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ABSTRACT

Understanding drivers’ visual scanning strategies is critical for

designing safe and effective interfaces for transitions between au-

tomated and manual driving modes in conditionally automated

vehicles. This paper presents a novel application of Markov Chain

analysis to assess how different non-driving related task (NDRT) in-

terfaces influence drivers’ attention allocation and gaze transitions

in SAE Level 3 automated driving. We present findings from a driv-

ing simulator study (N=46) comparing three conditions: baseline

(no NDRT), mobile phone NDRT, and head-up display (HUD) NDRT.

Our analysis combined Markov Chains of drivers’ gaze transition

probabilities with gaze dispersion metrics. Results show that while

HUDs offer advantages over mobile devices, both NDRT conditions

compromise drivers’ attention distribution and gaze transitions to

safety-critical areas. The Markov Chain approach reveals valuable

insights into temporal aspects of attention allocation, informing

the design of more effective in-vehicle interfaces. These findings

have significant implications for HCI in automated vehicles and

may demonstrate the potential of Markov Chain analysis for under-

standing user behaviour in complex, dynamic HCI environments

beyond the automotive context.

CCS CONCEPTS

· Human-centered computing → User studies; Laboratory

experiments; HCI theory, concepts and models.
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1 INTRODUCTION

Introducing vehicle automation technologies in modern vehicles

allows the human driver to drive without constantly engaging in the

driving task. Consequently, drivers are more likely to attend to non-

driving-related tasks [4]. This engagement in non-driving-related

tasksÐor NDRTsÐmay compromise drivers’ situation awareness

[9, 25] and their subsequent capabilities to resume control if a

transition is needed [see 5, 23]. This issue is especially critical

for current vehicle automation technologies with SAE levels 2/3

capabilities [29]. For these levels, drivers must be able to safely

recover control of the driving task if the vehicle cannot deal with

its operational design domain (ODD) limitations.

Recent research in the field of driver state monitoring (DSM)

systems has suggested that better attention management, e.g., ade-

quately splitting drivers’ attentional resources between the driving

task and NDRTs, is important for maintaining situation awareness

[31, 40] and affects take-over performance during safety-critical

scenarios [18, 21, 22, 24, 38]. With that in mind, recent driver state

monitoring systems are focused on supporting safe driving, medi-

ating drivers’ engagement with NDRTs, by using advanced driver

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3726986.3727030
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distraction warnings. In recognition of the safety role they play,

these systems will be required in European vehicle makers1 as part

of the revised General Safety Regulation and are being proposed to

be mandatory in the United States of America2.

Past findings in the literature support the idea that the effec-

tiveness of attention management strategies in automated vehicles

(AVs) may be influenced by the location of the NDRT. For instance,

using a driving simulator study, Gerber et al. [11] have compared

drivers’ frequency of NDRT self-interruptions when engaging in

an NDRT presented in a handheld mobile device, with that of a

head-up display (HUD). The authors’ results suggest that when

using the HUD, drivers are more likely to re-focus their attention

towards the forward roadway and centre of the road, compared

to when using a mobile device. Their results suggest that HUDs

may be a promising solution for NDRT presentation. By presenting

information on the windshield, HUDs may foster better situation

awareness and better attention management as they help direct

the driver’s visual attention to the forward roadway. These results

are supported by [19, 20], who reported that drivers in the same

experiment setup had better reaction times to a takeover task, and

reported lower levels of workload, when engaging with the NDRT

using a HUD, when compared to a mobile phone. Xu et al. [37] have

also demonstrated the value of HUDs as an efficient tool for con-

veying information to the driver in a transition of control scenario,

helping them maintain situation awareness.

Despite the potential contribution of HUDs to driver safety in

automation, such technology is not without its limitations. For in-

stance, studies in aviation [see 35] have demonstrated that flight

pilots using HUDs can suffer from attention tunnelling and im-

paired perception capabilities compared to those using conven-

tional instrument panel interfaces. Similar issues were reported in

the automotive field [28] whereby HUDs may occlude drivers’ view

of relevant information and tunnel drivers’ attention due to the

presentation of continuous salient stimuli. Despite advocating in

favour of using HUDs for AVs, Pečečnik et al. [32] have warned

about the potential increased scenario complexity caused by HUDs,

which may compromise drivers’ visual scanning capabilities.

We argue that the increased visual scenario complexity caused

by NDRTs presented in HUDs can compromise drivers’ abilities to

safely scan the environment. Past studies on this topic [11, 20] have

relied on gaze concentration between the road environment and the

NDRT to assess drivers’ visual attention. While these measures pro-

vide insights into the overall pattern of attention distribution, they

have limited capabilities in explaining safety-related scanning pat-

terns and attention shifts. Attention shifts are relevant in complex

driving scenarios, as they can reveal how quickly and efficiently dri-

vers can re-focus their attention on critical areas of the road when

necessary. Thereby, attention shifts can offer additional insights

into drivers’ scanning behaviour and potential safety implications.

Hence, this study aimed to overcome the limitations of previous

studies highlighted above by assessing drivers’ attention manage-

ment strategies through the observation of their attention shifts

1Revised General Safety Regulation - Regulation (EU) 2019/2144 of the European
Parliament and the Council. https://eur-lex.europa.eu/eli/reg/2019/2144/oj, November
2019. Retrieved: June 2024.
2Stay Aware for Everyone (SAFE) act, https://www.congress.gov/bill/117th-
congress/senate-bill/1406 April 2021. Retrieved: June 2024.

throughout the environment. The Markov Chain approach offers

unique and valuable insights into drivers’ attention management

strategies as it considers the temporal aspects of gaze transitions

[see 12, 34].

