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Abstract 8 

 9 

Almost 800 million people currently lack access to reliable electricity, for many of whom solar 10 

microgrid systems are expected to be the most cost-effective solution. Quantifying current and future 11 

electricity demand is crucial for cost-effective design of reliable microgrids. However, electricity usage 12 

is connected to a wide range of social and economic factors alongside climatic conditions, making 13 

estimation of demand challenging. This paper presents a framework facilitating each stage of solar 14 

microgrid design from demand estimation through to cost-optimal sizing of the microgrid and its 15 

economic and environmental characterisation. Household demand is simulated based upon (1) 16 

climatic conditions, (2) appliance ratings and usage patterns, and (3) rates of growth in appliance 17 

ownership based upon the Multi-Tier Framework for measuring household electricity access. 18 

Microgrid demands are simulated based on the combination of these with (4) nondomestic demand 19 

based upon locally available data.  The framework is demonstrated across four rates of domestic 20 

demand growth and two climatic conditions ('tropical savanna’ and ‘humid subtropical’), alongside 21 

nondomestic demand based upon two operational microgrids (one rural and one peri-urban). When 22 

growth rates are high, newly introduced appliances tend to dominate, with differing impacts on the 23 

demand profile depending on power and usage times. Cooling represents a modest contribution to 24 

demand in the tropical savanna climate. However, in the hotter and more seasonally varying humid 25 

subtropical climate, cooling becomes the dominant driver of demand, increasing seasonality and 26 

proportion of demand at night. Nondomestic demand in the rural microgrid is primarily agricultural, 27 

and exhibits more seasonality and better alignment with daylight hours than demand in the peri-28 

urban setting, which is more service-based. Across cases, increased seasonality and proportion of 29 

demand at night lead to poorer alignment with PV generation, increasing cost and GHG emissions per 30 

unit of electricity used in a cost-optimised microgrid system. 31 

 32 
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 35 

Introduction 36 

 37 

Universal access to “affordable, reliable, sustainable, and modern energy” by 2030 represents the 38 

seventh of the UN’s seventeen sustainable development goals (SDGs) and underpins many of the 39 

other SDGs (Nerini et al., 2018; United Nations, 2015). However, an estimated 789 million people still 40 

lacked access to electricity in 2018, and current rates of increasing access are not sufficient to meet 41 

this goal (International Energy Agency et al., 2020).  42 

 43 

Many of those lacking access to electricity live in remote regions where off-grid and microgrid 44 

solutions are expected to be more cost-effective than national grid connection (Blechinger et al., 45 

2019; Ortega-Arriaga et al., 2021). As such, the International Energy Agency and the World Bank 46 

estimate that mini grids are the least-cost option for 40 percent of those who will need to gain 47 

electricity access by 2030(Energy Sector Management Assistance Programme (ESMAP), 2019; IEA, 48 

2017). Almost 90% of these are expected to be powered by solar photovoltaics (PV), with batteries 49 

providing backup power. However, solar microgrids remain capital intensive, and many of those 50 

lacking access to electricity also lack access to capital. Therefore, increasing affordability associated 51 

with solar microgrids represents a key challenge to accelerate the achievement of SDG 7. In light of 52 

international agreements to limit global heating, these microgrids should also be deployed with a 53 

minimum of associated GHG emissions (United Nations Framework Convention on Climate Change, 54 

2015). 55 

 56 

An understanding of the magnitude and temporal distribution of electricity demand is an important 57 

prerequisite for the design of a cost-effective and low emissions solar microgrid system. The 58 

magnitude of demand determines the size of system that will be required to meet this demand, and 59 

the temporal distribution of demand determines the appropriate balance between generation (eg. 60 

solar PV, diesel generation) and storage (eg. lithium-ion or lead-acid batteries). The existence of sharp 61 

peaks in demand (and smoothing of times of these between multiple users) defines required power 62 

capacity of the system (Narayan et al., 2018). The combination of the above factors determines the 63 

cost and GHG emissions intensity associated with meeting needs with a given level of reliability 64 

(Treado, 2015). Overestimating demand can lead to an oversized system, increasing associated cost 65 

and GHG emissions without delivering commensurate benefits. Underestimating demand can lead to a 66 

system which is unable to provide a reliable supply of electricity, potentially undermining electricity 67 

users’ trust in the system, and their propensity to invest in activities which rely upon it (Gibson and 68 



Olivia, 2010; Riva et al., 2018).  As such, developing a better understanding of electricity demand, and 69 

factors which may influence this across contexts, is important for governments and NGOs invested in 70 

achieving universal access to modern energy, and microgrid developers seeking to design systems to 71 

accommodate present and future requirements. 72 

 73 

Electricity use is interconnected with a wide range of social and economic factors through a complex 74 

network of causal relations (Bisaga and Parikh, 2018; Dominguez et al., 2021; Riva et al., 2019, 2018), 75 

potentially dependent on capacity building activities developed in parallel with microgrid deployment, 76 

and estimating demand in communities newly gaining access to electricity is fraught with challenges. 77 

There is little measured demand data, and much of what does exist is confidential. Survey approaches 78 

are frequently used to inform a baseline level of electricity demand, but these frequently show 79 

substantial discrepancies with measured demand. These discrepancies have been attributed to 80 

differences in appliance ownership, appliance ratings, and times of use between survey results and 81 

measured data (Blodgett et al., 2017; Hartvigsson and Ahlgren, 2018).  82 

 83 

Further, microgrid systems typically include components lasting many years, and may serve users’ 84 

demand over a long period. Therefore, estimating future evolution in demand is also important for the 85 

appropriate design of a microgrid system. Subject to appropriate social and economic conditions, 86 

electricity usage may increase over time, as electricity users gain access to a more reliable electricity 87 

supply, acquire new household appliances and develop income generating activities which make use 88 

of electrical devices (Gustavsson, 2007; Hartvigsson et al., 2021). This has been encapsulated in the 89 

concept of an “energy ladder”, which considers that household energy choices change with income, 90 

following a linear movement toward higher forms of energy (Bhatia and Angelou, 2015). This 91 

represents a simplifying assumption, and in practice energy use is more dynamic, with households 92 

sometimes not climbing the ladder as expected, or combining sources of electricity (Bisaga and Parikh, 93 

2018; Riva et al., 2018). However, it can still provide useful benchmarks by which levels of electricity 94 

access can be compared. 95 

 96 

Electricity demand can vary between more remote and sparsely populated rural areas, and more 97 

accessible and densely populated peri-urban areas (Riva et al., 2018). This can be partly attributed to 98 

differences in forms of nondomestic electricity use, with a higher prevalence of agricultural activities 99 

such as milling and water pumping in rural areas, and of service activities such as bars, restaurants, 100 

and tailors in urban areas. Agricultural demand can vary seasonally depending on rainfall and crop 101 

cycles (Mukherjee and Symington, 2018) whilst service demand typically remains more consistent 102 



throughout the year. Where communities have access to larger markets through roads and 103 

telecommunication, these can present opportunities to generate additional income, but also impact 104 

electricity demand characteristics by extending working hours into the evening (Neelsen and Peters, 105 

2011; Riva et al., 2018). This dynamic has been demonstrated for shops, barbers, and restaurants 106 

(Kooijman-van Dijk, 2012; Kooijman-van Dijk and Clancy, 2010; Meadows et al., 2003).  107 

