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AbstractÐThe rise of 5G and IoT has shifted secure com-
munication from centralized and homogeneous to a landscape
of heterogeneous mobile devices constantly travelling between
myriad networks. In such environments, it is desirable for
devices to securely extend their connection from one network
to another, often referred to as a handover. In this work
we introduce the first cryptographic formalisation of secure
handover schemes. We leverage our formalisation to propose
path privacy, a novel security property for handovers that has
hitherto remained unexplored. We further develop a syntax for
secure handovers, and identify security properties appropriate
for secure handover schemes. Finally, we introduce a generic
handover scheme that captures all the strong notions of security
we have identified, combining our novel path privacy concept
with other security properties characteristic to existing handover
schemes, demonstrating the robustness and versatility of our
framework.

Index TermsÐSecure Handover, Path Privacy, Formalisation,
Provable Security, Protocol Analysis.

I. INTRODUCTION

Secure handover protocols enable a secure communication

session, previously established with a given communication

partner, to securely transition to a second communication

partner without loss of functionality or security. The topic

of securely handling communication sessions during their

transition between zones has garnered much attention recently,

notably owing to the prevalence of 5G communication within

current mobile networks: currently, the 3GPP/5G handover

protocol [1] remains the sole widespread implementation of

a secure handover protocol. Briefly, a 5G handover involves

the transfer of an existing connection from one node (or base

station within the 5G architecture) to another as a result of a

user’s device moving between different zones [1].

However, there exists another example of an (insecure)

handover scheme that is commonly adopted across the globe:

Controller-Pilot Data Link Communications (CPDLC) is a

protocol that facilitates communication between the Air Traffic

Control (ATC) stations and aircrafts over a digital datalink

medium. As an aircraft travels from one geographic location

to another, CPDLC facilitates for an automatic transference of

its current communication session, eliminating the requirement

to re-establish a new session every time an aircraft enters

a subsequent geographic zone [2]. Figure 1 illustrates an

expected implementation of a CPDLC connection handover

as described by the official ICAO guidelines [2].

Fig. 1: A generic CPDLC handover between source ground station G#1, target
ground station G#2 and an aircraft.

Despite numerous proposals for innovative handover

schemes [3], there exists no formal framework defining han-

dovers as a distinct primitive with unique functional require-

ments and security properties. Most literature on handover

schemes is modelled after the 5G protocol [1], [4], with little

discussion on systematically defining the functional goals of

a handover or distinguishing handover schemes from other

primitives like key exchange protocols. Similarly, little work

has been done to formalise the security goals that handover

protocols should achieve. Failing to understand and formalise

the security of handover schemes leaves these protocols open

to as-of-yet-undiscovered attacks.

Both 5G handover and CPDLC have suffered from var-

ious proposed attacks. Gupta et al. [5] highlight a de-

synchronisation attack on the 5G handover protocol using a

rogue base station to enable denial-of-service attacks. Basin

et al. [6] analyze the 5G-AKA protocol, which the 5G han-

dover extends, finding that it allows attackers to impersonate

base stations and exploit vulnerabilities to make another user

responsible for service usage charges. They also note that

the 5G-AKA protocol only protects user privacy from passive

attackers. In their comprehensive analysis of the 5G handover,



Peltonen et al. [1] identify risks in transmitting session and in-

termediate keying parameters over a secure interface, which, if

compromised, jeopardizes 5G handover security. They further

observe that any compromise to these keys at any stage will

compromise all future key derivations.

Unsurprisingly CPDLC lacks security guarantees as it oper-

ates over unencrypted and unauthenticated channels. Smailes

et al. [7] demonstrated practical attacks on CPDLC, success-

fully impersonating ATC stations to aircrafts and hijacking a

session during handover. They triggered false handovers by

injecting messages into an ongoing CPDLC session. These

attacks can have severe consequences, as CPDLC messages

can be hijacked and tampered with to change critical instruc-

tions like declaring emergencies or altering aircraft altitudes

and speeds. The feasibility of these attacks was proven by

launching them from a location hundreds of kilometres away.

II. OUR CONTRIBUTIONS

While 5G handover achieves some security properties, the

attacks discussed here illustrate that these current handover de-

ployments lack a cohesive security framework, and that some

attacks exploit distinct functionalities of handovers: consider

the CPDLC attack that triggers a false handover, or the ability

to hijack sessions during the handover phases. Formalising

distinct notions of security for handover schemes clarifies

security guarantees necessary during a handover phase of a

protocol, preventing the possibility of previously demonstrated

attacks [7]. We emphasise that previous work that model

handovers as a variation of the key exchange primitive [8],

[9] which do not appropriately capture handover protocols.

We generically define a handover scheme HO as a cryp-

tographic protocol executed between three parties: a user U,

a source S, and a target T. U is mobile, travelling between

different zones and communicating with the station in that

zone, much like a mobile phone travels between different base

stations when their owner walks down the street. Handover

schemes concern U’s transition between these zones: specifi-

cally, we assume that U has previously communicated with the

current station in their zone (which we denote the source S),

and wishes to continue their current communication session in

the proceeding zone with the new station, target T. A handover

scheme allows S to communicate and authenticate sufficient

information to T, allowing U to continue their communication

session with T without re-executing a full handshake between

U and T - usually by establishing a shared secret key.

a) Key Exchange vs Handover: Initially, it seems as

though U and T could simply execute a key exchange protocol

to authenticate each other and establish a shared secret key.

Indeed, often these two primitives are discussed in an inter-

changeable manner, but this obscures the distinction between

the two. For example, a three-party key exchange protocol

would require all parties jointly establish shared secret keys

for a given session. This is clearly different from HO, where

S does not need to know the fresh secret established between

U and T, and indeed S should not know this.

Additionally, a three-party key exchange protocol typically

has symmetrical authentication relationships: each party is

likely to authenticate to each other in a similar fashion.

Conversely, within a HO, there exists an asymmetry to the

pre-established trust relationships. For example, neighbouring

stations are likely to know each other’s public keys, but T is

unlikely to know a mobile user’s U public keys. Additionally,

S and U are likely to share pre-established symmetric keys due

to some previous handover. Thus, S acts as a proxy of trust

to independently authenticate U to T to transition its current

communication session with U to T, in a manner that ensures

the continuity of the original session.

Finally, HOs should prepare for the next HO: while multi-

stage key exchanges [10], [11] output keys over many rounds,

these are continually executed with the same partner, whereas

the transition to new partners is core to both HO protocols

and our new path privacy notion.

The pre-establishment of keys, the asymmetric trust rela-

tionships and the continuity-preserving transition of commu-

nication collectively set HO apart from key exchange proto-

cols as a unique primitive. The widely-adopted 5G handover

protocol [1] exemplifies all these characteristics that we have

identified as unique to HO. Thus, we endeavour to address

this gap and systemically treat HO, formalising it as a distinct

primitive and capture its security.

b) Path Privacy: On a high-level, path privacy captures

the notion that S and T nodes should not learn each other’s

identities. Multiple instances of subscriber privacy violations

and data breaches by cellular network operators have drawn

significant attention in recent years. For example, the Federal

Communications Commission recently fined AT&T, Sprint, T-

Mobile, and Verizon millions for unlawfully sharing users’

geolocation data with third parties within their commercial

programs, including prisons and bounty hunters [12], [13]. In

one case, a bounty hunter [13] successfully tracked their target

to a specific neighbourhood in New York, just blocks away

from their actual location.

Similarly, the growing trend of manufacturing increasingly

smart vehicles has heightened privacy concerns for their own-

ers. Privacy researchers at the Mozilla Foundation revealed

that smart car manufacturers often collect excessive personal

data, with 17 out of the 25 manufacturers reviewed actively

selling the data they gather [14]. A recent article published by

WIRED [15] highlighted security vulnerabilities in a Subaru

employee web portal that allowed access to comprehensive

vehicle location data. This included the car’s precise location

each time its engine started, with records spanning up to an

entire year. These privacy violations are further exacerbated

by the inherent design of smart vehicular infrastructures.

Components such as roadside units (RSUs), which provide

services to smart vehicles, often lack privacy safeguards and

can be exploited to track vehicle locations [16].

In contrast, commercial aircraft travel plans are often public

and available days in advance. However, military, government,

and private business stakeholders require greater location

privacy. For example, the movements and communications of
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a business flight may need to be kept private due to their

potential impact on stock prices (e.g., mergers, acquisitions)

[17]. Stakeholders wishing to keep their flight movements

and communication private may request to ªblockº their data

from appearing on publicly available flight data websites (e.g.

flightaware, flightradar24). However, given the use of open and

unencrypted channels in avionic communication, it may yield

these attempts at privacy futile [18] revealing sensitive infor-

mation such as location data. In fact, the work of Strohmeier

et al. [19] successfully maps the trajectory of a military

aircraft that had blocked their data from appearing on public

websites, but was still using using unencrypted communication

channels. As such, we identify that some settings will require

the network to conceal the migration trajectory of U as they

move from one location to another. Particularly, since HOs are

often used in a geographical context, failing to conceal a user’s

footprint can leak information about their physical location.

Prior work that investigate privacy issues within existing and

future cellular architecture [20]±[22] have proposed solutions

ranging from global identifier with anonymous authentication

[22] to virtual private mobile networks (VPMNs) comprising

mutually-trusted device-to-device communication [21], [22].

However, these solutions do not leverage the inherent proper-

ties of handovers in their constructions nor do they formally

analyse the security of their proposed schemes. For example,

the property of identity privacy discussed in [22] conflates the

distinctions between anonymity and unlinkability. In Section

IV we identify these two properties as separate and argue that

unlinkability provides stronger security guarantees. Further-

more, our work introduces path privacy, offering a simpler

and practical framework that integrates privacy guarantees into

existing infrastructure, backed by formal security proofs.

c) Formalised Security Notions & Capturing Stronger

Security: From our study of existing literature, we have identi-

fied several shared security goals that are deemed as desirable

within secure HO schemes. Predominantly, the need for key

indistinguishability for derived session keys between U and T

and a necessity to maintain user anonymity as one moves

between different networks have been identified as fundamen-

tal security requirements across multiple independent bodies

of work [8], [9]. We implicitly capture mutual authentication

as a core security property, to eliminate the threat of session-

hijacking attacks against HO [7]. In Section V we propose

a generic HO scheme that achieves our formalised security

goals, demonstrating how to realise strong notions of security

in a HO setting. In our construction in Figure 6, we focus

on the optimal strongest level of security achievable within a

HO construction, capturing notions of forward-secrecy, mutual

authentication, user unlinkability and path privacy.

Summary of Contributions. Thus, in this work we introduce

a universal formalised framework that captures HO schemes as

a unique primitive; introduce the notion of path privacy and

construct security experiments that capture distinct security

properties for HOs, thus setting it apart from other similar

primitives such as key exchanges; introduce a generic strong

HO scheme that achieves our defined path privacy property

alongside other security goals with formal analysis of its

security within our framework; additionally in Appendix A and

B we investigates the general applicability of our formalisation

by mapping 5G-HO protocol to our framework, and illustrate

its flexibility to model beyond 5G, respectively.

Organisation. We begin by evaluating existing literature in

Section III. In Section IV, we formalise our notions of secure

handover as a primitive. We further detail achievable security

goals for secure handovers along with their respective models

that capture each identified security goal. Section V we present

a generic strong HO scheme constructed within our framework

that achieves all our identified notions of security. In Section

VI, we analyse the security of our protocol we introduced in

Section V. The paper closes with conclusions and directions

for future work in Section VII.

III. RELATED WORK

The literature on secure handover schemes (HO) is saturated

with self-identified handover schemes covering a wide range

of contexts. While a significant percentage of studied HO

schemes focus on 5G mobile communication [8], [9], [23]±

[28], schemes have been proposed for HO within cloud com-

puting architectures [29], urban air mobility (UAM) networks

[3] and VANETs [30].

We list all the works studied in Table I, describing claimed

security properties and the status of their formal security

analysis. While unlinkability and anonymity are often used

interchangeably, we define them as distinct security properties.

Unlinkability offers a stronger guarantee, inherently preserving

user anonymity. For example, if an adversary links two ses-

sions to a single pseudo-identity, anonymity is preserved but

unlinkability is compromised. However, maintaining unlink-

ability ensures anonymity, as it prevents an adversary from

linking sessions to an individual user. Thus, we treat unlinka-

bility and anonymity as distinct properties, with unlinkability

providing stronger security guarantees.

Provable Security of Secure Handovers. A diverse selection

of methodologies have been utilised to analyse the security

of secure handover protocols, and some work that introduces

novel handover schemes do not formally analyse the proto-

cols at all [29]. Indeed, while most works surveyed claim

anonymity, unlinkability, only the works of [8] and [9] provide

formal proofs to verify these security notions. However, their

work is exclusively modelled after the 5G-HO protocol [1] and

they do not capture the notion of path privacy. Furthermore,

they model their handover protocols as key exchange schemes,

thus failing to capture the uniqueness of HO as a primitive.

Peltonen et al. [1] formally analyse the security of the 5G-

HO scheme in the symbolic model, using the verification tool

Tamarin. Alnashwan et al. [8] and Fan et al. [9] propose

security improvements for the standard 5G-HO protocol and

analyse the security of their proposed schemes in the com-

putational model. Norrman [4] models 5G-HO as a secure

anycast channel [33] and comes closest to our work, but

is strongly tied to 5G-HO specifically, with assumptions of

pre-existing secure-channels for communication and a central
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Work

Properties
PFS

Key
Indistinguishability

Unlinkability
Mutual

Authentication
Anonymity

Source
Privacy

Target
Privacy

[30]  [AVISPA]  [CP] #  [BAN/AVISPA] # # #

[23]  [Scyther] # #  [BAN/Scyther] # # #

[24] # # # #[BAN] # # #

[25] # # # #[BAN] # # #

[9]  [CP]  [CP]  [CP]  [CP]  [CP] # #

[8]  [CP]  [CP]  [CP]  [CP]  [CP] # #

[26]  [AVISPA]  [AVISPA] #  [BAN/AVISPA] # # #

[27]  [Scyther]  [Scyther] #  [BAN/Scyther] # # #

[29] # # # # # # #

[28]  [CP/AVISPA]  [CP/AVISPA] #  [CP/AVISPA] # # #

[3]  [AVISPA]  [CP] #  [BAN/AVISPA] # # #

[31]  [Tamarin] # #  [Tamarin] # # #

[32] # # # # # # #

Our Work  [CP]  [CP]  [CP]  [CP]  [CP]  [CP]  [CP]

TABLE I: Comparison of some proposed handover schemes and their security
properties.  Formal security proofs, # No formal security proofs, CP -
Computational Proofs.

orchestrator entities for service provision, which does not fit

other HO constructions such as CPDLC. Moreover, their work

does not capture user unlinkability and path privacy properties

and proves confidentiality and integrity of data transmissions.

