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Abstract. Simulating the West African monsoon (WAM)
system using numerical weather and climate models suffers
from large uncertainties, which are difficult to assess due
to nonlinear interactions between different components of
the WAM. Here we present a fundamentally new approach
to the problem by approximating the behavior of a numer-
ical model – here the Icosahedral Nonhydrostatic (ICON)
model – through a statistical surrogate model based on uni-
versal kriging, a general form of Gaussian process regres-
sion, which allows for a comprehensive global sensitivity
analysis. The main steps of our analysis are as follows:
(i) identify the most important uncertain model parameters
and their probability density functions, for which we employ
a new strategy dealing with non-uniformity in the kriging
process. (ii) Define quantities of interest (QoIs) that repre-
sent general meteorological fields, such as temperature, pres-
sure, cloud cover and precipitation, as well as the prominent
WAM features, namely the tropical easterly jet, African east-
erly jet, Saharan heat low (SHL) and intertropical disconti-
nuity. (iii) Apply a sampling strategy with regard to the krig-
ing method to identify model parameter combinations which
are used for numerical modeling experiments. (iv) Conduct
ICON model runs for identified model parameter combina-
tions over a nested limited-area domain from 28° W to 34° E
and from 10° S to 34° N. The simulations are run for Au-
gust in 4 different years (2016 to 2019) to capture the peak
northward penetration of rainfall into West Africa, and QoIs
are computed based on the mean response over the whole

month in all years. (v) Quantify sensitivity of QoIs to uncer-
tain model parameters in an integrated and a local analysis.

The results show that simple isolated relationships be-
tween single model parameters and WAM QoIs rarely exist.
Changing individual parameters affects multiple QoIs simul-
taneously, reflecting the physical links between them and the
complexity of the WAM system. The entrainment rate in the
convection scheme and the terminal fall velocity of ice par-
ticles show the greatest effects on the QoIs. Larger values
of these two parameters reduce cloud cover and precipita-
tion and intensify the SHL. The entrainment rate primarily
affects 2 m temperature and 2 m dew point temperature and
causes latitudinal shifts, whereas the terminal fall velocity of
ice mostly affects cloud cover. Furthermore, the parameter
that controls the evaporative soil surface has a major effect
on 2 m temperature, 2 m dew point temperature and cloud
cover. The results highlight the usefulness of surrogate mod-
els for the analysis of model uncertainty and open up new
opportunities to better constrain model parameters through a
comparison of the model output with selected observations.

1 Introduction

The West African monsoon (WAM) is a prominent seasonal
large-scale circulation feature associated with a deep north-
ward penetration of rainfall into West Africa during the bo-
real summer months, usually peaking in August (Hastenrath,
1991). The precipitation associated with the WAM is cru-
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Figure 1. Schematic illustration of the WAM system in a height–
latitude display (inspired by Fink et al., 2017), including the TEJ,
the AEJ, the SHL, the ITD, 2 m temperature (T2 m) and 2 m dew
point temperature (Td 2 m). The main rainfall area is indicated by
light blue shading. Circulation in the height–latitude plain is de-
picted through streamlines. The approximate latitudinal position of
the Guinea Coast is also given.

cial for the livelihoods of hundreds of millions of people and
has great socioeconomic impacts through effects on agricul-
ture, energy production, water resources and health (Haile,
2005; Paeth et al., 2008). The WAM, conceptually depicted
in Fig. 1, constitutes a complex deep overturning circulation
whose formation, maintenance and variability are governed
by various regional and remote forcings (Hall and Peyrillé,
2006). One of its main initial drivers is the large temperature
and thus pressure gradient between the hot, dry and often
dusty Sahara manifested in the Saharan heat low (SHL) and
cooler, moister conditions over the tropical Gulf of Guinea.
The marked discontinuity between these fundamentally dif-
ferent air masses, the intertropical discontinuity (ITD), which
lies around 20° N during boreal summer, is associated with
shallow and dry overturning only (Nicholson, 2009; Thorn-
croft et al., 2011). Abundant deep convection is rather ob-
served in a band south of the ITD, often called the monsoonal
rain belt. There, mainly between 8 and 13° N, the bulk of
summertime precipitation is produced by frequently passing
large convective systems with a high degree of organization
(Mathon et al., 2002; Lebel et al., 2003; Lebel and Ali, 2009).

