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Spatiotemporal variability of PM2.5 infiltrations in higher education buildings: A multizone 

air-thermal co-simulation analysis 

Abstract 

Exposure to outdoor-sourced particulate matter with an aerodynamic diameter of 2.5 micrometres 

or less (PM2.5) infiltration poses significant health risks to occupants of Higher Education Institution 

(HEI) buildings. Unlike residential settings, HEI buildings are complex and heterogeneous, 

presenting unique challenges for comprehensive Indoor Air Quality (IAQ) assessment. This study 

addresses this gap by employing a novel high-resolution multizone air-thermal co-simulation 

approach to investigate PM2.5 infiltration dynamics across 2,729 zones from an HEI building stock, 

which is crucial when consistent long-term monitoring data is unavailable. Hourly time series data 

reveal significant spatial and temporal variations in indoor PM2.5 concentrations and air change rates 

(ACHINF), underscoring the necessity of room-level resolution for accurate assessment in HEI 

environments. Our results demonstrate a clear positive impact of improving building airtightness 

(Q50) on indoor PM2.5 levels. For instance, reducing Q50 from 13 m³/h/m² (leaky) to 3 m³/h/m² (well-

sealed) significantly decreased zones exceeding the WHO 2005 guideline (10 µg/m³) from 82% to 

merely 1%. Crucially, the study also revealed that outdoor PM2.5 background concentrations in the 

study location already frequently exceeded WHO 2005 annual guidelines (e.g., an average of 17.04 

µg/m³ during the heating season). Consequently, even with well-sealed buildings (Q50=3 m³/h/m²), 

a significant proportion (approaching 88%) of zones still exceeded the more stringent WHO 2021 

guideline of 5 µg/m³. These findings underscore the critical interplay between building airtightness 

and ambient pollution levels in determining indoor air quality and highlight the limit of what 

airtightness alone can achieve in highly polluted outdoor environments. 

Keywords: PM2.5 infiltrations, building airtightness, higher education institution (HEI) buildings, 

multizone air-thermal co-simulation, spatiotemporal variability of indoor PM2.5 

 

1. Introduction 

Particulate matter with an aerodynamic diameter of 2.5 micrometres or less (PM2.5) air pollution is 

a major threat to health worldwide. It is described as one of the “great killers of our age” because of 

its varied and severe effects on human health (Venkatesan, 2016). Several studies have shown that 

excessive exposure to high PM2.5 concentrations reduce the expected lifespan of humans by one to 

five years (Apte et al., 2018; Cserbik et al., 2020). In 2013, the World Health Organization (WHO) 

identified particulate matter as the leading cause of human cancer (WHO, 2013). Research over the 

past 15 years has shown that even low levels of PM2.5 can cause significant health risks, including 

cardiovascular and respiratory diseases, lung cancer, and premature death (Feng et al., 2016; Chen 

et al., 2023). Updated in September 2021, the latest WHO Air Quality Guideline sets the 

recommended annual PM2.5 limit at 5 µg/m³, a reduction from the 2005 guideline of 10 µg/m³, and 

the 24-hour average PM2.5 level was adjusted from 25 µg/m³ to 15 µg/m³ (WHO, 2021). The update 

reflects the new scientific evidence and growing understanding of the severe health impacts of air 

pollution and the need for stronger action to reduce exposure.  

Since HEI building users often spend long hours indoors, there is a concern about chronic exposure 

to indoor air pollutants such as fine particulate matter (PM2.5) in particular. Daily running of HEI 

premises involves a substantial number of building users and facilities, making potential 

environmental degradation caused by intensive energy use. There is a common concern that energy 
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consumption in HEI buildings should be effectively managed to reduce waste and environmental 

impacts. Hence, most HEIs have implemented energy management strategies and programs to align 

campus operations with sustainability goals. In the UK, an example is the University of Sheffield 

Energy Strategy developed to achieve net-zero carbon emissions by 2030 (Arup, 2012). HEI energy 

strategies often include information on the current energy use patterns and provide information on 

where building interventions, such as fabric upgrades and increasing the airtightness of building 

envelopes, are planned and scheduled. A critical challenge lies in balancing energy efficiency and 

IAQ, as efforts to enhance building airtightness for energy conservation can adversely affect IAQ 

by increasing exposure to indoor air pollutants.  

Both direct and indirect methods have been developed and applied to assess IAQ in single buildings 

or across entire building stocks. Direct methods include field measurements using mobile or 

stationary air quality (AQ) sensors of varying grades. However, obtaining direct field measurements 

of PM2.5 at a large-scale with high-grade AQ monitoring can be prohibitively expensive and time-

consuming. Also, direct methods seldom capture the complex dynamic interactions of air particles 

and transient behaviours within a building or a group of buildings. This is due to the limitations 

imposed by either the instrumental factors (e.g. device selection, calibration and reliability) or the 

sampling methods (e.g., measurement location, sampling frequency and time-averaging period) 

(Coleman & Meggers, 2018; Jones et al., 2018). Moreover, there can be uncertainties associated 

with individual or a network of IAQ sensors, resulting in measurements that may be potentially 

misleading (O’Leary et al., 2019). 

Indirect methods primarily involve computational modelling, simulation, and statistical techniques, 

which may offer several advantages over direct measurements in certain situations, such as cost-

effectiveness, flexibility in assessing different scenarios and interventions, and time efficiency. 

Nevertheless, it is essential to acknowledge that simulation models rely on abstractions and 

assumptions, and their robustness and accuracy depend on both the quality of the input data and the 

expertise of the modellers. Below we first review the state of the art in building simulation for IAQ 

assessment. 

2. Rationale, novelty, and consideration of broader applicability 

This study was motivated by an overarching concern that energy policies in the current UK HEI 

context, which often promote building airtightness as an intervention to reduce energy consumption, 

may inadvertently neglect its impact on IAQ (ECA, 2003; Klepeis et al., 2001; Schweizer et al., 

2007); that building envelopes with enhanced airtightness may raise building users’ exposure to 

indoor air pollution (Smith et al., 2016; Vardoulakis, 2009). Higher education institution (HEI) 

buildings are a distinct and under-studied building type for several reasons: (1) HEI buildings are 

often located in high-density urban built areas, and air pollution from urban traffic and other sources 

is the most significant contributor to substandard indoor air quality (IAQ) (Afroz et al., 2023); (2) 

HEI buildings differ from typical office or residential buildings in their size, spatial complexity, and 

diversity of uses (e.g., classrooms, laboratories, offices, libraries, circulation spaces). This leads to 

highly variable airflow patterns and pollutant distributions, necessitating high-resolution, multi-

zone modelling approaches; and (3) The unique occupancy schedules and high density of users in 

HEI buildings result in distinct exposure profiles compared to other building types. 

While previous research has examined indoor air quality (IAQ) in various building types, our study 

makes several novel contributions to the field. First, we apply a coupled CONTAM-EnergyPlus 

simulation framework to model the spatiotemporal variability of PM2.5 infiltration across 2,729 
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zones in a representative HEI building stock. This level of spatial and temporal detail is not seen in 

the literature, particularly for HEI settings. Second, we demonstrate and quantify significant 

spatiotemporal variability of indoor PM2.5 concentrations at the building level. Our hourly PM2.5 

concentration time series reveal substantial variations throughout the day across different zones 

within the same building, creating potential exposure disparities among occupants. This high- 

resolution, room-level modelling is essential for informing building design and operational 

management, as it captures the distinct pollution levels experienced by individuals within the same 

facility. Third, we address a critical gap in understanding how building airtightness as a design 

standard affects outdoor air pollutant infiltration in HEI contexts. Given that data on HEI building 

envelope airtightness levels are scarce—representing a primary source of uncertainty in building 

simulation—we systematically vary Q50 to show this critical parameter's influence on infiltration 

rates and indoor PM2.5 levels. Fourth, we developed a high-resolution IAQ-Energy model that 

captures spatial variability in infiltrated PM2.5 concentrations during the heating season. This 

approach is particularly relevant for UK HEI buildings, where heating policies regulate indoor 

temperature based on outdoor conditions. Our coupled IAQ-Energy multizone simulation captures 

the dynamic interplay between temperature differences and PM2.5 concentrations, advancing beyond 

previous models such as the UK Classrooms Archetype Stock Model (Schweizer et al., 2021), which 

employed thermal zones but neglected detailed airflow networks and spatial pollution variability 

Our study's findings, while based on a specific HEI building stock in Sheffield, UK, provide a robust 

methodological framework and crucial insights that are broadly applicable globally. The high-

resolution multizone air-thermal co-simulation approach using CONTAM and EnergyPlus is a 

validated and transferable methodology. This framework can be readily applied to HEI buildings in 

other countries and climate zones by adapting local input parameters such as weather data 

(.wth, .epw files), ambient air quality data (.ctm files), building envelope airtightness (Q50), and 

specific internal heat gain benchmarks, as detailed in our methodology [66, 74, Table S1]. The 

coupling of CONTAM and EnergyPlus has been validated in various studies for different building 

types and pollutants. The fundamental challenges of balancing energy efficiency goals (e.g., 

increased airtightness) with maintaining good indoor air quality (IAQ), and the health risks 

associated with PM2.5 infiltration, are universal concerns in buildings worldwide. Our findings 

underscore the importance of addressing these issues in any climate zone or country. 

The observation of significant spatiotemporal variability of indoor PM2.5 concentrations within 

buildings and the impact of building airtightness on infiltration rates and I/O ratios are fundamental 

principles that would manifest in HEI buildings globally. While the exact magnitudes would vary 

based on local outdoor pollution levels, climate, building codes, and construction practices, the 

analytical framework and the highlighted importance of high-resolution, coupled simulations for 

complex building typologies like HEIs remain highly relevant for assessing and improving indoor 

air quality performance across diverse contexts. Thus, our co-simulation approach, high spatial 

resolution, and analysis of spatiotemporal variability represent significant advancements, providing 

a robust and transferable framework for IAQ assessment in HEI buildings worldwide. 

3. Review of building simulation for assessing IAQ 

In building simulation for assessing IAQ, the way indoor airspace is partitioned to provide a required 

level of spatial detail can be summarised in three approaches: (1) a single and well-mixed zone, (2) 

multiple well-mixed zones, and (3) non–uniform distribution of the pollutants with Computational 

Fluid Dynamics (CFD) (Figure 1). Determining best models is nontrivial, often depending on the 
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modelling and simulation requirements, such as building complexity, the parameters investigated, 

the expected results, and the degree of accuracy required (Yu et al., 2019). A wide range of input 

parameters is required to perform IAQ simulations, including climate data, building fabric and 

geometry, building systems, and occupancy schedules (Persily & Ivy, 2001). 