A significant number of examined works applies BAN-logic

[34] to prove the properties of mutual authentication and key

agreement in their proposed schemes. However, the suitability

of BAN-logic as a framework to analyse the security of

protocols has been contested and the works of [35], [36], and

[37] capture serious security flaws in protocols proven secure

under the BAN-logic. As such, in our study we consider work

that solely analyse the security of their proposed schemes with

BAN-logic as insufficient, and have categorised them as work

providing no formal security proofs in Table I. Conversely, the

works of [3], [23], [26], [27], [30] combine BAN-logic with

formal proofs obtained through automated security protocol

verification tools, thus providing stronger security guarantees.

In this section we have critiqued the various security proofs

presented in existing literature to formally verify the purported

security of their respective HO schemes. We highlight that our

StrongHO protocol described in Figure 6 is the first to achieve

all properties simultaneously. We now turn to introducing our

formalism for secure handover schemes.

IV. SECURE HANDOVER FORMALISATION AND SECURITY

Here we formalise our notion of secure handover protocols,

explaining the expected functionality, phases and outputs. We

follow by detailing the security goals that secure handover

schemes can achieve. We give a brief explanation of each goal,

and then describe the experiment that captures each goal.

A. Formalising Handovers

We consider a protocol that is executed between three

parties: a user U, a source S and a target T. User U has, in

some previous interaction, established some shared secret state

with S, and now wishes to leverage S’s connection with T

to establish some new authenticated shared state (potentially

secret) with T. We limit our formalisation to three parties since

for a HO to occur U must at least transition from one S to

one T; ours is a flexible approach capable of integrating any

additional parties in existing HO-specific protocols, e.g. core

network in 5G-HO can easily be abstracted into our S or T

roles depending on whether they have an existing session with

U or not; and our approach simplifies and generalises parties

participating in HO protocols.

In general, a handover protocol HO has four distinct phases:

± A setup phase, where the protocol participants generate

long-term secrets (e.g. digital signature key pairs); the U

and the S generate some shared secret state, a bootstrap

key bk1 to enable the handover, and agree on some

additional data ad that needs to be advocated to the

T (abstractly capturing an initial key exchange, or a

previous handover);

± A preparation phase, where the U and S interact to

generate some material that allows the S to authenticate

information that will be used by the user to communicate

to the T. This preparation phase allows for the handover

protocol to achieve source or target privacy by bypassing

a need for S and T to communicate directly;

± A support phase, where the S and the T interact and

transfer the previous material; if a protocol construction

aims to achieve path privacy this phase will be precluded;

± A contact phase, where the U and T directly interact and

execute a handover protocol together, authenticate each

other and establish some shared secret state.

Thus, a handover protocol HO consists of a tuple of

algorithms HO = {Gen, SGen, Setup, Prep, Supp, Cont}:

± Gen(1λ)
$
→ (pk , sk , pid) : Gen is a probabilistic algo-

rithm independently run by all parties that takes a security

parameter λ and outputs the long-term public key pair

(pk , sk) and (potentially) identifiers of user (id), source

(spid ), and target (tpid ).

± SGen(1λ)
$
→ (bk , id) : SGen is a probabilistic algorithm

run by U and S, which takes as input a secret parameter λ
and outputs a (bootstrap) secret key bk and (potentially)

identifiers of the user (id), source (spid ), and target

(tpid ). SGen allows user U to leverage an authentication

mechanism to establish some token or secret with another

party (denoted the source S) prior to the HO execution.

± Setup(idi, idj , bk , sk i, pk j , ρ)
$
→ (st) : Setup is a prob-

abilistic algorithm run by all parties, which accepts as

input (potentially) the identifiers of the communicating

parties of the current session (idi, idj), a shared secret

key bk , (potentially) some long-term secret key of the

executing party sk i (where i ∈ {U, S, T}), (potentially)

long-term public key of the communicating party pk j

(where j ∈ {U, S, T}) and the role ρ of the executing

party and outputs an initial state st at the start of a

HO transaction. Setup facilitates session management per

protocol execution by explicitly detailing states main-

tained between parties.

1The bootstrap key bk is a result of some initial key-exchange, a previous
secure handover between U and S or a preshared secret between parties, and
is not related to bootstrapping in fully homomorphic encryption.
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± Prep(st, pk
T
,m)

$
→ (st′,m) : is a probabilistic algorithm

run by U and S, which takes as input the secret state

st, potentially the long-term public key of T pk
T
, and

(potentially) some input message m, and outputs updated

state st′ and (potentially) some output message m. This

algorithm enables the realisation of path privacy by

allowing U to act as an intermediary that facilitates the

mutual authentication of S and T.

± Supp(st′, pk j , pku,m)
$
→ (st,m′) : is a probabilistic

algorithm run by S and T, which takes as input the state

st, (potentially) the long-term public key of the com-

municating party pk j (where j ∈ {S, T}), the long-term

public key of U pk
U
, and (potentially) some input message

m, and outputs the updated state st′ and (potentially)

some output message m. Once Supp is completed the

S node deletes all state data (st′,m) pertaining to that

session. The deletion of relevant state data by source S

in this manner is essential to prevent an adversary, that

compromises S after the fact, from recovering the same

secrets or (if impersonating the target T) breaking key

indistinguishability.

± Cont(st, pk j , pkS,m)
$
→ (st′,m′) : is a probabilistic

algorithm run by U and T, which takes as input the

secret state st (containing session keys k and handover

keys hk), the long-term public key of the communicating

party pk j (where j ∈ {U, T}), the long-term public key

of S pk
S
, and (potentially) some input message m, and

outputs some updated state st′ and (potentially) some

output message m.

We give an execution of this process in Figure 2.

The modular nature of our proposed framework provides

a high level of flexibility that can be easily adapted to the

specific requirements of any handover design. Apart from the

initial Setup phase which abstracts away the prerequisites

required for a HO execution, all other phases in our formal-

isation can be added or subtracted according to the demands

of the specific design. For instance, in our strong HO scheme

proposed in Section V, we forgo the Supp phase in order to

capture the property of path privacy in our construction. The

proposed secure LDACS-HO [31] does not include a Contact

phase since S acts as an intermediary throughout, forwarding

messages between U and T and no direct communication

takes place between U and T until the HO is completed.

Our framework therefore provides a highly customisable and

flexible structure that formalises aspects of network limita-

tions as seen with LDACS [31], while also encouraging the

integration of stronger security notions, which we demonstrate

in our StrongHO construction in Section V. In Figure 9,

we illustrate the flexibility of our framework by mapping

the existing 5G [1] and CPDLC HO [7] protocols and the

proposed LDACS-HO [31] to our construction. Moreover, in

Appendix A we further investigate the universal applicability

of our formalisation by capturing the 5G-HO protocol within

our formalised framework.

B. Key Indistinguishability

The majority of secure handover schemes, such as those

used by the 5G handover protocol, use secure handover as

a mechanism for deriving a shared secret key between the

user U and the target T by interacting with the source S. This

shared secret key can then be used in an arbitrary symmetric

key protocol, such as a secure channel protocol, to achieve

some secondary goal between the user and target (usually

authenticated and confidential communications). Thus, to aid

in composability and generalisation of our approach, we define

key indistinguishability of session keys established between

U and T as the primary goal of secure handover schemes.

Since our formalism also produces handover keys, established

between U and T for future use, our key indistinguishability

notion should also cover the security of these handover keys.

Key indistinguishability of secure handover schemes is

captured as a game played between a challenger C and an

adversary A. C simulates each user executing a protocol

instance, and A gets to interact with each user. A’s goal is to

break key indistinguishability: when a fresh protocol instance

has accepted, A may Test the instance and is given either the

real session and handover keys (k, hk) derived in the protocol

execution, or random keys from the same distribution. A’s

goal is to determine which keys they have been given.

We formalise this goal in Figure 3. We describe below

the per-session variables maintained by each session instance.

Next, we give the explicit definition of security below and

state A’s advantage in winning this game.

Execution Environment: Here we describe the execution

environment of all experiments for the proposed scheme. Each

session πs
i maintains the following set of per-session variables:

± ρ ∈ {U, S, T} : The role of the party in the current session.

± i ∈ {1, ..., nP }: Index of the session owner.

± s ∈ {1, ..., nS}: Current session index.

± TP, TS, TH: Session transcripts of the Prep, Supp and Cont

algorithms respectively, initialised by ⊥.

± α ∈ {prep, supp, contact, accept, reject,⊥}: The

current status of the session, initialised with ⊥.

± bk ∈ {{0, 1}λ,⊥}: Bootstrap key used as the initial

shared secret between S and U, or ⊥.

± k ∈ {{0, 1}λ,⊥}: Session key to be used in some

following symmetric key protocol, initialised as ⊥.

± hk ∈ {{0, 1}λ,⊥}: Handover key used as bk in some

following handover, initialised as ⊥.

± st ∈ {0, 1}λ: Any additional state used by the session

during protocol execution.

± ad ∈ {0, 1}∗: Some additional data that the S advocates

to the T by the end of the protocol execution.

When the security game is played between the adversary

and the challenger, the adversary can issue so-called adver-

sarial queries: this allows the adversary to interact with the

challenger’s simulated protocol executions. We begin the full

list of all adversarial queries below.

± Create(i, ρ, j, l, s, t): allows A to create a new session

π with role ρ owned by party i, with communicating
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User Source Target

Setup
Gen(1λ)

$
→ (pkU , skU , pid) Gen(1λ)

$
→ (pkS , skS , pid) Gen(1λ)

$
→ (pkT , skT , pid)

SGen(1λ)
$
→ (bk , id) SGen(1λ)

$
→ (bk , id)

Setup(idi, idj , bk , sk i, pk j , U)
$
→ (st) Setup(idi, idj , bk , sk j , pk i, S)

$
→ (st) Setup(idi,⊥, T)

$
→ (st)

Preparation Prep
(st′,m) (st′,m)

Support Supp
[delete(st′,m)] (st′,m)

Contact Cont
(st′,m) (st′,m)

Fig. 2: An expected execution of a secure HO protocol.

Exp
KIND,clean
nS,nP ,A

(λ)

1: b
$
← {0, 1}

2: tested← (⊥,⊥)
3: for i = 1 to nP do

4: pki, ski ← Gen(λ)
5: ASKi ← false

6: ctri ← 1
7: for j = 1 to nS do

8: SSK
j
i ← false

9: SK
j
i ← false

10: end for

11: end for

12: b′ ← AQ(pk1, . . . , pknP
)

13: (i∗, s∗)← tested

14: if (¬clean(πi∗
s∗)) then return b

$
← {0, 1}

15: end if

16: return (b′ = b)

Send(i, s,m)

1: if πs
i = ⊥ then

2: return ⊥
3: end if

4: if πs
i .α = prep then

5: πs
i .st

′,m′ ← Prep(πs
i .st, pkπs

i .tpid
,m)

6: end if

7: if πs
i .α = supp then

8: πs
i .st

′,m′ ← Supp(πs
i .st, pkπs

i .ρ̂
, pkπs

i .upid
,m)

9: end if

10: if πs
i .α = contact then

11: πs
i .st

′,m′ ← Cont(πs
i .st, pkπs

i .ρ̂
, pkπs

i .spid
,m)

12: end if

13: return m′

Corrupt(i)

1: ASKi ← corrupt

2: return ski

Compromise(i, s)

1: SSK
s
i ← corrupt

2: return πs
i .bk

Reveal(i, s)

1: if πs
i .α ̸= accept then

2: return ⊥
3: end if

4: SK
s
i ← corrupt

5: return πs
i .k, π

s
i .hk

Create(i, ρ, j, ℓ, s, t)

1: if s = ⊥ then

2: s← ctri
3: πs

i .ρ← ρ
4: πs

i .bk , π
s
i .hk , π

s
i .k ← ⊥

5: if (t ̸= ⊥) ∧ (πs
i .ρ ∈ {U, S}) then

6: return ⊥
7: end if

8: bk , ad ← SGen(λ)
9: πs

i .bk , π
t
j.bk ← bk

10: πs
i .ad , π

t
j.ad ← ad

11: if (πs
i .ρ = U) then

12: πs
i .spid = j, πs

i .tpid = ℓ
13: end if

14: if (πs
i .ρ = S) then

15: πs
i .upid = j, πs

i .tpid = ℓ
16: end if

17: if (πs
i .ρ = T) then

18: πs
i .upid = j, πs

i .spid = ℓ
19: πs

i .bk , π
s
i .ad ← ⊥

20: end if

21: else

22: if (πs
i .ρ = T) then

23: return ⊥
24: end if

25: s∗ ← ctri
26: πs∗

i .ρ← ρ
27: πs

i .hk , π
s
i .k ← ⊥

28: πs∗
i .bk ← πs

i .hk
29: πs∗

i .ad ← πs
i .ad

30: s← s∗

31: end if

32: πs
i .TP ← ⊥

33: πs
i .TS ← ⊥

34: πs
i .TH ← ⊥

35: ctri + +
36: return s

Test(i, s)

1: if (πs
i .α ̸= accept) ∨ (SKs

i =
corrupt) ∨ ((⊥,⊥) ̸= tested) then

2: return ⊥
3: end if

4: k0
$
← K, k1 ← πs

i .k, π
s
i .hk

5: (i, s)← tested

6: return kb

Fig. 3: The key indistinguishability security experiment for secure HO
schemes. For conciseness we use πs

i .ρ̂ as shorthand for the communicating
partner’s party index, i.e. for Prep πs

i .ρ̂ = πs
i .spid if πs

i .ρ = U,
and πs

i .upid otherwise; for Supp πs
i .ρ̂ = πs

i .tpid if πs
i .ρ = S and

πs
i .spid . Q denotes the set of all queries used in the experiment, i.e.

