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ABSTRACT

This article presents a climatology of trapped lee waves over Britain and Ire-
land obtained through deep learning. Several deep-learning models trained
to diagnose lee-wave occurrence, amplitude, wavelength, and orientation are
applied to a 31-year high-resolution hindcast dataset covering 1982-2012, from
UK Climate Projections (UKCP18) data, driven by ERA-Interim reanalysis data.
Building on previous work to examine lee-wave characteristics over Britain and
Ireland, this study applies a new technique to a much larger dataset than has
been used in the past. There is little diurnal variability observed in the occur-
rence and characteristics of lee waves. Spatially, most lee waves occur over hilly
regions, such as the Scottish Highlands, the Lake District and the Pennines
in England, and North Wales. Seasonally, lee waves occur more in the winter
months than in the summer. The link between synoptic weather patterns and
lee waves is quantified, with more lee waves produced and a higher likelihood of
higher amplitude waves under patterns with faster synoptic wind speeds, such
as the positive phase of the North Atlantic Oscillation (NAO+). The mean orien-
tation of waves is broadly in line with the synoptic wind direction, though with
a large spread in some cases. High horizontal wind speeds aloft are a necessary
but not sufficient indicator of high-amplitude lee waves. When other meteoro-
logical variables are used to predict the prevalence of lee waves using a random
forest, the Scorer parameter is the most important for predicting the generation
of lee waves alongside horizontal wind speed: there is less importance placed
on the stability. This climatology provides a novel data-driven insight into the
formation and propagation of lee waves over Britain and Ireland.
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1 | INTRODUCTION

Internal gravity waves (or mountain waves) are produced
by the forced ascent of air over orography in a stratified
atmosphere. Under the right conditions, these waves can
be trapped in the lower troposphere rather than propa-
gating up into the stratosphere or mesosphere, forming
trapped lee waves (or lee waves for short). These lee waves
occur over Britain and Ireland on a regular basis, propa-
gating downwind from orography, despite the orography
being relatively small in height and width compared with
other mountain ranges globally. Lee waves with a high
amplitude (vertical velocity > 3 m - s7! is used at the Met
Office for forecasting severe lee-wave activity: e.g., Vosper
et al., 2013) lead to an increased likelihood of rotor activ-
ity, that is, regions of strong turbulence downstream of
the orography. Rotors are particularly hazardous to air-
craft and high-sided road vehicles (Vosper et al., 2013).
In addition, lee waves are a source of horizontal momen-
tum transport in the atmosphere, as well as wave drag
(Bretherton, 1969; Shutts, 1992).

To diagnose conditions conducive for waves and iden-
tify whether wave trapping is likely, the Scorer parameter
(Scorer, 1949) is often used. The Scorer parameter [ at a
height z is defined as

where N(z) is the Brunt-Viisild frequency and U(g) is
the horizontal wind speed. In general, the first term is
the more important and the second (shear) term is only
significant when the wind shear is large (Blockley &
Lyons, 1994). Two-dimensional linear waves can propa-
gate vertically if their horizontal wavenumber, k (set by the
scale of the orography), is less than L. If the Scorer parame-
ter decreases with height, then waves can become trapped
in the layer where k < [ (Durran, 2003). If k <l every-
where, then waves cannot be generated at all. Generation
of trapped lee waves therefore relies on strengthening
horizontal winds and/or decreasing stability with height.
Vosper (2004) extended the approach to the effects of
inversions on lee waves. In reality, lee waves are com-
plex three-dimensional and nonlinear phenomena, which
cannot be explained fully by simple linear theory.

The prevalence and characteristics of lee waves over
Britain have been investigated before. Worthington (2006)
explored the possibility of a diurnal cycle of lee waves
over Britain using Very High Frequency (VHF) radar mea-
surements from a site near Aberystwyth in Wales and
satellite imagery over a region covering Wales, Ireland,
and much of the Midlands and Northern England from
1990 to 2006. They found no evidence of a diurnal cycle in

orientation or amplitude of waves, but there was a seasonal
cycle in amplitude of waves over their area of observations.
However, there may be a diurnal cycle of waves in other
parts of the world: Ruff and Olafsson (2019) attribute a
small diurnal cycle in downslope windstorms in Iceland
to the changing prevalence of gravity waves throughout
the day.

Vosper et al. (2013) presented results from a three-year
climatology of trapped lee waves, using model output from
the (then operational at the Met Office) 3D Velocities Over
Mountains (3DVOM) model. They found that waves were
more likely to occur in the winter months than in the sum-
mer months, and large-amplitude waves (those more likely
to be related to strong turbulence and rotors, with typ-
ical vertical velocity amplitudes > 3 m - s7') occur more
frequently in the Scottish Highlands than in North Wales
or the Pennines. Since the 3DVOM model was retired,
trapped lee-wave forecasting at the Met Office relies on
the high-resolution numerical weather prediction (NWP)
model output of the operational UKV model configura-
tion, part of the Met Office Unified Model (MetUM: Tang
et al., 2013). In general, UKV predicts lee waves in good
agreement with observations from aircraft campaigns, and
better than the dry linear model 3DVOM did (Sheridan
et al., 2017). However, these cited improvements in NWP
models have not been used to produce climatological infor-
mation about lee waves to improve and expand on existing
work about lee waves (which was produced using older
datasets or models). Producing an updated climatology
using a large dataset from a more sophisticated model
enables investigation of lee-wave occurrence and charac-
teristics in the current climate. In addition, by using future
climate scenarios, any projected changes to lee waves
can be analysed: for example, due to changing weather
patterns.

The development and progress of machine-learning
techniques in the past decade means that automated anal-
ysis of large datasets (such as NWP model output) can be
performed efficiently. Machine learning is the process of
training a model to perform a given task on some data
(such as extracting features from data and making predic-
tions based on these features) and assessing the model’s
performance on some different (unseen) data (Reichstein
et al., 2019). One example of this is deep learning, such
as the use of deep convolutional neural networks, which
extract patterns from large quantities of data through
learning feature representation of data via convolutions
and nonlinear transforms (Gu et al., 2018). Convolutional
neural networks are able to extract spatial patterns from
two-dimensional data such as images (or NWP output on
a pressure surface). Random forests are another example
of a machine-learning technique, an ensemble of deci-
sion trees used to characterise data based on features
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within the data (Breiman, 2001). Decision trees are a data
classification and/or regression method where some input
data are classified based on a sequence of rules: the data
are split based on rules at “decision nodes”, with the out-
put of a tree (its class or value) produced at a “leaf node”
(Kotsiantis, 2013). Random forests train multiple decision
trees on a random subset of the training data, and the
output of each decision tree is aggregated in the output
of the random forest (typically by averaging each tree’s
probabilistic output, as in Pedregosa et al., 2012).