Previous studies have successfully depicted drivers’ hazard per-

ception scanning patterns in both manual driving and vehicle au-

tomation, using Markov Chains of gaze transitions between areas

of interest [see 12, 34]. Markov Chains are mathematical models

that describe a sequence of events or states. In these models, the

probability of each event depends only on the state attained in the

previous event. In the context of gaze analysis, Markov Chains can

be used to model the probability of a driver’s gaze transitioning

from one area of interest to another based on their current gaze

location.

Generic visual attention shift and gaze transition between areas

of interest have been used in previous studies to understand drivers’

information processing on complex scenarios, such as lane change

manoeuvres [6, 7, 30, 33]. However, this approach does not provide

contextual information regarding the time and origin of drivers’

transition. Previous studies have demonstrated the value of Markov

Chain analysis in providing insights into drivers’ gaze patterns,

attention shifts and attention allocation between different areas of

interest. These insights can be linked to safety-relevant behaviours

and potential crash incidents [34]. The main advantage of Markov

Chains of gaze transitions as a tool to understand drivers’ attention

management is that it provides context to the drivers’ shifts of

attention, providing not only information about where the attention

is being diverted to but also from where it is being drawn. For

example, studies from Gonçalves et al. [12] have shown that during

automation, drivers were more likely to perform gaze transitions

between two information sources without attending to the road

centre, exposing the driver to risks regarding rear-end collisions.

Markov Chains are commonly used as a tool for developing

forecasting models in different fields, such as stock market pre-

diction [see 14]. In the field of human behaviour, Markov Chains

were successfully introduced in computational models, aiming to

describe and replicate human gaze behaviour [see 1ś3, 34]. More

recent studies were able to use Markov Chains of gaze transitions to

understand drivers’ interactions with AVs in terms of lane-change

manoeuvres [12], situation awareness estimation [31], prediction of

takeover reactions [36], and interactions with in-vehicle interfaces

[13]. However, its application to understanding drivers’ interactions

with non-driving-related tasks is largely unexplored.

In light of the research gap mentioned above, this study em-

ployed an advanced driving simulator to compare gaze patterns in

three different conditions: 1) automated driving without NDRTs

(baseline), 2) NDRT using a mobile phone (mobile), and 3) NDRT

using a HUD. To better understand drivers’ attention management

strategies and potential safety implications, we conducted a post-

hoc analysis of the data, aiming to address the following research

questions: 1) How do drivers’ engagement in NDRTs affect their

attention distribution and gaze transitions between areas of interest

(AoIs)? 2) How does the use of HUD as an HMI for NDRTs influence

drivers’ visual scanning and attention management strategies? Our

approach aimed to extend the application of Markov Chain analysis

to answer these questions.
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Our contribution relies on the exploration of temporal aspects

of drivers’ attention management. This is done by observing the

frequency of drivers’ attention shifts across the environment during

extended automated driving periods through the use of Markov

Chains. While techniques like gaze dispersion and concentration

analysis provide an overall picture of where drivers’ attention is

being focused, our approach using Markov Chain analysis provides

a more nuanced understanding regarding the attention manage-

ment strategies used to achieve such focus. In other words, it allows

us to quantify the probabilities of transitioning between different

areas of interest in drivers’ gaze patterns. Our findings have the

potential to significantly impact future interface design for AVs and

other complex systems where attention management is critical, by

providing empirical evidence on how different interface designs

affect users’ attention allocation and gaze patterns.

Beyond the automotive context, this research contributes to the

broader field of HCI by demonstrating how attention management

can be analysed and understood in complex, multi-task environ-

ments. This work aligns with core HCI principles of designing

interfaces that support optimal user performance and safety, par-

ticularly in scenarios where attention must be divided between

multiple tasks or information sources. The methodology and in-

sights presented here may inform the design of interfaces in other

domains where users must balance attention between a primary

task and secondary activities, such as in aviation, industrial con-

trol rooms, or even everyday multi-tasking scenarios with mobile

devices.

2 METHODOLOGY

We used an existing driving simulator study as an example to show-

case the application and utility of Markov Chain analysis in under-

standing drivers’ attention management strategies in conditionally

AVs with NDRTsÐin particular, insights into the temporal aspects

of drivers’ attention allocation and the potential to inform the fu-

ture design of AVs interfaces. Below, we first describe the simulator

study for context, followed by a description of the Markov Chain

analysis.

2.1 Simulator Study

The dataset underlying the Markov Chain analysis is representative

of other conditionally automated driving simulator studies, includ-

ing a driving simulator with eye-tracking hardware with a range

of defined areas of interest (AoIs), NDRTs (in this case, watching

videos on different display modes: mobile phone vs. head-up display

and baseline) and a driving scenario with automated driving and a

take-over request (TOR).

2.1.1 Experiment Apparatus. The study was conducted using an

Advanced Driving Simulator. It features a real-vehicle cabin with

automatic transmission. The driving simulator is equipped with a

surround-sound system that replicates engine and environmental

noise. Also, a six-degree-of-freedom motion platform provides the

vehicle with movement in three dimensions (see Figure 1). Three

front-view projection screens (later defined as łCentre Screen”, łLeft

Screen”, and łRight Screen”) provide a 180-degree high-resolution

field of view for the driver, LCD monitors are used as the lateral

and rear-view mirrors to simulate side and rear-view images (later

defined as łRight Mirror”, łLeft Mirror”, łRear Mirror”).

Figure 1: Advanced Driving Simulator.

To collect drivers’ eye-movement data during the experiment,

Seeing Machines’ PC-DMS3 (PCDMS) eye-tracking device was em-

ployed. The PCDMS uses a sensor bar installed on the vehicle’s

dashboard above the steering wheel to minimise occlusion. The

sensor bar features an infrared camera embedded in the centre and

a pair of pulsed infrared lights on either side. This setup enables the

PCDMS to monitor drivers’ head and eye movements effectively.