The monsoonal rain belt is enclosed by two distinctive
dynamical features, the African easterly jet (AEJ) to the
north and the tropical easterly jet (TEJ) to the south. The
AEJ, a pronounced easterly jet at around 600–700 hPa main-
tained by the low-tropospheric meridional temperature gra-
dient, regularly features wave disturbances. These so-called
African easterly waves (AEWs) with wavelengths between

2000 and 5000 km and periods of 2–7 d (Burpee, 1972; Reed
et al., 1977; Kiladis et al., 2006) strongly modulate convec-
tion, mainly by enhancing vertical wind shear to levels favor-
able for the generation of organized squall lines (Fink and
Reiner, 2003). In the upper troposphere, the WAM circula-
tion is characterized by a jet-like intensification of the tropi-
cal easterlies. This distinct easterly current observed between
5 and 20° N, called TEJ, evolves over the South Asian mon-
soon system, where it is also the strongest, and extends west-
ward to Africa under gradual weakening (Flohn, 1964). Pre-
vious studies have demonstrated that seasonal-mean WAM
rainfall is strongly correlated with the intensity of the TEJ
over West Africa (Grist and Nicholson, 2001). At least on
shorter timescales, the TEJ is, however, mainly thought of
as a passive feature, which can intensify after periods of in-
creased convective activity through the enhanced divergent
outflow at upper levels (Lemburg et al., 2019).

Despite its outstanding importance for the region, simula-
tions of the WAM spanning timescales from weather to cli-
mate are fraught with substantial uncertainties. With respect
to weather forecasts, Vogel et al. (2018, 2020) showed that
ensemble predictions of rainfall over tropical Africa have the
lowest skill throughout the tropics and are often barely bet-
ter than climatological forecasts (Walz et al., 2021), even af-
ter the removal of systematic errors through statistical post-
processing. This poor performance is partly related to er-
rors stemming from initial condition uncertainty in a region
known for a sparse operational network (e.g., Parker et al.,
2008; Fink et al., 2011). Moreover, there appear to be is-
sues with data assimilation, as the availability of additional
observations during field campaigns shows relatively small
improvements (Agustí-Panareda et al., 2010; van der Linden
et al., 2020). In weather forecasts, but also in mean-state fo-
cused simulations (beyond the problem of initial state un-
certainty), the representation of the WAM and its features
is affected by various model uncertainties. Shortcomings in
adequately simulating small-scale diabatic processes such as
deep moist convection not only directly impact rainfall pre-
diction skill but may further impose errors in the entire WAM
circulation, as it is – like many tropical large-scale flows –
strongly driven by the diabatic heating of the troposphere
(Marsham et al., 2013; Martin et al., 2017). Model-related
uncertainties regarding the representation of deep convection
and other physical processes are also reflected on climate
timescales where many models struggle to realistically re-
produce the rainfall distribution over the WAM region and its
seasonal evolution (Cook and Vizy, 2006; Xue et al., 2010;
Vellinga et al., 2013). Considerable problems are also evident
on paleoclimate timescales, with many models struggling to
accurately describe the magnitude and time of precipitation
changes of the African humid period during the Holocene,
which amongst other things led to a green Sahara (Claussen
et al., 2017; Brierley et al., 2020).

How can we improve model simulations over West Africa?
The most obvious way is trying to improve the numerical
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model itself. Janicot et al. (2011) argued that biases and
uncertainties can be substantially reduced if processes on
weather timescales are better understood and defined. They
therefore underlined the necessity of analysis on shorter
timescales to improve not only weather forecasts but also cli-
mate predictions. As mentioned in the paragraph above, the
correct representation of diabatic processes, most of them
indeed acting on short timescales and rather small spatial
scales, in particular still constitutes a major challenge. In
this regard, a key problem is model uncertainties associ-
ated with grid resolution and parameter choices in the rep-
resentation of sub-grid-scale processes. For example, the ex-
plicit or parameterized representation of deep convection has
a large effect on the amount, spatial distribution and diur-
nal cycle of precipitation, with substantial impacts on the
large-scale dynamics and thermodynamics, even beyond the
African continent (Marsham et al., 2013; Pante and Knip-
pertz, 2019; Kendon et al., 2019). Matsui et al. (2018) found
that the treatment of radiation in their model affects precip-
itation, low clouds and the entire WAM circulation, while
Tchotchou and Kamga (2009) highlighted the deficiencies in
selected convection schemes in simulating the monsoon rain-
fall accurately. Gbode et al. (2018), Flaounas et al. (2011)
and Klein et al. (2015) considered microphysical, convec-
tive and boundary layer processes and found substantial in-
fluences of process parameter variations on the accuracy and
spread of precipitation and other outputs. In other studies,
effects of different meteorological phenomena and bound-
ary conditions on the WAM were investigated. For instance,
Kniffka et al. (2019) highlighted that variations in low-level
clouds can have a substantial impact on precipitation. Zheng
and Eltahir (1998) and Hopcroft et al. (2017) investigated the
influence of vegetation, where the former considered varia-
tions in the meridional distribution of vegetation on a weather
timescale and the latter revealed the relationship between
past vegetation coverage and climate for the mid-Holocene.
Messager et al. (2004) found that the sea surface tempera-
ture (SST) appears to be a major factor in the seasonal and
interannual monsoon precipitation regime.