Assuming homogeneous physical properties of air (i.e. uniform temperature, air pressure, and 

contaminant concentrations), well-mixed single-zone models typically take a macroscopic view of 

air within one volume represented by a node. Meanwhile, multizonal models define multiple nodes 

(or zones), each node representing a room, or a group of rooms connected by several airflow paths. 

In both models, the airflows between each zone and the outdoor air are calculated iteratively using 

the mass balance equation (Eq. 1, Nazaroff, 2004), until the pressure relationships are solved at each 

time step.  

d(𝐶𝐶𝑖𝑖𝑉𝑉)

dt
= 𝐸𝐸 + 𝐶𝐶𝑜𝑜[𝑄𝑄𝑠𝑠(1 −  η𝑠𝑠) +  𝑄𝑄𝑁𝑁 +  𝑄𝑄𝐿𝐿𝑃𝑃] −  𝐶𝐶𝑖𝑖[𝑄𝑄𝐹𝐹η𝐹𝐹 +  𝛽𝛽𝑉𝑉 + (𝑄𝑄𝑠𝑠 +  𝑄𝑄𝑁𝑁 + 𝑄𝑄𝐿𝐿)] (Eq. 1) 

Where 𝑉𝑉 is room volume (m3), 𝐶𝐶𝑜𝑜 is the concentration of particles in outdoor air (µg/m3), 𝐶𝐶i is the 

concentration of particles in indoor air (µg/m3), 𝑄𝑄𝑠𝑠 is the mechanical supply flow rate (m3/h), 𝑄𝑄𝑁𝑁 is 

the natural ventilation flow rate (m3/h), 𝑄𝑄𝐿𝐿 is leakage (infiltration) flow rate (m3/h), 𝜂𝜂𝑠𝑠 is a filter with 

single-pass removal efficiency, 𝑃𝑃 is the penetration fraction of particles, 𝑄𝑄𝐹𝐹 is indoor air particle 

control flow rate (m3/h), 𝜂𝜂𝐹𝐹 is a filter with single-pass removal efficiency, 𝐸𝐸 is an emission source 

operating at (µg/h), and 𝛽𝛽 is the loss of particles from indoor air by deposition represented by a first-

order loss-rate coefficient (h-1). The equation may be extended to include different processes when 

the indoor environment under study is represented as multiple well-mixed zones. This includes 

terms that account for the supply and loss of particle attributes by inter-zone and infiltration airflows 

(Miller & Nazaroff, 2001). 

Computational fluid dynamics (CFD) modelling takes a microscopic view of airflow in a zone or a 

group of zones within a building (Yu et al., 2019). CFD models are particularly relevant where 

uniform mixing within a zone or zones cannot be assumed reasonably to represent the airflow 

conditions under investigation (Shimada et al., 1996). CFD-based models can compute fine- grained 

indoor contaminants concentrations and personal exposures, and they have been widely used to 

simulate contaminants infiltration from outdoor generated sources and contaminants transport 

between zones within a building (Panagopoulos et al., 2011). 

To achieve reliable predictions of IAQ at multiple spatial and temporal resolutions, simulation tools 

need to be built with indoor particle dynamics mathematical models that capture the complex 

physical and environmental phenomena as accurately as possible. State-of-the-art IAQ models 

include multizone or airflow networks and CFD models. These models can calculate indoor air 

properties such as indoor air temperatures, airflow rates, and indoor contaminant concentrations. In 

predicting a building’s IAQ, airflow network and CFD models perform differently in complexity, 

reliability and accuracy. CFD-based models are computationally expensive as they often resolve 

airflow dynamics at high spatial and temporal resolutions. Yet, Hensen and Lamberts (2011) pointed 

out that there appeared to be a widespread misconception that using CFD will reduce uncertainties 

and increase the accuracy of IAQ predictions. Deviating from the ideal case to higher or lower 

complexity can induce risks of simulation errors. Therefore, the selection of appropriate 

computation methods should be guided by the purpose of the simulation. 
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Figure 1: Approaches to IAQ modelling. Left: Single zone models; Middle: Multizonal models; 

Right: CFD Models. Each node represents a well-mixed volume. (adapted from Axley, 2007) 

Both single-zone and multi-zone models assume of perfectly homogeneous or well-mixed conditions 

(i.e., each zone has an average air pollutant concentration value). In single-zone models, a building 

is simplified to be represented by a single zone or node without considering its interior partitions 

(Megri & Haghighat, 2007). Consequently, the physical details of heat and mass transfer between 

rooms within a building caused by temperature and pressure variations are ignored (Yu et al., 2019). 

Figure 2 illustrates the assumptions, showing the air temperature in a single-zone model represented 

by an average value of Tin (°C) (Megri & Haghighat, 2007). A steady state model (Eq. 2 & Eq. 3) 

stipulates that the mass flow rate 𝑚𝑚 ̇𝑖𝑖𝑖𝑖 (kg/s) should be equal to the outlet mass flow rate 𝑚𝑚 ̇𝑜𝑜𝑜𝑜𝑜𝑜 (kg/s) 

when infiltration is neglected, and the energy is conserved between 𝑞𝑞�̇�𝑖𝑖𝑖 (rate of heat energy supplied 

into room/building (Watts), 𝑞𝑞 ̇𝑜𝑜𝑜𝑜𝑜𝑜 (rate of heat energy removed from room/building (Watts), and 𝑞𝑞 ̇𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠/𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖 (rate of heat energy transferred through room/building structures (Watts). 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑜𝑜 =   𝑚𝑚𝑚𝑖𝑖𝑖𝑖 −  𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 =  0 (Eq. 2) 

  𝑑𝑑𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑜𝑜 =   𝑞𝑞𝑚𝑖𝑖𝑖𝑖 + 𝑞𝑞𝑚𝑜𝑜𝑜𝑜𝑜𝑜 +  𝑞𝑞𝑚𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠/𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖 =  0 (Eq. 3) 

 

Additionally, a single node represents the outdoor climate, and the physical parameters of this node 

are assigned from weather conditions. Notwithstanding, single-zone well-mixed models are 

relatively easy to implement and fast to compute. They are suitable for estimating bulk airflow 

properties when the domain of interest can be treated as a single zone or node. 
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Figure 2: A summary of IAQ simulation assumptions of single-zone steady-state and multi-zone 

models. (Red lines delineate the inner volume of a zone (based on Yu et al., 2019) 

Multi-zone models use rooms as the minimum computational unit. They calculate the airflow and 

contaminant transport inside a building within minutes or seconds. However, shorter computing 

times can be achieved by assuming homogeneity in each zone; that is, the distributions of air 

pressure, air temperature, and contaminant concentration in each room are assumed uniform and 

leave out the air momentum effect from an inflow opening (Axley, 2007). This is not always the 

case because a vertical temperature gradient exists in rooms filled with stratified flows driven by 

displacement ventilation or water heating systems (Wang & Chen, 2007). In addition, the well- 

mixing assumptions could be problematic for simulations of poorly mixed air and contaminants. In 

an earlier review of airflow and infiltration models, (Haghighat, 1989) stated that a multi-zone 

airflow model should be able to fully account for the driving forces that cause air to flow from 

outdoor to indoor and between indoor zones, including the stack effect, the wind pressure effect on 

building envelope, and the effect of HVAC systems on airflow. 

In general, multi-zone airflow models are based on constructing a matrix of equations representing 

all airflow paths connecting zones (nodes) within a building. A mathematical equation describing 

each airflow path (i.e. door, window, crack, etc.) is used to numerically solve the resulting matrix, 

typically by the Newton-Raphson method (Conte & de Boor, 1972). All equations are solved 

iteratively to ensure reaching the convergence state when the sum of all mass flow rates through all 

flow paths approaches zero, as illustrated in Eq. 4.  

 ∑𝐹𝐹𝑗𝑗𝑖𝑖 = 0 (Eq. 4) 

  

where Fji is the mass airflow rate from zone j to zone i (kg/s). 

 

In a multi-zone model, the mass airflow rate at each airflow path is some function of the flow 

pressure drop along the flow path, 𝑃𝑃𝑗𝑗-𝑃𝑃𝑖𝑖, and is expressed as: 

 𝐹𝐹𝑗𝑗𝑖𝑖 = 𝑓𝑓(𝑃𝑃𝑗𝑗 − 𝑃𝑃𝑖𝑖) (Eq. 5) 

 

The mass of air, 𝑚𝑚𝑖𝑖 (kg), in zone i is given by the ideal gas law: 𝑚𝑚𝑖𝑖 =  𝜌𝜌𝑉𝑉𝑖𝑖 =  
𝑃𝑃𝑖𝑖𝑉𝑉𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖   (Eq. 6) 
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Where 𝜌𝜌 is the air density, 𝑉𝑉𝑖𝑖 is the zone volume (m3), 𝑃𝑃𝑖𝑖 is the zone pressure (Pa), 𝑅𝑅𝑖𝑖 the zone 

temperature (K), and R is the gas constant for air = 287.055 (J/kg.K). 

Over the past decades, several IAQ simulation tools have been developed, such as Conjunction of 

Multizone Infiltration Specialists (COMIS) and CONTAM models (Feustel, 1999; Walton & Dols, 

2005). These tools have been used primarily in modelling the IAQ of individual buildings of various 

types. CONTAM is a multi-zone airflow and contaminant transport simulation tool developed and 

maintained by the National Institute of Standards and Technology (NIST) (Dols & Polidoro, 2015).  

CONTAM has been extensively validated across a wide range of applications, including airflow, 

contaminant transport, natural ventilation, smoke movement, and integrated energy-IAQ 

simulations (Haghighat, 1996; Emmerich & Hirnikel, 2001; Fine & Touchie, 2021). CONTAM was 

developed with an updated version of the AirNet model (Walton, 1989) and provides a simple 

graphical user interface for intuitive inputs of building zones, construction, airflow paths and other 

building elements (McDowell et al., 2003). 

More specifically, CONTAM allows users to model airflow rates, including infiltration, exfiltration, 

zone-to-zone airflows driven by mechanical ventilation systems, wind pressures on the building 

envelope and buoyancy effects. CONTAM’s contaminant dispersal model is an implementation of 

the Axley methods (Axley, 1988; Axley, 1987) and has been widely used in many studies to predict 

contaminant concentrations in buildings under multiple designs and retrofitting scenarios (García-

Tobar, 2019; Underhill et al., 2018). However, as a standalone package, CONTAM does not modify 

zonal air density in response to environmental changes due to building interactions and occupant 

behaviours. Therefore, CONTAM does not have the capability to perform dynamic indoor thermal 

simulations on its own. 

