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Abstract

The main contribution of this paper is to provide three new results ax-

iomatizing the core of games in characteristic function form (not necessarily

with transferable utility) obeying an innocuous condition (that the set of in-

dividually rational pay-off vectors is bounded). One novelty of this exercise is

that our domain is the entire class of such games: i.e., restrictions like “non-

levelness" (a restriction not very appealing in several real-life situations) or

“balancedness", usually imposed in the related literature, are not required.
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1. Introduction

For analyzing coalitional behaviour, (cooperative) games in characteris-

tic function form with not necessarily transferable utility (i.e., with “non-

transferable utility" or “NTU" games) constitute a canonical framework.

Naturally, the core, as a natural set-valued prediction or “solution" for such

games, received quite an amount of justifiable attention.1 Also, quite natu-

rally, like several other solutions within such frameworks, the core has been

analyzed from axiomatic standpoint (Peleg (1985), Keiding (1986), Nagahisa

and Yamato (1992), Tadenuma (1992), Hwang and Sudholter (2001), Hwang

(2006) and most recently, Arribillaga (2016)).

The main motivation for this exercise: However, apart from Keiding (1986),

most other authors have axiomatized the core as a solution concept only

within the class of NTU games which satisfy the “non-levelness” condition.

We have recalled this condition formally in the following section. Somewhat

informally stated, non-levelness means that if a pay-off vector lies on the

boundary of a coalition’s set of feasible pay-offs, then lowering any coordinate

pushes it strictly inside. This ensures that every weakly dominated outcome

is also strictly dominated–implicitly assuming some form of utility transfer.

Frequent inclusion of this assumption for axiomatizing the core is possibly

owing to the fact that for NTU games that do not satisfy this condition,

the core may not obey many well-known and useful consistency properties

such as Davis–Maschler consistency and Moulin consistency (formally stated

1See, e.g., among others, Kannai (1992) or part A of Mertens and Sorin (1994).
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in Section 3) etc. However, the non-levelness condition may not be very

appealing especially in several contexts of games without transferable utility

because, as we have mentioned above, by this condition, some transferability

of pay-off is implicitly smuggled in even in set-ups of non-transferable utility

which may not be intuitively meaningful in several real-life situations. In

particular, at least an important class of games–the hedonic games (defined

precisely in Section 3 below), which have been studied extensively over the

last decade or so especially in contexts of matching models–do not necessarily

satisfy the non-levelness condition. Another important environment is that

of voting, which, when represented in characteristic function form, may not

satisfy the non-levelness condition.2 While we discuss this motivational issue

further with further formal details in Section 3 below, in the penultimate

paragraph of this introductory section we give a real-life example illustrating

this issue.

To address such situations and the corresponding conceptual categories,

terms like “imperfectly transferable" utility, in contrast to just “non-transferable"

utility, have been put forward (Galichon et al., 2019). We quote from Gali-

chon et al. (2019) (pp. 2876-77) for a possibly helpful explanation of such

distinctions within the specific environment of matching:

. . . Becker (1973) and Shapley and Shubik (1972)—mainly focuses

on matching patterns and the sharing of the surplus in a transfer-

able utility (TU) setting. . . . However, the assumption that the

bargaining frontier has this particular [linear] shape may be in-

2We provide details on this environment of voting in Section 3.
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appropriate; one can think of many cases in which there are non-

linearities that partially impede the transfer of utility between

matched partners. Such nonlinearities arise naturally in mar-

riage markets, where the transfers between partners might take

any form (e.g., cash, favor exchanges and change in time use or

consumption patterns) and the utility cost of a concession to one

partner may not exactly equal the benefit to the other. An ex-

treme case is the nontransferable utility (NTU) framework (Gale

and Shapley 1962), in which there is no possibility of compensat-

ing transfer between partners . . . well suited to settings like school

choice (where transfers are often explicitly ruled out) . . .

A summary of the main contribution of this paper: Given this context, this

paper provides mainly three new axiomatic characterizations of the core as a

solution on the general class of games in characteristic function form obeying

only an innocuous condition: that the set of individually rational pay-off

vectors is bounded for each coalition. We call this class Γ.

The first of these results (Theorem 1) is a tight complete characterization

mainly using an axiom of consistency and the corresponding converse con-

sistency property. The consistency property used, named Strong Secession

Consistency, similar to some such properties already known in the litera-

ture, is, however, new. Theorem 1 shows that there is a unique solution

on Γ that satisfies all of Pareto Optimality, Non-emptiness for Single Player

Games, Strong Secession Consistency and Converse Strong Secession Con-

sistency and it is the core. Further, these four axioms are independent on

Γ : i.e., for each of these axioms there exists a solution which, on Γ, vio-
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lates this axiom but satisfies the other three. In the next characterization

result we retain Pareto Optimality and Strong Secession Consistency, re-

place the axiom Non-emptiness for Single Player Games by another weak

non-emptiness property and substitute the converse consistency axiom by

two other axioms including a weak continuity-like property. These other two

axioms are Antimonotonicity, already quite well-known in the literature, and

Weak Continuity. Theorem 2 shows that the core is the unique solution on

Γ that satisfies these five axioms together. Further, these five axioms are in-

dependent on Γ : i.e., for each of these axioms there exists a solution which,

on Γ, violates this axiom but satisfies the other four. Finally, we look into a

variant of the axiom Strong Secession Consistency which we call Weak Seces-

sion Consistency. In Theorem 3 we replace Strong Secession Consistency by

Weak Secession Consistency, retain the other four axioms as in Theorem 2

and add a sixth axiom called Weak Internal Stability for Proximal Coalitions.

With these axioms we find a weaker result: Theorem 3 shows that the core

is the minimal among the solutions which satisfy all of these six axioms on

Γ.

We would like to mention another possibly interesting feature of our char-

acterization results. While, especially Peleg (1985, 1992) characterized the

core by consistency and converse-consistency-like axioms, the novelty of Kei-

ding’s approach was to provide an axiomatization result without invoking

consistency at all. Bhattacharya (2004) and then Llerena and Rafels (2007)

took a mixed approach (in a transferable utility set-up): they used both

consistency-like axioms as well as axioms like Antimonotonicity used by Kei-

ding (1986). Theorems 2 and 3 of this paper adopt a similar mixed approach.
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One motivating example: Consider a set of two persons, N = {1, 2}. Each of

them, to begin with, remains single and can allocate their time into main-

taining their respective household and into income generating activities. By

doing so, each i ∈ N can get some maximum income ωi. Then they can

become partners and can decide to live together in a single household and

reallocate their time into maintaining that household and into income gen-

erating activities. Thus, together they can generate optimally a total in-

come ωN and distribute that to themselves. Now consider some income pair

(y1, y2) such that y1 + y2 = ωN . Take another worse income pair (y1 − ε, y2)

in which the income of person 1 falls by ε > 0 but that of person 2 remains

intact. Then these persons can still generate the total income ωN together

and because of the transferability of income, redistribute that total income

as (y1 − ε/2, y2 + ε/2) and by doing so, both can become better off from

that worse income-pair. If this situation is represented as a game in char-

acteristic function form then the assumption of non-levelness is intuitively

acceptable. Now take a contrasting scenario in which persons 1 and 2, in-

stead, have started to date. While alone, each i ∈ N has some reservation

level of pleasure/satisfaction (i.e., “utility") πi. But when together on a date,

each of them can take some actions from some well-specified set of actions

and each of them gets some pleasure/satisfaction (i.e., “utility") from the

profile of actions chosen. For each i ∈ N, the maximum utility they can

get from being together on a date is πN
i . Take a utility-pair (πN

1 − ε, πN
2 ) in

which the utility of person 1 falls from its potentially maximal value by ε > 0

but that of person 2 remains at its maximal level. In this scenario, however,
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interpersonal transfer of utility seems highly unrealistic: in particular, one

does not typically use money or similar instruments to compensate for a loss

of pleasure when on a date. Thus, if this situation is represented as a game

in characteristic function form then the assumption of non-levelness is intu-

itively unappealing.