Machine-learning models are increasingly being
used for forecasting and investigating climatological
trends, as well as in a wide range of other environ-
mental applications. For example, Bohm et al. (2021)
produced a climatology of fog occurrence over the
Atacama desert using a neural network trained on satel-
lite brightness temperatures. Weather fronts can be
identified using machine-learning techniques, and their
climatology and impact on precipitation events can be
detected and evaluated (e.g., Justin et al., 2023; Niebler
et al., 2022). Entire NWP models are being replicated by
machine-learning models, with promising results (e.g.,
Lam et al., 2023), but there is some concern over the abil-
ity of neural-network-based weather forecasting models
to forecast extreme events well compared with traditional
NWP models (Charlton-Perez et al., 2024).

In previous work, the authors have trained
machine-learning models to detect and characterise
trapped lee waves from high-resolution NWP data
(described in detail in Coney et al., 2024). In that work,
deep-learning models were trained to predict the loca-
tion, wavelength, orientation, and amplitude of trapped
lee waves over Britain and Ireland, from two-dimensional
slices of UKV vertical velocity data on the 700-hPa
surface, using the Python library fastai (Howard &
Gugger, 2020). The model for segmenting (classifying each
pixel in the input as either containing a lee wave or not)
the input vertical velocity slice performed well against
hand-labelled truth data, and the models trained to pre-
dict wave characteristics performed favourably against a
spectral technique, the two-dimensional Stockwell trans-
form (S-transform: e.g., Stockwell et al, 1996; Hindley
et al., 2016), while also delivering a significant speed
increase compared with the S-transform.

This article details the development of a climatology
of trapped lee waves over Britain and Ireland, created
by applying deep-learning models developed by Coney
et al. (2024) to 31 years of high-resolution regional climate
model output using UK Climate Projections (UKCP18)
local data. The features in the climatology include the fre-
quency of occurrence, wavelength, amplitude, and orien-
tation of trapped lee waves, covering a much longer period
of time and using a more sophisticated model than the
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work of Vosper et al. (2013). This article also investigates
variations in lee-wave location, frequency, and character-
istics, as a function of time of day, season, and weather
regime. Finally, random forests are used to investigate rela-
tionships between lee waves and 40 other regional climate
model variables in order to evaluate the important physical
processes controlling the climatology. This methodology
permits a statistical approach to examining the prevalence
and characteristics of trapped lee waves over Britain and
Ireland, and comparisons with expectations from linear
theory.

Previous work (such as that by Worthington, 2006 and
Vosper et al., 2013) did not consider different synoptic
weather conditions over Britain and Ireland, for example,
the weather patterns identified by Neal et al. (2016). These
weather patterns group similar synoptic weather condi-
tions into regimes. They have been used to explore the
relationship between synoptic weather and, for example,
observed lightning activity (Wilkinson & Neal, 2021) and
future flood risk under climate change (Perks et al., 2023).
An overview of the methods and the data used are given
in Section 2, the results are presented and discussed in
Section 3, and some concluding remarks are made in
Section 4.

2 | METHODS

2.1 | Data

2.1.1 | Meteorological data

The high-resolution model data for the current cli-
mate were sourced from the UKCP18 Local data suite:
2.2-km resolution limited-area hindcasts using the MetUM
(version 10.6) for the period 1982-2012 (Lowe et al., 2018;
Manning et al., 2023). ERA-Interim reanalysis data (Dee
et al., 2011) were downscaled by a regional climate model
(RCM) configuration of the MetUM covering Europe,
and then this was used to drive a convection-permitting
configuration of the MetUM over Britain and Ireland
to produce the data used here (UKCP18 Local). The
convection-permitting model has a horizontal resolution
of 2.2km and 70 vertical levels (Manning et al., 2023).
The setup is similar to the 1.5-km resolution UKV con-
figuration used operationally by the Met Office. Using the
UKCP18 Local data instead of the archive of operational
UKV data meant that available data existed for a longer
time period (31 years versus 8 years at the time of writ-
ing) and that the data were all produced with the same
MetUM version. Both these mean that the UKCP18 data
are more suitable for developing a climatology of lee waves
than operational UKV model output.
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Weather patterns mean sea level pressure by pattern
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FIGURE 1

The eight broad weather patterns from Neal et al. (2016). Mean sea-level pressure (MSLP) contours are shown at 4-hPa

intervals for each pattern, except NAO-, which has contours at 2-hPa intervals.

In evaluation of the UKCP18 Local output, Murphy
et al. (2019) noted that observed summer precipitation
generally agreed with the model output, but, for a case
study of a heavy precipitation event, the amount of
precipitation modelled was underestimated compared
with National Climate Information Centre observations.
Manning et al. (2023) found that, while UKCP18 Local
data underestimated the frequency of occurrence of
the strongest wind gusts (> 32 m-s™!) compared with
point-based observations, they performed better than the
ERA-Interim reanalysis at reproducing strong wind gusts.
The UKCP18 Local suite also provides high-resolution
model output for a future climate scenario, under the
high-emissions Representative Concentration Pathway
(RCP) 8.5 scenario (Kendon et al.,, 2021). While these
future climate data are not used in this article, subsequent
work will explore changes in lee-wave activity in a chang-
ing climate using the same consistent framework and
datasets.

As in Coney et al. (2024), vertical velocity on the
700-hPa pressure surface was used to identify lee waves
from the model output, due to this pressure surface
being above the orography, and captures lee waves suffi-
ciently (as well as maintaining consistency with Vosper
et al., 2013). The data were available at three-hourly inter-
vals ata 2.2-km horizontal resolution from January 1, 1982,
0300 UTC until December 30, 2012, 2100 UTC inclusive
(Kendon et al., 2021). The data were accessed through
the Met Office Managed Archive Storage System (MASS)
and analysed on the Natural Environment Research Coun-
cil (NERC) computing facility JASMIN. In addition to
the vertical velocity slices used by the deep-learning

models, other variables were used to understand which
conditions are important for the production of lee waves.
These variables included the horizontal wind speed and
direction, virtual potential temperature, and height on
pressure surfaces from 925hPa to 200 hPa. The model
orography was used to calculate the two-dimensional
standard deviation of the orography with a kernel of 5 x
5 grid points as a measure of local variability in the
orography.