 108 

Household electricity demand associated with cooling technologies responds to daily and seasonal 109 

cycles (Barton et al., 2020; Bhattacharyya, 2015; Filippini and Pachauri, 2004). Cooling demand may be 110 

expected to be higher in hotter climates (Barton et al., 2020), but little attention has been devoted to 111 

this dependence in the context of populations newly gaining access to reliable electricity. Globally, 112 

electric fans and air conditioning (AC) account for almost 20% of energy demand in buildings. This is 113 

projected to triple by 2050 in a baseline scenario (International Energy Agency, 2018). Until now, the 114 

majority of the AC stock has been installed in more affluent countries with well-established grid-based 115 

electricity systems. However, the majority of growth is expected to occur through households 116 

installing their first AC unit in emerging economies in hot climates. Given the substantial overlap of 117 

regions with low access to electricity and those with the greatest need for cooling (ibid), there is the 118 

potential for substantial growth in cooling demand in some off-grid systems.  119 

 120 

Motivated by the lack of quantitative data on electricity demand, previous studies have developed 121 

bottom-up techniques for analysing and modelling electricity demand amongst populations newly 122 

gaining access. The commercial software package HOMER offers a tool to create synthetic demand 123 

profiles, but provides little publicly available information on the approach and underlying assumptions 124 

guiding this process (HOMER Energy LLC, 2021). (Narayan et al., 2018) develop a stochastic model for 125 

electricity demand associated with households at each level of the World Bank’s Multi-Tier Framework 126 

for energy access, highlighting the important role new sources of demand could play in determining 127 

household electricity demand and appropriate sizing of solar home systems to meet this demand. 128 

(Stevanato et al., 2020) take a scenario-based approach to model demand growth and implications for 129 

microgrid design in a single location over twenty years, using a stochastic tool developed by (Lombardi 130 

et al., 2019) and (Mandelli et al., 2016). This tool is developed specifically to model demand in 131 

communities newly gaining access to reliable electricity, and simulates electricity use across user types 132 

(household, school, hospital, hostel). Its application highlights the importance of demand growth 133 

assumptions for overall microgrid system design. However, it does not explicitly account for 134 

implication of climatic conditions on demand profiles.  135 

 136 



(Barton et al., 2020) highlight the importance that climatic conditions could have in determining 137 

electricity demand, adapting a stochastic tool developed for estimating electricity demand in UK 138 

households with temperature profiles and appliance inputs representative of Indian conditions, but 139 

have not applied this tool in a microgrid context. (Alonso et al., 2021; Hartvigsson et al., 2021; 140 

Stevanato et al., 2020) incorporate diverse forms of nondomestic demand associated with different 141 

activities in specific microgrids into demand profiles. These works highlight the importance of type of 142 

nondomestic activity, which will depend on economic and rurality context, on demand profiles and 143 

appropriate microgrid sizing. 144 

 145 

There remains substantial work to be done in connecting bottom-up approaches to simulating time-146 

dependent electricity demand with dynamics affecting electricity demand across social, economic, and 147 

climatic contexts. This paper contributes by addressing the following three questions: 148 

 149 

• What are the sources, magnitudes, and temporal distribution of domestic and nondomestic 150 

demand amongst populations newly gaining access to electricity and how do these vary 151 

between a more remote rural and a peri-urban context with greater access to markets? 152 

• How might growing appliance ownership affect domestic demand growth over time, how 153 

might this affect load profiles, and how does this depend upon the variation in lighting and 154 

cooling requirements across climatic conditions? 155 

• What are the implications of these differences for total electricity demand, and cost and 156 

emissions intensity associated with a cost-optimal solar microgrid system to meet this? 157 

 158 

An open source framework is used to answer these questions, combining newly developed and pre-159 

existing tools to estimate household demand based upon appliance ownership and climatic 160 

conditions, measured and modelled nondomestic demand profiles from a rural and a peri-urban 161 

location, and a microgrid sizing tool informed by these demand data. 162 

 163 

Methodology 164 

 165 

The methodology used in this study consists of five distinct stages as summarised in Figure 1. First, real 166 

data on current domestic and nondomestic demand from microgrids in a rural and a peri-urban 167 

context are analysed. Second, potential future demand at a household level is simulated using the 168 

CREST demand model. This simulation is based upon appliance characteristics and ownership across 169 

tiers as specified in the World Bank’s Multi-Tier Framework, coupled with climatic conditions derived 170 



from the Renewables.ninja platform for the location of the two microgrids from which current 171 

demand data was derived. Third, current demand from these two microgrids, as well as simulated 172 

future domestic demand, are characterised according to new and established metrics. Fourth, ten-173 

year scenarios are developed for domestic demand at a microgrid level based upon differing 174 

proportions of households achieving different tiers of access by year. These scenarios are 175 

distinguished by rate of domestic demand growth: None, Slow, Medium, Fast, and Faster. Fifth, 176 

microgrid systems are simulated, cost-optimised, and characterised using the CLOVER model based 177 

upon each combination of rurality, rate of domestic demand growth, and climatic condition. The 178 

implications of each of these factors for cost-optimal PV and storage sizing, associated cost, and GHG 179 

emissions are considered in turn.  180 

 181 

Data and modelling techniques are freely available at https://github.com/sheridanfew/ElDemAcc, 182 

although data from households and businesses is available only in an aggregated form to maintain 183 

privacy (Few, 2021). 184 

 185 

 186 

Figure 1 Workflow associated with the methodology developed in this study 187 

Current demand across contexts 188 

 189 

Demand data is analysed for two operational microgrids, one in a peri-urban location (Gitaraga, 190 

Rwanda) relatively close to the capital city, and one in a rural location (Bhinjpur, Jharkand, India), 191 

which is substantially more remote and further from an urban centre. Services such as bars and 192 

hairdressers form a key part of nondomestic demand in the peri-urban context, alongside tailors and 193 

welding workshops. Agricultural activities, namely water pumping and rice polishing, are the sole 194 

https://github.com/sheridanfew/ElDemAcc


sources of nondomestic demand in the rural context. The association of nondomestic demand with 195 

services in the peri-urban location and agricultural activities in the rural location is in line with 196 

previous studies examining sources of electricity demand in peri-urban (Neelsen and Peters, 2011; 197 

Riva et al., 2018) and rural contexts (Mukherjee and Symington, 2018). As such, whilst exact values will 198 

be specific to these locations, the assumed final end uses and nondomestic demand in rural and peri-199 

urban contexts may be expected to be comparable to other similar locations , and could inform 200 

expectations in other locations gaining access to electricity. 201 

 202 

For the peri-urban location, monitored demand data from 2019 is available from the microgrid 203 

developer on a sub-hourly basis across domestic and nondomestic end users. For the rural 204 

community, demand is not measured directly, but estimated by the microgrid developer based upon 205 

knowledge of daily and seasonal cycles in milling and irrigation, developed through an ongoing 206 

relationship with the community which the microgrid serves, in addition to knowledge of the 207 

characteristics of the equipment used. Whilst measured data is not available to verify this estimation, 208 

this still represents a useful starting point given the dearth of publicly available information on 209 

nondomestic load in an off-grid context. However, caution should be taken in overinterpreting these 210 

profiles. In previous studies, interview-based load profiles have overestimated energy demand for 211 

electric machines used by SMEs due to an incorrect assumption of constant high power demand 212 

during usage hours (Hartvigsson and Ahlgren, 2018), which could affect estimated profiles here too. 213 