This study focused on the drivers’ eye-gaze dispersion during the

automated drive stage and did not consider the period after the TOR

was issued. Head/eye-gaze tracking data were collectedśat a sample

rate of 46 Hzśfor the automated drive length, which was around

13 minutes. The recorded videos and data are then processed by

Seeing Machines’ proprietary algorithms, which generate detailed

head and eye-movement measurements such as gaze data. The

extracted measurements included a) gaze yaw, b) gaze pitch, and c)

the intersection of drivers’ gaze with different AoIs.

For this study, we defined 10 AoIs (see Figure 2), namely łCentre

Screen”, łLeft Screen”, łRight Screen”, łNavigation”, łRear Mirror”,

łLeft Mirror”, łRight Mirror”, łCentre Console”, łInstrument Panel”

and łUnknown”. The łUnknown” AoI refers to any gaze fixations

that do not fall within the boundaries of the other defined AoIs,

representing moments when the drivers’ gaze is directed towards

areas not captured by the specific AoIs. It is relevant to note that

when the driver’s gaze is located in the łUnknown” AoI, they may

not be attending to important driving-related information, such as

the road ahead (i.e., łCentre Screen” AoI), mirrors, or instrument

panel, which could potentially impact their situation awareness.

To create the driving scenarios for this study, real-world recorded

videos were collected and then played back to simulate automated

driving in the simulator (building on [10, 16]). To record the videos,

a car wasmanually driven along one of the most recognisable routes

in the city, and the ambient driving scene was recorded by cameras

set up on the vehicle. The driver aimed to mimic the performance

of an AV by adhering to speed limits, maintaining passive follow-

ing distances, and employing highly anticipatory lane selections.

Multiple trips were recorded, and three similar but different trips

were selected for the study. Each trip lasted approximately 15 min-

utes and followed the same route, which included inner-city roads

(approximately 5 minutes), a major motorway (approximately 8

minutes), and suburban roads (approximately 2 minutes). A simu-

lated planned TOR was issued at the exit of the motorway in all

three scenarios. All trips were conducted during the same time of

day to ensure similar traffic density.
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Figure 2: Areas of Interest: 1) łCentre Screenž, 2) łLeft Screenž,

3) łRight Screenž, 4) łNavigationž, 5) łRear Mirrorž, 6) łLeft

Mirrorž, 7) łRight Mirrorž, 8) łCentre Consolež, 9) łInstru-

ment Panelž, and łUnknownž.

2.1.2 Participants. The study recruited 49 participants, but only

46 (23 males and 23 females) completed the experiments with full

head/eye-gaze tracking data records. The participants, aged be-

tween 20 and 62 years old, had a mean age of 32.3 years (stan-

dard deviation of 8.7 years). Participants were recruited from local

communities through social media posts, university website ad-

vertisements, and snowball sampling. Inclusion criteria required

participants to be over 18 years old, hold a valid driver’s licence,

and be able to attend a 2-hour study session. Exclusion criteria

included medical conditions affecting driving, history of epilepsy

or motion sickness, pre-existing neck or back injuries, migraine

history, pregnancy, and COVID-19 risk factors. All participants

were screened for these criteria before being included in the study.

2.1.3 Study Design. The study employed a within-subject design

in which all participants underwent three drives in an SAE Level 3

AV [29] simulator. Each drive, which was counterbalanced across

the scenarios, included a planned TOR when exiting the highway

on the same route and one of three counter-balanced NDRT engage-

ment conditions: watching a video on a mobile phone, watching a

video on a head-up display, and a baseline condition with no video.

Drivers were allowed to position the mobile phone at any position

they felt comfortableÐeven outside of their field of view from the

driving scene. The HUD condition simulated a head-up display by

overlaying a 61.5% transparent image (76cm x 43cm) onto the front

projection screen (partially occluding the driving scene), positioned

approximately 3.75 meters from the driver’s eye. Figure 3 displays

the mobile and HUD conditions. The rationale behind the HUD

implementation is based on the possibility for drivers to engage in

NDRTs while keeping relative vigilance of the driving environment.

To mirror real-world driving scenarios, participants were given the

freedom to select their preferred TV show, encouraging voluntary

and natural engagement with the content. The video began playing

as soon as the automation was engaged and remained displayed

throughout the entire automated phase. Participants were told to

engage with the video as they normally would during an automated

drive while remaining aware that they might need to take over con-

trol at some point. No instruction was provided regarding how or

when drivers should interact with the NDRT. Therefore, drivers

were free to mediate their attention split between the NDRT and

the road environment at their own discretion. Lastly, a planned

TOR was issued towards the end of the driving route when the

vehicle exited the motorway.

(a) (b)

Figure 3: NDRT displaymodes: (a) Mobile condition, showing

participant watching video on their handheld device, and

(b) HUD condition, where the HUD to watch the video is

projected with 61.75% transparency on the centre screen.

2.1.4 Experiment Procedure. Participants arrived at the simulator,

and after a detailed introduction, they signed a consent form. Par-

ticipants were informed that their participation was voluntary, and

the collected data would remain anonymous and be reported in an

aggregate manner only. They were introduced to the experiment

procedure, including the capabilities of the simulated AV, the NDRT,

the TOR, and the "shadow" driving. łShadow” driving refers to a

technique where participants manually replicate the car’s longitudi-

nal and lateral movements as presented by the recorded videos. This

involves physically manipulating the steering wheel and pedals in

real-time as if they were actually driving the car, even though they

are not in control of the vehicle. The TOR was presented through

both auditory and visual alerts, requiring participants to take over

control of the vehicle (i.e., shadow drive) when prompted. Each

participant also chose two episodes from their favourite TV show

to watch during two of their automated drives, which served as

the NDRT. The selected TV shows varied across participantsśas

they were able to choose what they liked. This approach aimed to

ensure that the NDRTs were engaging and representative of the

participants’ typical viewing preferences, thus providing a realistic

level of cognitive engagement during the automated drives.