2.1.2 | Synoptic weather patterns

The daily mean sea-level pressure (MSLP) values over
Western Europe have been clustered into similar weather
patterns by using a “simulated annealing variant of
k-means clustering” (Neal et al., 2016). The 30 original pat-
terns were grouped again into eight broad patterns, which
are used in this article. These eight weather patterns are
used here to examine the link between the prevalence
and characteristics of trapped lee waves and the synop-
tic weather pattern. Figure 1 shows the MSLP for each
of the patterns. Patterns 1 and 2 represent synoptic pres-
sure regimes analogous to the two phases of the North
Atlantic Oscillation (NAO). The negative NAO phase is
associated with a flow-blocking and trough pattern (Bene-
dict et al., 2004), while a positive NAO is associated with
strong westerly flow over Britain and Ireland (Washington
& Palmer, 1999). The remaining six patterns all repre-
sent different locations of cyclonic and anticyclonic flow
over northwestern Europe and the resultant synoptic wind
directions over Britain and Ireland.
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2.2 |
waves

Developing a climatology of lee

The trained deep-learning models from Coney et al. (2024)
were applied to the 31 years worth of UKCP18 Local
model data to classify each grid point as either a lee
wave or non-lee wave, and to estimate wavelength, ori-
entation (the direction of wave propagation, perpendicu-
lar to the wavefronts), and amplitude for lee waves over
Britain and Ireland during 1982-2012. Specifically, the
orientation as used in this article is the direction of the
wavenumber vector associated with the trapped waves,
and not the directions parallel to the wave crests and
troughs. This vector has an underlying assumption that
the trapped waves are monochromatic, while in reality
trapped lee waves generated by three-dimensional orogra-
phy are three-dimensional, as well as being a superposition
of monochromatic waves of different wavelengths. Like-
wise, different measures of amplitude of lee waves exist.
An advantage to using vertical velocity is that it remains
consistent with previous studies of lee waves over Britain
and Ireland (e.g., Vosper et al., 2013), as well as being appli-
cabile to forecasting and impacts of lee waves (such as for
aviation). One more direct measure is the displacement of
isentropic surfaces. Since w = (U, V) - V({), where V(&)
is the slope of the isentropic surface, the vertical velocity w
is necessarily proportional to the incoming wind (U, V).

The deep-learning models were trained to segment
and characterise lee waves from UKV output (at a spa-
tial resolution of 1.5km regridded to 2km), rather than
UKCP18 Local data (at a spatial resolution of 2.2 km). It
was expected that the deep-learning models would still be
able to recognise wave patterns regardless of the resolution
of the models, but there was some uncertainty as to what
may be smoothed on NWP model output with a slightly
coarser horizontal spatial resolution.

To verify that lee waves were still recognised by
the deep-learning models regardless of resolution, the
deep-learning models were applied to model output on
data from models with spatial resolutions of 1.5 and
2.2 km, for data valid at the same times. Since there was
no overlap in time between the UKV operational archive
and UKCP18 Local data, data from Met Office Global
and Regional Ensemble Prediction System (MOGREPS)
(the operational Met Office ensemble forecasting system),
which has the same spatial resolution as UKCP18 Local,
were used instead. Vertical velocity data on the 700-hPa
surface from both UKV and MOGREPS data, for February
1, 2021-January 30, 2022 (which excluded the training set
for the deep-learning models), were used for this verifica-
tion and regridded to 2 km. Figure 2 shows in the top row
(Figure 2a,b) that lee waves can be recognised regardless
by the segmentation model (black contour). Some finer

Royal Meteorological Society

detail in the vertical velocities is lost in the MOGREPS data
(Figure 2b) compared with UKV (Figure 2a). This may lead
to the slightly smaller frequency of occurrence observed in
the MOGREPS data (Figure 2d) compared with UKV data
(Figure 2c). Given the similarity between the MOGREPS
and UKV data, it is reasonable to assess that the results
are not too sensitive to the difference in resolution, setup,
and post-processing between MOGREPS and UKV.

The segmentation masks and characteristics generated
by the machine-learning models applied to the UKCP18
Local data were interrogated to investigate how lee waves
vary with time of day and season and between synoptic
weather patterns, to produce statistics for the prevalence
and characteristics of lee waves geographically, and over-
all, for Britain and Ireland.

2.3 | Relationship of lee waves
with other meteorological variables

In order to examine which meteorological variables were
important for the generation of lee waves, six sub-regions
(shown in Figure 3) with high topography were identi-
fied for analysis, as these showed a high frequency of
occurrence of lee waves. To aid comparison with previ-
ous studies, these regions were deliberately chosen to be
similar to the 3DVOM forecast domains used in Sheridan
et al. (2017), but with the region over North Wales being
extended southwards and the inclusion of a new region
over the southwest of Ireland. The lee waves produced by
the segmentation ML model were compared with other
variables from the UKCP18 data within these regions,
using random-forest models to decide which variables
to concentrate on, from a larger set of variables. Ran-
dom forests are machine-learning models that classify
data based on a sequence of rules in decision trees,
each trained on a subset of the data (as introduced in
Section 1). Random-forest models were used because they
have fewer parameters to tune than deep-learning models
and perform well on data with small sample sizes (Biau &
Scornet, 2016).

To examine the physical drivers of lee waves, a set
of variables from the UKCP18 Local data likely to be
correlated to wave activity was chosen. These variables
included the horizontal wind speed and virtual potential
temperature on the 200-, 300-, 500-, 650-, 750-, 850-, and
925-hPa pressure surfaces. From these, the Brunt-Viisild
frequency, the Scorer parameter, and the difference in
wind direction between pressure levels were calculated.
Also chosen were the 10-m wind speed, the weather pat-
tern, and the height of the orography and its local standard
deviation (to capture the local variability in orography).
This gave 40 variables in total.
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Lee Waves: UKV and MOGREPS comparison
(a) UKV valid at 2021-02-20T09:00 (b) MOGREPS valid at 2021-02-20T09:00
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FIGURE 2

Resolution sensitivity between NWP models with spatial resolutions of 1.5 km (UKV) and 2.2 km (MOGREPS). (a) UKV

and (b) MOGREPS output, respectively, for vertical velocities on the 700-hPa pressure surface as coloured contours, with the black contour
showing the region identified by the deep-learning model as containing wave pixels. The frequency of occurrence of lee waves from February
2021-January 2022 inclusive for these two model datasets is shown in panels (c) and (d), respectively. [Colour figure can be viewed at

wileyonlinelibrary.com]