 214 

Domestic demand is assumed to be similar in the rural and peri-urban locations, since similar devices 215 

are present, although differences in routine are likely to have an impact on time of use of these 216 

devices in practice. As high-quality measured data is available for households in the Gitaraga site, this 217 

is used to represent domestic demand in both the rural and peri-urban contexts. These data are 218 

combined to build up comparable demand profiles across the year for the peri-urban, and a rural 219 

microgrid location, as shown in Table 1, where domestic demand is similar across the two locations, 220 

and nondomestic demand is based upon those observed in the case study locations. This nondomestic 221 

demand is scaled on a per capita basis in the peri-urban location, to make them comparable in size 222 

with the rural location. Further details of the communities from which data was gathered are included 223 

in an appendix. 224 

 225 

Table 1 Key details of microgrid-connected communities considered in this study  226 

Community Details Peri-urban Rural 

Number of households 100 100 

Household appliances Lights, USB charging Lights, USB charging 



Nondomestic electricity users 4 bars, 1 cinema, 2 

hairdressers/barbers, 1 shop, 2 

tailors, 1 welder/workshop, 1 

mosque 

1 rice polisher, 1 irrigation 

pump 

 227 

Simulation of future household demand by climate and energy access tier 228 

 229 

Future household demand is simulated based upon the World Bank’s Multi-Tier Framework. This 230 

framework classifies electricity access across five tiers, based upon increasing availability of energy, 231 

power, associated energy services, and reliability (Bhatia and Angelou, 2015).  Each of these tiers is 232 

also associated with the ability to power devices of increasing levels of power and energy 233 

consumption, ranging from those described as “very low power” (Tier 1) to “very high power” (Tier 5). 234 

Key parameters associated with household electricity demand across these tiers, alongside typical 235 

supply technologies as specified in (Bhatia and Angelou, 2015) are presented in Table 2. Whilst the 236 

energy access tiers cannot fully represent the complexity of changing practices around energy 237 

consumption, they still represent a useful set of benchmarks by which levels of energy access may be 238 

compared across studies. 239 

 240 

There is no universal definition of “affordable, reliable, sustainable, and modern energy services” as 241 

described in SDG 7 (United Nations, 2015) or how this maps on to tiers in the Multi-Tier Framework. In 242 

calculating levels access to electricity, the International Energy Agency specify a minimum 243 

consumption of 250 kWh per year for rural households, and 500 kWh per year for urban households 244 

(IEA, 2020). These are equivalent to around 700 and 1400 Wh per day, respectively; the upper end of 245 

Tier 2 and lower end of Tier 3. The Energy for Growth Hub have described this level of access as an 246 

“extreme energy poverty line”, consider 1000 kWh per household a requirement for the first stages of 247 

development in rural communities, and recommend 1000 kWh per person per year (5000 kWh per 248 

household) as a “modern energy minimum” (Moss et al., 2020). They stress that approximately 70% of 249 

this quota should be available for uses in the wider economy, with the remainder (around 4100 Wh 250 

per day) in the household, comfortably within Tier 4. As such, each of Tiers 1 – 4 are of interest in the 251 

context of provision of minimum levels of modern energy access, with Tier 5 representing a more 252 

ambitious goal above this minimum threshold. 253 

 254 

Table 2 – Multi-Tier Matrix for Measuring Access to Household Electricity Supply (Bhatia and Angelou, 255 

2015). 256 



Tier Minimum 

Daily Energy 

Availability 

(Wh) 

Minimum 

Available 

Power (W) 

Example Electrical Appliances Typical Supply Technologies 

1 12 3 Task lighting, phone charging, 

radio 

Solar lantern 

2 200 50 Multipoint general lighting, 

television, computer, printer, 

fan 

Rechargeable battery, solar home 

system (SHS) 

3 1000 200 Air cooler (evaporative), 

refrigerator, freezer, food 

processor, water pump, rice 

cooker 

Medium SHS, fossil fuel-based 

generator, mini-grid 

4 3400 800 Washing machine, iron, 

hairdryer, toaster, microwave 

Large SHS, fossil fuel-based 

generator, mini-grid, central grid 

5 8200 2000 Air conditioner, space heater, 

vacuum cleaner, water heater, 

electric cooker 

Large fossil fuel-based generator, 

central grid  

 

 257 

In simulating household demand, appliance ownership associated with households at each tier of the 258 

Multi-Tier Framework are defined based upon the deployment of a subset of devices from the 259 

examples specified in Table 2. The selection of this subset is somewhat arbitrary and motivated partly 260 

by those appliances for which data was available. This may be justified by the hypothetical nature of 261 

appliance ownerships at higher tiers, and the lack of data from deployed microgrids reaching these 262 

tiers of access. This selection leads to appliance ownership by tier as specified in Table 3, which are 263 

used as inputs in simulating household load. The deployment of high power appliances associated 264 

with Tier 5 represents an ambitious assumption, and is included in only one of our load growth 265 

scenarios. 266 

 267 

Demand profiles associated with households using these sets of devices are stochastically simulated 268 

using the CREST demand model, described in (Barton et al., 2020; McKenna and Thomson, 2016). This 269 

model is chosen for its ability to simulate household demand across a range of appliances on a 270 

minute-by-minute basis, informed by measured data, in addition to its coupling with a thermal 271 

building model, allowing more accurate simulation of electricity demand associated with cooling 272 

technologies, and how this depends upon climatic conditions. 273 

 274 

Table 3 – Devices introduced for households at different energy access tiers in this study based upon 275 

(Bhatia and Angelou, 2015). Each household at each Tier 1 - 5 operates appliances newly introduced at 276 

that tier, in addition to devices introduced at lower tiers. 277 

Tier 

Intro-

duced 

Device Category Typical 

Usage 

(hrs/yr) 

Operating Load 

(W/appliance) 

Source 



1 

 

Phone 

charger (×2) 

Appliance 667 3 (Narayan et al., 2018) 

LED bulbs 

(×8) 

Lighting N/A 3 (Narayan et al., 2018) 

2 Personal 

computer 

Appliance 1327 55 (Barton et al., 2020) 

TV Appliance 1706 17 (Verasol, 2020)  

Fan Space 

Cooling 

N/A 20 (Barton et al., 2020) 

3 Fridge 

freezer 

Appliance 3185 65 (Verasol, 2020) 

Air Cooler 

(evaporative) 

Space 

Cooling 

N/A 100 (Barton et al., 2020) 

4 

 

Iron Appliance 18 1000 (McKenna and Thomson, 

2016) 

Microwave Appliance 60 1080 (Barton et al., 2020) 

Washing 

machine 

Appliance 830 403 (McKenna and Thomson, 

2016) 

5 

 

Vacuum 

Cleaner 

Appliance 37 2000 (McKenna and Thomson, 

2016) 

Electric Hob Appliance 115 2400 (McKenna and Thomson, 

2016) 

Air 

Conditioning 

Space 

Cooling 

N/A 1250 (Barton et al., 2020) 

 278 

Appliance characteristics are derived from a combination of sources. Where available, specifications 279 

for low power devices developed specifically for off-grid settings are used (Barton et al., 2020; 280 