Q = {Send,Corrupt,Compromise,Reveal,Create,Test}.

partners j and l. Note that s, t can point to previous

sessions πs
i that has completed and use their output

handover key hk as the new bootstrap key bk in the

current session. Create also performs some checks to

ensure that, if bootstrapping sessions from a handover,

that it is done consistently, aborting if not.

± Send(i, s,m): allows A to send the message m to session

πs
i . πs

i processes m with the appropriate algorithm (i.e.

Prep, Supp, or Cont) and returns some output message

m′ to A.

± Corrupt(i): allows A to recover the long-term secrets of

party i, which enables the framework to capture perfect

forward secrecy.

± Compromise(i, s): allows A to recover the bootstrap key

bk used by πs
i in their protocol execution.

± Reveal(i, s): allows A to reveal the session and handover

key computed by πs
i in their protocol execution, allowing

our model to capture key independence.

± Test(i, s): returns to A the real-or-random session key

and handover keys computed by the test session πs
i ,

allowingA to play the key indistinguishability game. This

query can only be called once.

Cleanness Predicate: Our adversary can use the Corrupt,

Compromise and Reveal queries to learn secrets, and can

trivially impersonate the exposed party to their communi-

cating partner, thus learning the secrets of a potential test

session πs
i . To prevent trivial attacks, we define cleanness

predicates that prevent the adversary from making particular

patterns of adversarial queries relative to πs
i . Such a cleanness

predicate is protocol-specific. For instance the 5G handover

protocol cannot recover from a compromise of the long-term

symmetric secret shared between the core network and the

user equipment, as opposed to a handover protocol where

each protocol has long-term asymmetric authentication secrets.

Below we define a cleanness predicate for our StrongHO

protocol described in Figure 6.

Difficulties in Matching Definitions: Typically, cleanness

predicates are used in security experiments to prevent the

adversary from issuing adversarial queries that would trivially

break the security of the test session. Thus, we need to identify

the matching session (i.e. the intended communication part-

ner), to determine if the adversary has (for example) Revealed

the partner’s session key and used it to win the key indistin-

guishability game. However, determining the matching partner

in a three-party protocol is inherently difficult, especially in
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a handover protocol where none of the party transcripts are

identical. Thus, our model separates party transcripts on a sub-

protocol level, i.e. TP for the Prep execution, TS for the Supp

execution and TH for the Cont execution, and define matching

partners for each sub-protocol. For instance, we say that a

session πs
i UT-matches a partner session πt

j if πs
i .ρ ̸= πt

j .ρ
and πs

i .ρ, π
t
j .ρ ∈ {U, T} and πs

i .TH = πt
j .TH.

Definition 1 (Strong Handover KIND cleanness predicate). A

session πs
i such that πs

i .α = accept in the security experiment

defined in Figure 3 is clean (i.e., cleanstr-kind(π
s
i ) = 1) if all

of the following conditions hold:

1) SK
s
i ̸= corrupt (Session key has not been exposed);

2) ∀(j, t) ∈ nP × nS such that πs
i UT-matches πt

j , SKt
j ̸=

corrupt (Session key not exposed at partner session);

3) If πs
i .ρ = U, and there exists no session πt

j that UT-

matches πs
i , and there exists a session πr

l such that

πs
i .bk = πr

l .bk , then SSK
s
i ̸= corrupt nor SSK

r
l ̸=

corrupt (If the user session has no matching UT

partner, then their bootstrap key has not been exposed);

4) If πs
i .ρ = U, and there exists no session πt

j that UT-

matches πs
i , and there exists a session πr

l such that

πs
i .bk = πr

l .hk , then SK
r
l ̸= corrupt (If the user

session has no matching UT partner, then their previous

handover key has not been exposed);

5) If πs
i .ρ = T, and there exists no session πt

j that UT-

matches πs
i , but there exists a session πr

l such that

πr
l .i = πs

i .upid or πr
l .upid = πs

i .upid, and πr
l .bk ̸= ⊥,

then SK
r
l ̸= corrupt (If the target session has no

matching UT partner, then the user partner’s bootstrap

key has not been exposed);

6) If πs
i .ρ = T, and there exists no session πt

j that UT-

matches πs
i , but there exists a session πr

l such that

πr
l .i = πs

i .upid or πr
l .upid = πs

i .upid, and πr
l .hk ̸= ⊥,

then SK
r
l ̸= corrupt (If the target session has no

matching UT partner, then the user partner’s previous

handover key has not been exposed);

7) If there exists no session πt
j that UT-matches πs

i , then

ASKi ̸= corrupt ∀ i (If the test session has no

matching UT partner, then no source long-term key has

been exposed);

8) If there exists no session πt
j that UT-matches πs

i , and

πs
i .ρ = U then ASKπs

i
.tpid ̸= corrupt (If the user

session has no matching UT partner, then the target

long-term key has not been exposed);

Broadly speaking, this captures a perfect forward secret

handover scheme - note that the adversary is allowed to

compromise the long-term secrets of any party participating

in the protocol execution after the test session has completed.

We now turn to defining formally the key indistinguishabil-

ity of secure handover schemes.

Definition 2 (KIND Key Indistinguishability). Let HO be

a secure handover protocol, and nP , nS ∈ N. For a par-

ticular given predicate clean, and a PPT algorithm A, we

define the advantage of A in the KIND key indistinguisha-

bility game defined in Figure 3 to be: Adv
KIND,clean
HO,nP ,nS ,A(λ) =

|Pr[ExpKIND,clean
HO,nP ,nS ,A(λ) = 1] − 1

2 |. We say that HO is KIND-

secure if, for all A, Adv
KIND,clean
HO,nP ,nS ,A(λ) is negligible in the

security parameter λ.

C. Unlinkability

Another important security property that is often discussed

in the context of secure handover schemes is user anonymity.

For example, the 5G-HO introduced identity-hiding techniques

in order to prevent attackers from learning the identity of the

user communicating with the 5G network. To capture this, we

formalise the notion of user unlinkability (UNLINK). Much

like KIND, the UNLINK property is captured as a game played

between A and C where A is meant to guess some bit b.
However, unlike KIND, the UNLINK game allows the

adversary to specify two (distinct) U parties, and the C uses

the random bit b to determine which user will run the so-

called Test session interacting with A. Since for all other

protocol executions A is allowed to specify the user executing

the protocol, then by linking two protocol sessions run by the

same user, A will be able to determine the identity of the Test

session and thus the bit b. We formalise this goal in Figure 4.

As before, when the security game is played between A
and C, A can issue so-called adversarial queries, allowing

A to interact with C’s simulated protocol executions. The

TestUnlink and SendTest queries replace Test from the KIND

experiment: all other queries remain identical.

± TestUnlink((i, s), (i′, s′), j, (t, t′), l): allows the adver-

sary to create the Test session πb and its S and T partners.

The adversary is able to specify two party identifiers i, i′

that the challenger will create a single protocol execution

for, and the adversary’s goal is to distinguish which

party (i or i′) owns πb. The majority of operations in

TestUnlink is administrative management to ensure that

the adversary can point to previous sessions (and thus use

a previously computed handover key hk ), but not trivially

break the UNLINK security of the protocol.

± SendTest(m): allows the adversary to send a message m
to the Test session πb.

We note here that it is trivial to link a test session πb in the

UNLINK security experiment simply by the adversary using

some previous session πs′

i to generate the bootstrap key bk

for πb, and then simply Reveal-ing the hk from πs′

i and later

Compromise-ing πb. To prevent such an attack, we require

that the test session πb and the previous session πs′

i πb that is

bootstrapped, are both clean.

Definition 3 (Strong Handover UNLINK cleanness predicate).

A session πs
i such that πs

i .α = accept in the security

experiment defined in Figure 4 is cleanstr-unlink if all of the

following conditions hold:

1) cleanstr-kind(π
s
i ) = 1; (The session πs

i is clean as defined

in Definition 1)

2) If there exists some session πs′

i′ such that πs
i .bk = πs′

i′ .hk ,

then cleanstr-kind(π
s′

i ) = 1; (Any previous handover

session πs′

i is clean as defined in Definition 1)
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We give the explicit definition of security below and state

A’s advantage in winning this game.

Definition 4 (UNLINK Unlinkability). Let HO be a se-

cure handover protocol, and nP , nS ∈ N. For a partic-

ular given predicate clean, and a PPT algorithm A, we

define the advantage of A in the UNLINK unlinkability

game to be: Adv
UNLINK,clean
HO,nP ,nS ,A(λ) = |Pr[ExpUNLINK,cleanHO,nP ,nS ,A(λ) =

1] − 1
2 |. We say that HO is UNLINK-secure if, for all A,

Adv
UNLINK,clean
HO,nP ,nS ,A(λ) is negligible in the security parameter λ.

Exp
UNLINK,clean
nS ,nP ,A

(λ)

1: b
$
← {0, 1}

2: for i = 1 to nP do

3: pki, ski ← Gen

4: ASKi ← false

5: ctri ← 1
6: for j = 1 to nS do

7: SSK
j
i ← false

8: SK
j
i ← false

9: end for

10: end for

11: b′ ← AQ(pk1, . . . , pknP
)

12: if (¬clean(πb) ∨ ¬clean(πb−1)) then

13: return b
$
← {0, 1}

14: else

15: return (b′ = b)
16: end if

SendTest(m)

1: Send(πb,m)→ m′

2: return m′

TestUnlink((i, s), (i′, s′), j, (t, t′), ℓ)

1: if ((s ̸= ⊥) ∧ (s′ = ⊥)) ∨ ((s =
⊥) ∧ (s′ ̸= ⊥)) then

2: return ⊥
3: end if

4: if ((t ̸= ⊥) ∧ (t′ = ⊥)) ∨ ((t =
⊥) ∧ (t′ ̸= ⊥)) then

5: return ⊥
6: end if

7: if (SKs
i = corrupt) ∨ (SKs′

i′ =
corrupt) ∨ (SKt

j = corrupt) ∨

(SKt′

j′ = corrupt) then

8: return ⊥
9: end if

10: s← Create(i, U, j, ℓ, s)
11: s′ ← Create(i′, U, j, ℓ, s′)
12: t← Create(j, S, i, ℓ, t)
13: t′ ← Create(j, S, i′, ℓ, t′)
14: if (s = ⊥) ∨ (s′ = ⊥) ∨ (t = ⊥) ∨

(t′ = ⊥) then

15: return ⊥
16: end if

17: if b = 0 then

18: πb ← πs
i

19: πb−1 ← πs′

i′

20: r ← Create(ℓ, T, i, j,⊥)
21: πs

i , π
s′

i′ , π
t′
j ← ⊥

22: ctri ← ctri−1, ctri′ ← ctri′−1
23: ctrj ← ctrj − 1
24: else

25: πb−1 ← πs
i

26: πb ← πs′
i

27: r ← Create(ℓ, T, i′, j,⊥)
28: πt

j ← πt′
j

29: πs
i , π

s′

i′ , π
t′
j ← ⊥

30: ctri ← ctri−1, ctri′ ← ctri′−1
31: ctrj ← ctrj − 1
32: end if

33: return (t, r)

Fig. 4: The unlinkability security experiment for secure handover schemes.
For conciseness we only give the definition of the overall experi-
ment, the SendTest and TestUnlink queries, as all other adversarial
queries are identical to the KIND experiment described in Figure 3.
Q denotes the set of all queries used in the experiment, i.e. Q =

{Send,Corrupt,Compromise,Reveal,Create,TestUnlink, SendTest}.

D. Target and Source Privacy

In some handover schemes, knowing the path that the user

takes (i.e. the paths between different source and target nodes

that the user transitions between) is private information that

is worth protecting. For instance, in 5G identifying the base

stations that the user communicates with would enable an

attacker to recover their general geographical location. To

formalise the security of this information in our framework, we

introduce Target and Source Privacy (which we denote TPRIV

and SPRIV respectively) which we collectively identify as

path privacy. On a high-level, TPRIV and SPRIV respectively

prevent an insider source (resp. target) from learning which

target (resp. source) the user was communicating with.
Much like KIND, the TPRIV (resp. SPRIV) property is

captured as a game played between an adversary A and a

challenger C where A is meant to guess some bit b sampled

by C. Much like the UNLINK game, the TPRIV (resp. SPRIV)

adversary selects two distinct T (resp. source) parties, and the

challenger uses the random bit b sampled to determine which

target (resp. source) owns the Test session interacting with A.
However, unlike the UNLINK game, the threat model con-

sidered here is an insider attacker: in TPRIV the adversary

is allowed to compromise the source party that the user and

target will interact with (and in SPRIV, the target party that the

user and source will interact with). This will allow a secure

handover scheme to argue for path privacy: SPRIV ensures

that target nodes do not know which source node the user

came from, and TPRIV ensures that the source nodes do not

know which target node the user went to. We formalise this

game in Figure 5. We give the explicit definition of security

below and state A’s advantage in winning this game.