The abovementioned studies were conducted to assess iso-
lated relationships between certain model parameters and
simulated WAM quantities. A general problem of this ap-
proach is that it is very challenging to study the combined
effects of several sources of uncertainty at once. Nonlinear
interactions and buffering effects will make it nearly impos-
sible to deduce such effects from single-parameter pertur-
bation experiments. Ideally one should conduct experiments
across a wide range of parameter combinations, but this will
very quickly become too expensive, as a certain simulation
period is required to separate differences from day-to-day
weather noise.

An attractive alternative to such a costly approach is sur-
rogate models – also known as emulators or meta-models –
which allow for a comprehensive but resource-friendly sta-
tistical investigation of the sensitivity of QoIs to uncertain

model parameters (Cheng et al., 2020). This approach has
gained increasing popularity in nearly all scientific fields,
such as engineering (e.g., Sudret, 2014), chemistry and eco-
nomics, within the past 3 decades (Cheng et al., 2020).
For this purpose, outputs of simulations with a numerical
model are used as training data to develop the surrogate
models, which can then be used for a comprehensive sen-
sitivity analysis. In meteorology, many different weather and
climate models have been used for the application of sur-
rogate models. For instance, methane-emission-related pa-
rameters (Müller et al., 2015) and hydrological parameters
(Ray et al., 2015) have been considered for model calibra-
tion. Fletcher et al. (2018) studied the impact of aerosol forc-
ing and atmospheric parameters on climate sensitivity, where
two cloud- and convection-related parameters showed the
strongest impacts. Lee et al. (2011) studied cloud conden-
sation nuclei (CCN) sensitivity to eight emission and micro-
physical process parameters and found that uncertainty in the
sulfur emissions explains 80 % of the output variance.

There exists a range of methodological approaches for sur-
rogate models. Among these, Gaussian process regression,
also known as kriging, is the most popular one in mete-
orological literature and has for instance been applied by
Williamson (2015), Lee et al. (2011) and Fletcher et al.
(2018). Alternatives include polynomial regression (Holden
et al., 2009), polynomial chaos expansion (Massoud, 2019),
radial basis functions (Müller et al., 2015), neural networks
(Lu and Ricciuto, 2019) and combinations of these (Ray
et al., 2015). For the construction, appropriate sampling
strategies are used to define the training points for the surro-
gate model. In most cases in meteorological literature, Latin
hypercube sampling (Morris and Mitchell, 1995) is used
(e.g., Lee et al., 2011; Lu and Ricciuto, 2019), but in some
studies other methods are applied, such as quasi-Monte Carlo
sampling (e.g., Ray et al., 2015) and polynomial chaos-based
approaches (e.g., Massoud, 2019).

Universal kriging (Matheron, 1969) is a general form of
Gaussian process regression, where explicit basis functions
can be incorporated to describe certain relationships in the
regression technique based on prior knowledge of the prob-
lem. In meteorology, universal kriging has been applied in
several studies such as by Glassmeier et al. (2019), Wellmann
et al. (2020) and Diamond et al. (2020), where either linear or
quadratic basis functions are used as trend functions. How-
ever, to the best of the authors’ knowledge, universal kriging
with explicit nonlinear basis functions other than polynomi-
als has not been applied in connection with meteorological
applications. Furthermore, there have not been many studies
regarding criteria for the choice of basis functions for univer-
sal kriging.

This study aims at quantifying the uncertainty contribu-
tions and effects of selected model parameters on a variety
of QoIs and output fields that characterize the WAM sys-
tem. There has been no such study that also includes poten-
tial interactions of multiple model parameters. The Icosahe-

https://doi.org/10.5194/wcd-5-511-2024 Weather Clim. Dynam., 5, 511–536, 2024



514 M. Fischer et al.: Quantifying uncertainty in simulations of the West African monsoon

dral Nonhydrostatic (ICON) model, the operational weather
prediction model of the German Weather Service (DWD), is
used to simulate the rainy seasons in 4 years in limited-area
mode. We investigate the influence of six model parameters
that are expected to have substantial impacts on the WAM
characteristics. For each of them, probability density func-
tions (PDFs) are assigned based on the literature and expert
knowledge. Maximin Latin hypercube sampling (Morris and
Mitchell, 1995) is applied in order to define optimal parame-
ter combinations. From the output fields of each run, QoIs are
computed that represent the characteristics of the WAM sys-
tem, namely monthly accumulated precipitation, latitudinal
position of the WAM rain belt, location and strength of the
TEJ and the AEJ, location and extent of the SHL, latitude
of the ITD, and spatially averaged output fields (e.g., 2 m
temperature, cloud cover). Universal kriging is then used
to obtain a surrogate model for each QoI, which describes
the relationship between all uncertain model parameters and
the QoI. The surrogate models serve to carry out sensitiv-
ity and parameter studies. Here, the global sensitivity analy-
sis (GSA) evaluates the quantitative influence of the PDFs of
all model parameters on the variability of the QoIs, whereas
the parameter studies involve varying one parameter at a time
to observe the relationship between the parameter and each
QoI. The results indicate for which parameters (and thus pro-
cesses) uncertainties need to be reduced to lower the spread
in simulated QoIs.