Narayan et al., 2018; Verasol, 2020). These are typically those associated with lower tiers of access, 281 

such as phone chargers, LED bulbs, TVs, and fridge freezers. Data for higher power devices, which 282 

have so far been rarely deployed in an off-grid setting are taken from more generic sources (Barton et 283 

al., 2020; McKenna and Thomson, 2016).  It should be noted that availability of efficient devices will 284 

differ between locations, and devices performing similar functions can vary substantially in their 285 

power usage and efficiency. Whilst not explored here, the use of inexpensive but inefficient devices 286 

has led to differences between estimated and measured demand in other contexts (Hartvigsson and 287 

Ahlgren, 2018). 288 

 289 

For most appliances, demand is calculated based upon operating load of the appliance, typical hours 290 

of usage per year, times during which householders are present, and parameters determining typical 291 

device operating periods (McKenna and Thomson, 2016) (full data informing these available at  292 

https://github.com/sheridanfew/ElDemAcc). For cooling and lighting technologies, demand is 293 

modelled differently, as climatic conditions impact annual demand. Cooling demand is simulated 294 

through thermal building modules within the CREST model. Each household is stochastically assigned a 295 

https://github.com/sheridanfew/ElDemAcc


demand temperature based upon survey results and measured data reported in (Huebner et al., 296 

2013).  Cooling technologies begin to operate in each household only when occupants are present and 297 

the internal building temperature reaches 2°C or more above the demand temperature. Cooling 298 

ceases once temperature falls 2°C below the demand temperature. 299 

 300 

Two climatic conditions are explored based upon the two microgrid locations from which current 301 

demand data are taken: Gitaraga and Bhinjpur. These represent a tropical savanna (TSav) and humid 302 

subtropical (HSub) climate (Beck et al., 2018), respectively. Associated temperature, insolation derived 303 

from the Renewables.ninja platform for these locations (Pfenninger and Staffell, 2020, 2016), and 304 

rainfall profiles for the nearest cities (Kigali and Ranchi) (Climate Data, 2021) are shown Figure 2. 305 

 306 

(a)              (b) 307 

 308 

     (c) 309 

 310 

Figure 2 Climatic conditions for considered tropical savanna and humid subtropical climates: (a) Mean, 311 

maximum, and minimum monthly temperature, (b) mean solar irradiance (direct and diffuse), and (c) 312 

mean monthly rainfall. 313 

The CREST demand model is used to generate 24 hours of minute-by-minute demand data across 25 314 

households for a weekday and a weekend day of each month of the year, across energy access tiers 315 

and climatic conditions. These data are converted into hourly demand profiles, and concatenated to 316 

produce demand data for 365 consecutive days for each household across each energy access Tier 1 – 317 

5, in each climatic condition, TSav and HSub. Average load profiles across households and days are 318 

shown in results sections, and a random selection of one of the 25 simulated households at the 319 



appropriate tier and climatic condition is made in developing load profiles for the whole microgrid 320 

system. It is chosen to simulate 25 households as this represents the approximate number of 321 

households at which variation in times of peak demand is sufficiently large that adding additional 322 

households has little impact on the shape of the overall demand profile (Love et al., 2017; McKenna 323 

and Thomson, 2016).  324 

 325 

Characterisation of demand 326 

 327 

A number of metrics are used to characterise domestic and nondomestic demand profiles described 328 

above, in order to better understand the role that this demand plays in defining the demand in and 329 

specifications of the entire microgrid system. Following (Hartvigsson and Ahlgren, 2018; Lombardi et 330 

al., 2019; Narayan et al., 2018), demand is evaluated based upon the following four factors: (i) mean 331 

daily energy usage, quantifying the typical energy required, (ii) peak demand, quantifying the 332 

maximum power the system will need to supply, (iii) load factor, 𝑓𝐿𝑜𝑎𝑑, quantifying the variability of 333 

demand: 334 

 335 𝑓𝐿𝑜𝑎𝑑 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑚𝑎𝑛𝑑𝑃𝑒𝑎𝑘 𝐷𝑒𝑚𝑎𝑛𝑑  336 

 337 

And (iv) coincidence factor, 𝑓𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 , quantifying the diversity in timings of demand between 338 

sources: 339 

 340 𝑓𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 = ∑ 𝑀𝑎𝑥(𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝐷𝑒𝑚𝑎𝑛𝑑𝑖)𝑛𝑖=1∑ 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑃𝑒𝑎𝑘 𝐷𝑒𝑚𝑎𝑛𝑑𝑖𝑛𝑖=1  341 

 342 

(where 𝑖 represents a single source amongst a set of 𝑛 sources of demand). Two further factors are 343 

introduced: (v) the PV overlap factor quantifies the overlap between demand and PV resource: 344 

 345 𝑓𝑃𝑉 = ∑ min (𝑃�̂�ℎ , 𝐷ℎ̂)24ℎ=1 ,  346 

 347 

Where  �̂�ℎ represents the mean demand from a source in hour ℎ of the day across the timeframe of 348 

available data, and 𝑃�̂�ℎ represents the mean electrical output from a PV panel in hour ℎ of the day at 349 

the same location, each normalised so as to sum to one over the day. Finally, (vi) the seasonality 350 

factor, 𝑓𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦  quantifies the variability of demand across seasons, calculated by dividing the 351 



mean demand across the six months of the year with the lowest demand, by the mean demand across 352 

the six months of the year with the highest demand. 353 

 354 

Scenarios for future microgrid demand 355 

 356 

Four scenarios are developed with differing rates of growth in domestic demand. A timeframe of 2030 357 

is selected as this is the target date by which the SDG 7 goal of universal energy access is due to be 358 

met (United Nations, 2015).  359 

 360 

Growth in  domestic electricity demand is calculated based upon the proportion of households 361 

reaching a given energy access tier per year. All households are assumed to be in Tier 1 in 2020. 362 

Growth in proportion of households reaching a higher energy access tier is based upon a logistic 363 

function (S curve), similar in form to the Bass function commonly used for the diffusion of new 364 

products based upon innovation and imitation (Mahaja et al., 1995). The proportion of households, 365 𝑃𝑡(𝑦) reaching tier 𝑡 in year 𝑦 is given by: 366 

 367 𝑃𝑡(𝑦) = 11 + 𝑒−(𝑦−𝑦𝑡) 368 

 369 

Where 𝑦𝑡 represents the year in which 50% of households reach tier 𝑡, defined for each tier by 370 

scenario. Four scenarios of Slow, Medium, Fast, and Faster growth are developed based upon the 371 

majority of householders reaching Tiers 2, 3, 4, and 5 by 2030, respectively. These scenarios are based 372 

upon equal timings between years at which 50% of households achieve each tier, with 5, 3.3, 2.5, and 373 

2 years between tiers in slow, medium, fast, and faster scenarios, respectively.  374 

 375 

The proportion of households reaching (or exceeding) each tier by year in these scenarios are shown 376 

in Figure 3. The Slow scenario, in which households do not reach Tier 3, arguably would not constitute 377 

access to modern energy as set out in the SDGs (United Nations, 2015). Tier 5 electricity access is 378 

typically more associated with a central grid or large fossil-based generator than a microgrid system 379 

(Bhatia and Angelou, 2015), and the Faster scenario, in which the majority of households achieve Tier 380 