The structure of the remainder of this paper: The following section gives

the preliminary definitions and notation. Section 3 expands on the issue

with non-levelness further and provides a motivating example of a hedonic

game for which the core does not satisfy either Davis-Maschler consistency or

Moulin consistency; thus demonstrating that most of the existing literature

cannot provide axiomatic justification of the core for such classes of games.

The main axioms and some discussions of these are given in Section 4. Sec-

tion 5 discusses two of the main axiomatization results. The implications of

replacing Strong Secession Consistency by its variant, Weak Secession Con-

sistency, have been explored in Section 6. We provide a couple of concluding

remarks in Section 7. Finally, some results supplementary to the central ones

in the main body of this paper are given in an Appendix at the very end.

2. Preliminary definitions and notation

Let U be a set of potential players that may be finite or countably infinite.

For a set A we shall denote the cardinality of A by |A| and the proper subset

relation is denoted by ⊂ . For any finite subset S of U, by R
S we denote the

set of all functions from S to R, the set of real numbers. We would think

of elements of RS as |S|−dimensional vectors whose coordinates are indexed
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by the members of S and we shall use the Euclidean distance as the metric

on R
S.

Definition 1. A (cooperative) game in characteristic function form

(with non-transferable utility) or an NTU game is a pair (N, V ) where

N is a finite subset of U and V is the (characteristic) set function which

assigns to every S ⊆ N a set V (S) such that:

(1) V (∅) = ∅;

(2) For each coalition3 S ⊆ N, V (S) is a non-empty proper subset of RS;

(3) For each coalition S ⊆ N, V (S) is closed in R
S;

(4) For each coalition S ⊆ N, V (S) is comprehensive, i.e., if x ∈ V (S), and

y ∈ R
S is such that y ≤ x then y ∈ V (S).

For analyzing coalitional behaviours a more general framework is that of

partition functions. To recall that first we set up the following preliminary

ideas and notation. For any finite N ⊂ U, denote by Π(N) be the set of

all partitions of N. An embedded coalition is a pair (S, π) such that S ⊆ N,

π ∈ Π(N) and S ∈ π. Then (see also Bimonte et al. (2024)), a partition

function (not necessarily with transferable utility) can be defined, in general,

as follows.

Definition 2. A (cooperative) game (with a finite set of players N ⊆

U) in partition function form (with non-transferable utility) or an

NTU game in partition function form is a function V which assigns to every

3In what follows, often, by a coalition S we shall mean a non-empty S ⊆ N with no

possibility of confusion.
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embedded coalition (S, π); S ⊆ N ; π ∈ Π(N) a set V(S, π) such that:

(1) For every π ∈ Π(N), V(∅, π) = ∅;

(2) For all non-empty S ∈ π, V(S, π) is a non-empty proper subset of RS;

(3) For all non-empty S ∈ π, V(S, π) is closed in R
S;

(4) For all non-empty S ∈ π, V(S, π) is comprehensive, i.e., if x ∈ V(S, π),

and y ∈ R
S is such that y ≤ x then y ∈ V(S, π).

Recall that the idea underlying partition functions is that the set of pay-

offs attainable by a coalition depends on which other coalitions have formed.

A characteristic function is a more restrictive framework where, the set of

pay-offs attainable by a coalition remains fixed irrespective of which other

coalitions form. The analyses in this paper will remain within the framework

of characteristic functions; only at Section 7 we make a remark with respect

to partition functions.

For the rest of this paper we shall often refer to an NTU game (in char-

acteristic function form) simply as a game with no possibility of confusion.

For any finite N ⊆ U and any vector x ∈ R
N we shall denote the i-th

component of it by xi and the S coordinates of it (where S ⊆ N) by xS. For

any two vectors a, b ∈ R
S for some S ⊆ N, if ai > bi for all i ∈ S then we

shall denote that as a ≫ b. Given a set A ⊆ R
S; (with S ⊆ N) the boundary

of A is denoted by bd(A) and the interior of A by int(A).

Definition 3. Recall that a game (N, V ) is said to be of transferable utility

or a TU game if for every non-empty S ⊆ N there exists a real number

v(S) ∈ R such that V (S) = {x ∈ R
S|
∑

i∈S xi ≤ v(S)}.

We assume henceforth that every game (N, V ) we consider satisfies the
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following regularity condition (see, e.g., Scarf (1967)).

C1 (Boundedness of Individually Rational Pay-off Vectors): For any j ∈ N,

let bj := max{x|x ∈ V ({j})}.4 For all S ⊆ N, the set {x ∈ V (S)|xj ≥ bj for

all j ∈ S} is bounded.

Another regularity condition, as we mentioned in the previous section,

imposed frequently while analyzing the class of NTU games, is the following

(see, e.g., Aumann (1985), Peleg (1985), Peleg (1992) etc).

C2 (Non-levelness): For each S ⊆ N, if x ∈ bd(V (S)) then y ∈ R
S and

[y ≤ x ; y ̸= x] imply that y ∈ int(V (S)).

But we shall not impose this condition (apart from for illustrating a minor

contrasting result in the Appendix). Recall that every TU game, in particu-

lar, satisfies C2 and we repeat: if a general NTU game satisfies C2 then some

(possibly imperfect) transferability of pay-offs is implicitly assumed even in

the set-up of non-transferable utility.

By Γ we denote the class of games which satisfy C1.

Given any game (N, V ) ∈ Γ, a vector x ∈ R
T , (T ⊆ N, T ̸= ∅) is said to

be blocked or dominated by a (finite dimensional) real vector y if there is a

coalition S ⊆ T such that yi > xi for all i ∈ S and yS ∈ V (S). We indicate

this domination relation as y ≻S x, i.e., y dominates x via coalition S. If a

4Note that for any j ∈ N, V ({j}) is comprehensive as well as a closed proper subset of

R. Therefore, for each j ∈ N, a unique bj exists.
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vector y dominates a vector x via some coalition S then we shall denote that

as y ≻ x.

