet periods (Montagu and 
Woo 1999; Craven et al. 2011).

In contrast, evergreen species exhibited two distinct responses. 
Aopt of three evergreen species was the same for dry and wet pe-
riods, similar to findings from studies such as Cai et al. (2009). 
This is not surprising given that these species had the highest 
water availability across topographic classes, even in the dry 
season (Figure 1). However, for three other evergreen species, 
contrary to our expectation, Aopt was higher during the dry 
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8 of 13 Physiologia Plantarum, 2025

period than during the wet period. This behaviour is similar to 
findings from Venezuelan forests, where light- saturated pho-
tosynthetic rates in some evergreens were higher during the 
dry period (Ávila- Lovera et  al.  2019), suspecting deeper roots 
among evergreens compared to deciduous in that site. Contrary 
to the general trend of higher photosynthesis during wet peri-
ods (Mujawamariya et  al.  2023), these evergreen trees thrive 
in warmer, drier conditions. Their responses to limited water 
availability, likely due to access to deeper water sources (Nie 
et al. 2011) or other mechanisms such as thermal acclimation, 
suggest a higher thermal niche optimum.

Modelling studies also show that in some tropical forests with 
high annual rainfall or short dry periods, photosynthetic activity 
(including evergreens) is either less seasonal or peaked during 
drier periods (Uribe et al. 2021). Some seedling studies from India 
and Brazil also reported higher photosynthetic rates during dry 
periods (Ribeiro et  al.  2009; Abhilash and Devakumar  2023). 
Another Amazonian study (Green et al. 2020) using chlorophyll 
fluorescence as a proxy for photosynthesis observed increased 
photosynthesis during drier periods in some of the wettest parts 
of the Amazonian forest, attributing the trends to younger/new 

leaves during this period. Our data, in contrast, do not show 
such linkages, as the seasonal differences and maxima spanned 
leaf age and leaf habit categories. For example, one dry- affinity 
evergreen species, Memecylon umbellatum, had slightly younger 
leaves during the dry period, while the other two dry- affinity 
species had older leaves (Supplementary Figure S4). This varia-
tion suggests that leaf age (phenology) does not fully explain the 
higher dry period photosynthetic rates. Thus, the mechanisms 
involved in the dry period increase in leaf- level photosynthesis 
require further investigation.

Seasonal differences in Aopt among evergreens in our study were 
measured for three species that are commonly found in relatively 
dry areas along the slope (Pascal 1988; Krishnadas et al. 2021). 
These differing topographic associations also likely indicate 
variation in water access strategies and rooting depth among 
these species. Studies have shown that evergreen trees often 
access deeper water layers to maintain photosynthesis through-
out the year (Hasselquist et  al.  2010; Brinkmann et  al.  2019). 
We may speculate that hilltops, often known for shallower soil 
depth, have relatively limited water availability compared to 
slopes and valleys, which would have deeper soil layers (Guha 

FIGURE 4    |    Schematic depicting the distribution of the tree species studied in the Western Ghats, India, and differences in photosynthetic rates 
at thermal optimum (green ordinate) and surface soil moisture content (blue ordinate, in m3/m3) as boxplots. Bars on the top left indicate the relative 
change in tree density, irradiance level and water availability changes from hilltops to valley areas. Codes for the species are as follows: Terminalia 
paniculata (TP), Terminalia chebula (TC), Careya arborea (CA), Psydrax dicoccos (PD), Tetrapilus dioicus (TD), Memecylon umbellatum (MU), Hopea 
ponga (HP), Knema attenuata (KA) and Garcinia cambogioides var. cambogioides (GC).
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and Jain 2020) with higher water availability. Altogether, we add 
evidence from measurements on adult trees, in situ, that some 
evergreen species that are associated with drier microclimates 
achieve higher photosynthetic rates at thermal optima during 
the dry and warm period rather than the wet period.

4.3   |   Stomatal Conductance Seasonal Differences

We found that stomatal conductance responses to temperature 
across species and seasons differ among the co- occurring spe-
cies we studied (Figure 3). One reason could be that individual 
species' performance is affected by different water stress condi-
tions (Schwartz et al. 2022), with seasonal differences in water 
availability in our study serving as a proxy for long- term differ-
ences in water availability. Such variation also occurs within 
microclimates (Chitra- Tarak et  al.  2021; Ding et  al.  2021). 
Topography- based differences in water access and photosyn-
thetic strategy can buffer some species against the effect of water 
scarcity during the summer period (Esteban et al. 2021).