Following the preparation, all participants completed an approx-

imately five-minute familiarisation drive in the simulator. During

this familiarisation drive, they experienced the process of auto-

mated driving, where they were required to engage in the NDRT

(watching the TV show). Participants also experienced the TOR

event, which prompted them to disengage from the NDRT and

prepare to take over control of the vehicle. As the driving scenarios

were recorded videos, participants did not take over control of the

vehicle but were instead asked to shadow drive. They were advised

to shadow drive until they were comfortable with the concept.

After agreeing to proceed with the study, participants took part

in three distinct drives in a randomised and counterbalanced order,

each including a TOR event. The eye-tracking data collected and

analysed in this study focused on the automated driving period

before the TOR event. As soon as the TOR event was initiated,

participants were directed to perform "shadow" driving for the
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remaining two minutes until the end of the scenario. This ensured

that participants maintained their attention on the road during the

transition of control, even though theywere not actually controlling

the vehicle. All participants were exposed to identical conditions,

allowing for a direct comparison between the different scenarios

[11], for further details, please see [19]. Each drive was followed

by a motion sickness questionnaire to assess their suitability to

continue the experiment.

The entire experiment, including interruptions to reset and brief

breaks in between, took about 1 hour. After completing the experi-

ment, each participant received a $70 gift voucher as compensation

for their participation. The study was conducted in accordance

with the national ethics code where the study took place and ap-

proved by the university’s ethics review board (approval number

1700000425).

2.2 Markov Chain Analysis

Our comprehensive analysis of driver gaze behaviour under three

distinct conditionsÐBaseline, Mobile, and HUDÐused a multifac-

eted approach to examine how each interface affects attention

management and gaze scanning strategies during the automated

drive. Prior to the analysis, the collected gaze data were filtered and

validated to ensure that the łUnknown” AoI represented gaze fixa-

tions outside the predefined AoIs and did not include any missing

data. The primary method employed in this analysis was Markov

Chain analysis, which was used to model and understand drivers’

gaze transitions between different AoIs.

Markov Chain analysis is a mathematical method for modelling

sequences of events where the probability of each event depends

only on the state of the previous event [26]. It involves a finite

set of possible states within a system and the transitions between

these states (see Figure 4). The likelihood of moving from one

state to another is represented by transition probabilities, typically

organised in a matrix. Markov Chain analysis is used to analyse

systems that transition between discrete states over time, allowing

for predictions of future states based on current conditions. The

Markov Chain transition probability is given in Equation (1).

Figure 4: Three-state Markov Chain model with transition

probabilities.

𝑃 (𝑋𝑛+1 = 𝑗 |𝑋𝑛 = 𝑖) = 𝑝𝑖 𝑗 (1)

The Markov Chain analysis generated transition matrices (Equa-

tion (2)) for each participant, containing the probabilities of tran-

sitions between AoIs. These matrices were used to compare the

gaze transition probabilities across conditions. By applying Markov

Chain analysis to drivers’ gaze transitions, we aimed to gain in-

sights into their attention allocation and scanning patterns under

different NDRT conditions. To complement our analysis, Markov

Chains (i.e. gaze transition matrices) were used in parallel with

drivers’ vertical/horizontal gaze dispersion.

𝑃 =

©­­­­
«

𝑝11 𝑝12 · · · 𝑝1𝑛
𝑝21 𝑝22 · · · 𝑝2𝑛
...

...
. . .

...

𝑝𝑛1 𝑝𝑛2 · · · 𝑝𝑛𝑛

ª®®®®
¬

(2)

Fixations were calculated as a point of permanence of drivers’

gaze exceeding a minimum of 150 ms under a distance threshold

of a 1-degree radius. The technique and thresholds for fixation

detection are in line with standard protocols used in the field [30]

and consistent with other studies in the field of gaze behaviour

in automated driving [12, 22]. Gaze dispersion was calculated as

the standard deviation of drivers’ gaze positions throughout their

automated driving periods. To complement and further understand

the fixations and gaze dispersion data, we employed scatter and

kernel density estimate (KDE) plots of gaze points distributed across

the different AoIs. KDE plots provided a graphical representation of

fixation densities across the vehicle’s dashboard and the road ahead,

revealing distinct visual attention patterns for each condition.

Diverse statistical tests were used to compare differences in

drivers’ gaze behaviour between the experimental conditions.

Kolmogorov-Smirnov tests were used to assess the dataset’s normal-

ity. For cases where normality was assumed, parametric statistical

tests were conducted using ANOVA tests. Since the gaze transition

probabilities generated by the Markov Chains failed the normality

tests, non-parametric Wilcoxon’s tests were used for statistical eval-

uation. An alpha value of 0.05 (95%) was used for all tests to assess

the statistical significance. Individual comparisons between sce-

nario conditions were evaluated by Bonferroni post-hoc tests. For

the cases where non-parametric tests were applied, sample-paired

Mann-Whitney U tests were used as post-hoc tests.

3 RESULTS

From an HCI standpoint, these results highlight how different in-

terface designs (mobile, HUD, and baseline) significantly impact

drivers’ attention allocation and strategies. The Markov Chain anal-

ysis reveals not just where users look, but how they transition

between different areas of interest, providing valuable insights

into the cognitive processes underlying their interactions with the

NDRTs while the automated driving system is engaged.