Exp
TPRIV,clean
nS ,nP ,A

(λ)

1: b
$
← {0, 1}

2: for i = 1 to nP do

3: pki, ski ← Gen

4: ASKi ← false

5: ctri ← 1
6: for j = 1 to nS do

7: SSK
j
i ← false

8: SK
j
i ← false

9: end for

10: end for

11: b′ ← AQ(pk1, . . . , pknP
)

12: if (¬clean(πb) ∨ ¬clean(πb−1)) then

13: return b
$
← {0, 1}

14: else

15: return (b′ = b)
16: end if

SendTest(m)

1: Send(πb,m)→ m′

2: return m′

TestTarget(i, s), (j, t), ℓ, ℓ′

1: if (ASKℓ = corrupt) ∨
(ASKℓ′ = corrupt) then

2: return ⊥
3: end if

4: if (b = 0) then

5: ℓ∗ ← ℓ
6: else

7: ℓ∗ ← ℓ′

8: end if

9: s′ ← Create(i, U, j, ℓ∗, s)
10: t′ ← Create(j, S, i, ℓ∗, t)
11: if (s′ = ⊥) ∨ (t′ = ⊥) then

12: return ⊥
13: end if

14: r ← Create(ℓ∗, T, i, j,⊥)
15: πb ← πr

ℓ∗, π
r
ℓ∗ ← ⊥, ctrℓ∗ ←

ctrℓ∗ − 1
16: return (t, r)

Fig. 5: The target privacy security experiment for secure handover
schemes. For conciseness we only give the definition of the overall ex-
periment, the SendTest and TestTarget queries, as all other adversar-
ial queries are identical to the KIND experiment described in Figure
3. Q denotes the set of all queries used in the experiment, i.e. Q =

{Send,Corrupt,Compromise,Reveal,Create,TestTarget, SendTest}.

We note here that it is trivial to link a test session πb in the

TPRIV security experiment to some future session π by using

πb to generate the bootstrap key bk for π, and then simply

Compromise-ing the bk from π. To prevent such an attack,

we require that the test session πb is itself KIND-secure. Note

that since target sessions do not bootstrap from some previous

session, we do not require any previous session π be KIND-

secure. Finally, since the target uses their long-term PKE key

to decrypt ciphertexts from the user session, we cannot allow

the adversary to Corrupt it.

Definition 5 (Strong Handover TPRIV cleanness predicate). A

session πs
i such that πs

i .α = accept in the security experiment

defined in Figure 5 is cleanstr-tpriv if all of the following

conditions hold:
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1) SK
s
i ̸= corrupt (Session key has not been exposed);

2) For all (j, t) ∈ nP × nS such that πs
i UT-matches πt

j ,

SK
t
j ̸= corrupt (Session key not exposed at partner

session);

3) ASKi ̸= corrupt (Target’s long-term key has not been

exposed);

4) If there exists no session πt
j that UT-matches πs

i , but

there exists a session πr
l such that πr

l .i = πs
i .upid or

πr
l .upid = πs

i .upid, and πr
l .bk ̸= ⊥, then SK

r
l ̸=

corrupt (If the target session has no matching UT

partner, then the user partner’s bootstrap key has not

been exposed);

5) If there exists no session πt
j that UT-matches πs

i , but

there exists a session πr
l such that πr

l .i = πs
i .upid or

πr
l .upid = πs

i .upid, and πr
l .hk ̸= ⊥, then SK

r
l ̸=

corrupt (If the target session has no matching UT

partner, then the user partner’s previous handover key

has not been exposed);

Definition 6 (Target Privacy Security for Handover Schemes).

Let HO be a secure handover protocol, and nP , nS ∈ N.

For a particular given predicate clean, and a PPT algorithm

A, we define the advantage of A in the TPRIV game to be:

Adv
TPRIV,clean
HO,nP ,nS ,A(λ) = |Pr[Exp

TPRIV,clean
HO,nP ,nS ,A(λ) = 1]− 1

2 |.
We say that HO is TPRIV-secure if, for all A,

Adv
TPRIV,clean
HO,nP ,nS ,A(λ) is negligible in the security parameter λ.

For completeness, we give a similar definition of security for

source privacy in Appendix D. We also give a formalisation of

the source privacy game in Figure 10. The cleanness predicate

for SPRIV is provided in Appendix E. We finish by giving a

formal definition for path privacy, which encapsulates both

SPRIV and TPRIV.

Definition 7 (Path Privacy for Handover Schemes). Let HO

be a secure handover protocol, and nP , nS ∈ N. For the ad-

vantages for SPRIV (Definition 8) and TPRIV (Definition 6),

and a PPT algorithm A, we define the advantage of A against

path privacy to be: AdvPPRIVHO,nP ,nS ,A(λ) = Adv
TPRIV,clean
HO,nP ,nS ,A(λ)+

Adv
SPRIV,clean
HO,nP ,nS ,A(λ). We say that HO is PPRIV-secure if, for all

A, AdvPPRIVHO,nP ,nS ,A(λ) is negligible in the security parameter

λ.

V. STRONG HANDOVER SCHEME

In this section, we construct a generic strong handover

protocol that captures all notions of security that we describe

in Section IV. We note that our construction is not intended

as a drop-in replacement for a specific handover scheme, but

a generic construction that achieves the strongest degree of

security, which can be downgraded as necessary for a given

setting. For instance, path privacy is too strong for commercial

aviation where the trajectory of an aircraft is regularly tracked

for safety reasons. However, users transitioning between re-

gions in 5G undoubtedly benefit from the additional location-

privacy guarantees of path privacy.

In our construction, we present a strong handover protocol

that captures all previously formalised security notions within

the handover setting (KIND, UNLINK), including our novel

path privacy notions (SPRIV, TPRIV). On a high-level, the

user U generates a ciphertext ctxtT (encrypting a symmetric

key under the target T’s public key) and a KEM public key

epk
U
. Both are passed to the source S for authentication,

which signs and MACs both values. U verifies and deletes the

signature, sending the KEM public key epk
U
, the ciphertext

ctxtT and the MAC tag to T. T verifies the MAC tag and is

satisfied that both values come from some advocated-for U.

T encapsulates a fresh secret under U’s public key epk
U
, and

both parties derive the same set of keys k, hk.

We leverage a shared symmetric authentication key ak

generated by a puncturable PRF between all source and target

nodes to facilitate the path privacy of U on the move. The

PPRF fortifies the security of our construction by puncturing

ak after it anonymously authenticates S to T for the ongo-

ing HO session, preventing replay attacks and guaranteeing

forward secrecy. StrongHO has only three phases, which are

described below and illustrated in Figure 6.

Setup: During this phase long-term asymmetric key pairs,

long-term symmetric secrets and ephemeral bootstrap secrets

are established.

Preparation: During this phase, U communicates a

ephemeral KEM public key and a PKE ciphertext for S to

authenticate T. The phase starts with U deriving new keys

and identifiers mk , tk, idbk from bk . U samples a random key

ck to be communicated to T, in order to introduce additional

entropy into session keys derived between U and T (and thus,

preventing S from also deriving them). This key is encrypted

along with idbk using T’s long-term encryption key epk
T
,

generating ctxtT. U generates a new ephemeral KEM key-pair

epk
U
, eskU. This ensures the key-indistinguishability of the

session keys generated, i.e. achieving perfect forward secrecy.

Next, U encrypts idbk under the long-term encryption key of

S epk
S
. Finally, U generates a MAC tag τ0 on both ciphertexts

along with epk
U

and sends them to S. After receiving the

message, S decrypts ctxtS to obtain idbk , identifying the

correct bk . Upon successful verification of τ0, S extracts a

PPRF authentication key ak′ for the session, using the master

authentication key ak evaluated over epk
U

and ctxtT. S then

calculates a MAC tag τ1 with ak
′ over epk

U
and ctxtT,

which will be verified by T during the Contact phase. Next

S generates σ0 by signing τ1, epk
U

and ctxtT with its long-

term signing key sskS which is then encrypted under tk along

with τ1 to produce c1. The encryption of σ0 prevents an

adversary from identifying S’s identity, and thereby breaking

path privacy, via the publicly available long-term signing key

of S. Finally, S punctures the master authentication key ak for

epk
U

and ctxtT and returns c1 to U.

Contact: At the beginning of this stage U decrypts and

verifies σ0. Upon successful verification, U and T proceed to

authenticate each other and establish a shared secret state.

U initiates the authentication process by sending ctxtT, pkU
and the S-generated MAC tag τ1 to T. Following reception, T

decrypts ctxtT to obtain idbk , ck and identify U via idbk . T then

verifies MAC tag τ1 with ak
′ and, carries on to encapsulate
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U’s public key epk
U

to derive kU and ctxtU. Next, T uses the

newly derived key kU and decrypted ck to generate a set of

keys (k, hk ,mk
′). Using mk

′, T generates a MAC tag τ2 for

(idbk , ctxtU) and finally sends them back to U.

Upon receiving the message, U decapsulates ctxtU and

derives a set of shared keys for the new session. The handover

completes once U successfully verifies the MAC tag τ2.

Trade-offs between Path Privacy and Compromise Re-

silience: One observation we made during our design is

that there seems to exist an inherent trade-off between the

path privacy of a secure HO protocol and its compromise

resilience. Consider a secure HO scheme that achieves source

and target privacy solely via a single shared group key ak.

All nodes, targets and sources, share this single symmetric ak
for authenticating user secrets similarly to our PPRF secret.

It’s clear that this HO achieves source privacy, since the

authentication token could have come from any source node.

Similarly, the HO achieves target privacy, since this token

validly authenticates to any target node. However, this HO

scheme has very weak compromise resilience properties: An

attacker that compromises any node will be able to forge

tokens as if they came from an honest node that has access

to ak, and these tokens appear valid to any other node. It

seems clear that this trade-off is inherent to these properties:

the larger the group that a source S is indistinguishable from,

the larger the set of source nodes an attacker can compromise

to forge messages from S.

In our scheme illustrated in Figure 6, we circumnavigate

this trade-off by exploiting U’s role in authenticating S, at the

expense of computational efficiency. In our construction, we

leverage the role of U, as an intermediary that communicates

with both S and T nodes, to add an additional layer of secu-

rity that preserves both path privacy and group-compromise

resilience. Our strong HO scheme requires node S to generate

signature σ0 on user-communicated parameters (epk
U
∥ctxtT)

as well as the authentication tag τ1, which is subsequently

encrypted to produce the ciphertext c1. The encryption of σ0

preserves the identity of S against any potential attacks to

source privacy. Additionally, by verifying σ0 and stripping it

from the message, S is authenticated in a manner that secures

both path privacy and compromise resilience. Moreover, the

use of PKE to generate ctxtT allows U to authenticate T while

guaranteeing target privacy.

VI. SECURITY ANALYSIS

In this section we provide an analysis of the secure HO pro-

tocol that we introduced in Section V. In particular, we provide

a comprehensive proof sketch for key indistinguishability of

the StrongHO protocol to demonstrate how the analysis of

a security property occurs in our framework. We refer the

reader to Appendix C for detailed proofs for KIND security

of StrongHO. Next we provide proof sketches of all other

properties of our StrongHO protocol.

User

bk , epk T, epk S, spk S

Source

epk S, esk S, spk S, ssk S, bk , ak
Target

epk T, esk T, spk T, ssk T, ak

Setup

SGen(1λ)
$
→ bk SGen(1λ)

$
→ bk

Gen(1λ)
$
→ (epk S, esk S, ak)Gen(1

λ)
$
→ (epk T, esk T, ak)

Prep

KDF(bk )→ mk, tk, idbk KDF(bk )→ mk, tk, idbk
ck

$
← {0, 1}λ

ctxtT ← PKE.Enc(epk T, idbk∥ck )
(epk U, esk U),

$
← KEM.Gen(λ)

ctxtS
$
← PKE.Enc(epk S, idbk)

τ0 ← MAC(mk , ctxtS∥epk U∥ctxtT)
ctxtS, epk U, ctxtT, τ0

idbk ← PKE.Dec(esk S, ctxtS)
abort if τ0 ̸= MAC(mk , ctxtS∥epk U∥ctxtT)

ak 1 ← PPRF.Eval(ak , epk U∥ctxtT)
τ1 ← MAC(ak 1, epk U∥ctxtT∥idbk)

σ0 ← Sign(ssk S, τ1∥ctxtS∥epk U∥ctxtT∥τ0)
c1 ← AE.Enc(tk, σ0∥τ1)

ak ′ ← PPRF.Punc(ak , epk U∥ctxtT)
c1

Contact

(σ0∥τ1)← AE.Dec(tk, c)
abort if 1 ̸= SIG.Vfy(spk S, τ1∥epk U∥ctxtT, σ0)

epk U, ctxtT, τ1

(idbk∥ck )← PKE.Dec(esk T, ctxtT)
ak 1 ← PPRF(ak , epk U∥ctxtT)

abort if τ1 ̸= MAC(ak 1, epk U∥ctxtT∥idbk)
(ctxtU, kU)

$
← KEM.Encaps(epk U)

(k, hk ,mk′)← KDF(kU, ck)
τ2 ← MAC(mk′, idbk∥ctxtU∥epk U∥ctxtT∥τ1)

ak ′ ← PPRF.Punc(ak , epk U∥ctxtT)
ctxtU, τ2

kU
$
← KEM.Decaps(esk U, ctxtU)

(k, hk ,mk′)← KDF(kU, ck)
abort if τ2 ̸= MAC(mk′, idbk∥ctxtU)

Fig. 6: The StrongHO protocol.

We begin with proving the KIND security of the StrongHO

protocol, described in Figure 6. The cryptographic assump-

tions that we use can be found in Appendix F.

Theorem 1 (StrongHO KIND Security). The StrongHO pro-

tocol presented in Figure 6 is KIND-secure under cleanness

predicate cleanstr-kind (capturing perfect forward security).

That is, for any PPT algorithm A against the KIND security

experiment (defined in Figure 3) Adv
KIND,cleanstr-kind,A
StrongHO,nP ,nS

(λ) is

negligible under the prf, pprf, eufcma, ind-cpa, ind-cca, ikcca

and eufcma security of the PRF, PPRF, MAC, KEM, PKE,

PKE and SIG primitives respectively.

Proof. We split the analysis into three cases:

± Case 1: Test session does not UT-match another session

and πs
i .ρ = U;

± Case 2: Test session does not UT-match another session

and πs
i .ρ = T;

± Case 3: Test session has a UT-matching session.

In what follows we define A’s advantage in Case X as

Adv
KIND,cleanstr-kind,A
StrongHO,nP ,nS ,CX

(λ). We proceed via a sequence of

games. We bound the difference in the adversary’s advantage

in each game with the underlying cryptographic assumptions

until the adversary reaches a game where the advantage of

that game equals 0, which shows that adversary A cannot win
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with non-negligible advantage. As shorthand we define with

AdvAGi
(λ) the advantage of A in Game i. We begin with Case

1.