Supporting season and topographic differences in gs response, 
we find a diverse set of temperature responses, as well as sea-
sonal differences among the tree species studied. For all three 
deciduous species, as expected, gs generally declined with tem-
perature, typically reaching higher gs during the wet period com-
pared to the dry period – similar to a study from a seasonally dry 
forest in Amazonia (Vourlitis et al.  2008; Sendall et al.  2009). 
Evergreen species, in contrast, demonstrated more diverse re-
sponses. Firstly, gs response was generally similar between the 
dry and wet periods among evergreen species, while one ever-
green species, Psydrax dicoccos, showed a seasonally distinct 
response and recorded higher gs during the dry period, contrast-
ing with other species studied. While gs of Memecylon umbella-
tum was also higher during the dry period, it was statistically 
indifferent from wet period gs at thermal optimum. Another ev-
ergreen species, Hopea ponga, although seasonally indifferent, 
recorded an increase in gs with temperature, possibly indicating 
a thermal protection mechanism via evaporative cooling (Urban 
et al. 2017). This species also recorded a broad temperature re-
sponse curve (Figure 2A) without a decline in Anet with higher 
temperature and was found in dominant patches in the vicinity, 
possibly indicating a diverse water use and leaf temperature reg-
ulation strategy in this species. It is also interesting to note that 
a different species of Hopea (H. ferrea) measured in a relatively 
drier tropical forest in Thailand (Ishida et al. 2014) recorded a 
significant dry period decline in contrast to our results where 
we find that H. ponga maintained the same photosynthetic rates 
during dry and wet periods.

4.4   |   Leaf Phenology, Light Availability 
and Microclimate Variation

Amazonian studies link leaf phenology to seasonal trends in 
photosynthesis (Wu et al. 2016; Chen et al. 2020). However, our 
data (Supplementary Figure S4) suggest a weak role for phenol-
ogy in explaining photosynthetic differences. Notably, the leaves 
of deciduous trees were younger during the drier summer period 
(Supplementary Figure  S4). While assimilation rates of young 
leaves are typically higher than mature leaves, for example, 

Green et al. (2020), Aopt values of the deciduous species in our 
study were higher during the wet period when the leaves were 
older compared to the dry period, indicating a stronger control 
of water availability rather than leaf age for these species. While 
a study in Panama (Kitajima et al. 1997) reported elevated pho-
tosynthesis, measured as O2 evolution rate, during dry periods 
– attributed to greater light availability in the absence of water 
stress – our findings contrast this pattern. In our study, leaf- level 
PAR, recorded via the external IRGA sensor during measure-
ments, showed no significant relationship with Aopt variation. 
Among the environmental variables tested (light availability 
and surface soil moisture), only surface soil moisture exhibited 
a limited explanatory power for photosynthetic rates at thermal 
optima.

To further test if the varied seasonal differences in Aopt were 
linked to rooting depth, we used an openly available dataset 
for our site to test the difference in midday and predawn leaf 
water potential data (Gloor et al. 2023) and found no effects on 
Aopt. While surface soil moisture measurements provide some 
insights, effective rooting depth variation across species and soil 
moisture along the root depth is necessary to fully understand 
seasonal water access.

4.5   |   Implications for Understanding Drought 
Sensitivity

Our results reveal diverse photosynthetic and water use strat-
egies among co- occurring tree species, influenced by their 
topographic position. Wet- affinity valley evergreens likely ben-
efit from year- round shallow groundwater access, while hilltop 
deciduous species may be more vulnerable to dry period water 
stress. Dry- affinity slope evergreens showed higher dry period 
photosynthetic rates. While all species exhibit stomatal regu-
lation that inherently optimises carbon gain relative to water 
loss (Andriyas et  al.  2021), those with traits that enable more 
effective optimisation under water- limited conditions are likely 
to be more drought tolerant. However, it is important to note 
that drought tolerance may also involve other physiological or 
ecological adaptations beyond stomatal behaviour, especially 
in extreme environments or at the community level (Blonder 
et  al.  2023). Under predicted excess water conditions in the 
Western Ghats (Sarkar and Maity  2022), increased photosyn-
thetic gains may be favoured over water conservation.

Understanding the interplay between water availability, species- 
specific traits and topographic variation is crucial for predicting 
forest responses to climate change. For instance, topography- 
based differences in water access and photosynthetic strategy can 
buffer some species against water scarcity (Esteban et al. 2021; 
Kühnhammer et al. 2023), suggesting drought could affect spe-
cies within a community differently. While seasonal variations 
may not fully replicate future warming conditions, they provide 
insights into species' physiological trait plasticity and heteroge-
neous sensitivity to water stress (Janssen et al. 2020).

Our findings contribute to understanding seasonal drought tol-
erance and resilience mechanisms in co- occurring tropical for-
est adult trees, particularly linked to shallow water tables that 
may provide crucial drought refuges (Costa et al. 2023).
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5   |   Conclusion

Temperature response of photosynthesis measured in  situ on 
adult trees during the dry summer and early post- monsoon wet 
periods in a seasonally dry tropical forest site in the Central 
Western Ghats of India revealed significant interspecific varia-
tions. We observed distinct patterns in CO2 assimilation rates at 
thermal optimum and stomatal conductance among tree species 
found at different positions along the hill slopes. Deciduous spe-
cies exhibit higher photosynthetic rates during the wet period, 
reflecting their characteristic seasonal pattern. In contrast, for 
evergreen species we found two patterns: among valley species, 
photosynthetic rates were the same during the wet and dry pe-
riods, while evergreen species on the slopes unexpectedly had 
higher photosynthetic rates in the drier period compared to the 
wet period, possibly indicating a preference for warmer tem-
peratures. Our results demonstrate that co- occurring tree spe-
cies, including evergreens, exhibit diverse seasonal variations in 
photosynthesis at their thermal optima.
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