Definition 4. The core of the game (N, V ), denoted by C(N, V ) = {x ∈

V (N)| there is no y such that y ≻ x}.

The set of Pareto-efficient pay-off vectors of (N, V ), denoted by X(N, V ) =

{x ∈ V (N)| there is no y such that y dominates x via N}. The set of individ-

ually rational pay-off vectors of (N, V ), denoted by I(N, V ) = {x ∈ V (N)|

xi ≥ bi for all i ∈ N} (where the piece of notation bi has been defined in the

statement of C1 above).

Definition 5. Given some Γ0 ⊆ Γ, a solution on Γ0 is a mapping σ(.) which

associates with each game (N, V ) ∈ Γ0 a subset σ(N, V ) of V (N).

We repeat that almost all of our exercises are on the entire Γ which is a

central feature of this paper.

Definition 6. For a game (N, V ), a subgame of (N, V ) on T ⊆ N, denoted

by (T, VT ), is defined as

for all S ⊆ T, VT (S) = V (S).

3. Further motivating our exercise: a couple of examples

Recall that the primitive of a hedonic game, mentioned in Section 1, is a

coalition structure: i.e., a partition of N. For each partition P of N, for

each i ∈ N, let Si(P ) be the coalition that contains player i. Player i has

a complete, reflexive and transitive preference ordering ⪰i over {Si(P ) | P
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is a partition of N}. Generally, a hedonic game is defined as the collection

⟨N, (⪰i)i∈N⟩ (see, e.g., Section 5.1.2 of Chalkiadakis et al. (2012)). In words,

each i ∈ N has a preference ordering over the possible coalitions to which

they may belong.

If we further assume that for each i ∈ N, ⪰i has a cardinal representation–

i.e., each i ∈ N gets some cardinal pay-off from the possible coalitions to

which they may belong–then a hedonic game can be written as an NTU

game as follows (see, again, e.g., Section 5.1.2 of Chalkiadakis et al. (2012)).

Whereas, in general, such hedonic games can be written in partition function

form as well, a characteristic function suffices for such games as the cardinal

pay-off of every player in any coalition remains invariant irrespective of what

other coalitions are present.

Definition 7. A game (N, V ) is a hedonic game if for every non-empty

S ⊆ N, there exists πS ∈ R
S such that V (S) = {x ∈ R

S | for each i ∈ S,

xi ≤ πS
i }.

Denote by ΓH the class of such hedonic games. Note that each game in

ΓH satisfies C1, but does not satisfy C2.

As another instance of a real-life game-scenario for which C2 may not be

quite acceptable, consider the following example of voting by committees.

Let N be a finite set of judges who are to decide on selecting some winner in

a gymnastics competition. Let C be a finite set of competitors. A coalition

S ⊆ N can decide to select any c ∈ C rather then any c′ ∈ C if and only

if S ⊆ N is a majority coalition (i.e., if and only if |S| > |N |/2). For

each competitor c ∈ C, given their performance in the competition, each
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judge i ∈ N gets some pleasure/satisfaction (“utility") if c wins. For each

i ∈ N, this utility is measured by a function ui : C 7→ R and without loss of

generality, let us assume that for each i ∈ N, and each c ∈ C, 0 ≤ ui(c) < ∞.

This situation can be represented as a game in characteristic function form

(N, V gym) in the following way (see also Chapter 7 of Ordeshook (1986)):

if |S| > |N |/2, then V gym(S) = {x ∈ R
S | for each i ∈ S, there exists c ∈ C

such that xi ≤ ui(c)};

if 0 < |S| < |N |/2, then V gym(S) = {x ∈ R
S | for each i ∈ S, xi ≤ 0}; and

V gym(∅) = ∅.

Note that (N, V gym) ∈ ΓH .

Next we recall some consistency axioms that have been utilized for ax-

iomatizing the core on a restricted class of NTU games (those that satisfy

non-levelness and have a non-empty core; call that class ΓC). We start with

Davis-Maschler consistency, used by Peleg (1985) for axiomatizing the core

on ΓC .

Definition 8. Consider any game (N, V ) in some subclass Γ0 ⊆ Γ. Let x ∈

V (N). The Davis-Maschler reduced game on S ⊂ N, (S ̸= ∅) with

respect to x, (S, V δx
S ), is given by:

V δx
S (S) = {y ∈ R

S | (y, xN\S) ∈ V (N)};

V δx
S (T ) =

⋃

Q⊆N\S

{y ∈ R
T | (y, xQ) ∈ V (T ∪Q)}; T ⊂ S.

For the intuitive idea underlying Davis-Maschler reduced games, see, if

necessary, Section 3 of Peleg (1985). Then Davis-Maschler consistency (Peleg
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(1985)) is defined as follows.

Davis-Maschler Consistency (DMC):

Consider any game (N, V ) in some subclass Γ0 ⊆ Γ. Then, a solution σ(.)

satisfies DMC on Γ0 if the following holds: if x ∈ σ(N, V ) then for any coali-

tion S, (S, V δx
S ) ∈ Γ0 and xS ∈ σ(S, V δx

S ).

Next we recall Moulin consistency, used by Tadenuma (1992) for axiom-

atizing the core on ΓC .

Definition 9. Consider any game (N, V ) in some subclass Γ0 ⊆ Γ. Let x ∈

V (N). The Moulin reduced game on S ⊂ N, (S ̸= ∅) with respect to x,

(S, V µx
S ), is given as follows: for every non-empty T ⊆ S,

V µx
S (T ) = {y ∈ R

T | (y, xN\S) ∈ V (T ∪N \ S)}.

Then Moulin consistency (Tadenuma, 1992) is defined as follows.

Moulin Consistency (MC):

Consider any game (N, V ) in some subclass Γ0 ⊆ Γ. Then, a solution σ(.)

satisfies MC on Γ0 if the following holds: if x ∈ σ(N, V ) then for any coali-

tion S, (S, V µx
S ) ∈ Γ0 and xS ∈ σ(S, V µx

S ).

Next we get on to the following Observation.

Observation 1. The core does not satisfy either DMC or MC on ΓH .
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Proof. The proof is in the form of the following simple example of a hedonic

game (a more general example proving this Observation can be generated

easily using this very example).

N = {1, 2}; πN = (2, 2); π{1} = π{2} = 0.

Note that this game satisfies C1 but not C2.

Note that the vector x = (1, 2) is in the core of this game. Then,

V δx
{1}({1}) = V µx

{1}({1}) = {y ∈ R | y ≤ 2}.

But then x{1} is not in the core of either of these reduced games.

Observation 1 indicates that much of the existing results axiomatizing

the core are inapplicable for such (and similar) classes of games. Our work

tackles this issue.

4. Our main axioms

Some of the axioms used in this paper are quite well-known in the liter-

ature and hardly need much discussion. Below we discuss in some detail the

axioms we consider relatively less familiar.

We state the axioms by invoking an arbitrary solution σ(.) on the general

domain of our study–the entire Γ; but restating these on some subsets of Γ,

if required, is unproblematic. Take (N, V ) ∈ Γ.