The Brunt-Viisidld frequency at x hPa was calcu-

lated as N(x) = 05‘2—9;, where dé,/dz was calculated

using the surfaces above and below x hPa and 0, at x hPa
by interpolating the data from the surfaces above and
below x hPa. This produced mid-pressure-level values of
N, on the 887-, 825-, 775-, 725-, and 675-hPa surfaces.
The Scorer parameter was calculated as | = N/U, with
the smaller (and harder to calculate accurately, given

data were only available on a limited number of pressure
levels) shear term neglected (Blockley & Lyons, 1994).
However, the influence of changing wind direction was
still explored, by including the change in wind direction
between each pressure surface as separate inputs. Values of
the Scorer parameter were produced on the same pressure
surfaces as the Brunt-Viiséld frequency by interpolating
U onto the same surfaces as the Brunt-Viiséli frequency
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UKCP model orography and upland regions
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FIGURE 3 UKCP18 Local model orography over Britain and Ireland. Black bounding boxes indicate upland regions used in later
analysis and are labelled for identification in the text: SH: Scottish Highlands; NI: Northern Ireland; SWI: Southwest Ireland; Pn: Pennines;
‘Wa: Wales; Da: Dartmoor. [Colour figure can be viewed at wileyonlinelibrary.com]
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(Blockley & Lyons, 1994). The change in the Scorer
parameter from 887 to 675hPa (spanning the 700-hPa
pressure surface on which lee waves were identified) was
also calculated.

One random forest was trained for each region in
Figure 3 using these variables, with the aim of predicting
whether or not lee waves were present. Random forests
were used because of the lack of normalisation or aug-
mentations required on the input data: these models typ-
ically train more quickly than neural networks and, due
to their internal modelling through decision boundaries,
allow the interrogation of which variables were important
in the prediction (e.g., Lundberg et al., 2020). The “deci-
sion nodes” in each decision tree are based on the data: for
example, horizontal wind speed being greater than some
threshold.

The influence of each of these variables on the ran-
dom forest’s prediction was measured using SHapley Addi-
tive exPlanations (SHAP) values (Lundberg & Lee, 2017).
Shapley values are used in game theory to estimate the
contribution of different players in a game to the game’s
outcome. SHAP extends the concept of Shapley values
to machine learning in order to explain each feature’s
contribution to the model output. Here, the version of
SHAP for tree-based models (TreeExplainer: Lundberg
et al., 2020) was used. The selected meteorological vari-
ables are not all independent, and using SHAP values
to visualise the importance of the variables to the pre-
diction, instead of other importance methods such as
the permutation feature importance, means that the cor-
relation between variables in the data is accounted for
in the game theoretic approach; however, SHAP values
can still be spread between features that are correlated
(Chen et al., 2023).

The correlation between the amplitude of lee waves
and the horizontal wind speed aloft was also examined.
The local maximum lee-wave amplitude and local maxi-
mum 750-hPa wind speeds were aggregated for 8 X 8 pixel
regions (17.6 km x 17.6 km) for part of the climatology
period (1982-1987 inclusive). It is acknowledged that a
fuller dataset would have been ideal, but the reduced
dataset of horizontal wind speeds still consisted of some
12,000 files and is assumed to be sufficiently robust for
analysis here to represent the distribution of horizontal
wind speeds for the present-day climate. A reduced dataset
was used in order to reduce the time taken to obtain the
additional data and conserve disk space and processing
time, as opposed to using the full dataset. Aggregating the
data into 8 x 8 pixel squares meant that small local varia-
tions in wind speed and amplitude were removed, allowing
a fairer comparison between broader-scale wind speeds
and amplitudes. The crest of a wave and therefore the
peak amplitude should occur within these squares in all

cases apart from the longest wavelength lee waves, without
smoothing out too much fine detail for short-wavelength
lee waves.

3 | RESULTS

3.1 |
waves

Frequency of occurrence of lee

Figure 4 shows the seasonal frequency of occurrence of
lee waves over Britain and Ireland. Here, seasons refer to
meteorological seasons so, for example, spring is March,
April, and May. The general location of lee waves changes
little between seasons, with lee waves occurring more
frequently over hilly areas (Scotland, Northern England,
Wales, Southwest Ireland). The winter months contain the
highest frequency of occurrence of lee waves and the sum-
mer months the lowest. For example, over the Highlands of
Scotland, lee waves occur 60%-70% of the time during win-
ter in the model forecasts, compared with 40%-50% of the
time during the summer months. This is consistent with
Vosper et al. (2013), where lee waves were forecast 57%
of the time over the Grampians in Northern Scotland and
they noted that lee waves are less common in the summer
months than in the winter.

Figure 5 shows a histogram relating the UKCP18 Local
model orography and the frequency of lee waves per pixel
(normalised by column). The standard deviation ¢ of the
model orography for the 5 x 5 pixel box surrounding each
grid cell was calculated (as a measure of the local vari-
ability of orography: one would expect fewer lee waves
over a plateau than a region of variable orography) and
plotted against the grid cell’s frequency of wave occur-
rence during the period of interest. There is a correlation
(least-squares R? = 0.711 and Spearman rank p = 0.662)
between the local orography variability, ¢, and the fre-
quency of occurrence of waves. The spread within the
distribution shown in the histogram is likely due to lee
waves propagating well downstream past the orography,
and the influence of meteorology, which will vary across
the country.

3.2 | Diurnal effects

Figure 6 shows the frequency of waves for different times
of day in the UKCP18 data. Plots are only shown every six
hours, since there is no discernible diurnal variation in the
frequency of occurrence of lee waves over the entirety of
Britain and Ireland. Figure 7 shows the probability den-
sity functions (PDFs) for the frequency of wave occurrence
and characteristics of lee waves for each time of day, and
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Percentage of UKCP 700 hPa vertical velocity data containing lee waves during 1982-2012
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confirms that there is very little diurnal variation in either
the frequency of occurrence or the wave characteristics in
the data.

Within the range of amplitudes observed in Figure 7b,
from < 0.1 to 5 m - s7}, the lack of a diurnal change except
at very low probabilities and high amplitudes suggests
that there is little diurnal change in lee-wave amplitude
during the day. Likewise for the wavelength of waves
(Figure 7c), most observed lee waves have a wavelength in
the range 10-20 km but no diurnal change. Most lee waves

are either northeast/southwest or northwest/southeast
aligned (Figure 7d), but there is not an observed diurnal
cycle of lee-wave orientations. Hence, there is no evidence
to suggest a diurnal cycle in lee-wave frequency of occur-
rence or characteristics over Britain and Ireland, similar
to the conclusions of Worthington (2006), who found no
diurnal cycle of mountain-wave amplitude, albeit using
a different method and a more localised dataset. These
results imply that the properties of lee waves (at least, those
propagating above the orography on the 700-hPa pressure
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Histogram of Orography and Lee Waves (normalised by column)
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surface) are insensitive to boundary-layer structure, which
would be a leading cause in any discernable diurnal cycle
if it were observable in the UKCP18 Local data. It is still
possible that an analysis of waves trapped closer to the sur-
face (and the boundary layer) may show more evidence of
a diurnal cycle.