The paper is organized as follows: in Sect. 2, the applied
methods are explained, including surrogate modeling meth-
ods and the ICON model setup. In Sect. 3, results of the
conducted analyses are presented and discussed, including
model validation, GSA and the parameter studies. Section 4
provides a summary, the main conclusions and a short out-
look.

2 Data and methods

This section details the applied methods and employed
datasets. In Sect. 2.1, PDFs are assigned to considered un-
certain model parameters. The surrogate modeling procedure
is explained in Sect. 2.2, including the definition of training
points, universal kriging, model validation and global sensi-
tivity analysis. In Sect. 2.3, the ICON model setup and con-
sidered model outputs are presented. Considered QoIs and
their computation are shown in Sect. 2.4. Finally, a proce-
dure for local parameter studies is presented in Sect. 2.5.

2.1 Selected uncertain model parameters

A crucial first step on the way to develop surrogate models
is to identify relevant uncertain model parameters and to de-
fine meaningful PDFs representing our best knowledge of the
associated epistemic uncertainty. Based on experience from
sensitivity studies, literature review and expert judgment, we

take into consideration six parameters which cover a fairly
broad spectrum of the model’s physics. These are the grid-
scale microphysics (zvz0i), turbulence (tkhmin), land–surface
interaction (c_soil) and in particular the parameterization
of deep convection (entrorg, rhebc_land_trop, rcucov_trop).
For the purpose of the analysis in this work, the parameters
are grouped into three pairs with regard to their physical im-
plication, namely deep-cloud (entrorg, zvz0i), below-cloud
(rhebc_land_trop, rcucov_trop) and boundary layer (tkhmin,
c_soil) parameters (see Table 1).

The entrainment rate (entrorg) controls the mixing of am-
bient air into convective plumes. Depending on the free-
tropospheric humidity, higher entrorg values may lead to de-
creased buoyancy within the convective plumes and possi-
bly reduced convective rainfall. The terminal fall speed of
ice crystals (zvz0i) determines the lifetime of cirrus clouds
and therefore average high-level cloud cover. Particularly
in the tropics, this parameter may strongly influence cloud-
radiative heating rates, which can, in turn, feed back on the
large-scale circulation. Despite the different physical influ-
ence of the entrainment rate and the terminal fall velocity
of ice, the overall effects are known to be similar: Reinert
et al. (2019) found that less entrainment increases the tops
of tropical convection and thus the production of cloud ice in
the upper tropical troposphere. This needs to be accompanied
by faster cloud ice sedimentation in order to keep the radia-
tive forcing at a similar level. This is why the DWD varies
these two parameters inversely in the ensemble physics per-
turbations (a probabilistic forecast where model parameters
are varied to generate a range of possible outcomes to ac-
count for uncertainties in the model’s physics) to keep the
systematic impact on the model climate small (Reinert et al.,
2019). The below-cloud parameters concern the computa-
tion of evaporation in convective regions. The parameter
rhebc_land_trop refers to a relative humidity threshold be-
low which evaporation occurs below the cloud base in con-
vectively active grid cells over tropical land areas. The pa-
rameter rcucov_trop estimates – again specifically for the
tropics – the areal fraction of convection within a grid cell
that is used for the calculation of evaporation below the cloud
base. In contrast to rhebc_land_trop, which uses a thresh-
old value for relative humidity and thus mostly affects areas
where relative humidity is close to that threshold, the param-
eter rcucov_trop affects evaporation in a more general sense
and thus over most of the domain. The choice of tkhmin in-
fluences the turbulent diffusion of heat and moisture, which
can in some situations impact cloud formation. Some level
of vertical diffusion is practically always present in real-
ity. In the case of highly stable conditions and weak verti-
cal wind shear, however, this diffusion is underestimated by
the turbulence parameterization. Therefore a minimum ver-
tical diffusion (i.e., tkhmin) is set in the model to counteract
this underestimation (Raschendorfer, 2012). The parameter
c_soil denotes the evaporating fraction of soil in the form of
a unitless fraction. Higher values lead to higher relative hu-
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Table 1. Selected uncertain model parameters and a short description, the assumed PDF and physical unit.