Case 1: Test session does not UT-match another

session and πs
i .ρ = U. By the end of this case we

show that there exists an honest session πt
j such that

ctxtU ∈ πs
i .TH, ctxt

′
U
∈ πt

j .TH, ctxtU = ctxt ′
U
, and epk

U
∈

πs
i .TH, epk

′
U
∈ πt

j .TH, epkU = epk
′
U
.

Game 0 is the initial KIND security game. In Game 1

and Game 2, we guess the index (i, s) of the session πs
i ,

and the index (j, t) of the source partner πt
j respectively,

incurring a tightness loss of nPnS each. In Game 3, we

introduce an abort event eventS that occurs if the Test session

πs
i sets α = accept without an honest US-match and in

the following games, we bound this advantage. In Game 4

the challenger replaces the derived keys mk, tk, idbk =

KDF(bk , ϵ) with uniformly random values m̃k, t̃k, ĩdbk
$
←

{0, 1}PRF (where {0, 1}PRF is the output space of the PRF)

by defining a reduction B1 to a PRF assumption. In Game 5

C aborts if the adversary A is able to produce a value

c1 = AE.Enc(t̃k, σ0∥τ1) that decrypts correctly using t̃k via

a reduction B2 to an AEAD auth challenger Cauth. Whenever

C is required to encrypt/decrypt using t̃k, B2 instead queries

the ciphertext/plaintext Cauth. By Game 4 t̃k is uniformly

random and independent, and thus this substitution of keys

is undetectable. If A can provide a ciphertext c′1 that decrypts

correctly, but was never output by Cauth, then it follows that

A has forged a ciphertext c′1 breaks the auth security of the

AE scheme as in Definition 13. We note that the ciphertext c1
contains (and thus authenticates) the signature σ0, which itself

is computed over all messages received by S from the U. Thus,

U now aborts if they complete the preparation phase without

a US-matching partner, and Pr(eventα) = 0. In Game 6, C
guesses the party index ℓ of the intended target partner of the

test session πs
i , and in Game 7 C introduces an abort event

eventT that occurs if the Test session πs
i sets α = accept

without an honest UT-match. We note that by definition of the

case, πs
i never has a UT-match and thus AdvAG7

(λ) = 0, since

A can never test a session that aborts before α← accept. In

what follows, we bound Pr(eventT). In Game 8, C replaces

ck in ctxtT computed by πs
i with a random string of the same

length c̃k. We construct a reduction B3 that interacts with

an ikcca PKE challenger. At the beginning of the experiment,

when B3 receives the list of public-keys (pk1, . . . , pknP
) from

C, B3 initialises a ikcca challenger Cikcca, and replaces pk l

with pk output by Cikcca. When πs
i computes ctxtT, B3 instead

picks a uniformly random binary string z′ of length equal to

z = idbk∥ck and submits (z, z′) to the PKE.Enc oracle. For

any decryption operations requiring sk ℓ, B3 submits the query

to its respective Dec oracle, except for decrypting ctxtT, where

it simply sets the output to z. By definition of cleanness condi-

tion 8 of cleanstr-kind and Case 1, A cannot issue Corrupt(ℓ).
Thus, A cannot know any information about ck , since it is

never communicated to A. Game 9 is identical to Game 4,

where C replaces the derived keys k, hk,mk′ = KDF(kU, c̃k)

with uniformly random values k̃, h̃k, m̃k′
$
← {0, 1}PRF by

interacting with a PRF challenger. In Game 10 C aborts if

A is able to successfully forge τ2 to the Test session, by

interacting with a MAC challenger Ceufcma. Note that the MAC

tag authenticates all messages sent in the Contact phase, so by

Game 10 πs
i now aborts before accepting without a UT-match

and thus AdvAG10
(λ) = 0. We now transition to Case 2.

Case 2:Test session does not UT-match another session

and πs
i .ρ = T. Game 0 is the standard KIND security game

and in Game 1 we guess the index (i, s) of the target session

πs
i at a tightness loss of nSnP . In Game 2, we replace

the computation of ak1 by πs
i with uniformly random value

ãk1. Specifically, we define a reduction B6 that works as

follows: At the beginning of the game B6 initialises a PPRF

challenger Crandom. Additionally, B6 maintains a lookup table

PARTIES. Whenever, B6 needs to evaluate an input x on the

puncturable state shared by all parties, B6 queries the lookup

table on x. If an entry (P, out) returns, B6 checks if the

current party calling PPRF.Eval is i ∈ P. If so B6 aborts.

Otherwise, B6 uses out as the output value. If there exists no

such entry, B6 queries PPRF.Eval(x) to Crandom, replaces the

computation of ak with the output value, and adds (i, out)
to the lookup table (where i is the party index). Whenever

B6 needs to puncture on an input x, B6 queries the lookup

table in x, recovering entry (P, out). If the current party

i∗ calling PPRF.Punc is i∗ ∈ P, then B aborts. Otherwise,

P
u
←− i∗ and B adds (P, out) under x. Finally, B replaces the

computation of ak1 in the Test session (and any session that

computes ak1) by calling PPRF.C(epk
U
∥ctxtT), returning a

uniformly random ãk1. If the bit b sampled by Crandom is 0,

then we are in Game 1, otherwise we are in Game 2. We

note that this is exactly how all parties engage with their

collective PPRF state, and as such this replacement is sound.

If A can distinguish between the two games, then A breaks

the random game by Definition 11. In Game 3 C aborts if

A is able to successfully forge τ1 to the Test session, by

interacting with a MAC challenger Ceufcma and in Game 4

we guess the honest source session πk
u that produced the

MAC tag τ1 at a tightness loss of nPnS . In Game 5 C
replaces the derived keys mk, tk, idbk = KDF(bk , ϵ) with

uniformly random values m̃k, t̃k, ĩdbk
$
← {0, 1}PRF in πk

u

(and its corresponding user session) by interacting with a PRF

challenger as in Case 1 Game 4. In Game 6, C aborts if A
is able to successfully forge τ0 to the guessed source session

πk
u, by interacting with a MAC challenger Ceufcma as in Case

1, Game 10. By Game 6 we know that there exists an honest

user session that communicated with πk
u without modification.

This πk
u produced τ1 honestly, which authenticates the public

key epk
U

and ciphertext ctxtT received by the target session

πs
i . Thus, by Game 6 we have that there exists some honest

user session that UT-matches πs
i , and by definition of Case 2

AdvAG6
(λ) = 0. Now we transition to Case 3.

Case 3: Test session has a UT-matching session.

Game 0 is the initial KIND security game and in Game 1, C
guesses the index of the test session (i, s) and its UT matching
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partner πt
j at a tightness loss of nP

2nS
2. In Game 2, C

replaces the key kU derived in the test session πs
i with the

uniformly random and independent value k̃U. WLOG we as-

sume that πs
i .ρ = U, but the same argument (modulo switching

between πs
i and πt

j) applies if πs
i .ρ = T. C defines a reduction

B11 that interacts with an ind-cpa KEM challenger, replacing

the epk
U

generation by πs
i (resp. πt

j), and the ciphertext ctxtU

sent by πt
j (resp. πs

i ) with ẽpk
U

and ciphertext c̃txtU received

from the ind-cpa KEM challenger, and the computation of kU
with the output key. Detecting the replacement of kU implies

an efficient distinguishing PPT algorithm A against ind-cpa
security of KEM. In Game 3, C replaces the derived keys

k, hk,mk′, tk′
$
← KDF(k̃U, ck) with uniformly random values

k̃, h̃k, m̃k′ t̃k′
$
← {0, 1}PRF by interacting with a PRF

challenger as in Game 5 of Case 2. Here we emphasise that as

a result of these changes, the session key k̃ and the handover

key h̃k are now both uniformly random and independent of the

protocol execution regardless of the bit b sampled by C, thus

A has no advantage in guessing the bit b. Thus AdvAG3
(λ) = 0.

Theorem 2 (StrongHO UNLINK Security). The StrongHO

protocol presented in Figure 6 is UNLINK-secure under clean-

ness predicate cleanstr-unlink. That is, for any PPT algorithm A
against the UNLINK security experiment (defined in Figure 4),

Adv
UNLINK,cleanstr-unlink,A
StrongHO,nP ,nS

(λ) is negligible under the prf, eufcma,

ind-cpa, ind-cca, ikcca and eufcma security of the PRF, MAC,

KEM, PKE, PKE and SIG primitives respectively.

Proof. Here we provide a proof sketch. In StrongHO there

are only two values that are linked to other sessions owned by

the same test session πs
i - the bootstrap key bk , which may be

shared with some previous handover user session owned by

party i, and the handover key hk , which might be re-used in

some future user session owned by party i. All other values

are generated independently of all other sessions by the user.

Thus, we must prove that bk in the previous user session, and

hk in the test session πs
i are completely independent from

other sessions owned by the same user.

We can use the proof of KIND security to replace hk with

a uniformly random and independent value h̃k in the previous

session. This is sufficient to show that the bootstrap key bk

used in the test session πs
i is independent of hk computed in

the previous session. Similarly, we can use the proof of KIND

security to replace the computation of hk in the test session,

which is sufficient to show that the bootstrap key used in some

proceeding session is independent of the handover key used in

the test session - again, this corresponds exactly with proving

KIND for the test session and its previous session (if any exist).

Thus, incurring a factor of 2 by the bounds of the KIND proof

of StrongHO, StrongHO achieves UNLINK security.

Theorem 3 (StrongHO SPRIV Security). The StrongHO pro-

tocol presented in Figure 6 is SPRIV-secure under cleanness

predicate cleanstr-spriv. That is, for any PPT algorithm A
against the SPRIV security experiment (defined in Figure

10) Adv
SPRIV,cleanstr-spriv,A

StrongHO,nP ,nS
(λ) is negligible under the prf, pprf,

eufcma, ind-cpa, ind-cca, ikcca and eufcma security of the

PRF, PPRF, MAC, KEM, PKE, PKE and SIG primitives.

Proof. Here we provide a proof sketch. We note that the only

value output by the source is c1, which contains σ0, τ1. Since

τ1 is computed from ak , (which all source parties share), this

cannot be used to distinguish the source S. The signature σ0,

however is signed using the public long-term signing key spk
S

of S, which could reveal the identity of the S to a potential

adversary. However, we encrypt σ0 along with τ1, and thus

only the U who shares tk with the source learns the identity

of S. Therefore, any modifications to c1 will break the AE.auth
security of our construction.

However, the user does use the long-term public key epk
S

of the source to encrypt the bootstrap key identifier idbk . Thus,

we must argue that the ciphertext itself cannot leak information

about the identity of the source. Since the bootstrap key

identifier idbk is computed from the bootstrap key bk , by

proving that the initial bootstrap key bk used by the source

is uniformly random and independent (either by definition

of the framework, if the source was not bootstrapped from

some previous target session, or via a KIND argument for

the previous session where the source acted as a target), then

we can iteratively replace idbk with a uniformly random value

ĩdbk and this does not link to a previous session. However, the

ciphertext itself might identify the source. Thus, we replace

the generation of ciphertexts ctxtS by initialising a PKE ikcca

challenger for the public keys of the test session πb’s owner

party πb.spid and the other adversarially-nominated session

πb′ ’s owner party πb′ .spid . By the ikcca security of the PKE

any adversary that is capable of associating the public key of

S with ctxtS can also be used to break the ikcca-security of the

PKE scheme. Thus, by the same arguments as in the KIND

proof of StrongHO and the ikcca security of the PKE scheme,

A has negligible advantage in breaking SPRIV security.

Theorem 4 (StrongHO TPRIV Security). The StrongHO

protocol presented in Figure 6 is TPRIV-secure under clean-

ness predicate cleanstr-tpriv. That is, for any PPT algorithm

A against the TPRIV security experiment (defined in Figure

5) Adv
TPRIV,cleanstr-tpriv,A

StrongHO,nP ,nS
(λ) is negligible under the prf, pprf,

eufcma, ind-cpa, ind-cca, ikcca and eufcma security of the

PRF, PPRF, MAC, KEM, PKE, PKE and SIG primitives.

Proof. We provide here a proof sketch. We note that the only

values that the target party uses across multiple sessions is the

handover key hk derived in this session, and the long-term

PKE public key. We note that we can replace the handover key

hk in this protocol execution with a uniformly random value

h̃k by the KIND security of the StrongHO protocol. Also,

similarly to the SPRIV security analysis of the StrongHO

protocol, we can argue that the ciphertext generated by the user

(encrypting the fresh entropy ck ) can be used to identify the

target by the key indistinguishability of the PKE scheme. Thus,

by the same arguments as in the KIND proof of StrongHO

and the ikcca security of the PKE scheme, A has negligible

advantage in breaking TPRIV security.
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Thus, by Theorem 3 and Theorem 4, we can conclude that

StrongHO achieves PPRIV. We formalise this in Theorem 5.

Theorem 5 (StrongHO PPRIV Security). The StrongHO

protocol presented in Figure 6 is PPRIV-secure.

Proof. The proof follows from Theorem 3 and Theorem 4.

VII. CONCLUSION AND REMARKS

In this paper we have presented a formalisation framework

for secure handovers recognising its uniqueness as a distinct

primitive. We leverage our formalisation to propose path pri-

vacy, a stronger notion of privacy against insider attacker and,

we proceed to capture this notion in our proposed StrongHO

scheme. We further highlight that the distinctness of handovers

as a primitive is fundamental to capturing our proposed

property of path privacy. Other comparable primitives such as

key exchanges are not designed to facilitate secure transition of

an existing session from one party to another and thus are ill-

fitted to integrate path privacy within their constructions. By

recognising handovers as a distinct and standalone primitive,

we were able to identify unique security challenges inherent

to its construction and propose suitable security properties.

We note that our HO formalism only implicitly models

trusted nodes, such as those represented by 5G home net-

works, which may limit its applicability in some contexts.