5 (associated with vacuums, electric hobs, and air conditioning) is not expected to occur in large 381 

numbers of microgrid systems. However, this still represents a useful limiting case to examine what 382 

the implications of meeting such loads through a microgrid system would be, and potentially for more 383 

affluent communities seeking a higher level of electricity service. Whilst growth in load over time has 384 

been observed in some off-grid electricity systems (Gustavsson, 2007; Hartvigsson et al., 2021), this is 385 



far from universal (Bisaga and Parikh, 2018; Riva et al., 2018). As such, Figure 3 represents scenarios of 386 

what could happen, and in some cases needs to happen to meet SDG 7, rather than a prediction of 387 

what will happen. 388 

 389 

(a)              (b) 390 

 391 

(c)              (d) 392 

 393 

 394 

Figure 3 Scenarios for proportion of households achieving higher tiers of electricity access up to 2030 in 395 

(a) Slow, (b), Medium, (c) Fast, and (d) Faster scenarios. 396 

These scenarios are considered across climatic conditions and alongside nondomestic demand 397 

associated with peri-urban and rural contexts, which, owing to a lack of sufficient data with which to 398 

build growth scenarios, are assumed to stay at 2019 levels throughout these scenarios. This 399 

represents a simplifying assumption, as in practice growth in household appliance ownership is likely 400 

to be related to growth in income generating activities and associated nondomestic electricity use. 401 

 402 

Simulation and optimisation of microgrid system 403 

 404 

In order to quantitively assess the implications of the above demand profiles for microgrid system 405 

design, the open-source CLOVER (Continuous Lifetime Optimisation of Variable electricity Resources) 406 

microgrid simulation and optimisation tool is applied, using the above microgrid demand profiles as an 407 

input. An overview of this model and underlying assumptions is provided in supplementary materials, 408 



and it is described in detail in (Sandwell et al., 2017) and (Sandwell, 2017). This tool is used to 409 

calculate cost-optimal PV and storage sizing to meet electricity needs for 95% of hours in the ten-year 410 

operating period over which demand profiles are defined, and to determine the levelized cost of used 411 

electricity (LCUE) and lifecycle greenhouse gas (GHG) emissions intensity associated with electricity 412 

generated using this system.  The microgrid systems under consideration do not produce any direct 413 

GHG emissions, so GHGs are assumed to be purely attributable to manufacture and transport of 414 

system components. This optimisation procedure is broken down into two five-year simulation 415 

periods, such that equipment may be added at the midpoint of the system operation to meet growing 416 

demand and replace capacity lost due to system degradation. This procedure is carried out for each 417 

combination of scenarios described in Table 4.  418 

 419 

Table 4 – Key variables explored in this study 420 

Variable Rurality 

(determining 

nondomestic demand 

types) 

Climate 

(determining use of 

cooling and heating 

technologies) 

Domestic demand 

growth 

(determining appliances 

owned and operated 

used by householders) 

Values 

Explored 

Peri-urban, rural Tropical savanna, 

humid subtropical 

None, slow, medium, 

fast, faster 

 421 

 422 

Results 423 

 424 

Characterisation of existing demand 425 

 426 

Figure 4 shows mean hourly demand profiles for a rural and a peri-urban community normalised to 427 

100 occupants, with domestic demand assumed similar across the two locations, but differences in 428 

nondomestic electricity uses. 429 

 430 

 A number of features are notable here. Firstly, the peak magnitude of demand. This is substantially 431 

higher in the rural setting, dominated by the irrigation pump and rice mill, reaching levels around five 432 

times higher than total demand in the peri-urban setting. The microgrid operators have noted that the 433 

workshop uses a surprisingly small quantity of electricity (averaging 35Wh per day). Whilst a welding 434 

machine is installed here, it is rarely used, with the majority of work performed using manual and 435 

lower powered tools. This contrasts results reported for a set of microgrids in Tanzania, where 436 



electricity usage associated with a workshop and two millers were broadly similar, in the range of 14 – 437 

37kWh per day (Hartvigsson et al., 2021). 438 

 439 

Second, the temporal distribution of demand. In the rural setting, demand is primarily concentrated in 440 

the middle of the day, when solar resource is high. In the peri-urban setting, demand is more 441 

concentrated in the evening, with households and bars making the largest contributions. It is worth 442 

noting, however, that demand from some users in the peri-urban setting, the workshop and tailor in 443 

particular, are more concentrated in the middle of the day, but form a much smaller part of the 444 

overall system demand.  445 

 446 

(a)               447 

  448 

(b) 449 

 450 

Figure 4 Mean daily demand by source for a microgrid in (a) a peri-urban and (b) a rural location 451 

In considering the suitability of different systems to meet electricity needs, the distribution of demand 452 

both throughout the day and across seasons is important. Figure 5 shows mean demand by month 453 

from the same two microgrid systems. Overall demand is relatively consistent throughout the year in 454 

the peri-urban context, but is substantially higher between October and January in the rural context. 455 

This is primarily due to more intensive use of the rice mill during harvest seasons, and of the irrigation 456 

pump during dry seasons. 457 

 458 

  459 



(a)               460 

 461 

  462 

(b) 463 

 464 

Figure 5 Mean monthly demand by source for a microgrid in (a) a peri-urban and (b) a rural location 465 

 466 

Table 5 quantifies key metrics characterising demand associated with each of these sources, with 467 

standard deviation across days and across users included where data was available (although, as 468 

noted in the methodology, the sample size is relatively small). This further emphasises the 469 

substantially higher magnitude of nondomestic energy consumption and peak demand in the rural 470 

than the peri-urban setting. Referring back to minimum energy and power availabilities specified at 471 

different levels of the Multi-Tier Framework (Table 2), nondomestic users in the peri-urban setting 472 

have levels of daily energy consumption associated with Tiers 1 – 2, and peak power consumption 473 

associated with Tier 2 – 3, while both nondomestic uses in the rural setting would be classified as Tier 474 

5. Substantial variation in these quantities between days and users may be observed for domestic and 475 

nondomestic users in the peri-urban setting for which measured data was available.  476 

 477 

Load factor (mean demand divided by peak demand) varies substantially between users. This is lowest 478 

for the workshop, where a welding machine with exceptionally high associated demand is occasionally 479 

used, and higher for bars and households, where demand is more consistent. The higher load factors 480 

associated with nondomestic demand in the rural setting may be in part due to the use of synthetic 481 

rather than measured data from these sources. Since these were developed by the microgrid provider 482 

in order to assess overall energy needs of the system, they do not well capture sub-hourly variations, 483 



and associated short peaks in power usage, each of which would tend to reduce the load factor 484 

associated with this application. 485 

 486 

Overlap with PV resource is high for sources of demand concentrated in the middle of the day, which 487 

includes the irrigation pump and rice mill in the rural context, and the tailor and workshop in the peri-488 

urban context. PV overlap is substantially lower for nondomestic users with demand concentrated in 489 

the evening, such as the mosque, shop, cinema, and bars in the peri-urban context, and lowest of all in 490 

the domestic setting where demand is concentrated in the evening and overnight. Contrastingly, 491 

seasonal consistency is higher for domestic users than any nondomestic type. With the exception of 492 

the mosque, where the religious calendar will impact energy usage, demand from all the nondomestic 493 

users in the peri-urban context are more consistent across seasons than the more agricultural 494 

nondomestic demand in the rural context. 495 

 496 

Table 5 Key metrics associated with domestic and nondomestic demand in a peri-urban and a rural 497 

context 498 

  
Daily Energy (Wh) Peak Demand 

(W) 