No. Model parameter ICON model parameter description PDF∗ Unit

1 entrorg entrainment parameter valid for dx = 20 km lognormal (µ=−6.3, σ = 0.18) m−1

(depends on model resolution)

2 zvz0i terminal fall velocity of ice lognormal (µ= 0.22, σ = 0.40) m s−1

3 rhebc_land_trop relative humidity threshold for onset of evaporation below beta (α = 30, β = 10) –
the cloud base over land in the tropics

4 rcucov_trop convective area fraction used for computing evaporation lognormal (µ=−3.0, σ = 0.27) –
below the cloud base in the tropics

5 tkhmin scaling factor for minimum vertical diffusion coefficient for lognormal (µ=−0.29, σ = 0.36) m2 s−1

heat and moisture

6 c_soil surface area density of the (evaporative) soil surface normal (µ= 1.0, σ = 0.34) –

∗ For lognormal distribution: µ and σ are the mean and standard deviation of the variable’s natural logarithm.

midity, which can possibly increase cloud cover. Particularly
for entrorg, rhebc_land_trop and rcucov_trop the net effect
on area- and time-integrated precipitation is uncertain, as it
strongly depends on the meteorological context.

In various meteorological studies and applications, uni-
form parameter distributions over an estimated range of plau-
sible values are assumed (e.g., Wan et al., 2014), as is also the
case for the operational ensemble forecast of DWD (Rein-
ert et al., 2019). This is reasonable if limited information
is available about the considered parameters and where the
main purpose of the parameter variation is to induce spread
in the ensemble forecast to better reflect the full forecast un-
certainty. Since the definition of PDFs is often challenging
and vague, we emphasize that using uniform ranges is of-
ten preferable. However, in the case of a fundamental sen-
sitivity analysis, a uniform distribution is not necessarily a
good choice, as there is no physical foundation for assuming
a jump in the PDF from a constant value to 0 at the upper and
lower limits. Values near the uniform range limits would have
a disproportionate influence in the global sensitivity analysis,
while those just outside the range would contribute nothing.
Although defining alternative distributions presents a chal-
lenge in its own right, these are considered to be more ap-
propriate in this study. Non-uniform PDFs for the parameters
considered in this study have already been used by Lang et al.
(2021) and Ollinaho et al. (2017), where normal and lognor-
mal distributions are applied to represent parameter uncer-
tainties. In our study, one source for the definition of PDFs is
the mean values and ranges that are used for operational en-
semble forecasts by the DWD (DWD, 2019), including fur-
ther expert knowledge. Generally, the functions are defined
in such a way that physical constraints or symmetry prefer-
ences are fulfilled; e.g., parameters which are strictly positive
are described by functions that can only attain positive values
(e.g., lognormal PDFs), and parameters which are bounded
between 0 and 1 (i.e., that describe percentages of a certain

quantity) are well described by a beta distribution. The se-
lected model parameters and the assigned PDFs are shown in
Table 1. Illustrations of the PDFs are shown in Sect. 3 with
the results (see Fig. 5).

2.2 Surrogate modeling procedure

In order to represent the relationship between the uncertain
model parameters listed in Table 1 and QoIs in a computa-
tionally effective way, surrogate models, also known as em-
ulators or meta-models, are used. In this work, we use Gaus-
sian process regression, also known as kriging, due to its flex-
ibility and robustness. In order to build a surrogate model,
training points (i.e., sets of combinations of the uncertain
model parameters) are defined through an experimental de-
sign, and ICON model runs are conducted for these points.
The individual steps necessary to develop the surrogate mod-
els are explained in the following subsections.

2.2.1 Training points

In order to build a surrogate model, training points for the
model parameters have to be defined based on the PDFs spec-
ified in Sect. 2.1. Hereafter, we refer to the model parame-
ter space as input space, as commonly done in the scientific
discipline of uncertainty quantification (UQ). Since proba-
bility varies substantially across the input space, the density
of points selected in the parameter space for global sensi-
tivity analysis corresponds to the probability density func-
tion (PDF), resulting in regions of higher probability being
sampled more frequently. Therefore, it is considered mean-
ingful to train the model with higher accuracy in these re-
gions. However, this method inherently leads to a reduced fo-
cus on areas of lower probability, which, despite being sam-
pled less frequently, are still essential for a comprehensive
global sensitivity analysis. The assumption that prioritizing
areas of higher probability leads to more accurate sensitiv-
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ity analysis outcomes requires further scientific investigation.
Furthermore, sequential algorithms can be employed to sup-
plement the base design with additional training points in re-
gions where enhanced model accuracy is required. Addition-
ally, if the sole objective was to develop a surrogate model
with uniform accuracy across the entire parameter space, in-
cluding the tails of the PDFs, then employing a uniform den-
sity of training points would be more appropriate. In our
case, using more training points in regions with higher prob-
ability leads to an experimental design with inhomogeneous
space-filling properties where surrogate modeling methods
may struggle. As a consequence, the trained surrogate mod-
els may have problems with predicting QoIs in the tails of
the PDFs. Therefore, we transform the physical (hereinafter
used to denote parameter PDFs according to Table 1) input
space to an independent and identically distributed (i.i.d.)
uniform input space. In the transformed uniform input space,
which can be thought of as a multidimensional unit hyper-
cube, every region is associated with equal probability, and
thus we can apply a space-filling sampling technique. In par-
ticular, we use maximin Latin hypercube sampling (Morris
and Mitchell, 1995) to define 60 training points. We use the
recommendation given by Loeppky et al. (2009) to choose
the number of training points as n= 10p, where p is the
number of input dimensions (p = 6 in our case).