As one of the widely used whole building energy simulation engines, EnergyPlus (Office of Energy 

Efficient and Renewable Energy) simulates airflows in buildings using the multi-zone Airflow 

Network Tool, which is an airflow model based on the early versions of COMIS and AirNet. The 

Airflow Network Tool can simulate infiltration and exfiltration rates driven by indoor/outdoor 

pressure differences, ventilation mechanisms, building envelope permeability, and zone-to-zone 

airflows. Using EnergyPlus to model contaminant transport, Taylor et al. have developed the 

Generic Contaminant Model (GCM) tool, allowing users to model the behaviour of one specific 

pollutant within a building. GCM enables the modelling of dynamic thermal behaviour and single 

pollutant transport within one simulation package (Taylor et al., 2014). Polluto, another in-house 

tool developed at the University College London (UCL), also offers multiple contaminants transport 

modelling with EnergyPlus. Table 1 presents a comparison between CONTAM and the UCL in-

house IAQ tools. 

Table 1: Comparison of IAQ simulation tools used in housing stock IAQ modelling. 
 

  Simulation Tools  

 CONTAM EnergyPlus GCM EnergyPlus Polluto 

Main Usage Airflow rates, contaminant 

transport through airflow, 

and building occupant 

exposure 

Energy analysis, thermal 

load simulation, airflow, 

contaminant transport 

Energy analysis, 

thermal load 

simulation, airflow, 

contaminant transport 

User Interface Simple Complex Complex 
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Thermal Behaviour Static [Dynamic if coupled 

with a thermal engine] 

Dynamic Dynamic 

Contaminant 

Behaviour 

Yes (A rich set of sources 

and sinks, including 

deposition and re-

suspension) 

No No 

Changes in 

Occupant 

Behaviour 

Consideration 

Yes Yes Yes 

Modelling of 

Pollutants 

Multiple Pollutants Single Pollutant Multiple Pollutants 

Air Leakage Points Multiple Airflow Leakage 

Points 

A one-to-one 

correspondence between 

heat transfer and air 

leakage 

A one-to-one 

correspondence between 

heat transfer and air 

leakage 

Mechanical 

Systems 

Modelling 

Complex & Multiple 

Systems 

One System One System 

Warm-up Days No Yes, to ensure any thermal 

capacitance values are 

representative of the zone. 

Yes, to ensure any 

thermal capacitance 

values are representative 

of the zone. 

The capability of 

building control 

operations 

Yes Yes, indoor 

concentrations as flags 

for ventilation system 

operation 

No 

Non-trace 

contaminants 

Yes, already included in air 

density calculations. 

Yes, if coupled with the 

Heat and Moisture 

Transport (HAMT) model. 

Yes, if coupled with the 

Heat and Moisture 

Transport (HAMT) 

model. 

 

More recently, a mathematical description of the energy balance equations of EnergyPlus and the 

mass balance of airflows in CONTAM was proposed by Dols et al., (2016). New and existing 

components and tools have been developed and modified to facilitate synchronising building 

geometric representations and dynamic data exchange between CONTAM and EnergyPlus. The 

coupling of CONTAM and EnergyPlus enables simultaneous simulation of energy flows and air 

contaminant transport. This is significant as energy efficiency measures (e.g., reduced ventilation) 

can impact IAQ, and vice versa. CONTAM’s ability to model the transport of pollutants (e.g., CO2, 

VOCs, PM2.5, PM10) within a building is integrated with EnergyPlus thermal and energy calculations. 

This allows for detailed assessment of occupant exposure to pollutants. A more detailed account of 

CONTAM-EnergyPlus co-simulation workflow applied in this study is provided in Section 4.2. 

To summarise, significant progress has been made in building simulation for assessing indoor air 

quality over the past decade. More sophisticated integrated modelling techniques combining IAQ, 

thermal comfort and energy performance simulations have been developed. These models allow for 

a more comprehensive assessment of building performance, considering the complex interactions 

between airflow, temperature, humidity, and pollutant concentrations. However, in-depth studies of 

IAQ in higher education buildings are sparse (e.g., Erlandson et al., 2019; Lama et al., 2022; 

Abbaspour et al., 2023). In particular, the impact of building airtightness as a building design 

standard on infiltration of air pollutants from outdoor sources in the HE context is not well 
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understood. The remaining of the paper reports an investigation of indoor air-thermal coupled 

simulation (co-simulation) to assess PM2.5 concentrations of a large cohort of indoor spaces across 

diverse space types sampled from an HE institution building stock.  

4. Materials and methods 

4.1 Data sources 

There is high heterogeneity in HEI buildings in terms of sizes, functions, designs, constructions, and 

space uses. In this study, the building data sources were provided by the University of Sheffield 

Estates and Facilities Management (EFM) team. These sources include general building information 

and layouts, HVAC systems in use and operational details, heating policies, lighting and appliances, 

building envelope construction details, U-values, occupancy schedules. Hourly weather and ambient 

air quality datasets were sourced from nearby local monitoring stations. 

Five buildings were selected to represent the University of Sheffield building stocks of different 

construction ages 1920s-2000s (Figure 3). These buildings differ in size, geometry, construction 

methods and materials; thus, different building- related input parameters to model the IAQ were 

required. Moreover, HEI buildings tend to be composed of purpose-built spatial volumes (e.g., 

classrooms, student-led learning spaces, laboratories, staff offices etc.) connected by circulation 

routes, often resulting in large built areas exposed to external thermal and air flows. Table 2 

summarises the main characteristics of the selected buildings. Across the five buildings, a total 

of 2,729 zones (N =2,729) were identified for the co-simulation study. 

The five case study buildings are all located on the main campus of the University of Sheffield 

in Sheffield city centre, UK. This urban environment is characterised by high density 

development with substantial vehicular traffic on adjacent major roads, including the A57 and 

A61). The area contains commercial and light industrial premises but lacks heavy industry or 

significant local point sources of industrial PM2.5 emissions in the immediate vicinity.  

Outdoor PM2.5 concentrations for the simulation were obtained from the nearest urban air quality 

monitoring station (Sheffield Devonshire Green, UKA00575), located approximately 500 metres 

from the campus. This monitoring station captures the combined influences of urban background 

and traffic-related pollution, providing data representative of the outdoor environment 

experienced by the selected buildings. While the model does not explicitly resolve micro-scale 

pollution gradients or individual point sources, the monitoring station data adequately represent 

the campus environment and exposure context relevant to this study. 

Given that UK law prohibits indoor smoking and no fuel combustion for cooking or heating is 

permitted on these HEI premises, we assume that indoor PM2.5 concentrations result primarily 

from infiltration of outdoor sources. While minor indoor sources such as printers, human 

activities, and experimental equipment may contribute to PM2.5 level, we excluded these from 

our analysis due to the lack of comprehensive, zone-level data on their presence and usage 

patterns across the diverse spaces modelled. This approach prevents the introduction of additional 

uncertainty into our simulation results while maintaining focus on the primary infiltration 

pathways that can be reliably quantified. The period of building simulation was performed during 

the heating season (Nov-Apr, 2019-2020), assuming little or none window-opening behaviour in 

these buildings. The poorest ambient air quality in England is typically observed during March 

and early April, with significant health impacts noted during this period (Gillian et al., 2015).  
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Figure 3: Buildings selected representing the HEI building stocks 

Table 2: Summary of the features of the selected HEI buildings 

Building BH ADC AT RC ICS  

Construction 

Period  

1920s 1940s 1960s  1990s 2000s  

Function  Offices, 

Seminar 

Rooms, and 

Meeting Rooms 

Offices, Seminar 

Rooms, Meeting 

Rooms, and 

Open-office Style 

Study Space 

Offices, 

Seminar Rooms, 

Meeting Rooms 

and Studios 

Large Computer 

Rooms, Open-

office Style Study 

Space, Lecture 

Theatres, Cellular 

Staff-Offices, and 

Meeting Rooms 

Labs and 

Seminar Rooms 

Distinctive 

Feature  

Linear 

Circulation 

System 

Compact Floor 

Layout with 

Compound 

Circulation 

High-rise 

Central Core 

with Radial 

Circulation  

Courtyard with 

Linear Circulation  

Atrium Building  

Refurbished Yes  Yes Yes  No No 

Height 

Classification*  

Low Rise  Low Rise  High Rise  Low Rise  Mid Rise  

Total Number 

of Floors 

Above Ground 

2 2 20 3 5 

Building Built-

Up Area (m2)  

874.48 1,351.25 16,402.36 9,057.09 1,947.80  

Cooling 

Method  

Natural 

Ventilation W/ 

Exhaust System  

Natural 

Ventilation W/ 

Exhaust System 

Natural 

Ventilation W/ 

Exhaust System 

Natural 

Ventilation W/ 

Exhaust System 

Natural 

Ventilation W/ 

Exhaust System 

Heating 

Method 

Gas Fired Wet 

Heating System 

Central Heating 

via Wall Mounted 

Radiators  

Central Heating 

via Wall 

Mounted 

Radiators  

Central Heating 

via Wall Mounted 

Radiators  

Central Heating 

via Wall 

Mounted 

Radiators  

External Walls  Solid Wall  Solid Wall Double Glazed 

Curtain Wall 

System 

Cavity Wall  Cavity Wall and 

Pre-painted 

Copper Sheets  

External Walls 

U-Values 

(W/m2.K) 

1.80 1.80 2.20 0.60 0.45 

*Height classification is defined as: Low Rise (1–3 floors), Mid Rise (4–7 floors), and High Rise (8 or more 

floors), based on the total number of above-ground floors for each building. 
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4.2 Methods and co-simulation tools 

4.2.1 CONTAM-EnergyPlus coupling workflow 

This study used deterministic values described by discrete or continuous probability distributions for 

the input parameters. Based on these input parameters, CONTAM and EnergyPlus can be used to 

estimate each zone’s annual average infiltrated PM2.5 concentrations. Quantifying the uncertainty in 

the outputs by systematically varying each set of CONTAM and EnergyPlus inputs and running 

multiple simulations was not within the scope of the study. 

Figure 4 illustrates the relationship between the CONTAM and EnergyPlus components in coupled 

thermal, airflow and contaminant simulation. CONTAM’s graphical user interface, ContamW, 

allows creating project files (.prj) representing scaled geometries of building floor plans. 

Contam3Dexporter tool creates an EnergyPlus input data file (IDF) (.idf) and files containing data 

exchange parameters (VEF and XML files). The IDF file can be edited and exported again using 

the SketchUp software plugin OpenStudio. Contam3Dexporter tool exports a Windows dynamic 

link library (ContamFMU.dll) based on the Functional Mock-up Interface (FMI) Co-Simulation 

specification version 1.0 (Blochwitz et al., 2011). ContamFMU.dll manages data exchange and the 

execution of ContamX during the co-simulation. At present, EnergyPlus transfers zone temperatures, 

ventilation systems airflows, outdoor airflow fractions, output variables, and outdoor environment 

data to ContamX. On the other hand, ContamX transfers zone infiltration rates, inter-zone airflows 

and control values. Previous studies have validated and verified this process (Emmerich et al., 2019). 