1. Pareto Optimality (PO): σ(N, V ) ⊆ X(N, V ).

2. Non-emptiness for Single Player Games (NESPG): If |N | = 1,

σ(N, V ) ̸= ∅.
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3. Irrelevance of σ-empty Coalitions (IREC):

Suppose that for every non-singleton and non-empty S ⊂ N, σ(S, VS) = ∅.

In that case, if there exists x ∈ I(N, V ), then σ(N, V ) ̸= ∅.

Operationally this is a technical but weak “non-emptiness" criterion. How-

ever, an intuitive normative idea behind IREC is as follows. If a coalition

is to affect the solution set for the whole game involving the grand coalition

N, then it must have a non-empty solution set for its own sub-situation (i.e.,

the respective subgame). It is straightforward that if a game satisfies IREC

then that satisfies NESPG as well.

Next we provide a consistency-like axiom and toward that goal first we

define a reduced game.

Definition 10. Let x ∈ V (N). The strong secession reduced game (SS

reduced game hereafter) on S ⊂ N, (S ̸= ∅) with respect to x, (S, V x
S ), is

given by:

V x
S (S) =







V (S) if xS ∈ V (S),

{y ∈ R
S| y ≤ xS} if xS ̸∈ V (S),

V x
S (T ) = V (T ) for T ⊂ S.

This reduced game reflects the following situation. Suppose, a pay-off vec-

tor x is agreed upon by N. Then, the players in N \ S leave, no cooperation

with them is possible any more. But the grand coalition S in the “reduced”

situation can still renegotiate on the pay-off distribution. If it finds that it
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cannot possibly improve upon this agreed pay-off x then this distribution is

maintained in the reduced situation as well. Otherwise, the members of S

oppose the pay-off distribution according to x and completely secede from

the original game making a coalition for themselves. Moreover, since no co-

operation with the players in N \ S is possible, the worth of each T ⊂ S in

the reduced game remains what it was in the original game. This is similar

in spirit to the reduced game introduced by Nagahisa and Yamato (1992).

Bhattacharya (2004) used such a reduced game in transferable utility set-up.

Llerena and Rafels (2007) also used this idea (but they called it “projection"

reduced game).

4. Strong Secession Consistency (SSC):

If x ∈ σ(N, V ) then for any coalition S, (S, V x
S ) ∈ Γ and xS ∈ σ(S, V x

S ).

Note further that the idea underlying SS reduced games is quite opposite

to that for Davis-Maschler reduced games. For the latter, in the reduced

game on any proper coalition S, for any coalition T ⊂ S, any other coalition

Q ⊆ (N\S) is available for joint play in the underlying strategic sub-situation

whereas for the former, no cooperation with N \S is possible at all. It might

be intersting to note that on ΓC the core satisfies consistency with respect

to both these kinds of behaviorally quite opposite reduced sub-situations.

The corresponding “converse" property is:

5. Converse Strong Secession Consistency (CSSC):

Suppose x ∈ X(N, V ) and for every coalition S, S ̸= N, xS ∈ σ(S, V x
S ). Then
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x ∈ σ(N, V ).

A tiny point to note is that unlike, say, in Peleg (1985), in the statement

of CSSC we require the vector x to be in X(N, V ), not merely in V (N). It

is easy to see that if we replace X(N, V ) by V (N) in the statement of CSSC

then the core may not satisfy the resulting variant of the axiom on Γ.

The next axiom is akin to continuity (but much weaker than continuity)

which is a desirable feature for a solution. For stating this axiom, to repre-

sent distance between two subsets of a finite-dimensional Euclidean space we

have used below the Hausdorff distance5 as that is possibly the most widely

used in such contexts.

6. Weak continuity (WC):

Let {(N, V k)} be a sequence of games belonging to Γ such that ∀k, V k(S) =

V (S) for S ⊂ N and V k(N) converges to V (N) (in the Hausdorff distance).

Let {xk} be a sequence such that xk ∈ σ(N, V k) for all k and xk converges

to x. Then x ∈ σ(N, V ).

In the Appendix we introduce a variant of this continuity-like axiom

(called “Modified weak continuity") and Supplementary Result 2 in the Ap-

pendix shows that this axiom also works in axiomatizing the core on Γ.

7. Antimonotonicity (AM):

5For a definition and some properties of this, see, if necessary, e.g., Hildenbrand (1974).
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Let (N, V ′) ∈ Γ be such that V ′(S) ⊆ V (S) for all S ⊂ N and V ′(N)=V (N).

Then σ(N, V ) ⊆ σ(N, V ′).

The intuition is that if the coalitions get impoverished then the pay-off

vectors in the solution of the original game remain in the solution of the

new game and additionally some more pay-off vectors feasible for the grand

coalition may qualify as solution vectors. Keiding (1986) introduced this

axiom in the literature.

It should be straightforward to see that the core satisfies PO, NESPG

and AM on Γ. In the next section we demonstrate that the core satisfies the

other four axioms on Γ as well.

5. The main characterization results

Theorem 1. There is a unique solution on Γ that satisfies PO, NESPG, SSC

and CSSC and it is the core. Further, these four axioms are independent on

Γ : i.e., for each of these axioms there exists a solution which, on Γ, violates

this axiom but satisfies the other three.

For proving the characterization part of this Theorem we use three lem-

mas given below. The idea behind this result–especially that of invoking

NESPG for a single-player game and then using converse consistency and the

method of induction–has been adopted from Nagahisa and Yamato (1992).

Lemma 1.1. For any (N, V ) ∈ Γ, C(N, V ) satisfies SSC and CSSC

Proof. Take any (N, V ) ∈ Γ.

SSC: Take any x ∈ C(N, V ) and for any S ⊂ N, consider the SS reduced
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game (S, V x
S ). If xS ∈ V (S) then V x

S (S) = V (S) and since (N, V ) ∈ Γ, by the

definition of SS reduced games, (S, V x
S ) also belongs to Γ. If xS /∈ V (S) then

for each y ∈ V x
S (S), y ≤ xS and so, again by the definition of SS reduced

games, (S, V x
S ) belongs to Γ. Further, since x ∈ C(N, V ), for both these

cases, by the definition of SS reduced games, there cannot exist y ∈ V x
S (S)

such that y ≻S xS. Next, consider, if possible, a vector y and a coalition

T ⊂ S such that y ≻T xS. But then y ≻T x as well which contradicts the

supposition that x ∈ C(N, V ). Therefore, xS ∈ C(S, V x
S ).

CSSC: Conversely, suppose x ∈ X(N, V ) and for every coalition S, S ̸= N,

xS ∈ C(S, V x
S ). First, from the definition of SS reduced games it is straight-

forward that there cannot exist any vector y and coalition T such that

|T | < |N |−1 and y ≻T x. Next, consider any S ⊂ N such that |S| = |N |−1.

If there exists any y ∈ R
S for which y ≻S x then xS ∈ int(V (S)). But then

xS /∈ C(S, V x
S ) leading to a contradiction. Therefore, since x ∈ X(N, V ) as

well, x ∈ C(N, V ).