Load Factor PV Overlap  Seasonal 

Consistency 

  Mean s.d. 

across 

days 

s.d. 

across 

users 

Mean s.d. 

across 

users 

Mean s.d. 

across 

users 

Mean s.d. 

across 

users 

Mean s.d. 

across 

users 
 

Domestic 30 6 36 10 15 0.12 0.03 0.12 0.11 0.81 0.31 

P
e

ri
-u

rb
a

n
 

Bar 231 116 115 94 127 0.10 0.01 0.39 0.16 0.76 0.13 

Cinema 331 244 - 270 - 0.05 - 0.38 - 0.66 - 

Hairdresser 127 77 95 80 30 0.07 0.02 0.43 0.10 0.59 0.22 

Mosque 92 78 - 144 - 0.03 - 0.29 - 0.37 - 

Shop 108 91 - 192 - 0.02 - 0.30 - 0.46 - 

Tailor 330 312 379 231 157 0.06 0.03 0.67 0.05 0.59 0.09 

Workshop 35 66 - 236 - 0.01 - 0.71 - 0.68 - 

R
u

ra
l 

Rice Mill 9031 4884 - 2250 - 0.17 - 0.72 - 0.41 - 

Irrigation 

Pump 

9031 4884 - 2250 - 0.17 - 0.71 - 0.41 - 

 499 

 500 

Simulation and characterisation of future household demand 501 

 502 

In order to consider implications of future growth in demand for microgrid design and operation, 503 

yearly profiles are simulated for households reaching energy access Tiers 1 – 5 in TSav and HSub 504 

climates (as described in the methodology). Mean daily demand by device across each of these tiers is 505 



shown in Figure 6a-e for the HSub climate, and mean monthly demand at Tier 5 in in Figure 6f. Similar 506 

plots are shown for the TSav climate in supplementary materials. Differences between climates are 507 

discussed subsequently and indicated in metrics presented in  508 

Table 6. 509 

 510 

  511 



(a)              (b) 512 

 513 

  514 

(c)              (d)    515 

516 

(e)              (f)  517 

 518 

Figure 6 (a-e) Mean daily demand by device for a simulated household in energy access tiers 1-5 in a 519 

humid subtropical climate, (f) mean monthly demand by device for a simulated household in energy 520 

access tier 5 in a humid subtropical climate.  521 

Figure 6 demonstrates the substantial growth in magnitude of electricity demand in moving from 522 

lower to higher tiers, with newly introduced loads dominating the demand profile in each case. Also 523 

notable is the shift in temporal distribution of demand associated with the change in appliance types 524 

dominating demand profiles in different tiers. There is a shift from maximum demand in the evening 525 

and overnight associated with mobile phone charging and lighting at Tier 1 (Figure 6a), to a less 526 

pronounced evening peak and higher daytime demand associated with a fan and a laptop in Tier 2 527 

(Figure 6b), and a fridge and an air cooler in Tier 3 (Figure 6c). The introduction of a washing machine 528 

in Tier 4 substantially increases daytime demand, leading to a relatively flat profile throughout 529 

daytime and evening hours, which drops off during the night (Figure 6d). The introduction of air 530 



conditioning dominates demand in Tier 5, which is associated with highest demand in daytime and 531 

evening hours, but remains substantial throughout the night (Figure 6e). The introduction of a hob 532 

and a vacuum cleaner further increases daytime and evening demand at Tier 5. 533 

 534 

Cooling technologies come to dominate demand in higher tiers, particularly Tiers 3 and 5, where the 535 

newly introduced air cooler and air conditioner represent more than half of the total demand. This 536 

change in daily demand profile might be expected to result in a better matching of PV resource to 537 

overall demand. However, cooling demand is highly seasonal, and drops off substantially during cooler 538 

months, meaning that ensuring sufficient PV is available to meet cooling demand during the hottest 539 

months requires an overcapacity of PV during cooler months. This is illustrated by the mean demand 540 

across months in Tier 5 shown in Figure 6f, dominated by air conditioning in the hotter months of April 541 

to September, and by other appliances in the cooler months of October to March. 542 

 543 

Cooling represents a much smaller component of demand in the TSav than the HSub climate. Figure 544 

7a shows the mean daily energy associated with cooling demand and other appliances across energy 545 

access tiers in each climatic condition. To illustrate the implications of these differences for overall 546 

demand profiles, Figure 7b and Figure 7c show mean demand across hours and months at Tier 5 in a 547 

TSav climate. In comparison to a HSub climate (Figure 6e and Figure 6f), load from the air conditioner 548 

is much lower, since the ambient temperature seldom reaches levels where cooling is required (Figure 549 

2a). This leads to a lower overall demand which is more concentrated in the middle of the day and the 550 

evening (Figure 7b), and exhibits substantially less seasonal variation (Figure 7c). Trends between 551 

climatic contexts are similar across Tiers 2 – 5, although most pronounced in Tiers 3 and 5 where 552 

cooling represents the largest proportion of total demand in the Hsub climate. 553 

  554 



 555 

   (a) 556 

 557 

 558 

(b)              (c) 559 

 560 

  561 

Figure 7 (a) Differences in mean daily demand associated with cooling technologies for a simulated 562 

household in energy access Tier 2-5 in tropical savanna and humid subtropical climates, and (b) daily 563 

and (c) monthly mean demand by device for a simulated household in energy access Tier 5 in a tropical 564 

savanna climate.  565 

Key metrics associated with simulated demand profiles are presented in  566 

Table 6, with increases in daily energy and peak demand apparent in moving from lower to higher 567 

tiers and from a TSav to a HSub climate. Coincidence factors are also typically higher in higher tiers 568 

and HSub climates, where a greater proportion of demand is from cooling and operates at a near 569 

constant level throughout the day. Load factor (average demand over peak demand) are similarly 570 

higher in HSub than TSav climates from Tiers 2 and above where near constant cooling demand 571 

pushes up average demand more than peak demand. Load factor shows a more varied pattern, 572 

however, with increasing energy access tier, falling substantially, for example, between Tiers 3 and 4 573 

where occasional high peak demands associated with use of the iron and microwave are introduced. 574 

 575 

PV overlap factors increase with increasing energy access tier up to Tier 4, as demand shifts from 576 

evening and night towards the middle of the day, particularly in the TSav climate where overnight 577 

cooling demand is lower. PV overlap then falls slightly in going from Tier 4 to Tier 5, as overnight 578 



demand from the air conditioner is introduced. Seasonal consistency changes little between energy 579 

access tiers in the TSav climate, where seasonal cooling represents a relatively small proportion of 580 

demand, but varies substantially between tiers in a HSub climate, where seasonal cooling dominates 581 

the demand profile in Tiers 3 and 5.  582 

 583 

Table 6 – Key metrics associated with simulated household demand across energy access tiers and 584 

climates. Minimum daily energy and power availabilities associated with these tiers as specified in the 585 

Multi-Tier Framework are indicated in parentheses alongside daily energy and peak demand. 586 

Energy 

access Tier 

Climate Daily energy 

(Wh) 

Peak 

Demand 

(W) 