3.1 Gaze Dispersion

Two 3X1 repeated measures one-way ANOVAs were conducted to

measure the effect of the experimental conditions (baseline, HUD,

mobile) on drivers’ vertical and horizontal gaze dispersion. The

ANOVA results (see Figure 5) showed a significant effect of the ex-

perimental conditions on drivers’ vertical gaze dispersion [F (2, 137)

= 127.21, p > 0.001, 𝜂𝑝2 = 0.635]. Post-hoc Bonferroni tests revealed

that drivers in the mobile condition presented a significantly higher

average vertical gaze dispersion (M = 10.913°, SD 3.070°) than the
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baseline condition (M = 6.148°, SD= 1.765°), which was significantly

higher than in the HUD condition (M=3.912°, SD=1.213°).
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Figure 5: Average vertical (left) and horizontal (right) gaze

dispersion for the three conditions.

The ANOVA results on drivers’ horizontal gaze dispersion (see

Figure 5) showed a significant effect of experimental conditions [F

(2, 137) = 31.943, p > 0.001, 𝜂𝑝2 = 0.321], where Bonferroni post-

hoc tests showed that the baseline condition presented the highest

gaze dispersion (M = 18.550°, SD=5.376°), followed by the mobile

condition (M=15.136°, SD=6.170°), with the lowest values seen for

the HUD (M=9.628°, SD=4.585°).

Qualitative observation of the KDE gaze plots (see Figure 6)

supports the ANOVA results, showing that drivers’ gaze seems

to be evenly distributed across the driving environment in the

baseline condition while constrained to the centre screen for the

HUD condition. Regarding the mobile condition, drivers’ gaze did

not deviate too much on the horizontal plane but presented a high

vertical dispersion, which can be explained by the interaction with

their handheld device.

Subsequent video analysis showed that the majority of drivers

positioned their phones in locations that diverted their gaze from

the road: approximately 71% placed this near the steering wheel,

while 28% placed it on their lap (see Figure 7). Less than 1% of

drivers placed the mobile in other locations, such as the instrument

panel or below the centre console. In all of the above cases, the

mobile device location would be classified inside the łUnknown”

AoI, according to the PCDMS world model.

3.2 Gaze Fixations Transitions

To better represent the distribution of gaze transition probabilities

for each condition, aggregated transition matrices (see Figure 8)

provided average values for each transition probability between

all participants. To analyse the differences between the transition

probabilities, multiple Wilcoxon tests were performed. These mea-

sured the effect of the experimental conditions on the probability

for each individual gaze fixation transition between AoIs to occur

over the course of the automated drive. The results of the Wilcoxon

tests are reported in Table 1. For better visualisation, the statistical

tests were restricted to gaze transitions with an average probability

of occurrence above 5% (0.05). Also, only the statistically significant

test results are reported in Table 1.

Results showed that drivers generally have a lower probability of

transiting their gaze towards the łCentre Screen” AoI in the mobile

condition. For instance, drivers in the mobile condition presented

an average 37.9% chance of shifting their gaze back to the centre

screen when looking towards the navigation system, while the

baseline and HUD conditions presented a 69.8% and 54.4% chance,

respectively. Similar differences were found in transitions from the

left screen, rear mirror, right mirror and right screen towards the

centre. Drivers in the mobile condition were also more likely to

perform gaze transitions towards the łUnknown” AoI. For instance,

drivers in this condition presented a 66% chance of transitioning

their gaze towards łUnknown” from the centre screen, while the

baseline and HUD conditions presented a 27.5% and 47.2% chance,

respectively. Also, drivers in the mobile condition presented a 37.8%

chance of shifting their gaze towards łUnknown”, while baseline

and HUD conditions presented a 20% and 9.5% chance, respectively.

As a consequence, the probability of gaze transitions from the

centre screen towards the other AoIs in the mobile condition was

significantly lower when compared to the other two conditions.

Drivers in HUD and baseline conditions had similar proportions

of gaze transitions towards the centre screen. Examples can be

found on gaze shifts from the navigation system (baseline= 69.8%,

HUD= 54.5%), łUnknown” (baseline= 81.9%, HUD= 88.1%), instru-

ments panel (baseline= 68.7%, HUD= 60.3%), left screen (baseline=

66.2%, HUD= 66.3%), rear mirror (baseline= 65.6%, HUD= 58.8%),

right mirror (baseline= 64.4%, HUD= 55.3%), and right screen (base-

line= 73.1%, HUD= 60.4%) AoIs. However, drivers in the HUD con-

dition were more likely to transition their gaze from the łCentre

Screen” to the łUnknown” AoI (baseline= 27.5%, HUD= 47.2%). Dri-

vers on the baseline had a significantly higher proportion of gaze

fixation transitions when it comes to gazes from the centre screen

to either the left screen (baseline= 16.1%, HUD= 8.9%) or the right

screen (baseline= 18.6%, HUD= 9.7%), and a non-significant trend of

slightly bigger probability of gaze transition from the centre screen

to both the left mirror (baseline= 11.4%, HUD= 8.5%) and the right

mirror (baseline= 9.4%, HUD= 7.5%).

4 DISCUSSION

This study assessed drivers’ visual attention in an SAE level 3

vehicle automation environment under three different conditions:

1) baseline (no NDRT), 2) a HUD NDRT, and 3) a mobile NDRT. The

gaze dispersion analysis showed that both conditions containing

NDRTs reduced drivers’ lateral scanning and functional field of view.