Lemma 1.2 If a solution σ(.) satisfies PO and SSC on Γ then for any

(N, V ) ∈ Γ, σ(N, V ) ⊆ C(N, V ).

Proof. Take (N, V ) ∈ Γ and suppose that x ∈ σ(N, V )\C(N, V ). Then, for

some S ⊂ N, xS ∈ int(V (S)). Therefore, by the definition of a SS reduced

game, V x
S (S) = V (S). Moreover, by SSC, xS ∈ σ(S, V x

S ). But since xS ∈

int(V (S)), then σ(.) violates PO.

Lemma 1.3 If a solution σ(.) satisfies PO, NESPG and CSSC on Γ then

for any (N, V ) ∈ Γ, C(N, V ) ⊆ σ(N, V ).
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Proof. We shall prove this by induction on the number of players. Take

(N, V ) ∈ Γ. If |N | = 1, then by NESPG, σ(N, V ) ̸= ∅ and by PO, C(N, V ) ⊆

σ(N, V ) (in fact, these two sets are equal). Assume that the result is true

whenever |N | is less than or equal to some positive integer k − 1. Consider

(N, V ) ∈ Γ such that |N | = k. Let x ∈ C(N, V ). Then, for every S ⊂ N,

xS ∈ C(S, V x
S ) and therefore, by the induction hypothesis, xS ∈ σ(S, V x

S ).

Then, by CSSC, x ∈ σ(N, V ).

This completes the proof of the characterization part.

Proof of the remainder of Theorem 1.

Next we show that each of the axioms is independent of the other three.

PO: Consider a solution σ(.) on Γ as follows: for every (N, V ) ∈ Γ, σ(N, V ) =

I(N, V ), the set of individually rational pay-off vectors. Then σ(.) does not

satisfy PO but obviously satisfies NESPG. Next, if x ∈ I(N, V ) then for ev-

ery S ⊂ N, irrespective of whether xS ∈ V (S) or not, for every i ∈ S, xi ≥ bi.

Therefore, for each S ⊂ N, xS ∈ σ(S, V x
S ) and thus, σ(.) satisfies SSC. Fi-

nally, suppose x ∈ X(N, V ) and for every coalition S, S ̸= N, xS ∈ σ(S, V x
S ).

Then, for each i ∈ N, xi ≥ bi and so, x ∈ σ(N, V ).

NESPG: Consider a solution σ(.) on Γ as follows: for every (N, V ) ∈ Γ,

σ(N, V ) = ∅. Then σ(.) violates NESPG but satisfies each of the other three

axioms for this Theorem.
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SSC: Consider a solution σ(.) on Γ as follows: for every (N, V ) ∈ Γ, σ(N, V ) =

X(N, V ). Then it is straightforward to see that σ(.) satisfies PO, NESPG and

CSSC but violates SSC.

CSSC: Consider a solution σ(.) on Γ as follows: for every (N, V ) for which

|N | = 1, σ(N, V ) = C(N, V ) and if |N | > 1 then σ(N, V ) = ∅. Then σ(.) vio-

lates CSSC (which is easy to see considering examples of games with |N | = 2)

but satisfies the other three axioms.

The proof of the next characterization result–Theorem 2–uses some ideas

from Bhattacharya (2004).

Theorem 2. There is a unique solution on Γ that satisfies PO, IREC, SSC,

WC and AM and it is the core. Further, these five axioms are independent on

Γ : i.e., for each of these axioms there exists a solution which, on Γ, violates

this axiom but satisfies the other four.6

Proof. We prove this result along the following three steps.

Step 1: First we show that for each (N, V ) ∈ Γ, C(N, V ) satisfies IREC and

WC.

IREC: Take (N, V ) ∈ Γ such that for every non-singleton and non-empty

6In the Appendix we prove a minor contrasting result: Supplementary Result 1. Let

ΓL2 ⊂ Γ be the subclass of 2-player games which satisfy C2 (i.e., non-levelness) as well.

Then there is a unique solution on ΓL2 that satisfies PO, IREC, SSC and AM and it is

the core (i.e., for characterization of the core for this sub-class, WC is not required).
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S ⊂ N, C(S, VS) = ∅. First note that since each (N, V ) ∈ Γ satisfies C1,

for each such (N, V ) with a non-empty I(N, V ), every y ∈ I(N, V ) can-

not be in the interior of V (N) and thus, X(N, V ) ∩ I(N, V ) ̸= ∅. Pick

x ∈ X(N, V ) ∩ I(N, V ). We claim that x ∈ C(N, V ). Suppose not. Then,

arguing as in Ray (1989), since C(S, VS) = ∅ for every non-singleton and

non-empty S ⊂ N, there must exist i ∈ N for which bi > xi. But this con-

tradicts the supposition that x ∈ I(N, V ) and thus, C(N, V ) satisfies IREC.

WC: Let {(N, V k)} be a sequence of games belonging to Γ such that ∀k,

V k(S) = V (S) for S ⊂ N and V k(N) converges to V (N) (in the Hausdorff

distance). Let {xk} be a sequence such that xk ∈ C(N, V k) for all k and xk

converges to x. Suppose x /∈ V (N) : i.e., x ∈ R
N \ V (N). Since x does not

belong to the closure of V (N), the distance between the point x and the set

V (N) is some finite number greater than 0. But then, since xk converges to

x and for each k, xk ∈ V k(N), V k(N) cannot converge to V (N) in the Haus-

dorff distance. This leads to a contradiction. Therefore, x ∈ V (N). Next we

show that x ∈ C(N, V ). Suppose not. Since the sequence {xk} converges to

x, for each k, xk ∈ C(N, V k) and for each S ⊂ N, V k(S) = V (S) it cannot be

the case that xS ∈ int(V (S)) for some coalition S ⊂ N. Then it must be that

x ∈ int((V (N)). Then there is some open ball B(x) centred on x such that

B(x) ⊂ V (N). But then, since for the sequence {(N, V k)}, V k(N) converges

to V (N) in the Hausdorff distance, there is a positive integer k̄ such that for

each k ≥ k̄, the ball B(x) ⊂ V k(N) as well. But then, since the sequence

{xk} converges to x, it cannot be the case that for each k, xk ∈ C(N, V k)

which leads to a contradiction.
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Step 2: Next we prove the main characterization result.

Suppose a solution σ(.) satisfies PO, IREC, SSC, WC and AM on Γ. Take

(N, V ) ∈ Γ. By Lemma 1.2 above, σ(N, V ) ⊆ C(N, V ).

Take x ∈ C(N, V ). Fix a real number ε > 0 and construct the game (N, V ε)

as follows:

V ε(N) = V (N) ∪ {y ∈ R
N | for each i ∈ N, yi ≤ xi + ε/|N |},

and for S ⊂ N,

V ε(S) = V (S).

Construct the vector xε, given by xε
i = xi + ε/|N | for all i ∈ N.