For the sake of simplicity and interpretability of the re-
sults, the model parameters are kept temporarily and spatially
constant during individual model runs. Therefore, one train-
ing point corresponds to a fixed set of the six model parame-
ters which is used for one ICON model run.

The number of necessary training points strongly depends
on the nonlinearity of the investigated problem. Therefore,
validation (see Sect. 2.2.3) of the surrogate model remains in-
evitable. The training points obtained from the experimental
design are transformed back into the physical input space and
are then used for the configuration of the respective ICON
model runs. From the outputs of the ICON model simula-
tions for all training points, QoIs are computed as described
in Sect. 2.4.

2.2.2 Gaussian process regression

In this study, we aim at describing a relationship between six
model parameters and selected QoIs. We construct a sepa-
rate surrogate model for each QoI, which can later be used to
employ sensitivity studies with significantly reduced compu-
tational cost.

Among available surrogate modeling methods, Gaussian
process regression offers wide flexibility and potential for ex-
tensions and is therefore used in this study. We apply the uni-
versal kriging method, a general form of Gaussian process re-
gression, where explicit basis functions can be incorporated.
We base our choice on Fischer and Proppe (2023), where
suitable basis functions for transformed input spaces have
been proposed and were shown to be very effective. This

method is meaningful to apply in this work, since PDFs are
assigned to model parameters of different orders of magni-
tude, and the input space is thus transformed to i.i.d. uniform
random variables in order to avoid ill-conditioned problems
and to apply space-filling sampling techniques.

Our aim is to build a surrogate model M for a QoI
y based on function evaluations (here integrated quanti-
ties from ICON model simulations) y= {yi, i = 1 . . . n} at
n training points X= {xi, i = 1 . . . n}. The prediction mean
and prediction variance at a set of input points X∗ = {x?i , i =
1 . . . l} are to be determined.

For the purpose of universal kriging,

g(x)= f (x)+h(x)>β (1)

is used, with a 0 mean Gaussian process f (x)∼

GP(0,k(x,x′)) and vectors of known basis functions h(x)=
{hj (x), j = 1 . . . q} and unknown coefficients β = {βj , j =
1 . . . q}.

Here, the anisotropic form of the radial basis function

k(x,x′)= θ0 exp

(
−

p∑
i=1

(
|xi − x

′

i |

θi

)2
)

(2)

with respect to hyperparameters θ = {θi, i = 0 . . .p} is used
as kernel to allow for different levels of smoothness between
input dimensions. This makes sense, as the relationships be-
tween input parameters and QoIs are not known in advance
and may differ substantially between the parameters. In ad-
dition to the radial basis function, the Matérn kernel function
has also proven to be effective in the literature, particularly
for its ability to better capture sharp jumps (Rasmussen and
Williams, 2005). In our work, the radial basis function has
proven to be practical and sufficient.

Here,

K=
{
Kij = k

(
xi,xj

)
, i = 1 . . . n, j = 1 . . . n

}
,

K∗ =
{
K∗ij = k

(
xi,x∗j

)
, i = 1 . . . n, j = 1 . . . l

}
and

σ 2
0 =

{
σ 2

0 j = k
(
x∗j , x∗j

)
, j = 1 . . . l

}
are the vectors and matrices of kernel function evaluations,
and

H=
{
Hij = hi

(
xj
)
, i = 1 . . . q, j = 1 . . . n

}
and

H∗ =
{
H∗ij = hi

(
x∗j

)
, i = 1 . . . q, j = 1 . . . l

}
are the matrices of basis function evaluations at training
points X and prediction points X∗, respectively.