More recently, the application of the co-simulation approach has been part of several studies to 

estimate indoor PM2.5 exposure profiles (Milando et al., 2022) and to perform a whole building 

analysis (IAQ, Energy, and Ventilation) (Dols et al., 2021). 

 

Figure 4: Schematic relationship between components of CONTAM and EnergyPlus in coupled airflow, 

contaminant and thermal simulation (adapted from Dols et al., 2016) 
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As an example, Figure 5 shows the ADC building layout using ContamW (CONTAM graphical 

user interface). Each room/space (as labelled on the EFM CAD drawings) was considered a single 

volume to which doors connect all other rooms. After the rooms and doors were drawn, well-mixed 

zones and airflow paths (represented as diamond-shaped dots) were mapped. A fundamental 

assumption in using ContamW is that the modelling must capture the (a) juxtaposition of zones to 

account for inter-zone flows, (b) zone volumes to account for contaminant dilution, and (c) wind 

pressure coefficients to account for the effect of wind on the building envelope. Each CONTAM 

model was drawn using the pseudo-geometry option to define the scaling factor for drawing and 

viewing the wall, zone and duct dimensions. 

 

 

 

 
Figure 5: CONTAM elements of the ADC building layout (ground floor) 

4.2.2 Airflow paths 

Each zone has a variable volume and floor area resulting in variable airflow paths. Airflow paths 

(in red) and sinks (in green) are identified for each zone, and exhaust systems (in blue) in kitchens 

and toilets. Air leakage paths are modelled using a single graphic element to represent potential 

airflows through walls and windows. Three airflow paths are used to model air leakage paths in each 

external and internal wall of a zone, which is assumed to be uniformly porous, by locating at its top, 

midpoint, and bottom following (Jones et al., 2013). An exhaust fan is linked to a central AHU unit 

for each floor to account for potential airflows in kitchens and toilets. This information can be 

acquired by accessing the EFM’s mechanical CAD drawings for each building. The process of 

identifying all air leakage paths was similar for all buildings. 

To match the calculated airtightness level normalised by thermal envelope area Q50 (m
3/h/m2) with 

the values provided in Table 3, The effective leakage area at 4Pa ELA4pa (cm2/m2) was used as an 

input in ContamW and is represented by the following (Eq. 7): 

𝐸𝐸𝐿𝐿𝐸𝐸4𝑃𝑃𝑠𝑠 =  � 𝜌𝜌
2(4𝑃𝑃𝑔𝑔)

 ×  𝑄𝑄50 (4𝑃𝑃𝑔𝑔/50𝑃𝑃𝑔𝑔)𝑛𝑛 (Eq. 7) 

 
Table 3: Baseline airtightness Q50 values for the five selected buildings 

Building Airtightness Q50 Construction Year Reference 

Building 1 (BH) 13 m3/h/m2 1920s - 

Building 2 (ADC) 13 m3/h/m2 1940s - 
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Building 4 (AT) 10 m3/h/m2 1960s HLM Architects 

Building 3 (RC) 10 m3/h/m2 1990s CIBSE TM23 

Building 5 (ICS) 7 m3/h/m2 2000s CIBSE TM23 

 

Where 𝐸𝐸𝐿𝐿𝐸𝐸4𝑃𝑃𝑔𝑔 is the effective leakage area at 4 Pa (cm2/m2), n is the dimensionless flow exponent, 

and ρ is the air density (kg/m3). The value of the flow exponent n ranges from 0.5 for large openings 

and 1 for small ones. Previous studies in the US suggested that n can be sampled from a normal 

distribution N (0.651, 0.077) (Sherman & Dickerhoff, 1998) and between 0.6-0.7 for typical 

infiltration openings (Dols & Polidoro, 2020). In the absence of similar UK studies for non-domestic 

buildings, n was assumed to follow the same normal distribution in this study and was assigned the 

value 0.65. Here, windows were modelled with the assumption that they were all closed during the 

heating season as per the EFM heating policy. However, to account for the air leakage of windows, 

they were modelled in ContamW using Eq. 7. and were assigned a leakage value representing the 

total leakage value for an item (cm2). The discharge coefficient Cd was 0.6 as per the CONTAM 

User Guide (Dols & Polidoro, 2020). 

Airflow and the transfer of pollutants and thermal energy can occur between different zones within 

a building or between inside and outside environments through other large openings like open 

doorways. These airflows tend to be more intricate, with the possibility of airflows in opposite 

directions in various parts of the opening. Two models, the two–way flow one–opening model and 

the two–way flow two–opening model, can be used to study such airflow in CONTAM (Dols & 

Polidoro, 2020).  The former considers the flow through a single large opening and defines the 

neutral plane level (NPL) where the air velocity is zero. The NPL is the height at which the internal 

pressure equals the external pressure, resulting in no airflow in or out of an opening at that height. 

Above or below the NPL, the airflow and direction can be determined, with vents positioned below 

the NPL acting as inlets and those above acting as outlets, or vice versa. 

The latter model divides an opening vertically and uses two power-law models to estimate the net 

flow rate in each direction, accounting for the two-way flow due to the stack effect over the height 

of a tall opening (Walton, 1989). The concept of the NPL is helpful in building design and is 

referenced in design standards such as the CIBSE AM10 guide (CIBSE, 2005). For simplification, 

open internal doors were modelled using the two–way flow one–opening model, with a discharge 

coefficient of 0.78, and its relative elevation is at the bottom of the door. When closed, doors were 

modelled as leakage elements that represent the door undercut given in (cm2). Finally, simulations 

of a blower door test at 50 Pa were run in CONTAM for each building to ensure that the model’s 

external air leakage rate (Q50) was correct (Table 4). 

Table 4: Summary of the used Effective Leakage Areas ELA4Pa for external and internal walls elements to 

achieve the airtightness level Q50 using CONTAM’s blower test at 50Pa 

Leakage Level   Airtightness Level Q50 

(m3/h/m2) 

 External Wall and Internal Walls 

ELA4Pa (cm2/m2) 

Tight Building Envelope  3 0.925 

 5 1.550 

 7 2.155 

 9 2.775 

 10 3.075 

 11 3.375 

Leaky Building Envelope  13 3.997 
 



14 

 

The Q50 values applied in this study reflect CIBSE TM23 benchmarks for non-domestic buildings 

and observed ranges in UK literature (CIBSE 2022). While HEI-specific airtightness data remain 

limited, the parametric analysis across a realistic Q50 spectrum ensures broad applicability to HEI 

building stocks with varying envelope conditions. We acknowledge the need for standardised HEI 

airtightness data collection and endorse this as a priority for future research. The model’s framework 

can be refined as such data emerge. 

4.2.3 Local weather and ambient air quality conditions 

To account for the local weather conditions during the 12 months of 2019 selected for this study, 

the weather data from the nearby automatic weather station was converted into CONTAM’s weather 

data format (.wth) (Dols & Polidoro, 2020). Data is reported hourly, giving the date and time, ground 

temperature, atmospheric pressure, wind velocity, wind direction, and absolute humidity. The same 

weather file was used in the simulations for all selected buildings.  

 

According to the PM2.5 data downloaded from the local air quality monitoring station (UKA00575), 

Figure 6 shows that during the winter months, the levels of PM2.5 peaked in February and April 

with an average monthly level of 20.49 and 23.11 µg/m3, respectively. On the other hand, the 

monthly outdoor PM2.5 between May and October ranged from 10.61 to 6.41 µg/m3. When 

comparing the seasonal outdoor PM2.5, it can be seen in Figure 7 that in the heating season 

(November to April), the average seasonal outdoor PM2.5 level is 17.04 µg/m3, which is higher than 

the WHO annual average permissible level of 10 µg/m3. Meanwhile, in the non-heating season (May 

to October), the average seasonal PM2.5 was 6.78 µg/m3. This suggests the importance of monitoring 

indoor PM2.5 infiltrated from outdoor sources during heating months. 

 

 

Figure 6: Monthly average outdoor PM2.5 concentrations in Sheffield in 2019 (https://uk-air.defra.gov.uk/) 
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Figure 7: Comparison between the Heating season (Nov-Apr) and Cooling (Non-Heating) season (May-Oct) 

outdoor PM2.5 concentrations (https://uk-air.defra.gov.uk/) 

To account for the local wind effects on each side of the buildings, the wind effects were estimated 

using a wind pressure profile calculated using wind pressure coefficient (CP) relationships found in 

(Swami & Chandra, 1987). Wind pressure profiles for each building are a function of the block 

aspect ratio (S) and the terrain constants. A variable wind speed modifier corresponding to “urban” 

terrain and scaled to building height (Dols & Polidoro, 2020), was applied to all exterior leakage 

paths. This parameter was used in CONTAM to account for the effects of local terrain on wind 

speed variation with height above ground level (Table 5).  

CP at different angles were assumed to be between 0◦ to 360◦ and specified for each side of the 
building. As the building form can significantly differ between the selected buildings, it can impact 

the resultant wind effects. Due to the lack of other resources that may represent such heterogeneous 

forms, the uncertainty in the resultant wind pressure profiles using the Swami and Chandra model 

is acknowledged. 

Table 5: Building Heights, Local Terrain Constant, Velocity Profile Exponent, and Corresponding Wind 

Speed Modifier input data applied in CONTAM  

Building Label    Building Height 

(m) 

Local 

Terrain 

Constant  

Velocity Profile 

Exponent  

Wind Speed 

Modifier 

Building 1 (BH) 6.0 

0.717 0.22 

0.410 

Building 2 (ADC) 7.5 0.453 

Building 3 (RC) 13.4 0.581 

Building 4 (AT) 72.0 1.165 

Building 5 (ICS) 21.8 0.718 

 

4.2.4 PM2.5 deposition rates 

Deposition rates are essential in determining the removal rates and indoor concentrations of 

pollutants, especially when ventilation is limited. Here, the deposition of PM2.5 was modelled as a 
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deposition rate sink model with a constant value of k =0.39 h-1 (Table 6). This simplification was 

necessary due to the absence of zone-specific data on furniture density, surface-to-volume ratios, or 

air velocity profiles across the 2,729 zones modelled. Nevertheless, this value was considered 

uncertain due to several factors such as room dimension, furniture area, and air velocity. Although 

all these parameters change by building/zone, this study took a simplified approach to the deposition 

process and input values (Nazaroff & Cass, 1987). 