Now, further construct the game (N, V ε,x) for which V ε,x(S) = V ε(S) for

every non-singleton coalition S ⊆ N and for every i ∈ N, V ε,x({i}) = {y ∈

R|y ≤ xi + ε/|N |}.

We claim that for any proper coalition S ⊂ N such that |S| > 1, σ(S, V ε,x
S ),

i.e., the solution for the subgame of (N, V ε,x) on the coalition S, is empty.

Suppose otherwise. Fix S ⊂ N, |S| > 1, such that σ(S, V ε,x
S ) ̸= ∅ and let

y ∈ σ(S, V ε,x
S ). By Lemma 1.2, yi ≥ xi + ε/|N | for every i ∈ S. But then

y ≻S x which contradicts the supposition that x ∈ C(N, V ). Hence, the claim

is proved.

Then, by IREC, σ(N, V ε,x) ̸= ∅ and by PO and Lemma 1.2, σ(N, V ε,x) =

{xε}. Therefore, by AM, xε ∈ σ(N, V ε). Now, take a decreasing sequence of

positive numbers {εk} such that ε1 = ε and εk −→ 0. For each k, construct

a game (N, V εk) such that:
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V εk(N) = V (N) ∪ {y ∈ R
N |yi ≤ xi + εk/|N | for each i ∈ N},

and for S ⊂ N,

V εk(S) = V (S).

Let xεk be the vector given by xεk

i = xi + εk/|N | ∀i ∈ N. By our argument

above, for each k, xεk is in σ(N, V εk). Then for the sequence {(N, V εk)},

V εk(N) converges to V (N) (in the Hausdorff distance) and xεk converges to

x. Then, by WC, x ∈ σ(N, V ).

Step 3: Next we show that each of the axioms is independent of the other four.

PO: Consider a solution σ(.) on Γ as follows: for every (N, V ) ∈ Γ, σ(N, V ) =

I(N, V ), the set of individually rational pay-off vectors for (N, V ). Then it

is straightforward to see that σ(.) violates PO but satisfies the other four

axioms.

IREC: Consider a solution σ(.) on Γ as follows: for every (N, V ) ∈ Γ,

σ(N, V ) = ∅. Then it is straightforward to see that σ(.) violates IREC but

satisfies the other four axioms.

SSC: Consider a solution σ(.) on Γ as follows: for every (N, V ) ∈ Γ, σ(N, V ) =

X(N, V ). Then it is straightforward to see that σ(.) satisfies PO, WC and

AM but violates SSC.

To demonstrate that this σ(.) satisfies IREC, note that since each (N, V ) ∈ Γ

satisfies C1, for each such (N, V ) with a non-empty I(N, V ), every y ∈
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I(N, V ) cannot be in the interior of V (N) and thus, X(N, V )∩ I(N, V ) ̸= ∅.

WC: Fix a set of players N̂ = {1, 2, 3}. Fix a game (N̂ , V εk) ∈ ΓH as follows:

V̂ (N̂) = {x ∈ R
N̂ |x1 ≤ 4; x2 ≤ 4; x3 ≤ 4};

for S ⊂ N̂ such that |S| = 2; V̂ (S) = {x ∈ R
S|xi ≤ 2 for each i ∈ S};

for each i ∈ N̂ , V̂ ({i}) = {x ∈ R|x ≤ 1}.

Let a solution σ(.) be as follows. For any (N, V ) ∈ Γ such that (N̂ , V̂ ) is

a subgame of (N, V ), σ(N, V ) = ∅. For (N̂ , V̂ ), σ(N̂ , V̂ ) = (4, 4, 4). For any

other (N, V ) ∈ Γ, σ(N, V ) is the core.

Then it is easy to see that σ(.) satisfies the four axioms other than WC.

To see that σ(.) violates WC, take a decreasing sequence of positive numbers

{εk} such that εk −→ 0. For each k, construct a game (N̂ , V εk) ∈ ΓH such

that:

V εk(N̂) = {x ∈ R
N̂ |x1 ≤ 4 + εk; x2 ≤ 4 + εk; x3 ≤ 4 + εk};

and for S ⊂ N̂ ,

V εk(S) = V (S).

Consider the sequence {xk} such that for each k, xk = (3+ εk, 4+ εk, 4+ εk).

Then, for each k, xk ∈ σ(N̂ , V εk). The sequence {V εk(N̂)} converges to V̂ (N̂)

and the sequence {xk} converges to (3, 4, 4) which, however, does not belong

to σ(N̂ , V̂ ).

AM: Fix a set of players N̂ = {1, 2}. Consider the subset of games Γ′ ⊂ ΓH

such that for each (N, V ) ∈ Γ′, N = N̂ and

V (N) = {x ∈ R
N |x1 ≤ 1; x2 ≤ 1};

b1 = 1; 0 ≤ b2 ≤ 1.
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Let a solution σ(.) be as follows. For any (N, V ) ∈ Γ such that N = N̂ ,

σ(N, V ) = x ∈ C(N, V ) such that x2 = b2. For any (N, V ) ∈ Γ such that N̂

is a proper subset of N and for which C(N̂ , VN̂) ̸= ∅, σ(N, V ) = ∅. For any

other (N, V ) ∈ Γ, σ(N, V ) is the core.

Then it is easy to see that σ(.) violates AM but satisfies the other four axioms.

Remark 1. Note that for proving the independence of the four axioms in

Theorem 1, we did not have to impose any restriction on Γ. With respect

to Theorem 2, while proving independence of the five axioms, for two of the

contrasting example solutions we used games belonging to ΓH and the rest

of the example solutions did not require any restriction at all. This shows

that these (tight) axiomatizations are valid for characterizing the core on ΓH

which is in sharp contrast to what we saw in Section 3.

6. A related consistency property and its implication

Note that following the idea of secession consistency, a similar consistency

axiom can be introduced as follows. First we define a corresponding reduced

game. As before, take some (N, V ) ∈ Γ.

Definition 11. Let x ∈ V (N). The weak secession reduced game on

S ⊂ N, (S ̸= ∅) with respect to x, (S, Ṽ x
S ), is given by:

Ṽ x
S (S) = {y ∈ R

S|y ≤ x};

Ṽ x
S (T ) = V (T ) for T ⊂ S.
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This, obviously, is similar in spirit to the strong secession reduced game.

But here, the coalition S must maintain the pay-off agreed upon by N and

so, the power of seceding is weaker. The corresponding consistency property

is:

8. Weak Secession Consistency (WSC):

If x ∈ σ(N, V ) then for any coalition S, (S, Ṽ x
S ) ∈ Γ and xS ∈ σ(S, Ṽ x

S ).

The corresponding “converse consistency" condition is:

8′. Converse Weak Secession Consistency (CWSC):

Suppose x ∈ X(N, V ) and for every coalition S, S ̸= N, xS ∈ σ(S, Ṽ x
S ). Then

x ∈ σ(N, V ).

In this section we explore the possibility of axiomatizing the core using

this related but distinct consistency condition instead of SSC. But first we

make a couple of preliminary observations.