This can be explained by the fact that drivers might be focusing

on the NDRT itself instead of scanning the environment. When

comparing the two NDRT conditions, results showed that drivers in

the mobile condition were more likely to have a higher dispersion of

their vertical gaze. The KDE gaze plots and video analysis confirmed

that most of this vertical dispersion was based on gaze to the bottom

area of their field of view (e.g., close to the steering wheel or their

laps; see Figure 7) and away from the road. Overall, analysis of

the gaze metrics, taking into account the position of the HUD and

the mobile device, confirmed that participants actively engaged in

the NRDTs during the automation period. The HUD condition, by

presenting the NDRT information close to the driver’s line of sight,

allowed drivers tomaintain their gaze close to the road environment

compared to the mobile conditions. This finding suggests that the

HUD condition can partially compensate for the detriments of the

NDRT, by reducing the need for large gaze deviations away from

the driving context, in line with results from Li et al. [20].

The Markov Chain analysis revealed that drivers in the mobile

condition had a higher probability of shifting their gaze to the
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Figure 6: KDE gaze plots, baseline (top left), HUD (top right), and mobile (bottom).

łUnknown” AoI. This finding, combined with the location of the

mobile device far away from the driving environment (see Figure

7), indicates that drivers frequently shifted their attention to their

phones. It is important to note that, as part of the study design,

drivers were allowed to place their phones in any position they

felt comfortable. As a result, participants in the mobile condition

were less likely to return their gaze towards the łCentre Screen”

after fixating on any AoI not related to the road environment (e.g.

łUnknown” or łCentre Console”) when compared to the other two

conditions.

The results suggest that handheld mobile NDRT increases vari-

ability in drivers’ attention shifts, potentially compromising the

occurrence of relevant gaze transitions for hazard perception. This

detriment in drivers’ gaze behaviour may affect their capabilities to

detect safety-relevant events, exposing them to potential automa-

tion failures and reducing their take-over readiness due to reduced

situation awareness [8, 22, 39]. This result is similar to findings

on visual distraction caused by mobile phones in manual driving

[15, 17, 27]. This research contributes to this field by suggesting that

drivers’ attention management is compromised by mobile devices,

even in an automated drive scenario, where they are not manually

engaging with the driving task.

The Markov Chain analysis has also shown that drivers in the

HUD condition had a similar probability of shifting their gaze to-

wards the łCentre Screen” after fixating on other AoIs compared

to the baseline condition. This finding, together with the KDE gaze
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Figure 7: Examples of smartphone positioning by participants in the mobile condition: Near the steering wheel (top) and on

their lap (bottom).

Table 1: Wilcoxon Tests

plots and ANOVA results on gaze dispersion, suggests that drivers’

gaze fixations to the forward roadway were more prominent in the

HUD condition, surpassing even the baseline. Generally, a higher

percentage of gaze towards the centre area is associated with higher

situation awareness [39]. However, the Markov Chain analysis also

showed that drivers in the HUD condition were less likely to per-

form eventual checks on driver-safety-relevant areas of interest,

such as the side mirrors or their side lanes, compared to the baseline

condition. Furthermore, the Markov Chain analysis showed that

drivers in the HUD condition have a higher probability of deviating

their gaze from the centre region to the łUnknown” areas. This

observation suggests that, despite focusing their gaze towards the

road environmentÐgenerally associated with improved situation

awarenessÐdrivers in the HUD condition had compromised scan-

ning and hazard perception abilities. The contextual information

about the location of their gaze deviationÐnot to driving-related

areas, but rather away from the road environmentÐsuggests a po-

tential disassociation between visual focus and cognitive attention.

This result aligns with studies from Schnebelen et al. [31], which

also used Markov Chains to infer that attentive drivers in auto-

mated driving scenarios are characterised by their attention to the
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Figure 8: Aggregated transition matrices: average gaze transition probability for all participants per condition, baseline (top),

HUD (middle) and mobile (bottom).

road centre and by the likelihood to deviate their gaze to driving-

relevant areas of interest, such as side mirrors or the speedometer.

Thus, the contextual information provided by the Markov Chain

analysis offers a more nuanced tool for inferring the driver state in

AVs, extending beyond traditional gaze concentration metrics.

Our findings both align with and extend previous research on

NDRTs in AV studies. Consistent with Gerber et al. [11] and Li et

al. [19], we found that HUDs increase the probability for drivers to

gaze towards the road centre compared to mobile devices. However,

our Markov Chain analysis reveals that HUDsmay still compromise

their hazard perception routine, a nuance not captured in previous

studies, as in the example provided above. This may extend Li et

al.’s [20] findings on take-over performance, suggesting limitations

of HUDs. Our approach quantifies the increased variability in atten-

tion shifts with mobile devices, providing a more comprehensive

view of attention allocation over time. These insights demonstrate

the value of Markov Chain analysis in understanding the complexi-

ties of driver attention management in AVs, offering a more detailed

picture than traditional gaze metrics used in previous studies.

The results further suggest that although the HUD condition

seems to provide benefits over a handheld mobile device by keeping

drivers’ gaze closer to the forward roadway, this solution still com-

promises drivers’ attention management by reducing their likeli-

hood of checking potentially safety-relevant areas. The HUD condi-

tion may lead to a narrower attentional focus on the NDRT, limiting

drivers’ ability to scan the driving environment effectively. One
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should note that the use of HUD displays may also increase the

chances for drivers to suffer from change blindness or attention tun-

nelling [35], suggesting that even though drivers might be looking

ahead, their attention might not be focused on the road.