Table 6: Physical and behavioural properties of PM2.5 used in this study 

Pollutant Molecular 

weight (g/mol) 

Mean Diameter 

(µm) 

Deposition Rate 

(h-1) 

Penetration Factor P 

Particulate Matter 

PM2.5 

1.4 2.50 0.39 (±0.16) P = 0.8 (Infiltration),  

P = 1 (Natural Ventilation) 

 

4.2.5 Indoor temperatures 

As CONTAM is not a thermal model, the internal air temperatures must be specified as constant 

values for each zone. However, to account for the dynamic interaction between thermal flow and 

airflow within a building, CONTAM can be coupled with EnergyPlus following the framework 

given in (Dols et al., 2016). In generating the CONTAM project file (.prj) for each building, a 

constant indoor temperature of 21°C was used. This temperature represents the heating season 

setpoint specified in the EFM heating policy. This allows ContamX to calculate initial infiltration 

rate values that can be used as dynamic infiltration flows rather than constant values. Then, 

CONTAM3DExporter was used to export EnergyPlus IDF files from COMTAM PRJ files. The 

IDF file contains all data exchange parameters representing the geometry of each building. The 

exported IDF files were manually edited for each building to include the thermal-related input 

parameters. This includes the thermal properties (U-Values) of the building construction, adding 

windows to account for the heat gain from solar radiation, identifying sources of internal heat gains 

and occupancy schedules, and the design of the Veolia DHN informed by the EFM. 

Table 7 summarises benchmark allowances of the sensible and latent heat loads for different space 

types, assuming an indoor temperature of 21°C and a sedentary occupancy activity level (CIBSE, 

2018). Occupancy density for each space type (m2/person) was used to calculate the total number 

of occupants and the total occupants’ heat gain for each zone. 

Table 7: Summary of the benchmark allowances for internal heat gain from occupants, artificial lighting, 

and equipment in different space types (Source: CIBSE, 2018) 

Building 

Type  

Use  Floor Area 

(m2/person) 

Sensible Heat Gain W/m2  Latent Heat Gain W/m2 

People Lighting Equipment People Other 

Offices  Cellular Office  9 10 8-12 25  7.5 - 

 Shared Office  4.5 20 8-12 20  15 - 

 Meeting Rooms  3 27 10-20 5  20 - 

Education Lecture Theatres  1.5 67 12 2  50 - 

 Computer Spaces 2.5 53 12 60  40 - 

 Seminar Rooms  3 27 12 5  20 - 

 

A summary of the input parameters of CONTAM(.prj) and EnergyPlus (.idf) is provided in the 

supplementary table (Table S1). 

 

4.2.6 Co-simulation outputs and processing 
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After the co-simulation files were built for the selected buildings, simulations were run for a whole 

year. Generally, the shorter the time step, the more accurate the solution is, but at the expense of 

computational resources and runtime. Due to the sensitivity of the time step selected in the analysis 

of indoor PM2.5 and its behaviour in indoor environments compared to other building-related 

performance analyses (e.g. annual energy use) (Tabares-velasco, 2013), a time step of 4 per hour 

(i.e., 15-min interval) was set in both CONTAM and EnergyPlus. The resultant airflow calculations, 

pollutant behaviours, and building envelope thermal responses can be modelled more accurately. In 

CONTAM, concentrations are reported at a moment in time and only according to the “Output” 

time step, regardless of the “Calculation” time step identified in the simulation settings. 

The co-simulation process was repeated using the seven airtightness values specified (see Table 4) 

and assuming that windows are closed during the heating season (November–April) and open during 

the non-heating season (May–October). In addition, any mechanical ventilation systems were 

switched off (except extract fans in toilets and kitchens) during the co-simulation. Thus, the total 

airflow rate ACHT (h−1) was assumed to equal the simulated infiltration rate ACHINF (h−1). 

In post-simulation processing, each zone’s average concentration of infiltrated PM2.5 during the 

heating season was calculated over the simulation period. Next, using the building operation period 

(7 AM-7 PM), the average concentrations in each room were weighted using the 12-hour occupancy 

time. Then, the time–series data of the infiltration rates ACHINF (h−1) for each zone, the infiltrated 

PM2.5 concentrations (µg/m3) for each of the zones, the outdoor scaled wind speed (m/s), and the 

indoor temperature Tin (◦C) were obtained. Finally, the simulated ACHINF and PM2.5 were extracted 

from the CONTAM output files, and ∆T was computed using the EnergyPlus time-series indoor 

temperature (Tin) value and the weather data. 

 

4.2.7 Statistical methods 

 

The study utilised a range of quantitative analyses to process and interpret the simulation outputs. 

(1) Descriptive statistics, including averages (mean), median, minimum and maximum ranges, 

standard deviation (SD), and variance, were extensively used to quantify hourly, seasonal, and 

annual concentrations of infiltrated PM2.5, as well as infiltration air change rates (ACHINF) and 

indoor/outdoor (I/O) ratios across 2,729 zones. (2) For relational analysis, the determination 

coefficient (R-squared, R²) was applied to assess the strength of the linear relationship between daily 

indoor and outdoor PM2.5 concentrations, demonstrating, for instance, an R² of 0.89 for a zone with 

a Q50 of 7 and 0.85 with a Q50 of 3. (3) Distributional analysis employed Cumulative Distribution 

Function (CDF) plots to visualise the annual distribution of PM2.5 concentrations across all 

simulated zones, allowing for the determination of the percentage of zones exceeding World Health 

Organization (WHO) PM2.5 guidelines (e.g., 10 µg/m³ and 5 µg/m³) under various building 

airtightness (Q50) settings. 

While direct field validation was precluded by the COVID-19 pandemic, the study referenced the 

ASTM D5157-19 Standard Guide for Statistical Evaluation of Indoor Air Quality Models for 

validation methodology. This standard recommends using a correlation coefficient of 0.9 or greater, 

a regression line slope between 0.75 and 1.25 with an intercept less than 25% of the average 

concentration, and a Normalised Mean Square Error (NMSE) less than 0.25. An indirect validation 

for indoor temperature showed a correlation coefficient of 0.76 and an NMSE of 0.48, indicating 

some agreement with field measurements. These methods collectively allowed for the analysis of 

relationships between building parameters, such as airtightness, and indoor air quality outcomes. 
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5. Results 

The outputs from the co-simulations yield four sets of results as presented below: (1) Simulated 

PM2.5 hourly time series, (2) Average seasonable and annual concentrations of infiltrated PM2.5, (3) 

PM2.5 infiltrations under varying Q50 for all zones, and (4) PM2.5 indoor/outdoor (I/O) ratios. 

5.1 Hourly indoor PM2.5 concentrations time series 

With a 15-min temporal resolution, the simulated PM2.5 concentrations and air change rates (ACHINF) 

from CONTAM and the indoor temperature (Tin) from EnergyPlus were resampled to generate 

hourly averages for data analysis over the heating season. At the hourly resolution between 01 

November and 30 April, the total number of data points for each zone was 4,344, totalling 1,941,768 

data points across the 445 zones simulated.  As an example of the time series outputs, Figure 8 

shows the hourly indoor PM2.5 concentrations of four zones sampled from Building 3 (RCB), using 

the baseline Q50 of 10 m3/h/m2. These zones include a south-facing room located on 1st floor (Z30), 

a southeast-facing room on 2nd floor (Z122), a north-facing room on 1st floor (Z96), and a north-

west facing room on 3rd floor (Z87). 

 

Figure 8: Simulated hourly indoor PM2.5 concentrations in four different zones sampled from Building 3 

(RCB), showing the spatial and temporal variability within the same building during 01 Feb – 01 March 

2019. The Q50 of this building is 10 m3/h/m2.  

Zooming into the (a), (b), (c), and (d) time bands in Figure 8, it can be seen in Figure 9 (a-d) that 

the concentrations of infiltrated PM2.5 vary significantly throughout the day in different zones 

(rooms) within the same building. The spatial variability shown here is crucial as it could lead to 

exposure disparities among building users in different zones within the same building. As such, 

studying the causes of the spatial variability on indoor PM2.5 can inform building design and 

operational management. This can only be achieved through constructing models of a high spatial 

resolution at the room level across the HE buildings. The extent of variability could be due to the 

mediating effects of environmental and building characteristics on the ingress of PM2.5 from outdoor 

sources. This highlights the necessity of achieving a model resolution at the room level for assessing 

spatiotemporal variation of PM2.5 infiltrations in complex HE buildings. 
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Figure 9 (a-d): Hourly indoor PM2.5 concentrations in four different zones in Building 3 (RCB) showing the 

spatial (zone location) and temporal (black arrows ↔) variability of PM2.5 concentrations within the same 

building. 

 

 

Figure 10: Simulated hourly indoor PM2.5 concentrations of the office zones sampled from the four 

buildings 
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The hourly PM2.5 concentrations series also reveal notable spatiotemporal variability across multiple 

buildings. Figure 10 shows the hourly indoor PM2.5 series of office zones sampled from four 

buildings using the baseline Q50. These office zones include a south-facing room in Building 1 (BH), 

a north-facing room in Building 2 (ADC), a southeast-facing room in Building 4 (AT), and a south-

facing room in Building 3 (RC). 

Zooming into the four selected time bands, Figure 11 (a-d) shows the trends of infiltrated PM2.5 

concentrations during the selected timeframes. It can be noticed that the trends of infiltrated PM2.5 

vary throughout the day towards the end of the month when they exhibit a similar trend between 

22-24 February (Figure 10.d). These time series outputs show that PM2.5 in individual zones of the 

same space type (Office in this case) are sometimes similar in trend (overall peaks and troughs) but 

differ in location. 

 

Figure 11 (a-d): Hourly indoor PM2.5 concentration levels in the Office zones across four buildings during 

the four periods in February 2019 (black arrows ↔ highlighting the temporal variation) 

5.2 Average seasonal and annual concentrations of infiltrated PM2.5 

To examine the relationships between infiltrated PM2.5 and environmental and zone characteristics 

in a further study, the co-simulation outputs were resampled to generate average concentrations of 

infiltrated PM2.5 over the heating season (Nov–April) and the year (annual). Although previous 

studies have reported that building characteristics (e.g., building type, age, and floor level) can 

influence indoor air quality, the building envelope airtightness Q50 can also play a role in building 

users’ exposure to infiltrated PM2.5 from outdoor sources. Quoting the Q50 baseline values (from 
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Table 3), the heating season concentrations and annual concentrations of infiltrated PM2.5 are 

summarised in Table 8. 