Observation 2. (i) The core does not satisfy CWSC on Γ;

(ii) There exists a solution σ(.) on Γ which satisfies WSC but not SSC.

Proof. (i): Consider the following game. N = {1, 2, 3} and

V (N) = {x ∈ R
N |

∑

i∈N xi ≤ 6};

V ({1, 2}) = {x ∈ R
{1,2}|x1 + x2 ≤ 4};

for every other S ⊂ N, V (S) = {x ∈ R
S|
∑

i∈S xi ≤ 0}.

Consider the vector x = (2, 1, 3). Then x ∈ X(N, V ) and for every coalition

S, S ̸= N, xS ∈ C(S, Ṽ x
S ). But x /∈ C(N, V ) as, say, the vector (2.1, 1.9)
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dominates x via the coalition {1, 2}.

(ii): Consider the following solution: for each (N, V ) ∈ Γ, the solution is

X(N, V ). Consider the game used in proving part (i) of this Observation.

For that game, X(N, V ) satisfies WSC but not SSC. To see this, consider

again the vector x = (2, 1, 3) ∈ X(N, V ) and the coalition S = {1, 2}. Then,

Ṽ x
S (S) = {y ∈ R

S| y ≤ (2, 1)} whereas V x
S (S) = {y ∈ R

S|y1 + y2 ≤ 4}.

Therefore, while x ∈ X(S, Ṽ x
S ), x /∈ X(S, V x

S ).

Next we introduce our final axiom.

9. Weak Internal Stability for Proximal Coalitions (WISPC):

Let x ∈ σ(N, V ). Consider any S ⊂ N such that |S| = |N | − 1. Then for all

y ∈ σ(S, VS),

maxj∈S xj ≥ minj∈S yj.

This axiom is somewhat egalitarian in spirit. Suppose for a coalition

S proximal to N (obtained by dropping only one player) even the worst-

paid player in a pay-off vector y in the solution of the subgame on S gets

more than that is given to any player of S in an allocation x for the grand

coalition. Then, this axiom specifies that if x is so bad for possibly such a

large fraction of the players then x should not be in the solution of the whole

game. Bhattacharya (2004) introduced this axiom in context of transferable

utility environments.

Our final characterization result is as follows.

Theorem 3. The core is the minimal among the solutions which satisfy PO,
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IREC, WSC, WC, WISPC and AM on Γ.7

We prove this theorem via the following three lemmas.

Lemma 3.1. The core satisfies WSC and WISPC on Γ.

Proof. Take any (N, V ) ∈ Γ and any x ∈ C(N, V ).

WSC: Now, for any S ⊂ N, consider the weak secession reduced game

(S, Ṽ x
S ). By the definition of this reduced game, for each y ∈ Ṽ x

S (S), y ≤ xS.

Further, for each T ⊂ S, Ṽ x
S (T ) = V (T ). Therefore, since (N, V ) ∈ Γ,

(S, Ṽ x
S ) ∈ Γ as well. Next, by the definition of Ṽ x

S (S), there cannot exist

y ∈ Ṽ x
S (S) such that y ≻S xS. Next, consider, if possible, a vector y and a

coalition T ⊂ S such that y ≻T xS. But then y ≻T x as well which contra-

dicts the supposition that x ∈ C(N, V ). Therefore, xS ∈ C(S, Ṽ x
S ).

WISPC: Consider any S ⊂ N such that |S| = |N | − 1. Suppose there exists

y ∈ σ(S, VS), such that maxj∈S xj < minj∈S yj. Then y ≻S x leading to a

contradiction.

Lemma 3.2. If a solution σ(.) satisfies PO, IREC, WSC and WISPC on

Γ then for any (N, V ) ∈ Γ, σ(N, V ) ⊆ I(N, V ).

Proof. Take x ∈ σ(N, V ). Note that by IREC, for any single-player game

(N, V ), σ(N, V ) ̸= ∅. Then, by PO, for every i ∈ N, σ({i}, V{i}) = {bi}.

7Supplementary Result 3 in the Appendix shows that the minimality in the statement

of this theorem is non-trivial: i.e., there exists a solution σ(.) satisfying all these six axioms

on Γ such that for every (N,V ) ∈ Γ, C(N,V ) ⊆ σ(N,V ) and for some (N,V ) ∈ Γ, C(N,V )

is a proper subset of σ(N,V ).
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Now, let |N | > 1 and suppose xi < bi for some i ∈ N. If |N | = 2, then σ(.)

violates WISPC as bi > xi. If |N | > 2, then pick j ∈ N \ {i} and construct

({i, j}, Ṽ x
{i,j}), the weak secession reduced game on {i, j} with respect to x.

Then by WSC, the vector (xi, xj) ∈ σ({i, j}, Ṽ x
{i,j}). Note that the subgame

of the game ({i, j}, Ṽ x
{i,j}) on the singleton coalition {i} is, by the defini-

tion of weak secession reduced games, precisely ({i}, V{i}). Therefore, since

σ({i}, V{i}) = {bi} and bi > xi, σ(.) violates WISPC.

Lemma 3.3 If a solution σ(.) satisfies PO, IREC, WSC, WC, AM and

WISPC on Γ then for any (N, V ) ∈ Γ, C(N, V ) ⊆ σ(N, V ).

Proof. The proof is exactly similar to the Step 2 of the proof of Theorem

2 above, but for completeness we (essentially) reproduce the first part of the

proof.

Take x ∈ C(N, V ). Fix ε > 0 and construct the game (N, V ε) as follows:

V ε(N) = V (N) ∪ {y ∈ R
N | for each i ∈ N, yi ≤ xi + ε/|N |},

and for S ⊂ N,

V ε(S) = V (S).

Construct the vector xε, given by xε
i = xi + ε/|N | for each i ∈ N.

Now, further construct the game (N, V ε,x) for which V ε,x(S) = V ε(S) for

every non-singleton coalition S ⊆ N and for every i ∈ N, V ε,x({i}) = {y ∈

R|y ≤ xi + ε/|N |}.

We claim that for any proper coalition S ⊂ N such that |S| > 1, σ(S, V ε,x
S ),

i.e., the solution for the subgame of (N, V ε,x) on the coalition S, is empty.

Suppose otherwise. Fix S ⊂ N, |S| > 1, such that σ(S, V ε,x
S ) ̸= ∅ and let
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y ∈ σ(S, V ε,x
S ). By Lemma 3.2, yi ≥ xi + ε/|N | for every i ∈ S. But then

y ≻S x which contradicts the supposition that x ∈ C(N, V ). Hence, the claim

is proved.

The remainder of the proof is exactly identical to the Step 2 of the proof of

Theorem 2 above.

7. Some concluding remarks

Note that while the core has an immediate intuitive explanation, some

other solution concepts (like the kernel) are intuitively (apparently) less

straightforward and the acceptability of these depends more strongly on ax-

iomatic justification (e.g., Inarra et al. (2020)). But much of such exercises

have been under the restriction of “non-levelness". Perhaps some axioms used

in this paper may be fruitfully used to explore other such solutions axiomat-

ically on richer classes of games (but, of course, at the moment this remark

is entirely speculative).