3.3 | Weather patterns

To investigate the relationship between the occurrence of
lee waves and the synoptic weather pattern (introduced in

Section 2.1.2), Figure 8 shows the frequency of occurrence
of lee waves geographically by weather pattern. The
weather patterns most conducive to lee waves being gen-
erated are the NAO+ and Southwesterly patterns. The
Scottish Highlands receive the most lee waves under all
weather patterns, but the trend is not consistent across
regions: the Pennines receive a similar amount of waves
in NAO+ conditions, but comparatively less so under the
Azores high pattern. While the spread of NAO- weather
patterns is fairly constant between seasons, NAO+ condi-
tions, which have a high frequency of occurrence of lee
waves, occur more often during the winter than in the
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UKCP18 Local data: Diurnal effects on lee waves
(a) Frequency of wave occurrence (b) Wave Amplitude
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summer. This may explain the seasonal changes of lee
waves in Figure 4: more wave-conducive weather occurs
during the winter than in the summer. Under Scandina-
vian high conditions, lee waves occur infrequently over
most of Britain and Ireland except for Scotland and a small
patch in southwest Ireland.

Figure 9 shows an overview of the frequency of occur-
rence and characteristics of lee waves under different
synoptic weather patterns. Each subplot shows a PDF of
the weather pattern’s lee-wave frequency of occurrence
or characteristic. The following subsections will consider
these characteristics in more detail.

3.31 | Amplitude

Figure 9b shows that the amplitude of lee waves is dis-
tributed similarly between weather patterns. The largest
amplitude lee waves occur under northwesterly and
southwesterly flows; however, the changes in amplitude
between weather patterns are small compared with the
actual mean amplitudes. The vast majority of lee waves
have amplitudes < 1 m - s71, and the largest amplitudes in

the data are ~ 5 m - s~1. However, the true wave amplitude
in vertical velocity is likely larger (e.g., Wildmann
etal.,2021). Figure 10 shows the 95th percentile amplitude
for each of the weather patterns. No weather pattern shows
a distribution of 95th percentile amplitudes noticeably
stronger than any other. The regions where the strongest
amplitudes occur tend to be places with higher orogra-
phy, such as the Scottish Highlands (under all weather
patterns) and the Pennines and Wales (particularly for the
NAO+ pattern).

Table 1 shows how often lee waves of different ampli-
tudes occur in the regions outlined in Figure 3. Over-
all, across Britain and Ireland there are lee waves with
amplitudes stronger than 1 m-s™! more than half the
time. While they are rare in general, the strongest lee
waves (with amplitudes in excess of 3 m - s~!, which are
those more likely to be related to rotors and strong tur-
bulence events: Vosper et al., 2013) occur most frequently
in the Scottish Highlands, where lee waves with ampli-
tudes exceeding 3 m - s7! occur 0.3% of the time (equating
to 0.5% of lee waves events in the region). The Pennines
have the next most frequent occurrence of high-amplitude
lee waves, at 0.04% of the time, almost ten times less likely
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Lee wave frequency of occurrence by weather pattern
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than in the Scottish Highlands region. High-amplitude lee
waves are rarest in Northern Ireland and Dartmoor. The
occurrence of lee waves at stronger amplitudes decreases
rapidly: for example, lee waves with amplitudes stronger
than 2 m-s™! occur 10.0% of the time overall, which
decreases to 2.89% for 2.5 m - s~ and further to 0.624% of
the time for amplitudes stronger than 3 m - s,

3.3.2 | Wavelength

Figure 9c shows the PDFs of the wavelengths of lee waves
under the different weather patterns. Lee waves under
most regimes (all except NAO+ and Southwesterly) have
a modal wavelength in the range 10-15km. Lee waves
produced under Southwesterly flow have a modal wave-
length of approximately 15km, while the longest modal
wavelengths of approximately 20 km occur under NAO+
conditions.

Figure 11 shows the mean wavelength of lee waves
over Britain and Ireland by weather pattern. The longest
wavelengths occur in general in NAO+ conditions, to
the east of Ireland and on the lee (east) side of the
Pennines. The shortest wavelengths tend to occur under

NAO- conditions, though with some longer wavelengths
in Scotland. Apart from the NAO+ case (and, to a lesser
extent, Southwesterly conditions), the mean wavelengths
remain generally similar between patterns. The distribu-
tions of wavelengths in Figure 9c are broadly similar for
all patterns except NAO+ and Southwesterly. According to
theory, the wavelength is related to the Scorer parameter
(e.g., World Meteorological Organization, 1993). However,
outside the NAO+ and Southwesterly patterns, there is
little change in the wavelengths produced overall. The
NAO+ and Southwesterly patterns have generally faster
wind speeds U than the other patterns, therefore decreas-
ing the Scorer parameter [ = N/U during these patterns
(assuming the stability N stays similar), and hence this
results in longer wavelengths through the formula 4 =
2z /1. With that said, the spatial pattern showing longer
wavelengths on the lee side of orography suggests that
the orography may affect the wavelength (particularly
noticeable during NAO+ conditions, over the Pennines
for instance). This could be because the length of the
orography controls whether or not waves are produced
at their theoretical wavelength. In addition, the horizon-
tal spatial resolution of 2.2 km means that the minimum
wavelength that can be resolved accurately within the data
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UKCP18 Local data: Weather pattern effects on lee waves
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is about 13 km (six grid points). Shorter wavelengths may
be resolved (from 4.4 km, or two grid points, or longer), but
possibly with decreased amplitude and uncertain wave-
length. All except the NAO+ pattern have modal wave-
lengths of approximately 13 km.

3.3.3 | Orientation

Figure 9d shows that there is a different orientation pat-
tern depending on the weather pattern. Some patterns
have a unimodal distribution, such as the Southwesterly
or Northwesterly patterns, generally in line with the pre-
dominant wind direction (lee waves in Northwesterly
conditions tend to be northwest/southeast aligned). Oth-
ers, such as the NAO+ and Low close to UK patterns, have
bimodal orientation distributions. Since the eight patterns
are themselves groupings of 30 more varied ones, there
could be different pressure regimes grouped together into
one weather pattern affecting the orientation of lee waves,
resulting in bimodal wave orientations under certain
patterns.