Table 8: Descriptive statistics for the baseline concentrations of infiltrated PM2.5 over the Heating Season 

and the (Annual Average Concentrations) 

Building  Q50  

(m3/h/m2) 

Number 

of Zones  

Min-Max  

PM2.5 

(µg/m3) 

Mean  

PM2.5 

(µg/m3) 

Median 

PM2.5 

(µg/m3) 

SD  Variance  

BH 13 20 5.16-9.24 7.04 6.95 1.14 1.39 

   (8.11-14.06) (10.83) (10.80) (1.61) (2.79) 

ADC 13 26 3.33-8.15 6.86 6.79 1.13 1.74 

   (5.28-12.61) (9.97) (9.61) (1.38) (1.59) 

AT 10 185 3.63-9.39 6.02 5.96 1.02 1.06 

   (5.59-13.82) (9.02) (8.85) (1.42) (2.04) 

RC 10 224 4.53-8.53 6.56 6.59 0.74 0.55 

   (7.71-13.15) (10.38) (10.43) (1.00) (1.01) 

 

The annual concentrations estimated at the building level indicate the potential risks of long-term 

exposure to infiltrated PM2.5 in these buildings. Building 1 (BH) exhibited an annual PM2.5 

concentration range of 8.11-14.06 µg/m³, with a mean concentration of 10.83 µg/m³. Building 2 

(ADC) showed a slightly lower annual PM2.5 concentration range of 5.28-12.61 µg/m³, with a mean 

concentration of 9.97 µg/m³, although they share the same Q50 (13 m3/h/m2). Building 4 (AT) had 

an annual concentration range of 5.59-13.82 µg/m³, with a mean concentration of 9.02 µg/m³. 

Building 3 (RC) demonstrated an annual concentration range of 7.71-13.15 µg/m³, with a mean 

concentration of 10.38 µg/m³. 

5.3 PM2.5 infiltrations under varying Q50 for all zones 

The co-simulations also facilitate assessment of PM2.5 infiltrations with varying Q50 settings. By 

aggregating all the zones across the four buildings (N=455), we can get a view of the impact of Q50 

on infiltrated PM2.5 over the heating season and for a year (Table 9). It can be noted that the average 

heating season concentrations of infiltrated PM2.5 were 3.94 ± 0.98 µg/m3 when Q50 = 3 m3/h/m2 

(well-sealed envelope). While the Q50 was set at 13 m3/h/m2 (leaky envelope), the average heating 

season concentrations were 6.9 ± 1.14 µg/m3, about 57% higher than Q50 = 3 m3/h/m2. 

Table 9: Descriptive statistics of the infiltrated PM2.5 by varying Q50 over the Heating Season and the 

(Annual Average Concentrations).  

Q50  

(m3/h/m2) 

Number of 

Zones  

Min-Max  

(µg/m3) 

Mean  

(µg/m3) 

Median 

(µg/m3) 

Standard 

Deviation  

Variance  

3 455 0.61-7.19 3.94 3.90 0.98 0.97 

  (2.16-11.29) (6.86) (6.85) (1.36) (1.85) 

5 455 0.98-7.96 4.86 4.94 1.08 1.16 

  (2.97-12.23) (8.09) (8.18) (1.46) (2.12) 

7 455 1.34-8.43 5.54 5.65 1.17 1.36 

  (3.65-12.90) (8.99) (9.12) (1.56) (2.44) 

9 455 1.70-8.64 5.92 6.11 1.14 1.31 

  (4.27-13.24) (9.51) (9.77) (1.51) (2.29) 

11 455 2.03-8.98 6.57 6.76 1.12 1.25 

  (4.81-13.70) (10.41) (10.61) (1.42) (2.02) 

13 455 2.33-9.24 6.90 7.12 1.14 1.30 

  (5.28-14.06) (10.87) (11.11) (1.45) (2.09) 
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The outputs also show a clear relationship between the Q50 value and the infiltration air change rates 

ACHINF during the heating season. As the Q50 value increased, the ACHINF also increased, indicating 

a higher air exchange rate between indoor and outdoor environments. Table 10 shows that the mean 

ACHINF progressively increased from 0.38 h-1 for Q50 = 3 m3/h/m2 to 1.37 h-1 for Q50 = 13 m3/h/m2. 

This represents a substantial increase of approximately 260.5% in the ACHINF over the heating 

season due to a leaky building envelope (Figure 12). 

Table10: Descriptive statistics for the ACHINF with varying Q50 over the heating season (Nov–April)  

Q50  

(m3/h/m2) 

Number of 

Zones  

Min-Max  

(h-1) 

Mean  

(h-1) 

Median 

(h-1) 

Standard 

Deviation  

Variance  

3 455 0.06-1.57 0.38 0.32 0.23 0.05 

5 455 0.11-2.22 0.60 0.50 0.37 0.14 

7 455 0.16-2.97 0.84 0.72 0.51 0.26 

9 455 0.20-3.63 0.97 0.81 0.57 0.32 

11 455 0.24-4.32 1.17 0.97 0.72 0.52 

13 455 0.28-5.02 1.37 1.14 0.84 0.71 

 

 

Figure 1: Box plots of the Heating Season Concentrations of Infiltrated PM2.5 Ci and the ACHINF stratified 

by the building envelope airtightness (Q50) 

With reference to the WHO PM2.5 recommendations (before and after 2021), Figure 13 shows a 

cumulative distribution function plot of the annual concentrations of PM2.5 with varying Q50 settings 

across all zones simulated (N=455). As the Q50 increased, there was a noticeable reduction in the 

percentage of zones exceeding the WHO recommended threshold (10 µg/m3). For Q50 of 13 m3/h/m2, 

the percentage of exceedance was 82%, with a total of 373 zones exceeding 10 µg/m3 guideline. A 

decrease in the Q50 to 11 resulted in a slightly lower but still significant percentage of exceedance 

of 77%, with 350 zones surpassing 10 µg/m3. The trend of decreasing exceedance percentages 

continued as the Q50 value decreased further. For Q50 of 5, the percentage of exceedance was reduced 

to 4%, with only 25 zones exceeding the limit. The lowest percentage of exceedance was observed 

for the Q50 value of 3 (well-sealed), where only 1% of zones exceeded the WHO limit, with 5 zones 

surpassing 10 µg/m3. On the other hand, the CDF result indicates the challenge of meeting the latest 

more stringent WHO recommendation of 5 µg/m3 across the board, even with Q50 of 3 m3/h/m2 

(well-sealed). 
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Figure 2: Cumulative distribution function (CDF) showing the percentage of zones with an annual average 

concentration of infiltrated PM2.5 above the WHO guidelines of 10 µg/m3 (before 2021) and 5 µg/m3 (after 

2021) 

5.4 PM2.5 indoor/outdoor (I/O) ratios 

The indoor/outdoor (I/O) ratio is a metric used to compare the concentration of a specific air 

pollutant indoors to its concentration outdoors. Thus, PM2.5 I/O ratio can be used to assess the 

disparity between indoor PM2.5 concentrations and the corresponding outdoor concentrations and 

gauge indoor sources’ strength within buildings. Table 11 summarises the heating season and 

annual PM2.5 I/O ratio when stratified by Q50. It was found from the co-simulation results that the 

annual I/O ratio range between 0.26-1.03 for all zones, with an average of 0.66 ± 0.06 when Q50 = 

3 m3/h/m2. This indicates a high spatial variability of infiltrated PM2.5 concentrations within the 

same building as well as across different buildings sharing the same Q50. This spatial disparity in 

infiltrated PM2.5 observed here highlights the importance of implementing the model resolution of 

“individual zones” as the essential base unit in estimating population exposure to indoor air 

pollutants in HEI buildings. 

Table 11: Descriptive statistics of PM2.5 indoor/outdoor (I/O) with stratified Q50 over the Heating Season 

and the (Annual Average) 

Q50  

(m3/h/m2) 

Number of 

Zones  

Min-Max  

I/O 

 

Mean 

I/O  

 

Median 

I/O 

 

Standard 

Deviation  

Variance  

3 455 0.04-0.42 0.23 0.23 0.06 <0.01 

  (0.26-1.03) (0.66) (0.66) (0.11) (0.01) 

5 455 0.06-0.47 0.29 0.29 0.06 <0.01 

  (0.35-1.11) (0.76) (0.50) (0.12) (0.01) 

7 455 0.08-0.49 0.33 0.33 0.07 <0.01 

  (0.42-1.16) (0.83) (0.84) (0.13) (0.02) 

9 455 0.10-0.51 0.35 0.36 0.07 <0.01 

  (0.48-1.19) (0.88) (0.81) (0.12) (0.02) 

11 455 0.12-0.53 0.39 0.40 0.07 <0.01 
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  (0.53-1.22) (0.95) (0.97) (0.11) (0.01) 

13 455 0.14-0.54 0.41 0.42 0.07 <0.01 

  (0.57-1.25) (0.99) (1.01) (0.11) (0.01) 

 

We take a closer look into the relationship between indoor and outdoor PM2.5 concentrations using 

the outputs from two zones in Building 3(RC), Zone (1) and Zone (2), both located on the first floor. 

The focal point here is the determination coefficient (R2) values, which provide insights into the 

degree of correlation between indoor and outdoor PM2.5 daily concentrations where the Q50 was 3 

and 7 m3/h/m2 respectively (Figure 14). For Zone (1), with a Q50 of 7, the R2 value between outdoor 

and indoor PM2.5 concentrations was 0.89. This suggests that approximately 89% of the variation in 

indoor PM2.5 concentrations can be attributed to changes in outdoor PM2.5 levels, indicating a more 

robust correlation than the Q50 of 3 (R2 = 0.85). Similarly, for Zone (2), with Q50 of 7, the R2 value 

was 0.83, indicating a significant correlation between outdoor and indoor PM2.5 when compared to 

Q50 of 3 (R2 = 0.72). 

 

Figure 3: Scatter plots of daily outdoor PM2.5 concentrations and daily infiltrated PM2.5 in 2 different zones 

in Building 3 (RC) as an example, where Q50 = 3 and 7 m3/h/m2 respectively 

 

Using the outputs from Building 4 (AT), the relationship between outdoor and indoor PM2.5 

concentrations was also analysed in two different zones, Zone (1) on the 3rd floor and Zone (2) on 

the 12th floor, to see the variations of indoor PM2.5 on different floor levels of a tower block (Figure 

15). It can be noticed that Zone (1) on the 3rd floor exhibited a strong correlation between outdoor 

and indoor PM2.5 (R
2=0.95) with Q50 of 7. Similarly, Zone (2) on the 12th floor showed a moderately 

strong relationship (R2=0.79), with the same Q50 (=7). While increasing the airtightness to Q50=3, 

Zone (1) exhibited R2=0.90. This indicates that although the relationship between outdoor and 

indoor PM2.5 concentrations remains strong, the improvement in airtightness led to a slight reduction 

in R2. Similarly, R2 decreased to 0.66 in Zone (2), showing a weaker relationship between outdoor 

and indoor PM2.5 after increased airtightness. 
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Figure 4: Scatter plots of daily outdoor PM2.5 concentrations and daily infiltrated PM2.5 in 2 different zones 

in Building 4 (AT) as an example, where Q50 = 3 and 7 m3/h/m2 respectively 

6. Discussion 

6.1 Data sources for IAQ modelling of HEI buildings 

Previous studies on building stock indoor air quality (IAQ) and energy modelling have identified 

two key data requirements: data demand and data robustness (Abdalla & Peng, 2021). Data demand 

encompasses the scope, quantity, and type of input data necessary for accurate and consistent 

predictions (Sousa et al., 2017). While residential building stock studies often rely on national 

population and housing censuses for essential statistical information, collating a representative 

database for Higher Education Institution (HEI) building simulation pose challenges due to the 

absence of systematic survey data and their inherent heterogeneity in geometry, function, and use. 