The prediction mean and prediction variance, as shown by
Rasmussen and Williams (2005), can be derived as

M(X∗)=H>∗ µ+K>∗ K−1
y

(
y−H>µ

)
, (3)

σ 2 (X∗)= σ 2
0−K>∗ K−1

y K∗+R>
(

HK−1
y H>

)−1
R, (4)

with µ= (HK−1
y H>)−1HK−1

y y, R=H∗−HK−1
y K∗ and

Ky =K+ σ 2
n1.
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Here, additive i.i.d. Gaussian noise with variance σ 2
n is

considered, where σ 2
n is treated as another hyperparameter

to allow for aleatoric uncertainties, i.e., uncertainties that are
attributed to weather noise in the ICON simulations. In ref-
erence to the geostatistical origin of the method, this corre-
sponds to the nugget effect (Matheron, 1969). The hyper-
parameters θ and σ 2

n are determined by maximum likeli-
hood estimation (Rasmussen and Williams, 2005). The noise
level σ 2

n can then provide insight into aleatoric uncertainties
in the ICON model. To speed up optimization, the gradient
of the log marginal likelihood with respect to the hyperpa-
rameters θ can be incorporated. For universal kriging, corre-
sponding equations are given in Fischer and Proppe (2023).

The selection of basis functions for universal kriging is
a crucial step because prediction accuracy of the surrogate
model may strongly depend on it. Oakley (2004) empha-
sizes that the basis functions should be chosen to incorporate
any beliefs regarding the problem, e.g., the physical evolu-
tion of the output variable depending on the input parame-
ters. When applying universal kriging, low-order polynomi-
als are usually used, which can often approximate physical
relationships relatively well for small input parameter ranges.
In addition, compared to higher-order polynomials, the risk
of overfitting can be reduced.

In our work, we consider transformed input spaces. Fis-
cher and Proppe (2023) suggested using transformed basis
functions to account for the input space transformation. In a
general case with correlated input parameters, the Rosenblatt
transformation (Rosenblatt, 1952) can be used. However, in
our case we consider uncorrelated input parameters. Thus,
the Rosenblatt transformation can be expressed as quantile
functions (inverse cumulative distribution functions) with re-
spect to the physical basis function of the individual model
parameters (see Fischer and Proppe, 2023, for more details).

In our study, we assume linear basis functions in the phys-
ical input space, which are transformed into the i.i.d. uni-
form space by the Rosenblatt transformation. Assuming lin-
ear basis functions in the physical input space is considered
reasonable, since most parameter ranges are relatively small
compared to their absolute values, and linear relationships
may be sufficient in order to represent a global trend. Fur-
thermore, quadratic basis functions would in a general case
imply the inclusion of np = p(p+ 1)/2+p+ 1 basis func-
tions, which would yield np = 28 basis functions for p = 6
input parameters. This number is relatively high compared to
the number of training points of n= 60. Here, n is desired to
be at least 2 to 3 times higher than the number of the poly-
nomial basis function np to achieve sufficiently small gener-
alization errors (see, e.g., the work by Sudret, 2014, within
the context of polynomial chaos expansion). The number of
basis functions does not change through the transformation.
Thus, we presume the linear basis function

h̃(x̃)=
(
1, x̃1, x̃2, . . . x̃p

)> (5)

with respect to the physical input parameters x̃i . By applying
the Rosenblatt transformation (Fischer and Proppe, 2023),
we obtain a transformed basis function h(x)= h̃(T −1

ros (x))

with respect to the i.i.d. uniform input parameters xi . For the
independent physical parameters x̃i , the vector of basis func-
tions from Eq. (5) becomes

h(x)=
(

1, CDF−1 (x1) , CDF−1 (x2) , . . .CDF−1 (xp
))>

, (6)

where CDF−1 is the inverse cumulative distribution function
(or quantile function). This expression is used in Eq. (1) and
subsequent equations.

2.2.3 Model validation

Obtained surrogate models need to be validated to assess
their accuracy, which depends on various factors, e.g., the
number of training points, the choice of basis functions and
nonlinearities in the physical model. As a validation crite-
rion for a surrogate model M, the root mean squared er-
ror (RMSE) and the normalized mean squared error (NMSE)
are used as follows:

RMSE=

√√√√ 1
nval

nval∑
i=1

(
yval,i −M

(
xval,i

))2
, (7)

NMSE=
1
σ 2
yval

1
nval

nval∑
i=1

(
yval,i −M

(
xval,i

))2
. (8)

Here, {xval,i,yval,i, i = 1 . . . nval} is a set of nval validation
points obtained from evaluations of the numerical model, and
σ 2
yval

is the variance of the evaluation yval,i . While the RMSE
offers insight into the error in absolute values, the NMSE is
a dimensionless measure which allows for better comparison
between the QoIs.