The insights gained from theMarkov Chain analysis complement

and extend the findings from the other analyses. These insights

provide a more comprehensive understanding of how NDRTs affect

drivers’ attention management in AVs. By considering the tempo-

ral aspects of gaze transitions, the Markov Chain approach offers

unique and valuable insights into drivers’ attention management

strategies [see 12, 34]. For example, as can be seen in the finding

described above, the Markov Chain analysis revealed that drivers

engaging in NDRTs are less likely to perform hazard perception-

related scans (as suggested by [34]) on the environment. The identi-

fication of proportions and probabilities of gaze transitions between

different areas of interest provides a nuanced and interpretable un-

derstanding of drivers’ gaze behaviour and how drivers allocate

their attention over time. This interpretability is particularly valu-

able in the context of studying drivers’ attention management, as

it can help identify specific patterns and strategies that may not

be easily discernible using other methods (e.g. gaze dispersion and

concentration analysis). These insights about patterns may inform

the future design of safer and more effective in-vehicle interfaces

and NDRTs. For example, the identified gaze transition patterns

could guide the placement of critical information on the HUD to

minimise disruptions to drivers’ attention and ensure that relevant

information is easily accessible when needed. HUDs will need addi-

tional HMI design elements focused on managing driver attention

with the aim of intermittently interrupting NDRT attention and

dispersing their gaze, including other potentially safety-relevant

AoIs. Thus, this approach underscores the importance of consider-

ing attention management when developing in-vehicle interfaces

for conditionally AVs and can inform the design of safer and more

effective NDRTs.

5 CONCLUSION AND FUTUREWORK

The results presented above showed increased gaze dispersion for

the mobile condition and decreased dispersion for the HUD con-

dition compared to baseline. Markov Chain analysis revealed that

drivers using mobile devices were less likely to return their gaze

to the road centre. While the HUD condition maintained similar

probabilities of on-road glances to baseline, it significantly reduced

the likelihood of safety-related visual checks, such as from the road

centre to side mirrors and lanes.

Markov Chain analysis of gaze transitions offers a promising ap-

proach to understanding drivers’ attention allocation and informing

the design of safer in-vehicle interfaces. This approach provides a

nuanced and interpretable understanding of drivers’ gaze behaviour

and attention management strategies by identifying the propor-

tions and probabilities of gaze transitions between different areas

of interest.

The results of the analysis support the potential benefits of HUD

devices over handheld mobile phones for NDRT presentation. Dri-

vers using HUDs demonstrated a higher probability of maintaining

their gaze closer to the road centre, potentially reducing the risk of

missing critical events. This suggests that handheld mobile devices

may present road safety issues even in vehicle conditional automa-

tion scenarios. However, our research also highlights that HUDs,

despite their benefits, may still impair drivers’ ability to scan the

environment efficiently.

Our findings emphasise the importance of carefully designing

in-vehicle interfaces and NDRT interactions to minimise potential

negative impacts on drivers’ attention allocation and hazard percep-

tion capabilities. The insights gained from applying Markov Chain

analysis to drivers’ gaze transitions may inform the development of

adaptive, user-centred, and context-aware interfaces that promote

safer and more effective human-vehicle interaction in the era of

automated driving. Furthermore, they highlight the need for fur-

ther research to test, identify, and validate novel optimal solutions

for drivers’ interactions with NDRTs, minimising their detrimental

effects on drivers’ readiness in AVs.

In relation to the optimal solutions, we provide the following

considerations: 1) The findings of this study raise the question of

where the NDRTs should be positioned to minimise their potential

safety impact. Therefore, the position and size (and potentially

depth) of displays presenting NDRTs need to be optimised with

regard to allowing users to seamlessly switch between the dual-

task of a) monitoring the AV and b) the NDRT. 2) Furthermore, our

findings suggest that additional HMI design strategies are needed

for HUDs, which need to better manage driver attention, dispersing

their gaze more towards potentially safety-relevant AoIs during

automation. Therefore, 3) The integration of driver monitoring

systems (DMS) with HMIs may help keep drivers safe and guide

their interactions with NDRTs. For instance, the DMS could inform

HMI interventions based on the specific placement of the NDRT

and adapt NDRT permissions based on the driver’s gaze patterns,

such as reducing access to NDRTs if the driver’s gaze is excessively

focused on the display.

DMS can play a crucial role in mediating safe NDRT engage-

ment by monitoring drivers’ gaze patterns and providing real-time

feedback or interventions when necessary. For example, if the sys-

tem detects that a driver does not exhibit gaze transition patterns

associated with fall-back readiness, it could prompt the driver to

redirect their attention to the driving environment through visual

or auditory alerts. This could help prevent prolonged disengage-

ment from the road environment and maintain a minimum level

of situation awareness. Furthermore, the measurements provided

by the DMS may be utilised in HMI design strategies to support

interventions based on the specific placement of the NDRT. For

handheld mobile devices, where the driver can face away from

the DMS cameras, the DMS could be more proactive in reminding

drivers to keep their devices in a position that minimises the need

for excessive downward gaze shifts (as shown by participants in

our study), reducing the time spent looking away from the road. In

the case of HUDs, the DMS may monitor drivers’ gaze and nudge

them to periodically scan critical areas of the driving environment

to avoid excessive focus on the NDRT.

It is relevant to consider the potential generalisability of our

findings to real-world driving scenarios and different levels of ve-

hicle automation. While our study was conducted in a controlled

simulator environment focusing on SAE Level 3 automation, the in-

sights gained regarding the impact of NDRT placement on drivers’

attention management and gaze patterns may have implications
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for other levels of automation and real-world driving situations.