Load Factor Coincidence 

Factor 

PV Overlap 

Factor 

Seasonal 

Consistency 

1  

HSub 
24 (12) 7 (3) 0.15 0.42 0.19 0.74 

TSav 
23 (12) 6 (3) 0.15 0.44 0.19 0.76 

2 

HSub 
494 (200) 103 (50) 0.20 0.55 0.36 0.54 

TSav 
349 (200) 94 (50) 0.16 0.43 0.37 0.51 

3 

HSub 
1621 (1000) 255 (200) 0.27 0.69 0.38 0.39 

TSav 
780 (1000) 211 (200) 0.15 0.42 0.41 0.64 

4 

HSub 
3158 (3400) 2903 (800) 0.05 0.22 0.50 0.55 

TSav 
2344 (3400) 2878 (800) 0.03 0.22 0.57 0.56 

5 

HSub 
7367 (8200) 5677 (2000) 0.05 0.25 0.49 0.36 

TSav 
3792 (8200) 5316 (2000) 0.03 0.18 0.56 0.57 

 587 

Comparing daily energy and peak demand associated with simulated demand ( 588 

Table 6) to those specified for each tier in the Multi-Tier Framework (Table 2), it is apparent that peak 589 

demand is above the minimum threshold specified across tiers and climates, and is particularly high in 590 

Tiers 4 and 5 where high power appliances and air conditioning are introduced. Daily energy use is 591 

above the minimum availability specified for Tiers 1 and 2 across climates, but falls substantially below 592 

minimum availability in Tier 4 and 5 in the TSav climate. These results indicate the possibility of 593 

meeting services associated with higher energy access tiers with a smaller electricity system than 594 

might have been expected, but that this depends substantially on climatic context. It is also worth 595 

noting that values specified in Table 2 indicate minimum levels of available energy, and do not 596 

necessarily imply that all of this energy should be required. 597 

 598 

Simulation and optimisation of microgrid system 599 

 600 

Characteristics of a cost optimised microgrid system to meet demand across ruralities, growth 601 

scenarios, and climatic conditions are compared in Figure 8. The size of the PV system required to 602 

meet demand in these scenarios from year 5 onwards is shown in Figure 8a, and the battery storage 603 



required per PV in Figure 8b. The levelised cost, and emissions intensity of used electricity associated 604 

with meeting this demand throughout ten years of microgrid operation are shown in Figure 8c and 605 

Figure 8d, respectively. These values are shown alongside initial PV and storage size, and capital cost 606 

in year 0, in   607 



Table 7. 608 

 609 

(a)              (b)  610 

 611 

(c)              (d) 612 

 613 

Figure 8 Key metrics associated with an optimal microgrid system across tropical savanna and humid 614 

subtropical climates, peri-urban and a rural locations, and rates of domestic demand growth: (a) PV 615 

size in year 5, (b) storage per PV in year 5, (c) levelised cost of used electricity, and (d) greenhouse gas 616 

emissions intensity.   617 

Where demand is assumed to continue at current levels, differences in nondomestic demand 618 

associated with differences in rurality is a key factor in determining microgrid characteristics. The 619 

optimised PV system required to meet the substantial and seasonal daytime demand associated with 620 

milling and water pumping in the rural microgrid is four times larger than that required to meet the 621 

smaller loads associated with the peri-urban microgrid (Figure 8a). However, substantially more 622 

storage is required per PV capacity in the peri-urban than the rural context, where nondomestic 623 

demand associated with bars and hairdressers are more concentrated in the evening (Figure 8b). The 624 

combination of these factors lead to a slightly higher LCUE in the peri-urban context, and a slightly 625 

higher emissions intensity in the rural context (Figure 8c,d). However, this result is likely to be highly 626 

sensitive to assumptions surrounding cost and embedded emissions (Error! Reference source not 627 

found.), and in particular the balance of these between PV and storage. 628 

 629 

Figure 8a also demonstrates the key role that the rate of domestic demand growth plays in 630 

determining the size of microgrid system required to meet demand. Required PV size is up to 40 times 631 



larger in the Faster domestic growth scenario than the No Growth scenario (with differences 632 

associated with different levels of nondomestic demand and climatic conditions across scenarios).   633 

 634 

Differences in nondomestic demand become less important in determining microgrid characteristics in 635 

scenarios in which domestic demand grows quickly, whilst climate becomes more important. 636 

Additional cooling demand at higher tiers result in a much larger PV system being required in an HSub 637 

than a TSav climate in Medium, Fast, and Faster domestic demand growth scenarios (Figure 8a). 638 

Cooling is particularly dominant in the HSub climate in the Faster domestic demand growth scenario, 639 

necessitating a PV system with almost triple the capacity of that in the TSav climate.  640 

 641 

Differences in required storage per PV are smaller in scenarios with faster growth in domestic demand 642 

(Figure 8b). This is because differences in demand across the day are more pronounced for 643 

nondomestic loads across considered rurality contexts (Figure 4)  than for household loads across tiers 644 

and climates (Figure 6 and Figure 7). Higher nighttime cooling load in the HSub climate increases 645 

required storage relative to the TSav climate, but since a substantially larger PV system is also 646 

required, the storage per PV remains relatively similar. 647 

 648 

Across growth scenarios, both LCUE and emissions intensity are substantially higher in HSub  than 649 

TSav climates. This is primarily attributable to two factors. First, the higher degree of seasonality of 650 

cooling demand in the HSub climate, which necessitates a PV system which produces more electricity 651 

than is required for most of the year. Second, the higher nighttime cooling demand in the HSub 652 

climate, which necessitates a larger battery system. 653 

 654 

  655 



Table 7 – Characteristics of optimal microgrid systems across growth scenarios and climatic and 656 

rurality contexts 657 

Growt

h Rate 

Climate Rurality Total PV 

Size, Year 

0 (kWp) 

Total PV 

Size, Year 

5 (kWp) 

Storage 

per PV, 

Year 0 

(kWh/kW

p) 

Storage 

per PV, 

Year 5 

(kWh/kW

p) 

LCUE for 

ten year 

microgrid 

operation

($/kWh) 

Initial 

Capital 

($) 

Emissions 

Intensity 

(gCO2e/k

Wh) 

None 

- 
Peri-

urban 1.8 1.8 3.8 3.9 0.30 

          

3,980  239 

- Rural 
8.6 9.3 1.1 0.9 0.21 

          

9,636  297 

Slow 

TSav 

Peri-

urban 5.8 10.4 2.9 3.1 0.34 

         

10,643  326 

Rural 
9.9 15.0 1.5 2.1 0.22 

         

12,524  272 

HSub 

Peri-

urban 8.8 16.8 2.8 3.1 0.40 

         

15,732  387 

Rural 
10.8 18.1 1.8 2.6 0.25 

         

15,038  279 

Med 

TSav 

Peri-

urban 10.1 21.8 3.1 3.1 0.35 

         

18,957  344 

Rural 
13.3 25.4 2.0 2.5 0.26 

         

19,851  295 

HSub 

Peri-

urban 22.2 58.2 2.5 3.2 0.49 

         

37,011  504 

Rural 
20.1 58.9 2.5 3.0 0.39 

         

33,555  429 

Fast 

TSav 

Peri-

urban 18.0 58.1 2.7 2.1 0.33 

         

31,345  386 

Rural 
19.8 62.2 2.1 1.9 0.28 

         

30,260  357 

HSub 

Peri-

urban 42.5 91.7 2.4 2.6 0.40 

         

68,738  423 

Rural 
41.2 93.8 2.2 2.4 0.35 

         

64,232  391 

Faster 

TSav 

Peri-

urban 29.5 95.9 2.5 2.1 0.32 

         