Furthermore, our HO model assumes honest-but-curious S

and T nodes for all captured security notions except for path

privacy. Naturally, this assumption may not hold in real-

world adversarial settings where compromised nodes pose

significant risks. Extending our HO construction to capture key

indistinguishability against a corrupt S node maybe desirable

within this context.

Nevertheless, the modularity and flexibility of our frame-

work opens many new avenues for research. Our formalisation

can be leveraged to analyse the security of known HO con-

structions such as 5G-HO and the proposed secure LDACS-

HO for aviation, as mapped in Figure 9. Other constructions

that could be considered as handover schemes in our frame-

work include OAuth and eduroam, and applying our frame-

work to these may highlight unknown security properties.
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APPENDIX A

MAPPING 5G-HO TO SECURE HO FRAMEWORK

In this section we demonstrate the universality and practical

applicability of our formalised HO framework by mapping the

existing 5G HO protocol into our syntax presented in Section

IV. We further argue that in its current iteration, the 5G HO

protocol lacks strong security guarantees against various attack

vectors, as demonstrated by the lack of forward secrecy and

post compromise security and other vulnerabilities as outlined

by [1], [4]±[6].

The 3GPP 5G security standard outlines two main handover

protocols, Xn- and N2-based, depending on the available net-

work interfaces [1]. Despite their differences, both protocols

are treated as equal alternatives in the 5G specification without

clear recommendations. We focus on the Xn-based handover,

which features direct communication between source and

target base stations (known as gNBs within 5G), reducing

message transmission to the core network (CN). In this section,

we present a simplified 5G handover protocol that integrates

all CN functions into a single abstract entity represented

by the source gNB SRAN. This abstraction is justifiable

since the internal communication of the CN guarantees con-

fidentiality, integrity, authenticity, and replay protection. Our

abstraction avoids unnecessary overhead from modeling CN

UE
SUPI,kSEAF, kAMF,

kgNB,NH,NCC,

SRANID

SRAN
SRANID,CRNTI,
kgNB,NH,NCC,
PDUSessionID

TRAN

TRANID

CN
NH,NCC, SRANID,

kSEAF, kAMF,
PDUSessionID

k∗
gNB
← KDF(NH,TRANID)

m1 :HO Req

m2 :HO Resp

m3 :TRAN Inf

NH← KDF(kAMF,NH)
k∗
gNB
← KDF(NH,TRANID)

NCC← NCC + 1
m4 :HO Exec

m5 :HO Conf

NH← KDF(kAMF,NH)
NCC← NCC + 1

m6 :Conf Resp

m7 :ReleaseResources

m8 :HO Fin

Fig. 7: 5G-HO protocol.

internal messages, which are assumed secure. Furthermore,

the 3GPP architecture presumes a separation of Radio Access

Network (RAN) and CN due to the precedent set by the

legacy architectures of 3G and 4G. However, as [38], [39]

point out co-locating RAN and CN architectures is a common

deployment practice, particularly with the recent advances

in implementation technology and the use-case specific re-

quirements of IoT which necessitates low-latencies and high

throughput. The current 3GPP standard fails to capture these

deployment-specific nuances.

In 5G handover, four network entities are involved in

executing the protocol, including user entity UE, source gNB

(SRAN), target gNB (TRAN) and core network (CN). The

execution of this protocol begins with prior keying parameters

that were acquired during the 5G-AKA protocol. These param-

eters are: i) kSEAF, a key shared between the UE and the CN;

ii) kAMF, a key derived from kSEAF; iii) kgNB, a session key

generated by the UE and SRAN; iv) NH, an intermediate key

along with its corresponding counter, NCC, which are derived

by the UE and SRAN. The 5G handover protocol, illustrated

in Figure 7, operates as follows 2:

± m1: The SRAN requests a transfer of a UE to a TRAN

by sending a newly derived session key (k∗gNB) along with

[TRANID, NCC,CRNTI, PDUSessionID]. We map m1

to the Supp phase of our framework.

± m2: Upon acceptance of the UE by the TRAN, a

handover acknowledgement response is issued. We map

m2 to the Supp phase of our framework.

± m3: After receiving m2, the TRAN encrypts it along with

their identity (TRANID) using the session key (kgNB) and

then forwards it to the UE. We map m3 to the Prep phase

of our framework.

± m4: Upon receipt of the message, the UE derive a new

session key (k∗gNB) to encrypt the ReleaseResources

message and send it to the TRAN. We map m4 to the

Cont phase of our framework.

± m5&m6: The TRAN and CN have established a mutual

agreement on session identifiers and temporary keys. We

map m5 and m6 to the Supp phase of our framework.

2Details of the full protocol can be found in [TS23.502] and [TS 38.300].
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± m7: The TRAN informs the SRAN that all resources

allocated to the UE can now be released. We map m7 to

the Supp phase of our framework.

± m8: Finally, the CN informs the UE of a successful

handover and registration. We map m8 to the Prep phase

of our framework.

In Figure 8 we present the mapping of the conventional

5G Handover protocol [1] to our handover framework. In our

mapping we consider all communications with CN as internal

operations of source SRAN and we treat SRAN as an honest

party who voluntarily deletes all state information and related

keys pertaining to the now completed handover. Consequently,

we treat the transactions taking place between the target TRAN

and CN as an execution of the Supp algorithm. Interestingly,

the execution of the Supp, Prep and Cont algorithms overlap

and occur simultaneously, which ensures that our mapping

preserves the correctness of the original protocol flow.

APPENDIX B

MAPPED HO CONSTRUCTIONS

In Figure 9 we have illustrated known HO constructions

within our formalised framework.

APPENDIX C

FULL KIND PROOFS FOR StrongHO

Here we provide detailed full proof for KIND security of

our StrongHO construction.

Proof. We split the analysis into three cases:

± Case 1: Test session does not UT-match another session

and πs
i .ρ = U

± Case 2: Test session does not UT-match another session

and πs
i .ρ = T

± Case 3: Test session has a UT-matching session.

We proceed via a sequence of games. We bound the

difference in the adversary’s advantage in each game with

the underlying cryptographic assumptions until the adversary

reaches a game where the advantage of that game equals 0,

which shows that adversary A cannot win with non-negligible

advantage.

We begin by dividing the proof into three separate cases

(and denote with Adv
KIND,cleanstr-kind,A
StrongHO,nP ,nS ,Ci

(λ) the advantage of

the adversary in winning the key indistinguishability game in

Case i) where the query Test(i, s) has been issued. It follows

that Adv
KIND,cleanstr-kind,A
StrongHO,nP ,nS

(λ) ≤ Adv
KIND,cleanstr-kind,A
StrongHO,nP ,nS ,C1

(λ) +

Adv
KIND,cleanstr-kind,A
StrongHO,nP ,nS ,C2

(λ) + Adv
KIND,cleanstr-kind,A
StrongHO,nP ,nS ,C3

(λ)

As shorthand we define with AdvAGi
(λ) the advantage of A

in Game i. We begin with Case 1.

Case 1: Test session does not UT-match another session

and πs
i .ρ = U. By the definition of the case (and the

cleanness predicate defined in Definition 1), we assume that

the adversary A has not been able to compromise the bootstrap

key bk of the Test session before the Test session completes,

nor the long-term public key pk of the target session, nor

the long-term public key of the source session. By the end

of this case we show that there exists an honest session πt
j

such that ctxtU ∈ πs
i .TH, ctxt

′
U
∈ πt

j .TH, ctxtU = ctxt ′
U
, and

epk
U
∈ πs

i .TH, epk
′
U
∈ πt

j .TH, epkU = epk
′
U
.

Game 0 This is the initial KIND security game. Thus

Adv
KIND,cleanstr-kind,A
StrongHO,nP ,nS ,C1

(λ) ≤ AdvAG0
(λ)

Game 1 In this game, we guess the index (i, s) of the session

πs
i , and abort if during the execution of the experiment, a

query Test(i∗, s∗) is received and (i∗, s∗) ̸= (i, s). Thus:

AdvAG0
(λ) ≤ nPnS · Adv

A
G1

(λ).

Game 2 In this game, we guess the index (j, t) of the source

partner πt
j , and abort if during the execution of the experiment,

πs
i US-matches with some session πt∗

j∗ , but (j∗, t∗) ̸= (j, t).

Thus: AdvAG1
(λ) ≤ nSnP · Adv

A
G2

(λ).

Game 3 In this game we introduce an abort event eventS
that occurs if the Test session πs

i sets α = accept without

an honest US-match. In the following games, we bound this

advantage and thus: AdvAG2
(λ) ≤ Pr(eventS) + AdvAG3

(λ).

Game 4 In this game the challenger replaces the derived keys

mk, tk, idbk = KDF(bk , ϵ) with uniformly random values

m̃k, t̃k, ĩdbk
$
← {0, 1}PRF (where {0, 1}PRF is the output space

of the PRF) by defining a reduction B1 that interacts with

a PRF challenger. By definition of Case 1 and the clean-

ness predicate in Definition 1, A cannot issue Compromise

queries before πs
i .α = accept, and since bk is already

uniformly random and independent, this change is sound.

Thus: AdvAG3
(λ) ≤ AdvAG4

(λ) + Adv
B1,prf
PRF (λ).

Game 5 In this game, C aborts if the adversary A is able

to produce a value c1 = AE.Enc(t̃k, σ0∥τ1) that decrypts

correctly using t̃k. Specifically, we introduce a reduction

B2 that initialises an auth challenger Cauth. Whenever C
is required to encrypt/decrypt using t̃k, B2 instead queries

auth to Cauth. By Game 4 t̃k is uniformly random and

independent, and thus this substitution of keys is undetectable.

If A can provide a ciphertext c′1 that decrypts correctly,

but was never output by Cauth, then it follows that A has

forged a ciphertext c′1 breaks the auth security of the AE

scheme as in Definition 13. We note that the ciphertext c1
contains (and thus authenticates) the signature σ0, which itself

is computed over all messages received by S from the U.

Thus, U now aborts if they complete the preparation phase

without a US-matching partner, and Pr(eventα) = 0. Thus:

AdvAG4
(λ) ≤ AdvAG5

(λ) + Adv
B2,auth
AE (λ).

Game 6 In this game, C guesses the party index ℓ of the

intended target partner of the test session πs
i , and aborts if

πs
i .pid ̸= ℓ. Thus: AdvAG5

(λ) ≤ nP · Adv
A
G6

(λ).

Game 7 In this game C introduces an abort event eventT that

occurs if the Test session πs
i sets α = accept without an

honest UT-match. Thus: AdvAG6
(λ) ≤ Pr(eventT)+AdvAG7

(λ).
We note that by definition of the case, πs

i never has a UT-match

and thus AdvAG7
(λ) = 0, since A can never test a session

that aborts before α ← accept. In what follows, we bound

Pr(eventT).

Game 8 In this game, C replaces ck in ctxtT computed by

πs
i with a random string of the same length c̃k. We construct

a reduction B3 that interacts with an ikcca PKE challenger.
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USGen(⊥) :

1: {0, 1}λ
$
→ (kAMF , kgNB ,NH ), GUTI

2: (kAMF , kgNB ,NH )
$
→ bk

SSGen(⊥) :

1: {0, 1}λ
$
→ (kAMF , kgNB ,NH ), GUTI, SRANID

2: (kAMF , kgNB ,NH )
$
→ bk

USetUp(GUTI, SRANID, bk, U) :

1: st.ρ = U

2: st.id = GUTI

3: st.spid = SRANID

4: st.tpid = ⊥
5: st.α = prep

6: st.bk = bk
7: return (st)

SSetUp(SRANID, GUTI, TRANID, bk, S) :

1: st.ρ = S

2: st.id = SRANID

3: st.upid = GUTI

4: st.tpid = TRANID

5: st.α = supp

6: st.bk = bk
7: return (st)

Supp(st, bk,m)

1: if (st.ρ = S) ∧ (st.α = supp) then

2: st.k = k∗gNB ← KDF(NH , TRANID)
3: m1 = TRANID, k∗gNB , NCC, CRNTI
4: st.α = supp-cont
5: return (st,m1)
6: else if (st.ρ = S) ∧ (st.α = supp-cont) then

7: NCC, CRNTI, CRNTI∗← m
8: st.α = prep

9: return (st,⊥)
10: else if (st.ρ = S) ∧ (st.α = supp-proc) then

11: NH ∗ = KDF(kAMF ,NH )
12: NCC∗ = NCC + 1
13: m6 = NH ∗, NCC∗

14: st.α = supp-fin
15: return (st,m6)
16: else if (st.ρ = S) ∧ (st.α = supp-fin) then

17: if m = ReleaseResources then

18: st.α = prep-fin
19: else

20: st.α = reject

21: end if

22: return (st)
23: else if (st.ρ = T) ∧ (st.α = supp-start) then

24: TRANID, k∗gNB , NCC, CRNTI← m
25: st.k = k∗gNB

26: CRNTI∗
$
← {0, 1}16

27: m2 = NCC, CRNTI, CRNTI∗

28: st.α = contact

29: return (st,m2)
30: else if (st.ρ = T) ∧ (st.α = supp-cont) then

31: m5 = PDU-SID
32: st.α = supp-proc
33: return (st,m5)
34: else if (st.ρ = T) ∧ (st.α = supp-fin) then

35: NH ∗, NCC∗← m
36: st.hk = NH ∗

37: m7 = ReleaseResources

38: return (st,m7)
39: end if

TSGen(⊥)

1: {0, 1}λ
$
→ TRANID

TSetUp(TRANID, SRANID,⊥, T)

1: {0, 1}λ
$
→ TRANID

2: st.ρ = T

3: st.id = TRANID

4: st.uid = ⊥
5: st.spid = SRANID

6: st.α = supp-start
7: st.bk = ⊥
8: return (st)

Prep(st, bk,m)

1: if (st.ρ = S) ∧ (st.α = prep) then

2: m3 = Enc{kgNB , TRANID, NCC, CRNTI
∗}

3: st.α = supp-proc
4: return (st,m3)
5: else if (st.ρ = U) ∧ (st.α = prep) then

6: TRANID, NCC, CRNTI∗← Dec{kgNB ,m}
7: st.tpid = TRANID

8: st.hk = NH ∗ = KDF(st.KAMF ,NH )
9: st.k = k∗gNB = KDF(NH , TRANID)

10: NCC = NCC + 1
11: st.α = contact

12: return (st,⊥)
13: else if (st.ρ = S) ∧ (st.α = prep-fin) then

14: m8 = Enc(kAMF , RegAccept)
15: return (st,m8)
16: else if (st.ρ = U) ∧ (st.α = prep-fin) then

17: if (Dec(kAMF ,m) = RegAccept) then

18: st.α = accept

19: else

20: st.α = reject

21: end if

22: return (st)
23: end if

Cont(st,m)

1: if (st.ρ = U) ∧ (st.α = contact) then

2: m4 = Enc{st.k, RRC}
3: st.α = prep-fin
4: return (st,m4)
5: else if (st.ρ = T) ∧ (st.α = contact) then

6: if (Dec(st.k,m) = RRC) then

7: st.α = supp-proc
8: else

9: st.α = reject

10: end if

11: return (st,⊥)
12: end if

Fig. 8: The 5G Handover protocol as a Secure Handover Scheme.