As SAE Level 3 vehicles become more prevalent, the importance

of understanding drivers’ interactions with NDRTs will likely in-

crease. Although the specific nature of NDRTs and the required

level of driver engagement may differ across automation levels, the

general principles of attention management and the potential for

distraction remain relevant. Furthermore, it is relevant to note that

the effects of NDRTs on drivers’ gaze behaviour may depend on

the specific type of NDRT. Our study focused solely on the use of

video as the NDRT, suggesting that different types of tasks may

influence the observed effects. Future studies are needed to investi-

gate how different types of NDRTs beyond video watching, such

as reading, typing, or engaging in conversation, may impact dri-

vers’ gaze behaviour and attention management strategies. Future

research should investigate the extent to which our findings apply

to different automation levels and explore how NDRT interactions

may evolve as vehicle automation advances.

As a potential limitation, this study focused on understanding

drivers’ gaze patterns in a simulated driving environment using real-

world recorded videos. The study lacked any evaluation of drivers’

hazard detection capabilities or safety-critical take-over scenarios to

measure drivers’ readiness to take over. The assumed implications

on safety are based on theoretical considerations grounded in previ-

ous studies that have assessed the effect of drivers’ gaze behaviour

on the forward roadway. Future studies are needed to systemat-

ically assess whether drivers can efficiently detect safety-critical

elements in more realistic driving environments when engaged

with NDRTs presented in HUDs to further validate these findings

and their potential impact on road safety. This additional research

may help to more comprehensively understand the relationship

between NDRT engagement, gaze behaviour, and drivers’ ability to

respond to hazards in AVs.

Drivers were allowed to position their mobile NDRT in any de-

sired location. Future studies could explore more accurate methods

in classifying the "Unknown" areas, which could help reduce false

positives when an NDRT is allowed. By better understanding where

drivers are looking when their gaze falls outside the predefined

AoIs, researchers and system designers can develop more precise

attention monitoring systems and adapt NDRT permissions ac-

cordingly. Therefore, these findings may inform the future design

of NDRT placement, ensuring that NDRTs are positioned within

a DMS gaze detectable zone to enable continuous monitoring of

drivers’ visual attention status.

Lastly, it is important to acknowledge some limitations of our

study and the Markov Chain approach. This approach assumes that

gaze transitions do not rely on memory from other information

other than the current state of the gaze location. In addition, it

should be acknowledged that it may be reductionist for a precise

picture of drivers’ overall gaze behaviour. Also, the Markov Chain

model does not take into account how salient elements in the dy-

namic road environment may influence drivers’ gaze shifts, drawing

conclusions only on the gaze transitions between static AoIs. Future

work could address these limitations by developing more advanced

models that incorporate memory effects and environmental factors.

Despite the limitations of this study, it provides evidence of

the value of Markov Chain models for gaze fixation transitions

as a tool for understanding drivers’ attention management. As

vehicle automation continues to advance, we need to develop a

comprehensive understanding of how drivers’ attention is affected

by various interface designs and display characteristics (e.g., size,

brightness, contrast, transparency) and establish guidelines for safe

interactions with NDRTs.

In conclusion, this research opens up new avenues for investiga-

tion in the field of automotive user interfaces and makes significant

contributions to the broader HCI. The insights gained from Markov

Chain analysisÐcomplementing traditional gaze concentration and

dispersion metricsÐmay inform how new technologies change dri-

vers’ scanning strategies and provide a more comprehensive link

to their hazard perception capabilities. The use of Markov Chains

in studying NDRT engagement in AVs provides valuable lessons

for HCI practitioners working on systems that require users to

maintain situation awareness while engaging with technology.

Utimately, the goal is to design interfaces that support and min-

imise disruptions to drivers’ attention management and maintain

their situational awareness. The Markov Chain approach provides

valuable insights to inform the design of in-vehicle interfaces for

NDRTs that are better aligned with drivers’ attention management

strategies in AVs, contributing to the safe introduction of L3 auto-

mated driving. Furthermore, these findings may contribute to the

design of adaptive and context-aware interfaces that promote safer

and more effective interactions between users and complex tech-

nological environments, extending beyond automotive contexts to

various domains.

This approach aligns with current trends in HCI research, par-

ticularly the growing interest in adaptive and context-aware inter-

faces. By providing a detailed understanding of how users allocate

attention across different interface elements, our work lays the

foundation for developing intelligent systems that can dynami-

cally adjust based on user behaviour. This resonates with the HCI

community’s increasing focus on personalised and responsive user

experiences in complex technological environments.

Our data-driven approach showcases how such methods may

inform the development of more intuitive and responsive user in-

terfaces in automotive contexts and across various domains of HCI.

This study represents a significant step in bridging the gap between

automotive interface design and general HCI principles, offering a

methodology and insights that can be leveraged in diverse fields.

Furthermore, future research could build upon our findings by

investigating the relationship between gaze behaviour during au-

tomated driving and subsequent driving performance after a TOR.

While our study focused on attention allocation and gaze patterns

during the automated driving phase, examining how these pat-

terns correlate with drivers’ ability to safely resume control could

provide valuable insights. Such research could involve measuring

reaction times, lane-keeping performance, and collision avoidance

capabilities immediately following a TOR. This approach would

help establish a more comprehensive understanding of how dif-

ferent NDRTs and their associated gaze behaviours impact overall

driving safety in conditionally AVs.

Beyond automotive applications, our approach could inform

HCI design in other attention-critical domains. For example, in

aviation cockpits, industrial control rooms, and healthcare settings,

the Markov Chain analysis could optimise information display lay-

outs and support better attention management. Even in everyday
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technology, these insights could improve interface designs for multi-

tasking across devices and applications. These potential applica-

tions demonstrate how our research contributes to the broader field

of HCI, offering methodologies to enhance user interface design in

complex, attention-demanding environments

By sharing these findings, we aim to support the broader HCI

community’s ongoing efforts to develop user-centred, safe, and

efficient interfaces for increasingly complex technological systems.
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