Consequently, this study focused on selected buildings rather than statistical archetypes. While the 

Higher Education Statistics Agency (HESA) collects general HEI data, it lacks detailed building 

stock information, necessitating reliance on HEI Estates and Facilities Management (EFM) records 

for data on building characteristics, ventilation, and heating policies. However, challenges remain, 

including outdated records due to refurbishments and inconsistencies across buildings, requiring 

assumptions in model inputs. These issues highlight the need for HEI EFMs to develop 

comprehensive and consistent databases of building properties to enable accurate assessment and 

prediction of indoor air quality performance. 

The deposition rate k=0.39 h−1 represents a spatial average across diverse room types. While 

furniture density and air velocity may cause localised variations, this value aligns with prior studies 

of non-domestic buildings. Using a simplified inverse proportionality method, preliminary tests with 

deposition rates of k=0.2 h−1 and k=0.6 h−1 revealed that a ±30% change in k resulted in a ±8–12% 

variation in annual PM2.5 concentrations, with relative trends across Q50 scenarios remaining 

consistent. Future work should incorporate zone-specific deposition rates based on detailed surveys 

or CFD analysis. 
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Regarding window operation, the study modelled this according to prevailing building management 

policies and typical seasonal practices at the University of Sheffield. During the heating season 

(November–April), windows were assumed to be closed, reflecting university heating policy and 

efforts to conserve energy. Conversely, during the non-heating season (May–October), windows 

were assumed to be open to represent natural ventilation for cooling and fresh air. While this 

approach provided clear boundary conditions aligned with available operational data, it is 

acknowledged that this is a simplification. In practice, occupant behaviour, such as occasional 

window opening during the heating season, is influenced by individual comfort, air quality 

perception, and specific room use. However, due to the absence of comprehensive, zone-level data 

on actual window opening frequency, duration, and timing across the 2,729 zones and five buildings, 

it was not feasible to parameterise intermittent or probabilistic window opening in the current model. 

The chosen approach provides a conservative estimate of infiltration-driven PM2.5 exposure during 

periods when infiltration is likely the dominant pathway for outdoor pollutants. This omission of 

detailed human factors in window operation is recognised as a limitation. Future studies should 

incorporate occupant surveys, sensor-based monitoring, or stochastic modelling of window 

operation to better capture the variability introduced by human factors and to simulate mixed-mode 

ventilation scenarios more realistically. 

6.2 Necessity of a multi-zone air-thermal coupled simulation 

Indoor air pollution can be estimated using building simulations when sufficient field measurements 

are unavailable, with single-zone mass balance models being the simplest approach, representing 

all indoor spaces as a single air volume (Jung et al., 2011). These models have been used to study 

outdoor PM2.5 infiltrations (Fazli et al., 2021; Rosofsky et al., 2019), the dilution of indoor 

contaminants (Ng et al., 2021), and large-scale planning impacts (Abdalla & Peng, 2021. However, 

single-zone models lack the spatial resolution needed to capture IAQ-related health impacts due to 

building-specific variations. In contrast, multi-zone models, such as CONTAM, better reflect the 

compartmentalised nature of HEI buildings and allow for the evaluation of exposure and health 

impacts of IAQ interventions (Underhill et al., 2020).  

The CONTAM-EnergyPlus coupling enables simultaneous thermal, airflow, and contaminant 

transport simulations, revealing key sensitivities, such as the influence of building envelope 

airtightness (Q50) on infiltration airflow rates (ACHINF) and indoor PM2.5 levels. For instance, during 

the heating season, ACH values varied from 0.28 to 5.02 h⁻¹ for buildings with Q50 = 13 m³/h/m², 

with PM2.5 concentrations ranging from 2.33 to 9.24 µg/m³, with higher ACH correlating to higher 

infiltrations. This underscores the importance of carefully selecting envelope leakage rates in IAQ 

simulations, as they significantly influence airflow and PM2.5 infiltrations. Given the limited data on 

envelope leakage in UK HEI buildings, accurate selection of these values remains a challenge for 

IAQ and airflow analysis.  

While constant infiltration rates are often used in energy simulations, they fail to account for weather 

effects, necessitating more dynamic infiltration treatments. Multi-zone airflow models estimate 

pressure relationships between building zones, incorporating factors such as geometry, exposure, 

inter-zone leakage, and exhaust airflow, while thermal models focus on energy loads and system 

efficiency. Since thermal zoning alone may not sufficiently capture airflow dynamics, coupled IAQ-

Thermal simulations offer a more robust approach for predicting indoor PM2.5. As UK HEI heating 

policies regulate indoor temperature based on outdoor conditions, a coupled IAQ-Energy multi-
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zone simulation approach is necessary to capture the dynamic interplay between temperature 

differences and PM2.5 concentrations, making it a critical tool for analysing HEI buildings. 

6.3 Spatiotemporal variations of PM2.5 infiltrations 

The coupled simulation of the selected HEI buildings revealed significant spatial variability in 

infiltrated PM2.5 concentrations across different rooms and spaces within each building. Analysis of 

indoor PM2.5 time-series data in Section 5.1 supported the need for high spatial resolution modelling, 

as individuals within the same building experience varying pollution levels due to daily activity 

patterns (Elliot et al., 2000). Disparities in exposure based on socio-economic groups (Ferguson et 

al. 2020) further emphasize the importance of studying indoor air quality across diverse building 

types. More recent research by Milando et al. (2022) examined the effects of building characteristics, 

HVAC systems, and model resolution on PM2.5 exposures in Boston housing typologies, showing 

that finer room- or floor-level model resolution altered exposure estimates for indoor-sourced PM2.5, 

though single-zone models sufficed for outdoor-sourced PM2.5. 

However, HEI buildings demand higher resolution due to their scale, geometry, and complex airflow 

networks, which differ markedly from residential settings. Limited research has focused on non-

domestic building stocks, with notable exceptions like the UK Classrooms Archetype Stock Model 

(Schwartz et al., 2021), which used thermal zones rather than detailed airflow networks, neglecting 

factors like ambient weather conditions and spatial variability in pollution. This study addresses this 

gap by developing a high-resolution IAQ-thermal model to capture spatial variability in infiltrated 

PM2.5 concentrations during the heating season. To quantify this variability and determine the key 

factors influencing PM2.5 infiltrations, a further comprehensive sensitivity analysis is required. 

While Figure 8 highlights significant differences in PM2.5 concentrations among rooms with varying 

orientations within the same building, the current study primarily focused on developing a data-

centric approach to assess and quantify the potential effects of building airtightness (Q50) on PM2.5 

infiltration. The model did account for the effects of local wind conditions on each side of the 

buildings by estimating wind pressure profiles using wind pressure coefficient relationships, which 

are a function of the block aspect ratio and terrain constants. However, a specific quantitative 

correlation analysis between room orientation, wind speed/direction, and PM2.5 concentrations (e.g., 

involving wind rose diagrams) was not within the scope of this study. Further detailed analysis, 

including such a correlation, represents a promising avenue for future comprehensive sensitivity 

analysis to fully determine the key environmental and building characteristics influencing PM2.5 

infiltrations. 

6.4 Simulated average PM2.5 I/O ratios 

The results from the three scenarios (baseline Q50, Q50 = 7 m³/h/m², and Q50 = 3 m³/h/m²) provide 

insights into the average PM2.5 I/O ratios during heating and non-heating seasons. The I/O ratio, 

representing the ratio of indoor to outdoor PM2.5 concentrations, highlights the influence of 

infiltration rates (ACHINF) and outdoor PM2.5 levels on indoor air quality. During the heating season 

(November–April), when infiltration is the primary airflow source, the PM2.5 I/O ratio for the Q50 = 

3 m³/h/m² scenario (0.23 ± 0.06) is significantly lower than the baseline Q50 scenario (0.37 ± 0.06), 

indicating that reduced infiltration rates decrease outdoor PM2.5 infiltrations (Figure 16). This is 

supported by lower average indoor PM2.5 concentrations in the Q50 = 3 m³/h/m² scenario (3.94 ± 

0.98 µg/m³) compared to the baseline Q50 scenario (6.30 ± 1.07 µg/m³) (Figure 17). Conversely, 

during the non-heating season (May–October), when natural ventilation dominates (windows 

opened), PM2.5 I/O ratios remain stable across scenarios, and indoor PM2.5 concentrations are 
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consistently lower than those during the HEI heating season. This reflects greater indoor-outdoor 

interactions while natural ventilation increases air change rates during May–October.  

 

Figure 16: Average seasonal PM2.5 I/O ratios under three scenarios of Q50, and seasonal variation in outdoor 

PM2.5 concentrations (µg/m3) 

 

Figure 17: Average seasonal indoor PM2.5 concentrations under three Q50 scenarios, and seasonal variation 

in outdoor PM2.5 concentrations (µg/m3) 
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The higher PM2.5 I/O ratios and indoor PM2.5 concentrations during the heating season highlight its 

critical role in IAQ management. The increased infiltration of outdoor pollutants leads to elevated 

indoor PM2.5 levels, making it essential to prioritize mitigation strategies such as reducing 

infiltration rates and lowering outdoor PM2.5 concentrations. Potential measures include enhancing 

building envelope insulation, implementing air filtration systems, and minimising air leakage. 

Furthermore, reducing outdoor PM2.5 emissions is crucial to limiting the impact of external pollution 

on indoor environments. In comparison with related studies on PM2.5 I/O ratios, no observational 

studies of PM2.5 I/O ratios specific to HEI buildings are available. Broader studies reported that 

indoor sources can significantly contribute to indoor PM2.5 in residential settings with PM2.5 I/O 

ratios close to or exceeding one (Jones et al., 2013; Lai et al., 2006). A study conducted in European 

countries found the PM2.5 I/O ratios ranging from 0.30 to 0.70 (Hänninen et al., 2011), while a 

comprehensive review of large-scale studies of homes in different cities suggested a range between 

0.30 and 0.82 (Chen and Zhao, 2011). A long-term IAQ monitoring study of a naturally ventilated 

office located in Keynsham, England, reported PM2.5 I/O ratio of 0.69 and the highest median indoor 

concentration of 3.7 μg/m3, despite lower ambient concentrations of 5.4 μg/m3 (Stamp et al., 2020). 

The simulated PM2.5 I/O ratios of this study show a range of 0.42 to 1.16 (Q50 = 7 m3/h/m2), and 

0.26 to 1.03 (Q50 = 3 m3/h/m2), indicating some alignment with the previous findings. 