Figure 12 shows the mean orientation of lee waves
for each weather pattern over Britain and Ireland, with
MSLP contours overlaid for the respective pattern. Lee
waves are broadly aligned with the MSLP contours,
notably so in Northwesterly and Southwesterly condi-
tions. However, there is a large spread in the orienta-
tion predictions, shown by the red arrows (indicating
o > 45°) in Figure 12. The least variation in wave direc-

tion occurs under the Northwesterly and Southwesterly

regimes (probably because these are the only patterns with
a specific wind direction), and the most variation in the
Low close to the UK, which inherently will have a wide
range of wind directions associated with it depending on
the exact position of the low.

3.4 | Correlation between lee waves
and other NWP variables

To explore the physical processes likely to be control-
ling lee-wave generation, random-forest models are used
to investigate how well lee waves can be predicted from
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UKCP18 Local: Lee wave 95th percentile amplitude by weather pattern 1982-2012
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TABLE 1 Table showing how often lee waves of different amplitudes occur somewhere within each region. This includes times when
there is no wave activity in a region. The number in brackets excludes times where there is no wave activity in a region.

Percentage of time with maximum wave amplitude

Region >1m-s!
Scottish Highlands 34.7% (49.9%)
Northern Ireland 11.3% (25.5%)
SW Ireland 14.6% (28.3%)
Pennines 20.1% (37.4%)
Dartmoor 5.6% (18.9%)
Wales 18.9% (38.3%)
Overall 51.0% (59.7%)

>2m-s! >25m-s! >3m-s!

5.4% (7.7%) 1.66% (2.38%) 0.383% (0.551%)
0.4% (0.9%) 0.06% (0.14%) 0.006% (0.012%)
0.8% (1.6%) 0.18% (0.36%) 0.023% (0.045%)
1.4% (2.6%) 0.28% (0.53%) 0.041% (0.076%)
0.2% (0.8%) 0.04% (0.12%) 0.006% (0.019%)
1.4% (2.9%) 0.23% (0.46%) 0.025% (0.052%)
10.0% (11.7%) 2.89% (3.39%) 0.624% (0.732%)

other NWP variables. A random forest is trained on a set
of meteorological variables deemed to have a potential
influence on the generation of lee waves in each of the
regions shown in Figure 3 (one random forest per region):
the horizontal wind speed on different pressure surfaces;
the directional wind shear between surfaces; the virtual

potential temperature 6,; the Brunt-Viisild frequency; a
measure of the Scorer parameter (only the first term—see
Section 2.3); the orography and its local standard devi-
ation; the half-sine of the month of the year (precisely
sin [z(m — 1)/12], where m is the month of the year: m =
1 is January and so on); and the weather pattern. These
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Lee wave mean wavelength by weather pattern 1982-2012
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FIGURE 11

variables were chosen because of their involvement in
the Scorer parameter (the stability, horizontal wind speed,
turning effects) or the generation of lee waves seen ear-
lier in this section (the month of the year, weather pattern,
and orography). The relative importance of each of these
is calculated using SHAP values, and results are shown by
region in Figure 13a and as a normalised average over the
regions in Figure 13b.

The Scorer parameter between the 925- and 850-hPa
surfaces (i.e., at 887hPa) has the largest SHAP impor-
tance value in the Scottish Highlands, Wales, and the
Pennines. A bulk measure of the Scorer parameter has
the highest importance value in Southwest Ireland. In
Northern Ireland the 925-hPa horizontal wind speed is
the most important, while in Dartmoor the 750-hPa wind
speed is the most important. The Scorer parameter at
887hPa has at least the third highest SHAP value in
every region examined here. The wind speed with the
larger SHAP values differs depending on the region:
for example, regions with generally bigger orography,
such as the Scottish Highlands and Wales, have higher
wind-speed SHAP values at 850 hPa, while regions with
lower orography such as Northern and Southwest Ireland
favour wind speeds at 925 hPa and 10 m respectively. The

Map showing the mean wavelength by weather pattern. [Colour figure can be viewed at wileyonlinelibrary.com]

Brunt-Viisild frequencies at 825 and 775 hPa have higher
SHAP values than on other pressure surfaces. The SHAP
values of the Brunt-Viisild frequencies are more consis-
tent (but also lower) between surfaces and regions than the
horizontal wind speeds. The virtual potential temperature
and changes in the wind direction have lower SHAP values
than the horizontal wind speeds below 500 hPa.

While SHAP is not a perfect measure for understand-
ing the importance of different features, due to it sharing
credit between co-dependent variables, it does attempt
to address this more than other methods such as permu-
tation importance. The high importance of the Scorer
parameter, particularly below the 700-hPa level at which
waves are being identified, corresponds with our physical
understanding of the processes controlling wave trap-
ping, adding further support to the utility of SHAP for
analysing these results. For a wave to propagate up to
700 hPa would require the Scorer parameter to be larger
than the wavenumber magnitude below this level.

To unpick this further, distributions of the variables
with the six highest SHAP values were obtained and plot-
ted, along with the lee-wave occurrence as a function
of these variables, for each region. These are shown in
Figure 14. In every case, the occurrence of lee waves does
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Lee wave mean orientation by weather pattern 1982--2012
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not reach 100% in any region outside the very tails of the
distributions, and there is a notable difference between
regions. This may be due to the regions (shown in Figure 3)
not being fully covered by topography. However, additional
tests (not shown) restricted to pixels where the model orog-
raphy was > 100 m only partly reduced the differences
between regions. These results suggest that a combina-
tion of conditions are important for lee-wave occurrence in
different regions, and lee-wave occurrence cannot be pre-
dicted by one variable alone. However, the differences in
lee-wave occurrence in different regions do relate to the
orography in the regions: there are fewer lee waves in Dart-
moor and Southwest Ireland, which have relatively small
hills compared with the Scottish Highlands, where there
are much larger hills and a higher occurrence of lee waves.