At the beginning of the experiment, when B3 receives the

list of public-keys (pk1, . . . , pknP
) from C, B3 initialises a

ikcca challenger Cikcca, and replaces pk l with pk output by

Cikcca. When πs
i computes ctxtT, B3 instead picks a uniformly

random binary string z′ of length equal to z = idbk∥ck and

submits (z, z′) to the PKE.Enc oracle. For any decryption

operations requiring sk ℓ, B3 submits the query to its respective

Dec oracle, except for decrypting ctxtT, where it simply sets

the output to z. When the random bit b sampled by the

PKE challenger is 0, ctxtT contains the encryption of z, so

we are in Game 7, otherwise we are in Game 8. By

definition of cleanness condition 8 of cleanstr-kind and Case

1, A cannot issue Corrupt(ℓ). Thus, A cannot know any

information about ck , since it is never communicated to A.

Thus Pr(eventT) ≤ AdvAG8
(λ) + AdvikccaPKE,B3

().

Game 9 Similar to Game 4, in this game C replaces the

derived keys k, hk,mk′ = KDF(kU, c̃k) with uniformly ran-

dom values k̃, h̃k, m̃k′
$
← {0, 1}PRF by defining a reduction

B4 that interacts with a PRF challenger. Thus: AdvAG8
(λ) ≤

AdvAG9
(λ) + Adv

B4,prf
PRF (λ).

Game 10 In this game, C introduces an abort event that trig-

gers if A is able to successfully forge τ2 to the Test session, by

defining a reduction B5 that interacts with a MAC challenger

Ceufcma. Thus AdvAG9
(λ) ≤ AdvAG10

(λ) + Adv
B5,eufcma
MAC (λ).

Note that the MAC tag authenticates all messages sent in

the Contact phase, so by Game 10 πs
i now aborts before

accepting without a UT-match and thus AdvAG10
(λ) = 0.

We now transition to Case 2.
Case 2:Test session does not UT-match another session

and πs
i .ρ = T. By the definition of the case, we assume that

the adversary A has not been able to compromise the user

partner’s bootstrap key bk before the Test session completes,

nor the long-term secret keys sk ak of the source session.
Game 0 This is the standard KIND security game. Thus

Adv
KIND,cleanstr-kind,A
StrongHO,nP ,nS ,C2

(λ) ≤ AdvAG0
(λ)
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U S T

Setup

Setup(Gen(1λ), SGen(1λ))
$
→ st

Setup(Gen(1λ), SGen(1λ))
$
→ st

Setup(Gen(1λ))
$
→ st

Preparation
m3.T Info

Key+Param Compute
m8.Fin

Param Gen
m1.Req

Message Process

m4.Resp Fwd

Key Compute
m5.Exit

m2.T Info

Support
m1.Req

Key Compute Key Compute
m2.Resp

m5.Conf

Key+Param Compute

m6.Conf Resp

m7.ReleaseResources

Message Process

m2.Req Fwd

Key Compute+Param Gen

m3.Resp

m6.Ack

m1.SessionFwd

m3.T Notif

Contact m4.T Contact

m4.Conn Req

ms.Conn Conf

Fig. 9: Mapping existing HO schemes to our framework.

5G-HO LDACS-HO CPDLC-HO

Game 1 In this game, we guess the index (i, s) of the target

session πs
i , and abort if during the execution of the experiment,

a query Test(i∗, s∗) is received and (i∗, s∗) ̸= (i, s). Thus:

AdvAG0
(λ) ≤ nSnP · Adv

A
G1

(λ).

Game 2 In this game we replace the computation of ak1 by

πs
i with uniformly random value ãk1. Specifically, we define

a reduction B6 that works as follows: At the beginning of the

game B6 initialises a PPRF challenger Crandom. Additionally,

B6 maintains a lookup table PARTIES. Whenever, B6 needs

to evaluate an input x on the puncturable state shared by all

parties, B6 queries the lookup table on x. If an entry (P, out)

returns, B6 checks if the current party calling PPRF.Eval is

i ∈ P. If so B6 aborts. Otherwise, B6 uses out as the output

value. If there exists no such entry, B6 queries PPRF.Eval(x)
to Crandom, replaces the computation of ak with the output

value, and adds (i, out) to the lookup table (where i is the

party index). Whenever B6 needs to puncture on an input x, B6
queries the lookup table in x, recovering entry (P, out). If the

current party i∗ calling PPRF.Punc is i∗ ∈ P, then B aborts.

Otherwise, P
u
←− i∗ and B adds (P, out) under x. Finally, B

replaces the computation of ak1 in the Test session (and any

session that computes ak1) by calling PPRF.C(epk
U
∥ctxtT),

returning a uniformly random ãk1. If the bit b sampled by

Crandom is 0, then we are in Game 1, otherwise we are in

Game 2. We note that this is exactly how all parties engage

with their collective PPRF state, and as such this replacement

is sound. If A can distinguish between the two games, then

A breaks the random game by Definition 11. Thus we have:

AdvAG1
(λ) ≤ AdvAG2

(λ) + Adv
B6,random
PPRF (λ).

Game 3 In this game C introduces an abort event that triggers

if A is able to successfully forge τ1 to the Test session,

without some honest S session that outputs τ1, by defining a

reduction B7. Since ãk1 is uniformly random and independent

by Game 2. Thus AdvAG2
(λ) ≤ AdvAG3

(λ)+Adv
B7,eufcma
MAC (λ).

Game 4 In this game we guess the honest source session πk
u

that produced the MAC tag τ1 which must exist by Game 3.

Thus we have: AdvAG3
(λ) ≤ nPnS · Adv

A
G4

(λ).

Game 5 In this game C replaces the derived keys

mk, tk, idbk = KDF(bk , ϵ) with uniformly random values

m̃k, t̃k, ĩdbk
$
← {0, 1}PRF in πk

u (and its corresponding

user session) by defining a reduction B8 that interacts with

a PRF challenger as in Case 1 Game 4. By definition

of Case 2 and the cleanness condition 6 in Definition

1, A cannot issue relevant Compromise queries. Thus:

AdvAG4
(λ) ≤ AdvAG5

(λ) + Adv
B8,prf
PRF (λ).

Game 6 In this game, C introduces an abort event that triggers

if A is able to successfully forge τ0 to the guessed source

session πk
u, without some honest U session that outputs τ0.

C does so by introducing a reduction B10 that interacts with

a MAC challenger Ceufcma as in Case 1, Game 10. Thus

A cannot modify messages to πk
u and we have AdvAG5

(λ) ≤

AdvAG6
(λ) + Adv

B10,eufcma
MAC (λ). By Game 6 we know that

there exists an honest user session that communicated with

πk
u without modification. This πk

u produced τ1 honestly, which

authenticates the public key epk
U

and ciphertext ctxtT received

by the target session πs
i . Thus, by Game 6 we have that there

exists some honest user session that UT-matches πs
i , and by

definition of Case 2 AdvAG6
(λ) = 0.

Now we transition to Case 3.

Case 3: Test session has a UT-matching session.

Game 0 This is the initial KIND security game. Thus

Adv
KIND,cleanstr-kind,A
StrongHO,nP ,nS ,C3

(λ) ≤ AdvAG0
(λ).

Game 1 In this game, C guesses the index of the test session

(i, s) and the ist UT matching partner πt
j and aborts if their

guess was incorrect. Thus AdvAG0
(λ) ≤ nP

2n2
S · Adv

A
G1

(λ).

Game 2 In this game, C replaces the key kU derived in the

test session πs
i with the uniformly random and independent

value k̃U. WLOG we assume that πs
i .ρ = U, but the same

argument (modulo switching between πs
i and πt

j) applies if

πs
i .ρ = T. C defines a reduction B11 that interacts with an

ind-cpa KEM challenger, replacing the epk
U

generation by

πs
i (resp. πt

j), and the ciphertext ctxtU sent by πt
j (resp. πs

i )

with ẽpk
U

and ciphertext c̃txtU received from the ind-cpa
KEM challenger, and the computation of kU with the output

key. Detecting the replacement of kU implies an efficient
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distinguishing PPT algorithm A against ind-cpa security of

KEM. Thus AdvAG1
(λ) ≤ AdvAG2

(λ) + Adv
B11,ind-cpa
KEM (λ).

Game 3 In this game, C replaces the derived keys

k, hk,mk′, tk′
$
← KDF(k̃U, ck) with uniformly random values

k̃, h̃k, m̃k′ t̃k′
$
← {0, 1}PRF by defining a reduction B12 that

interacts with a PRF challenger as in Game 5 of Case 2.

Thus AdvAG2
(λ) ≤ AdvAG3

(λ) + Adv
B12,prf
PRF ().

Here we emphasise that as a result of these changes, the

session key k̃ and the handover key h̃k are now both uniformly

random and independent of the protocol execution regardless

of the bit b sampled by C, thus A has no advantage in guessing

the bit b. Thus AdvAG3
(λ) = 0.

APPENDIX D

SECURITY DEFINITION FOR SOURCE PRIVACY

We give the explicit definition of SPRIV security below and

state A’s advantage in winning this game.

Exp
SPRIV,clean
nS,nP ,A

(λ)

1: b
$
← {0, 1}

2: for i = 1 to nP do

3: pki, ski ← Gen

4: ASKi ← false

5: ctri ← 1
6: for j = 1 to nS do

7: SSK
j
i ← false

8: SK
j
i ← false

9: end for

10: end for

11: b′ ← AQ(pk1, . . . , pknP
)

12: if (¬clean(πb)∨¬clean(πb−1))
then

13: return b
$
← {0, 1}

14: else

15: return (b′ = b)
16: end if

SendTest(m)

1: Send(πb,m)→ m′

2: return m′

TestSource((i, s, s′), (j, t), (j′, t′), ℓ)

1: if ((s ̸= ⊥)∧(s′ = ⊥))∨((s =
⊥) ∧ (s′ ̸= ⊥)) then

2: return ⊥
3: end if

4: if ((t ̸= ⊥)∧(t′ = ⊥))∨((t =
⊥) ∧ (t′ ̸= ⊥)) then

5: return ⊥
6: end if

7: if (SKs
i = corrupt) ∨

(SKs′

i = corrupt)∨ (SKt
j =

corrupt) ∨ (SKt′

j′ =
corrupt) then

8: return ⊥
9: end if

10: s← Create(i, U, j, ℓ, s)
11: s′ ← Create(i, U, j, ℓ, s′)
12: t← Create(j, S, i, ℓ, t)
13: t′ ← Create(j′, S, i, ℓ, t′)
14: if (s = ⊥) ∨ (s′ = ⊥) ∨ (t =
⊥) ∨ (t′ = ⊥) then

15: return ⊥
16: end if

17: if b = 0 then

18: πb ← πt
j

19: πb−1 ← πt′
j′

20: r ← Create(ℓ, T, i, j,⊥)
21: πs′

i π
t
j, π

t′
j′ ← ⊥

22: else

23: πb−1 ← πs
i

24: πb ← πs′
i

25: r ← Create(ℓ, T, i′, j,⊥)
26: πs

i ← πs′
i

27: πs′
i π

t
j, π

t′
j′ ← ⊥

28: end if

29: return (s, r)

Fig. 10: The source privacy security experiment for secure handover
schemes. For conciseness we only give the definition of the overall ex-
periment, the SendTest and TestSource queries, as all other adversar-
ial queries are identical to the KIND experiment described in Figure
3. Q denotes the set of all queries used in the experiment, i.e. Q =

{Send,Corrupt,Compromise,Reveal,Create,TestSource, SendTest}.

Definition 8 (Source Privacy Security for Handover Schemes).

Let HO be a secure handover protocol, and nP , nS ∈ N.

For a particular given predicate clean, and a PPT algorithm

A, we define the advantage of A in the SPRIV game to be:

Adv
SPRIV,clean
HO,nP ,nS ,A(λ) = |Pr[Exp

SPRIV,clean
HO,nP ,nS ,A(λ) = 1]− 1

2 |.
We say that HO is SPRIV-secure if, for all A,

Adv
SPRIV,clean
HO,nP ,nS ,A(λ) is negligible in the security parameter λ.

APPENDIX E

SPRIV CLEANNESS PREDICATE FOR STRONG HANDOVER

PROTOCOL

We note here that it is trivial to link a test session πb in

the SPRIV security experiment simply by the adversary using

some previous session π to generate the bootstrap key bk for

πb, and then simply Reveal-ing the hk from π. To prevent such

an attack, we require both that the test session πb is itself

KIND-secure, and also that any previous session π that πb

is bootstrapped from is also KIND-secure. Finally, since the

source uses their long-term PKE key to decrypt ciphertexts

from the user session, we cannot allow the adversary to

Corrupt it.