Further, the core of games (not necessarily with transferable utility) in

partition (rather than characteristic) function form (see, e.g., Bimonte et al.

(2024)) has not been well-explored and to our knowledge axiomatic analyses

of such cores are entirely absent. It might be interesting to study further

whether the axiomatic analysis similar to this paper can be made for the

core in the environment of games in partition function form.

Appendix

In this Appendix we present three supplementary results.
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Supplementary Result 1. Let ΓL2 ⊂ Γ be the subclass of games such that

each (N, V ) in ΓL2 satisfies C2 (i.e., non-levelness) and for each (N, V ) ∈

ΓL2, |N | = 2. Then there is a unique solution on ΓL2 that satisfies PO, IREC,

SSC and AM and it is the core. Further, these four axioms are independent

on ΓL2 : i.e., for each of these axioms there exists a solution which, on Γ,

violates this axiom but satisfies the other three.

Proof. Take any 2-player game (N, V ) ∈ ΓL2. First, by by Lemma 1.2,

σ(N, V x) ⊆ C(N, V x).

Take x ∈ C(N, V ). Construct (N, V x) ∈ ΓL2 for which V x(N) = V (N) and

for every i ∈ N, V x({i}) = {y ∈ R|y ≤ xi}.

Then, by IREC, σ(N, V x) ̸= ∅. Note that C(N, V x) = {x}. To see this

consider some y ̸= x such that y ∈ C(N, V x). Then yi ≥ xi for each i ∈ N

and yi > xi for at least one i ∈ N. But then, since (N, V x) satisfies C2 (non-

levelness), x is in the interior of V (N) which leads to a contradiction. Since,

by Lemma 1.2, σ(N, V x) ⊆ C(N, V x), σ(N, V x) = C(N, V x) = {x}. Then,

by AM x ∈ σ(N, V ) : i.e., σ(N, V ) = C(N, V ).

Next we demonstrate the independence of AM from the other three ax-

ioms. Recall that N = {1, 2}. Consider the subset of games Γ′ ⊂ ΓL2 such

that for each (N, V ) ∈ Γ′,

V (N) = {x ∈ R
N |

∑

i∈N xi ≤ 2};

b1 = 1; 0 ≤ b2 ≤ 1.

Let a solution σ(.) be as follows. For any (N, V ) ∈ Γ′, σ(N, V ) = {x ∈

C(N, V ) such that x2 = b2}. For any other (N, V ) ∈ ΓL2, σ(N, V ) is the

core.

Then it is easy to see that σ(.) violates AM but satisfies the other three
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axioms.

For each of the other three axioms, the example-solution we used to demon-

strate its independence in Step 3 of the proof of Theorem 2 works for this

result too.

Next we obtain a variant of Theorem 2 by replacing the axiom WC by

a modified continuity-like axiom (and retaining the other four axioms). The

new axiom is given below.

6′. Modified weak continuity (MWC):

Take (N, V ) ∈ Γ and let x ∈ V (N). Let {(N, V k)} be a sequence of games be-

longing to Γ such that ∀k, V k(S) = V (S) for S ⊂ N and V (N) ⊇ V k+1(N) ⊇

V k(N). Let {xk} be a sequence such that xk ∈ σ(N, V k) for all k and xk con-

verges to x. Then x ∈ σ(N, V ).

Then the analogue of Theorem 2 is as below.

Supplementary Result 2. There is a unique solution on Γ that satisfies

PO, IREC, SSC, MWC and AM and it is the core. Further, these five axioms

are independent on Γ : i.e., for each of these axioms there exists a solution

which, on Γ, violates this axiom but satisfies the other four.

Proof. To demonstrate that the core satisfies MWC on Γ, consider a se-

quence of games belonging to Γ such that ∀k, V k(S) = V (S) for S ⊂ N and

V (N) ⊃ V k+1(N) ⊃ V k(N). Let {xk} be a sequence such that xk ∈ σ(N, V k)

for all k and xk converges to x. Suppose, if possible, x ∈ V (N) \ C(N, V ).

Then there exists a real vector y such that for some S ⊆ N, y ≻S x. But,
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since, for each k, V k(S) = V (S) for S ⊂ N and V (N) ⊆ V k(N), there is

a positive integer k̄ such that for each k ≥ k̄, y ≻S xk (since the sequence

{xk} converges to x). This leads to a contradiction to the supposition that

for each k, xk ∈ C(N, V k).

The proof of rest of this result, including the demonstration of independence

of the axioms, is exactly similar to that for Theorem 2.

Finally, we demonstrate that the minimality in the statement of Theorem

3 is non-trivial.

Supplementary Result 3. There exists a solution σ(.) which satisfy PO,

IREC, WSC, WC, WISPC and AM on Γ such that for every (N, V ) ∈ Γ,

C(N, V ) ⊆ σ(N, V ) and for some (N, V ) ∈ Γ, C(N, V ) is a proper subset of

σ(N, V ).

Proof. Consider the following solution σ(.) on Γ :

If (N, V ) is a TU game then σ(N, V ) = {x ∈ X(N, V )| for no S ⊂ N is it

the case that (v(S)/|S|) > xi for each i ∈ S} (where, recall that v(S) is as

in Definition 3 above); and

σ(N, V ) = C(N, V ) otherwise.

It is straightforward to see that σ(.) satisfies PO, WSC, WC, AM and

WISPC.

To show that σ(.) satisfies IREC we proceed as follows. Naturally, it suf-

fices to confine attention to ΓTU ⊂ Γ, the sub-class of TU games. First it

is straightforward that if |N | = 2 then σ(.) satisfies IREC. Now suppose

that for some game (N, V ), with |N | > 2, IREC is violated. If for some

proper coalition S ⊂ N such that |S| > 1, σ(S, VS) ̸= ∅, then IREC is (vac-

uously) satisfied. Therefore, for every proper coalition S ⊂ N such that
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|S| > 1, σ(S, VS) = ∅. This implies that if |S| = 2, then for some i ∈ S,

bi > (v(S)/|S|). Suppose such an inequality holds if |N | − 1 > |S| = k ≥ 2:

i.e., for every S with |S| = k, for some i ∈ S, bi > (v(S)/|S|). But suppose

that for some proper coalition S ⊂ N such that |S| = k + 1, (v(S)/|S|) ≥ bi

for every i ∈ S. But then (v(S)/|S|) ≥ (v(T )/|T |) for every proper subcoali-

tion T of S. But this implies that σ(S, VS) ̸= ∅ which leads to a contradiction.

Now take x ∈ X(N, V ) ∩ I(N, V ). Then it must be that xS ≥ (v(S)/|S|) for

every proper coalition S of N. This is because, otherwise, for some i ∈ N,

bi > (v(S)/|S|) > xi which leads to a contradiction to the supposition that

x ∈ I(N, V ). Then x ∈ σ(N, V ).
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