Different measures of the Scorer parameter
(Figure 14a-c) show a relatively steep gradient
(particularly the bulk measure in Figure 14a) around
103 m~!. The distribution of bulk Scorer parameters that

support trapped lee-wave generation (the lower panel in
Figure 14a) lies in the range 1072 to 3 x 10™* m~!. The for-
mula A = 2z /1 (World Meteorological Organization, 1993)
used to determine the wavelengths A that these values of
the Scorer parameter correspond to suggests that wave-
lengths of lee waves in the range 6-21 km are supported
by the model, approximately in line with the range of
wavelengths shown in Figures 7c and 9c. Values of the
Scorer parameter higher than 107> m~! would correspond
approximately to wavelengths shorter than 5km, which
cannot be resolved in the model anyway. The drop off in
lee-wave occurrence after this point may suggest that any
lee waves that would be physically present may not be
resolved in the model; however, these small-wavelength
waves are likely to be of small amplitude anyway. The hor-
izontal wind speed at 850 hPa (Figure 14d) and 925hPa
(Figure 14e) also shows a cut-off wind speed below which
waves do not occur, again with regional differences.
There is a marked difference in lee-wave occurrence in
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(a) SHAP feature importance by region
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(b) SHAP feature importance (normalised mean)
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Lee wave frequency of occurrence alongside distributions of other meteorological variables by region
(a) Bulk Scorer Parameter by region (b) Scorer Parameter 887 hPa by region (c) Scorer Parameter 825 hPa by region
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FIGURE 14 Distributions showing the relationship between the six variables with the highest SHAP values and the frequency of
lee-wave occurrence (bottom of each pair of subplots). The PDF of each variable is also shown by region (top). [Colour figure can be viewed at
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Southwest Ireland and Dartmoor compared with the other  values of I> seem to be the most important for lee-wave gen-
regions for horizontal wind speeds greater than 30 m - s+ eration, particularly below the pressure surface that the
(Figure 14e,f). This could be due to the lower orography  climatology was created on (700 hPa). This makes sense,
in these regions, meaning forcing conditions for lee-wave  as the waves observed at 700 hPa will have propagated up
generation are triggered less often. At lower horizontal = from the surface and so are most affected by the wind and
wind speeds, flow is more likely to be blocked, meaning  stability profile below 700 hPa. Further, it is variations in
that horizontal wind speeds in these regions need toreach ~ the horizontal wind speeds rather than in stability that
a certain threshold for waves to be generated. There isno  are driving variations in the Scorer parameter. While the
such clear threshold or large change in the frequency of  Scorer parameter used here neglects the curvature term,
occurrence of lee waves as a function of the Brunt-Vdisdld  the relatively low importance of the wind shear compared
frequency at 825hPa in Figure 14f, suggesting that it is  with % would suggest that the measure of the Scorer
the horizontal wind speed rather than the Brunt-Viisdld  parameter used here is sufficient on its own.
frequency that tends to control differences in the Scorer
parameter between different locations and times, and
hence controls lee-wave occurrence in Britain and Ire- 3.5 | Relationship between wave
land. This is likely due to much greater spatio-temporal ~amplitude and horizontal wind speed
variability in wind speeds than stability over Britain and
Ireland. Figure 15 shows a comparison between the amplitude of
Simple analytical models have shown the importance  lee waves and the 750-hPa wind speeds for 1982-1987, for
of the Scorer parameter for the development of lee waves coarse-grained data (8 x 8 pixel regions as described in
and this analysis confirms that by showing that lower-level ~ Section 2.3). This shorter subset of the full climatology data
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Comparison between local maximum lee wave amplitudes and 750 hPa winds (1982-87). Spearman p = 0.389
s (a) Amplitude vs 750 hPa wind speed (raw) (b) Amplitude vs 750 hPa wind speed (PDF) (c) Amplitude (PDF) vs 750 hPa wind speed
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was obtained to save on disk space and time consumed
extracting data from the archive. The 750-hPa surface was
chosen, as it is one of the closest available pressure sur-
faces to the data used to predict the amplitudes (700 hPa).
However, repeating the analysis using the horizontal wind
speeds on the 650-hPa surface or the 10-m wind speeds
instead produced similar histograms.

The raw data shown in Figure 15a is dominated by
the high number of cases of small-amplitude lee waves
(< 1 m-s71), with a large spread of surface wind speeds at
lower amplitudes. The Spearman rank correlation coeffi-
cient is p = 0.389, which does not show a strong correla-
tion between the amplitude of lee waves and the 750-hPa
wind speed, suggesting that there is no strong linear rela-
tionship between lee-wave amplitude and horizontal wind
speeds, with the underlying orography and potentially
the occurrence of flow blocking also playing a signifi-
cant role. However, when normalising by amplitude in
Figure 15b, there is a positive trend where stronger lee
waves have stronger 750-hPa wind speeds associated with
them. For example, the modal 750-hPa wind speed for
lee waves with an amplitude of 1 m-s7!is ~ 22 m-s7},
and the modal 750-hPa wind speed for lee waves with
an amplitude of 3 m - s7! is ~ 30 m - s~1. However, when
normalising by the 750-hPa wind speed in Figure 15c,
there are similar distributions of wave amplitudes for each
wind speed. This shows that high wind speeds are nec-
essary for strong-amplitude lee waves, but certainly not

sufficient, with the majority of high wind-speed events still
corresponding to low-amplitude lee waves.

4 | SUMMARY AND CONCLUSION
This article presents a new climatology of lee waves,
produced using machine-learning techniques trained
to detect and characterise lee waves using NWP model
output. This study builds on previous work to inves-
tigate lee waves over Britain and Ireland (such as
Worthington, 2006; Vosper et al., 2013) in several ways.
The climatology covers a longer period (1982-2012) than
Worthington (2006) and Vosper et al. (2013), with full cov-
erage over the entirety of Britain and Ireland. This study
also uses data from a more sophisticated NWP model than
the dry, linear 3DVOM model used in Vosper et al. (2013).
The machine-learning techniques used to develop the cli-
matology of lee waves detect and characterise lee waves
resolved by the NWP model, rather than using peak wave
amplitudes. While the findings in this article support the
conclusions of previous studies, this work goes further:
for example, investigating the relationship between lee
waves, their characteristics, and weather patterns, as well
as exploring which underlying meteorological variables
are driving the variability in lee waves.

This work verifies some of the findings from Vosper
et al. (2013) For example, both studies found the following:
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lee waves are relatively common in the Scottish High-
lands, the north of England/Pennines, and North Wales;
lee waves occur more often in the winter months than
the summer (Figure 4); amplitudes stronger than 3 m -
s7! occur rarely (Figure 9b); and the strongest-amplitude
waves occur during westerly flow, which corresponds
to the strongest-amplitude waves produced in NAO+
and Southwesterly regimes (Figure 9b). In addition,
both pieces of work suggest that the amplitude of lee
waves increases with increasing horizontal wind speed
(Figure 15).