49,198  384 

Rural 
32.6 95.2 1.9 2.1 0.29 

         

46,983  352 

HSub 

Peri-

urban 72.3 249.0 2.2 2.6 0.51 

       

112,742  582 

Rural 
64.6 266.7 2.5 2.3 0.47 

       

107,840  582 

 658 

Discussion and conclusions 659 

 660 

This paper has presented an open-source framework facilitating all stages of microgrid system design 661 

and characterisation from demand estimation, through to cost-optimisation and characterisation of 662 

resulting system. This framework has been used to examine the impact of (1) rate of domestic 663 

demand growth, (2) climatic conditions, and (3) sources of nondomestic demand on household and 664 



microgrid demand profiles, sizing of cost-optimal microgrid systems to meet this demand, and cost 665 

and GHG emissions associated with these systems.  666 

 667 

Nondomestic demand derives from agricultural processes (milling and water pumping) in the rural 668 

setting considered here, and primarily from services (shops, bars, hairdressers) in the peri-urban 669 

setting. The agricultural demand exhibits greater coincidence of periods of high demand with solar 670 

generation compared with service demand, which is more concentrated in the evening. This allows 671 

demand to be met directly by solar PV, reducing the need for storage in the rural setting, and 672 

decreasing cost and emissions per unit of electricity used. However, the seasonal nature of agricultural 673 

demand means that meeting demand with PV in peak months requires a system that is larger than is 674 

required for much of the year, increasing costs in the rural relative to the peri-urban setting. Whilst 675 

quantitative results will be specific to individual contexts, the higher level of seasonality in rural areas 676 

(Mukherjee and Symington, 2018) and higher levels of evening and night time load in peri-urban areas 677 

(Neelsen and Peters, 2011; Riva et al., 2018) are in line with previous studies. As such, implications of 678 

rurality for system design may be expected to be comparable to other similar locations, and results 679 

could inform expectations in other locations gaining access to electricity. 680 

 681 

When domestic demand growth is fast, climatic conditions play a defining role in shaping microgrid 682 

demand profiles and characteristics of a cost-optimal microgrid to meet this demand, due to their 683 

impact on intensity of usage of cooling technologies. This is particularly important at higher levels of 684 

energy access and in hotter and more seasonally varying climates, where cooling technologies 685 

introduce higher levels of night-time demand and seasonal variability, increasing requirement for 686 

storage and necessitating the installation of a PV system which is larger than is required for much of 687 

the year, respectively. These factors both tend to increase cost and emissions per electricity delivered 688 

by a reliable microgrid system.  689 

 690 

Whilst not quantitively explored in this study, the high degree of seasonal variation in some sources of 691 

demand may make it more cost-effective to meet this demand using a hybrid system, whereby a 692 

backup form of dispatchable generation is introduced in months of highest demand. Alternatively, 693 

new forms of demand could be introduced with a seasonality which is complementary to existing 694 

sources, or an interconnection made to a nearby source of complementary demand if one is available.  695 

 696 

This work demonstrates the importance of a proper characterisation of demand for cost-effective 697 

microgrid sizing, and highlights the role that climatic conditions, different forms of productive use 698 



associated with different ruralities, and load growth can play in determining this. Whilst each location 699 

will have its own characteristics, these factors should each be considered carefully by developers 700 

when deploying a new microgrid system. The modular nature of microgrid systems based upon PV and 701 

batteries represents an advantage here, facilitating system expansion as demand evolves.  This work 702 

also provides insight to governments and NGOs seeking to support the achievement of SDG 7, 703 

indicating the size of systems and levels of investment required if this goal is to be met, and how this 704 

may depend upon definition of modern energy and upon local context. 705 

 706 

For tractability of this study, a number of simplifying assumptions were made which warrant attention 707 

in future work. Owing to lack of suitable data, no growth in nondomestic demand is assumed in 708 

scenarios considered here. In practice, this could vary substantially between contexts and become an 709 

important factor in defining demand profiles and microgrid characteristics. In order for a fair 710 

comparison of implications of the shape of demand profiles for microgrid costs, no costs and 711 

emissions associated with setting up the microgrid are included. In practice, these could form a large 712 

part of overall costs, especially in more remote settings and where overall system demand is lower. 713 

Rate of domestic demand growth, climatic condition, and rurality are treated as independent variables 714 

in this study. In practice, these could interact. For example, rurality could have a substantial impact on 715 

access to markets and appliances, which is likely to impact rate of growth in domestic and 716 

nondomestic demand.  717 

 718 

A single form of building design was investigated across climatic conditions and energy access tiers. In 719 

practice, differences in built form will affect thermal characteristics of buildings and need for cooling, 720 

which could have substantial implications for electricity demand profiles. In some cases, cooling 721 

demand could be reduced by the development of more thermally efficient buildings. In others, 722 

changes from traditional to modern building design has reduced suitability for local climates, 723 

exacerbating needs for active cooling (Gupta, 2017; Mazzone, 2020). Future work could focus on the 724 

extent to which improved passive cooling could reduce electricity demand associated with heating 725 

and cooling, and on how this could change due to impacts of global heating. However, it should be 726 

noted that desire for cooling technologies can be driven by social desirability as well as thermal 727 

comfort (Mazzone, 2020), and reduction in demand associated with improved thermal efficiency of 728 

building could be limited. 729 

 730 

Finally, this paper has focused on meeting of demand with microgrid systems. However, demand 731 

profiles presented here, and the methodology used to produce them, could also be used to assess the 732 



feasibility of other mechanisms of electricity provision, such as through standalone systems, 733 

interconnected microgrids, or connection to a larger regional or national grid system. 734 
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 880 

Table 8 Key details of microgrid-connected communities considered in this study  881 

Community Gitaraga, Eastern Province, 

Rwanda (peri-urban) 

Bhinjpur, Jharkhand, India 

(rural) 

Location/Remoteness Accessible 

~20km from centre of capital 

city (Kigali) 

~1km from major road 

Remote 

~100km from nearest city 

(Ranchi) 

~19km from major road (a 

smaller dirt road reaches the 

community) 

Number of Households 180 93 

Global co-ordinates -2.0760, 30.1207 22.7789, 84.4044 

Typical temperature 

range(Climate Data, 2021) 

14 – 27 °C 9 – 38 °C  

Household appliances Lights, USB charging, few TVs. Lights, USB charging, fans, few 

TVs. Two fridges, one cooling 

tower. 

Nondomestic electricity uses 8 bars, 1 cinema, 3 

hairdressers/barbers, 1 shop, 3 

tailors, 1 welder/workshop, 1 

mosque, streetlighting 

(NB. 3 of 8 bars, 1 of 3 

hairdressers, and 1 of 3 

barbers had insufficient 

measured data to inform 

contexts considered here) 

1 computer & printer, 1 rice 

polisher, water pumping, 

streetlighting 

Demand data Availability Monitored demand available 

for each electricity user at 

variable resolution (typically 

<2 mins). Available per 

appliance for domestic users. 

Demand per appliance 

estimated based upon 

developer experience and site 

visit. 



Current system sizing 6.5 kWp PV, 48 kWh PbA 

battery, backup diesel 

generator. 

18 kWp PV, 73 kWh PbA 

battery, no backup generation. 

Commission date 11/07/2018 24/02/2017 

Developer MeshPower Gram Oorja Solutions 
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