6.5 Validation of the co-simulation 

CONTAM and EnergyPlus as building simulation tools have been widely used in research for over 

thirty years. Several validation studies have been conducted on different building types, locations 

and pollutants (e.g., Emmerich & Hirnikel, 2001; Ng et al., 2012; Underhill et al., 2018). In this 

study, a field measurement campaign intended for validating the co-simulation results in this study 

was not implemented due to the nationwide COVID-19 lockdowns enforced at the time. If there 

were no pandemic during 2020-21, our validation of the co-simulation would have been carried out 

according to the Standard Guide for Statistical Evaluation of Indoor Air Quality Models (ASTM 

D5157-19). According to the standard guide, the following measures can be used to determine if 

model predictions agree with observations (field measurements). If there were no pandemic during 

2020-21, the following measures would have been applied to determine if the co-simulations agreed 

with the fields measurements: 

• Predictions and measurements should have a correlation coefficient of 0.9 or greater. 

• The regression line between predictions and measurements should have a slope between 

0.75 and 1.25 and an intercept of less than 25% of the average concentration. 

• The normalised mean square error (NMSE) is less than 0.25 and can be calculated as follows: 

𝑁𝑁𝑑𝑑𝑁𝑁𝐸𝐸 =  � (𝐶𝐶𝑠𝑠𝑖𝑖 −  𝐶𝐶𝑜𝑜𝑖𝑖)2
(𝐶𝐶𝑜𝑜𝐶𝐶𝑠𝑠)

𝑁𝑁𝑖𝑖=1  (Eq. 8) 

Where N is the number of observations (measurements) in the datasets, 𝐶𝐶𝐶𝐶 is the predicted 

concentration and 𝐶𝐶𝑜𝑜 is the observed concentration. 

However, an indirect validation was attempted by accessing the field measurements acquired by a 

separate study of Building 4 (AT), where indoor environmental data (temperature, humidity, and 

CO2) of an office on the 9th floor was collected in the summer of 2022. The measurements were 

taken on a 5-min time-step between 11:00 AM on 11/05/2022 and 11:00 AM on 17/05/2022, 

resulting in a sample size of 1,720 data points. The sensor and data logger (HOBO UX100-003) 

were placed in the middle of the room and were 1 meter above floor level (Table 12). 
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Table 12: Results of the validation (Indoor air temperatures, Floor 9, Arts Tower) 
 

Properties of the room used for the indirect validation of the co-simulation (indoor temperature only) 

Date and Time of Measurements 11/05/2022 (11:00 AM) – 17/05/2022 (11:00 AM)  

Location  Room 9.02 on the 9th Floor of Building 4 (AT)  

Orientation North Number of Occupants at the Time of Measurement 1 

Room Area 46 m2 Heating Policy Off   

Q50 10 m3/h/m2 External Wall Double Glazed Curtain Wall U-Value 2.2 W/m2.K 

  Windows Closed   

  Results    

 Number of 

Samples 

Average Indoor 

Temperature 

Standard 

Deviation 

Correlation 

Coefficient 

NMSE 

Co-Simulation 

Results 

1,720 22.34 ○C 1.029 0.76 0.48 

Field Measurements 1,720 22.47 ○C 0.986   

 

Figure 18 shows the overall correlation coefficient of 0.76 with an NMSE of 0.48, indicating some 

agreement between the simulated results and field measurements for indoor temperature. The 

difference between the average values was only 0.07 °C, so these values were considered reasonable 

for indoor air temperature validation. However, they were lower than the standard values specified 

in the ASTM guide. 

 

 
Figure 18: Simulated and observed indoor air temperature (°C). Dates 11-17/05/2022, Location: North- 

facing office on the 9th Floor of Building 4 (AT) 
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7. Conclusion 

The study aims to develop a data-centric approach to rapidly assessing and quantifying potential 

effects of building airtightness (Q50) on seasonal and annual average fine particulate matter (PM2.5) 

infiltration from outdoor sources in the HEI context. The goal was achieved by employing the 

building physics implemented in the air-thermal co-simulation framework using CONTAM and 

EnergyPlus. The primary data sources for facilitating the co-simulation study are provided by the 

HEI’s Estates and Facilities Management (EFM). The current paucity of HEI environmental and 

building information required for the influential variables involved in the co-simulation can be 

improved for future studies. For instance, we show that the data of building envelope airtightness 

level (Q50) of HEI buildings is mostly scarce and the absence of this data becomes a primary source 

of uncertainty in building simulation.  

With assumed baseline Q50 values (3-13 m3/h/m2) of the buildings selected for the study, the co-

simulation results show distinct annual average concentrations of indoor PM2.5 across the buildings 

studied. Building 1 (BH) exhibits a concentration range of 8.11-14.06 µg/m³, while Building 2 

(ADC) has a slightly lower range of 5.28-12.61 µg/m³. Building 4 (AT) and Building 3 (RC) are in 

the ranges of 5.59-13.82 µg/m³ and 7.71-13.15 µg/m³, respectively. The variability in PM2.5 

concentrations within each building is evident, as indicated by the standard deviation and variance 

values. Accounting for the distribution of PM2.5 concentrations at the zoom/zone level, all buildings 

exhibit different levels of spatiotemporal variability.  

Analysing the simulation outputs of infiltrated PM2.5 over the heating season and for a year provides 

insights into the relationships between Q50, infiltration air change rates (ACHINF), estimated indoor 

PM2.5 concentrations, and the percentage of zones exceeding the WHO recommendations. The study 

found that a significant proportion of zones within each building exceeds the WHO recommended 

annual average concentration of PM2.5 (10 µg/m³, 2005 guideline), raising concerns about IAQ and 

its potential health implications for building users. The substantial increase in ACHINF, 

approximately 260.5%, over the heating season due to high Q50 (a leaky building envelope) 

underscores the significance of airtightness improvements in controlling air exchange and reducing 

air pollutant infiltration. In the low Q50 (=3) scenario (a well-sealed envelope), we found that a 

significant proportion (approaching 88%) of the zones exceeding the WHO PM2.5 2021 guideline 

(5 µg/m³) was present across the buildings, indicating the limit of what low Q50 may be able to 

achieve if outdoor ambient air pollution levels stay above certain thresholds. Indoor PM2.5 

exceedances are driven by both elevated outdoor concentrations and building airtightness. While 

reducing Q50 lowers infiltration, achieving WHO compliance in high-pollution regions requires 

parallel strategies to reduce ambient PM2.5 (e.g., clean air zones, traffic reduction). Further research 

is required to identify such thresholds to inform citywide evidence-based air quality policies and 

regulations such as the necessity of clean air zone.  
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Supplementary Table 

Table S1: A summary of the input parameters of CONTAM(.prj) file and EnergyPlus (.idf) file 

Category  Parameter  
Symbol 

[unit]  
Data Source Attribution Level 

Building/Zone 

Variants  

Zone Height H [m]  CAD Drawings 

(Architectural Plans, 

Sections and 

Elevations from HEI 

EFM)  

Development of CONTAM Project Files 

[.prj] for each Higher Education Building 

that includes detailed zones geometries, 

adjacencies and juxtapositions.   

 
Zone Area  A [m2] 

 
Zone Volume  V [m3] 

 
Zone Orientation  ϕ [°] 

Building 

Construction 

Year  

External Building 

Envelope Effective 

Leakage Area  

ELA [cm2/m2] NIST1 Library  Calculation of Building Envelope Air 

Permeability Values Q50 [m3/h/m2] after 

performing CONTAM Pressurisation 

Test at ∆P=50 Pa  

  

 
Building Envelope 

and Building 

Components 

Thermal 

Transmittance 

Value  

U-Value 

[W/m2K] 

CAD Drawings (Wall 

Sections and Material 

Specifications from 

HEI EFM)  

Development of Building Age 

Representative Material and Construction 

.idf files to Perform Dynamic Thermal 

Simulation in EnergyPlus  

  

Window 

Parameters  

Window Glazing 

Area  

Awt [m2] CAD Drawings 

(Architectural Plans, 

Sections and 

Elevations from HEI 

EFM) 

Calculate the amount of Heat Gain and 

Heat Loss in EnergyPlus  

 
Window Opening 

Area  

Awo[m2] EFM Heating Policy 

Plan  

Window Opening Schedules to Account 

for Natural Ventilation in Cooling Season   
Window Leakage 

Area  

Awl [cm2/m] NIST1 Library  Development of Window Leakage 

Elements in CONTAM Project Files 

using a Power Law Model  

Q= C(∆P)n 

    

Building User 

Characteristics 

Maximum 

Occupancy  

Occm UK University Space 

Planning Guide for 

Space Standards and 

University Timetables 

for Different Space 

Types.  

Space Use / Occupancy Schedules in 

CONTAM and EnergyPlus to Account 

for Indoor Heat Gains and CO2 

Generation Rates, and the Calculation of 

PM2.5 Exposure Levels.  

 
Occupancy Density  Occd 

[m2/person] 

 
Occupancy Level  Occ Assumed Occupancy 

Data was Used  

Pollutant 

Characteristics  
PM2.5 

Deposition Rate  

k [h-1] Literature  Identify Sink Elements in CONTAM 

Project Files to represent the loss of 

PM2.5 in Indoors.  

Airflow 

Characteristics  

Flow Exponent   n  CONTAM User Guide  Indicator of the Nature of Airflow 

(Turbulent or Laminar), Typical Values 

for Infiltration Airflow between 60 and 

70  
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Flow Coefficient  C Airflow Openings Dynamic Effects, 

Typical Values C=60 for Small 

Openings and slightly higher for Larger 

Openings   
Wind Pressure 

Coefficient  

Cp Swami and Chandra 

Model 

Calculate Wind Pressure Coefficients 

for Different Wind Angles in 

CONTAM to account for Wind 

Pressure Effect on Building Façade 

    

Ambient Weather 

Characteristics 

Outdoor 

Temperature  
Tamb [°C] Local Weather Stations 

(Sheffield’s Weston 

Park Weather Station)  

Generating EnergyPlus Weather Files 

(.epw) and CONTAM Weather Files 

(.WTH) using Actual Meteorological 

Year (AMY) Data  

 
Wind Speed  v [m.s-1] 

 
Wind Direction  u [°] 

 

Ambient PM2.5 

Concentrations  

Camb [µg/m3] Local Pollutant 

Monitoring Station 

(Sheffield Devonshire 

Green (UKA00575)) 

Generating CONTAM Ambient PM2.5 

Concentration Levels Files (.CTM) 

using Hourly Data 

Indoor 

Environment 

Characteristics 

Heating Season 

Indoor Air 

Temperature  

Tin [°C] University of Sheffield 

Indoor Space Heating 

Policy  

Development of EnergyPlus Indoor 

Space Heating Schedules and Setpoints 

to Control Indoor Air Temperature for 

the Co-Simulation  
        

 

 

 