This study did not find any evidence within the
UKCP18 data to suggest a diurnal cycle in trapped lee
waves or their characteristics, consistent with the find-
ings of Worthington (2006). The analysis presented here
expands on that from Worthington (2006) to cover a much
longer time period (1982-2012) than they used, over a
larger region (the entirety of Britain and Ireland com-
pared with a region centred around central Wales and one
VHF radar). This lack of a diurnal cycle of lee waves is
not necessarily replicated elsewhere in the world: Ruff
and Olafsson (2019) attribute observed diurnal changes
in downslope wind storms to gravity waves. It may also
be that any diurnal cycle may be too small to be cap-
tured by the NWP model, although the lee waves simulated
in the output of the MetUM used here are generally in
good agreement with observations, as shown by Sheridan
et al. (2017). Another possibility is that the impacts of the
diurnal cycle are most significant in a shallow layer near
the surface and so they only impact on the shortest wave-
lengths of gravity waves, which are not resolved in this
model dataset.

Lee waves occur more often in the autumn and win-
ter months than the spring and summer months: this is
likely due to the prevalence of weather patterns more con-
ducive to strong winds in the winter than the summer. The
NAO+ and Southwesterly weather patterns, which have
some of the highest prevalence of lee waves across the
country (Figure 8), occur more often in autumn and winter
(40% of days) than in spring and summer (33% of days) dur-
ing the climatology period 1982-2012. The weather pat-
terns have more influence on lee waves than any diurnal
effects, with relatively few lee waves being produced dur-
ing NAO- and Scandinavian high conditions, compared
with NAO+ or Southwesterly conditions. In general, the
frequency of occurrence of lee waves is determined by
the orography: there is correlation (Figure 5) between the
local orography and whether waves occur. However, the
geographic pattern of wave occurrence changes depend-
ing on the weather pattern. The spatial difference in lee
waves under weather patterns is likely due to the relative
strength of winds experienced in different locations; for
example, the greater occurrence of lee waves over Scotland

compared with (for example) Wales in Figure 8 under
Azores high conditions and Southwesterly or NAO+ con-
ditions is likely due to Scotland experiencing higher wind
speeds under Azores high conditions than Wales, whilst
there are more equal wind speeds between the two under
Southwesterly or NAO+ regimes.

There is some variation in wave amplitude depend-
ing on the weather pattern: while the amplitude of most
waves is less than 1 m - s~! (Figure 9b), the mean ampli-
tudes in NAO+ conditions are stronger than the mean
of the complete dataset over most of Britain and Ireland.
Wavelengths are longest under NAO+ conditions, with
Southwesterly conditions exhibiting a similar distribution
of wavelengths, with a larger spread than the other pat-
terns. Wavelengths under all the other regimes present a
smaller distribution of wavelengths (Figure 9c), but with
some differences as to where waves are located (Figure 11).
For example, under NAO- conditions, lee waves tend to
be confined to Scotland, portions of Ireland, and the west
coast of England and Wales. In contrast, lee waves in
other regimes (such as Northwesterly, Low close to the
UK, and Azores high) are more likely to propagate further,
for example, over the Pennines and towards the eastern
coast of Britain. The orientation of waves is broadly in
line with the synoptic wind direction (Figure 12), though
with some large spread within the data depending on the
regime, but this is likely due to the multimodal distribution
of the orientation under some regimes. The Northwesterly
and Southwesterly patterns have waves oriented north-
west/southeast and southwest/northeast, respectively. In
Figure 9d, the orientation of lee waves under these regimes
has a unimodal distribution, while the other patterns tend
to exhibit more bimodal behaviour (such as that seen for
lee waves in NAO+ conditions).

When predicting the prevalence of lee waves based
on other meteorological variables, the Scorer parame-
ter, horizontal wind speed, and Brunt-Viisild frequency
came out as being more important (having larger SHAP
values) than the directional wind shear, virtual potential
temperature, or month of the year (despite there being
a seasonal cycle of lee waves). There is a height depen-
dence, with surfaces around and below where the waves
were detected (700 hPa) being more important than those
well above (compare the SHAP values for horizontal wind
speeds at 850 and 925 hPa with those at 200 and 300 hPa in
Figure 13). This makes physical sense, as waves propagate
up from the surface before being trapped at a particular
level. Levels below the trapping level will influence the
propagation/trapping of waves directly, while levels above
will not. However, there may still be a relationship (albeit
weaker) between higher levels and wave activity, as the dif-
ferent levels in an atmospheric profile are often correlated.
While there are variations in lee-wave activity with the
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month of the year and weather pattern, as seen in Figures 4
and 8, these are likely due to variations in the distributions
of the underlying physical variables such as wind speed
seasonally and between weather regime. The SHAP values
suggest that there is a stronger correlation between the
underlying physical variables than with month of the year
or weather pattern. For example, the weather patterns
drive the synoptic conditions, which result in more con-
ducive conditions for lee waves, but it is the actual values
of the Scorer parameter and wind speeds on a particular
day that will determine whether or not waves occur.

The relationship with lee-wave occurrence is shown
for the Scorer parameter and the horizontal wind speed,
but not the Brunt-Viisdld frequency, in Figure 14, sug-
gesting that it is the horizontal wind speed rather than
the stability that tends to control variations in the Scorer
parameter. While both variables contribute to the Scorer
parameter, the greater variability in the wind speed likely
means this dominates over stability. However, there is a
variation in occurrence of lee waves between regions for
these variables. The observed cut-offs in the distributions
of the Scorer parameter correspond to physically plausible
wavelengths for the trapped lee waves.

This demonstrates the importance of the stability and
horizontal wind speeds for the generation of lee waves:
through the Scorer parameter as shown in Figure 13
and the relationship between amplitude and horizontal
wind speeds in Figure 15. However, despite a dominance
of smaller amplitudes in the data, there is correlation
between the 750-hPa wind speeds and the amplitude of
the lee waves at 700 hPa, when the data are normalised
by wave amplitude, but no such similar correlation when
normalising by the 750-hPa wind speed in Figure 15. This
suggests that strong wind speeds are a necessary but not
sufficient indicator of high-amplitude lee waves.

The machine-learning-derived climatology described
in this article presents an opportunity to investigate the
correlation between the physics of lee waves and other
meteorological phenomena, for example, to aid in devel-
oping parametrisation schemes: lee waves are important
for momentum transport, as well as surface impacts such
as rotors (Bretherton, 1969). The work supports the use-
fulness of simple concepts such as the Scorer parame-
ter for predicting trapped lee waves even in real-world
three-dimensional examples beyond the idealised linear
framework in which they were developed. The authors
hope that this work will serve as a useful demonstra-
tion of the benefits and limitations of linear theory for
lee waves in the real world. Further work will include
investigating how the distribution and characteristics of
trapped lee waves change over Britain and Ireland in a
future climate scenario. This will show how lee waves
over Britain and Ireland, and the associated hazards to

Royal Meteorological Society

aircraft and road transport, may change in a warming
climate.
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