Definition 9 (Strong Handover SPRIV cleanness predicate). A

session πs
i such that πs

i .α = accept in the security experiment

defined in Figure 10 is cleanstr-spriv if all of the following

conditions hold:

1) SK
s
i ̸= corrupt (Session key has not been exposed);

2) For all (j, t) ∈ nP × nS such that πs
i US-matches πt

j ,

SK
t
j ̸= corrupt (Session key not exposed at partner

session);

3) ASKi ̸= corrupt (The source long-term key has not

been exposed);

4) If there exists a session πt
j such that πs

i .bk = πt
j .bk , then

SSK
t
j ̸= corrupt (Any matching bootstrap key has not

been exposed);

5) If there exists a session πt
j such that πs

i .bk = πt
j .hk , then

SK
t
j ̸= corrupt (Any matching handover key has not

been exposed);

6) If there exists a session πt
j such that πs

i .bk = πt
j .hk ,

then cleanstr-kind(π
t
j) (Any previous handover session has

derived good handover keys);

APPENDIX F

CRYPTOGRAPHIC ASSUMPTIONS

In this section we define the cryptographic formalism and

assumptions that we use to build our secure handover schemes

in Section V.

Definition 10 (prf Security). A pseudo-random function family

is a collection of deterministic functions PRF = {PRFλ : K×
I → O : λ ∈ N}, one function for each value of λ. Here, K, I,

O all depend on λ, but we suppress this for ease of notation.

Given a key k in the keyspace K and a bit string m ∈ M,

PRFλ outputs a value y in the output space O = {0, 1}λ. We

define the security of a pseudo-random function family in the

following game between a challenger C and a PPT adversary

A, with λ as an implicit input to both algorithms:

1) C samples a key k
$
← K and a bit b uniformly at random.
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2) A can now query C with polynomially-many distinct mi

values, and receives either the output yi ← PRFλ(k,mi)

(when b = 0) or yi
$
← {0, 1}λ (when b = 1).

3) A terminates and outputs a bit b′.

We say that A wins the PRF security game if b′ = b and define

the advantage of a algorithmA in breaking the pseudo-random

function security of a PRF family PRF as Adv
prf
PRF,A(λ) =

|2 · Pr(b′ = b) − 1|. We say that PRF is secure if for all

PPT algorithms A, Adv
prf
PRF,A(λ) is negligible in the security

parameter λ.

A puncturable pseudo-random function is a special instance

of a pseudo-random function (PRF), that facilitates the com-

putation of punctured keys, which prohibits evaluation on

inputs that have been punctured. We refer to the definition

of puncturable pseudo-random functions and its security from

[40], but restrict our attention to PPRFs with deterministic

puncturing algorithms as defined by [41].

Definition 11 (pprf Security). A puncturable pseudorandom

function PPRF = (SetUp,Eval,Punc) is a triple of algorithms

with three associated sets; the secret-key space K, the domain

X and the range Y . We describe the algorithm as follows:

± Setup(1λ)
$
→ sk : Setup is a probabilistic algorithm that

takes as input a security parameter λ and outputs an

evaluation key sk ∈ K.

± Eval(sk , x)→ y/⊥ : Eval is an evaluation algorithm that

accepts as input the secret key sk and an element x ∈ X
and outputs y ∈ Y or, to indicate failure, ⊥.

± Punc(sk , x) → sk′ : Punc is a deterministic puncturing

algorithm that accepts as input the secret key sk and

an element x ∈ X , and outputs an updated secret key

sk
′ ∈ K.

PPRF is correct if for every subset x1, . . . , xn =
S ⊆ X and all x ∈ X\S , we have that

Pr
[
Eval(sk0, x) = Eval(skn, x) :

sk0←Setup(1λ);
ski=Punc(ski−1,xi) for i∈[n];

]
=

1.

In order to guarantee the security of our Strong HO con-

struction we require our PPRF function to be invariant to

puncturing. That is to say, the puncturing is ºcommutativeº

and, the order in which one punctures the key does not affect

the resulting secret key. Aviram et al. [42] formally defines

invariant puncturing as follows:

Definition 12 (Invariant PPRF). A PPRF is invariant to

puncturing if for all keys k ∈ K and all elements x0, x1 ∈ X ,

x0 ̸= x1 it holds that

Punc(Punc(k, x0)x1) = Punc(Punc(k, x1)x0)

Our security experiments for PPRF closely follow that of

[42], which we have presented in Figure 11 .

Definition 13 (ae-auth Security). An AE scheme AE is a

triple of algorithms AE = {KGen,Enc,Dec} with an asso-

ciated keyspace K and message space M ∈ {0, 1}∗. These

ExprandomA,PPRF(λ)

1: k
$
← Setup(1λ), b

$
← {0, 1},Q := ∅

2: x∗ $
← AOEval(k,.)(1λ) where OEval(k, x)

behaves like Eval, but sets Q := Q∪ {x}.

3: y0
$
← Y, y1 := Eval(k, x∗), k :=

Punc(k, x∗)

4: b∗
$
← A(k, yb)

5: return 1 if b = b∗ ∧ x∗ /∈ Q
6: return 0

Fig. 11: Adaptive-random PPRF security experiment.

sets all depend on the security parameter λ. We denote by

AE.KGen(λ) → k a key generation algorithm that takes as

input λ and outputs a key k ∈ K.We denote by AE.Enc(k,M)
the AE encryption algorithm that takes as input a key k ∈ K
and a message M ∈M and outputs a ciphertext C ∈ {0, 1}∗.
We denote by AE.Dec(k, C) the AE decryption algorithm that

takes as input a key k ∈ K and a ciphertext C and returns

a string M ′, which is either in the message space M or a

distinguished failure symbol ⊥. Correctness of an AE scheme

requires that AE.Dec(k,AE.Enc(k,M)) = M for all k,M in

the appropriate space.

Let AE be an AE scheme, and A a PPT algorithm with input

λ and access to an oracle Enc(.). This oracle, given input

M , outputs Enc(k,M) for a randomly selected key k ∈ K.

We say that A forges a ciphertext if A outputs C such that

Dec(k, C) → M ̸= ⊥ and M was not queried to the oracle.

We define the advantage of a PPT algorithm A in forging a

ciphertext as Advae−authAE,A (λ). We say that an AE scheme AE is

ae− auth secure if for all PPT algorithms A, Advae−authAE,A (λ)
is negligible in the security parameter λ.

Definition 14 (Key Encapsulation Mechanism). A key encap-

sulation mechanism (KEM) is a triple of algorithms KEM =
{KGen,Encaps,Decaps} with an associated keyspace K. We

describe the algorithms below:

± KGen(λ)
$
→ (pk , sk) : KGen is a probabilistic algorithm

that takes as input the security parameter λ and returns

a public/secret key pair (pk , sk).

± Encaps(pk)
$
→ (c, k) : Encaps is a probabilistic algo-

rithm that takes as input a public key pk and outputs a

ciphertext c as well as a key k ∈ K.

± Decaps(sk , c) → (k) : Decaps is a deterministic algo-

rithm that takes as input a secret key sk and a ciphertext

c and outputs a key k ∈ K, or a failure symbol ⊥.

KEM is correct if ∀(pk , sk) such that KGen(λ)
$
→ (pk , sk),

and (c, k) such that Encaps(pk)
$
→ (c, k), it holds that

Decaps(sk , c) = k. We define the ind-cpa security of a

key encapsulation mechanism in the following game played

between a challenger C and an adversary A.

1) C generates a public-key pair KGen(λ)
$
→ (pk , sk)

2) C generates a ciphertext and key Encaps(pk)
$
→ (c, k0)

3) C samples a key k1
$
← K and a bit b uniformly at random.
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4) A is given (pk, c, kb) and outputs a guess bit b′

We say that A wins the ind-cpa security game if b′ = b
and define the advantage of an algorithm A in breaking the

ind-cpa security of a key encapsulation mechanism KEM as

Adv
ind-cpa
KEM,A(λ) = |2 · Pr(b′ = b) − 1|. We say that KEM is

ind-cpa-secure if for all PPT algorithms A, Adv
ind-cpa
KEM,A(λ) is

negligible in the security parameter λ.

Now we strengthen our assumptions by defining ind-cca
security for KEMa:

Definition 15 (Key Encapsulation Mechanism). A key encap-

sulation mechanism (KEM) is a triple of algorithms KEM =
{KGen,Encaps,Decaps} with an associated keyspace K, as

described above.

We define the ind-cca security of a key encapsulation

mechanism in the following game played between a challenger

C and an adversary A.

1) C generates a public-key pair KGen(λ)
$
→ (pk , sk)

2) C generates a ciphertext and key Encaps(pk)
$
→ (c, k0)

3) C samples a key k1
$
← K and a bit b uniformly at random.

4) A is given (pk, c, kb)
5) The adversary may adaptively query the challenger; for

each query value ctxti the challenger responds with ki =
Decaps(sk , ctxti)

6) The adversary outputs a guess bit b′

We say that A wins the ind-cca security game if b′ = b
and define the advantage of an algorithm A in breaking the

ind-cca security of a key encapsulation mechanism KEM as

Advind-ccaKEM,A(λ) = |2 · Pr(b′ = b) − 1|. We say that KEM

is post-quantum ind-cca-secure if for all QPT algorithms

A, Advind-ccaKEM,A(λ) is negligible in the security parameter λ.

We say that KEM is classically ind-cca-secure if for all

PPT algorithms A, Advind-ccaKEM,A(λ) is negligible in the security

parameter λ.

Next, we turn to defining eufcma security for message

authentication codes (MACs).

Definition 16 (Message Authentication Code (MAC) security).

A message authentication code (MAC) scheme is a tuple of

algorithms MAC = {KGen,Tag} where:

± KGen is a probabilistic key generation algorithm taking

input a security parameter λ and returning a symmetric

key k.

± Tag is a deterministic algorithm that takes as input a

symmetric key k and an arbitrary message m from the

message space M and returns a tag τ .

Security is formulated via the following game that is played

between a challenger C and an algorithm A:

1) The challenger samples k
$
← K

2) The adversary may adaptively query the challenger; for

each query value mi the challenger responds with τi =
Tag(k,mi)

3) The adversary outputs a pair of values (m∗, τ∗) such that

(m∗, τ∗) /∈ {(m0, σ0), . . . (mi, σi)}

The adversary A wins the game if Tag(k,m∗) = τ∗, produc-

ing a tag forgery. We define the advantage of A in breaking

the existential unforgeability property of a MAC MAC under

chosen-message attack to be:

Adveufcma
MAC,A(λ) = Pr (Tag (k,m∗) = τ∗)

We say that MAC is classically eufcma-secure if, for all

PPT algorithms A, Adveufcma
MAC,A(λ) is negligible in the security

parameter λ.

Finally, we turn to defining classical eufcma security for

digital signatures.

Definition 17 (Digital Signature eufcma-signature). A digital

signature (SIG) scheme is a tuple of algorithms SIG =
{KGen, Sign,Vfy} where:

± KGen is a probabilistic key generation algorithm taking

input a security parameter λ and returning a public key

pk and a secret key sk .

± Sign is a probabilistic algorithm that takes as input a

secret key sk and an arbitrary message m from the

message space M and returns a signature σ.

± Vfy is a deterministic algorithm that takes as input a

public key pk , an message m and a signature σ and

returns bit b ∈ {0, 1}.

We require correctness of a digital signature scheme SIG.

Specifically, for all (pk , sk)
$
← SIG.KGen, we have

SIG.Vfy(pk ,m, SIG.Sign(sk ,m)) = 1. Security is formulated

via the following game that is played between a challenger C
and an algorithm A:

1) The challenger samples pk , sk
$
← K

2) The adversary may adaptively query the challenger; for

each query value mi the challenger responds with σi =
Sign(sk ,mi)

3) The adversary outputs a pair of values (m∗, σ∗) such that

(m∗, σ∗) /∈ {(m0, σ0), . . . (mi, σi)}

The adversary A wins the game if Vfy(pk ,m∗, σ) = 1,

producing a signature forgery. We define the advantage of A
in breaking the existential unforgeability property of a digital

signature scheme SIG under chosen-message attack to be:

Adveufcma
SIG,A (λ) = Pr (Vfy (pk ,m∗, σ∗) = 1)

We say that SIG is eufcma-secure if, for all PPT algorithms

A, Adveufcma
SIG,A (λ) is negligible in the security parameter λ.

Definition 18 (Key Indistinguishability of Public Key Encryp-

tion). A public key encryption (PKE) scheme is a tuple of

algorithms PKE = {KGen,Enc,Dec} where:

± KGen is a probabilistic key generation algorithm taking

input a security parameter λ and returning a public key

pk and a secret key sk .

± Enc is a probabilistic algorithm that takes as input a

public key pk and an arbitrary message m from the

message space M and returns a ciphertext c.
± Dec is a deterministic algorithm that takes as input a

secret key sk and a ciphertext c and returns a message

m.
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We require correctness of a PKE scheme. Specif-

ically, for all (pk , sk)
$
← PKE.KGen, we have

PKE.Dec(sk ,PKE.Enc(pk ,m)) = m. Indistinguishability

of keys under chosen ciphertext attack (ikcca) Security is

formulated via the following game that is played between a

challenger C and an algorithm A:

1) The challenger samples (pk0, sk0), (pk1, sk1)
$
← K(λ)

and submits (pk0, pk1) to the adversary.

2) The adversary may adaptively query the challenger; for

each query value (ci, d) the challenger responds with

mi = Dec(skd, ci)
3) The adversary outputs a value x; the challenger samples

a bit b
$
← {0, 1} and returns c∗

$
← Enc(pk b, x)

4) The adversary may adaptively query the challenger; for

each query value (ci, d) if ci = c∗ the challenger

responds with ⊥, else the challenger responds with mi =
Dec(skd, ci)

5) The adversary eventually terminates and outputs b′

The adversary A wins the game if b′ = b. We define the advan-

tage of A in breaking the key indistinguishability property of

a public key encryption scheme PKE under chosen-ciphertext

attack to be:

AdvikccaPKE,A(λ) = |Pr (b
′ = b)−

1

2
|

We say that PKE is ikcca-secure if, for all PPT algorithms A,

AdvikccaPKE,A(λ) is negligible in the security parameter λ.
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