Because of high computation cost, using a separate vali-
dation set that is not used for model training is not effective.
Therefore, cross-validation techniques, such as leave-one-out
validation or leave-k-out validation, can be applied. The val-
idation errors for leave-one-out validation can be formulated
as

RMSE=

√√√√1
n

n∑
i=1

(
yi −Mri (xi)

)2
, (9)

NMSE=
1
σ 2
y

1
n

n∑
i=1

(
yi −Mri (xi)

)2
, (10)

where Mri is the surrogate model obtained when using all
n training points except for the ith one, and σ 2

y is the vari-
ance of evaluations yi . We use leave-k-out cross-validation
with k = 2 as a compromise between validation accuracy and
computation time. We emphasize that it is important to use
generalization errors instead of measures for goodness of fit
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such as the coefficient of determination R2, since the effect
of overfitting is thereby not considered.

Model accuracy is considered to be high if NMSE values
are close to 0 and low if NMSE values are close to 1. By def-
inition, values are non-negative and should not exceed 1, as
the covariance between the surrogate model and data would
in that case be higher than the variance of the data itself. In-
terpretation of the NMSE could become problematic if QoI
values do not substantially change and the variance σ 2

yval
is

very small. In such cases, the RMSE should be considered.

2.2.4 Global sensitivity analysis

In order to quantify the relative magnitude of the depen-
dency of the QoIs on the uncertain model parameters, global
sensitivity analysis is used. We apply FAST (Saltelli et al.,
1999), a variance-based sensitivity analysis, where main ef-
fect and total effect sensitivity indices can be determined.
This method has been used in many meteorological stud-
ies (e.g., Massoud, 2019; Fletcher et al., 2018). Main effect
indices indicate the contribution to the output variance of
varying one model parameter alone, averaged over variations
in other model parameters. Total effect indices indicate the
contribution to the output variance of one model parameter,
including all variance caused by its interactions with other
model parameters. Comparison between main and total ef-
fect indices provides information on the extent to which the
interactions between the model parameters contribute to the
variations in the QoIs.

2.3 The ICON model

2.3.1 Model setup

The Icosahedral Nonhydrostatic (ICON) model (Zängl et al.,
2015), the operational forecast system of the DWD, is used
here as the full-physics numerical model to simulate the
WAM. For this purpose, we employ the 2.5.0 model ver-
sion in a limited-area nested configuration, where a 26 km
grid spacing for the outer region and a 13 km grid spacing
for the inner region are used. The outer area extends from
28° W to 34° E and from 10° S to 34° N with the nested do-
main 2° smaller in each direction as shown in Fig. 2. At
the outer boundary, ERA5 reanalysis data (Hersbach et al.,
2020) are used. ERA5 data are available hourly but are up-
dated every 6 h in our simulations to limit the amount of data
and computation cost. Apart from this, the model setup, in-
cluding all namelist parameters, is based on the configuration
used in the operational global setup by the DWD. Pante and
Knippertz (2019) have already obtained reasonable simula-
tion results for the West African region with a similar model
setup, although the convection parameterization turned out to
be problematic for precipitation forecasting. To separate sen-
sitivities that are related to model parameters from weather
noise and to reduce the influence of initial conditions, a suf-

ficiently long simulation period is required. At the same time
we aim to fully concentrate on the peak of the WAM in bo-
real summer. To account for both points, we concentrate on
August data from the 4 years between 2016 and 2019. Each
simulation starts on 21 July and is run for 41 d, but only the
data from 1 to 31 August are analyzed in order to reduce
initial condition influence. First tests showed that by using
simulations from a single year, fluctuations in the consid-
ered QoIs were still relatively high, reflecting aleatoric un-
certainties caused by small-scale chaotic behavior of the at-
mosphere. In order to obtain a more robust measure while
keeping computational cost manageable, studying rainy sea-
sons in 4 years turned out to be a good compromise. All QoIs
are thus averaged over these four August periods and used as
training points for the surrogate models. Preliminary studies
with only a single August month were still relatively volatile
with respect to large uncertainties in the surrogate model,
which could then be strongly reduced by including 4 months.
Validation of the surrogate model is essential to ensure that
averaging over 4 years does not lead to non-realistic behavior
in the average. The results of this validation should demon-
strate a robust signal, indicating that the process results in
a smoothing of individual signals rather than their cancella-
tion. Using data from 4 different years also has the advantage
of representing different states of SSTs, which are prescribed
as boundary conditions and are based on the SST analysis at
model initialization time. During the simulation the SST is
updated incrementally based on its annual climatological cy-
cle (Reinert et al., 2019).

2.3.2 Selected model output

Simulation data are stored with a horizontal resolution of
0.1° within the region from 0 to 25° N and 15° W to 15° E
(see Fig. 2) from 1 to 31 August of the years 2016, 2017,
2018 and 2019. This region and time range are hereafter de-
noted as study region and study time. The selected model out-
puts that represent key characteristics of the WAM are listed
below. The temporal resolution of the recorded data is speci-
fied with the outputs. Notably, a finer resolution is applied to
cloud cover data to accurately capture its anticipated higher
variability:

– cloud cover at high (> 7 km), middle (2–7 km) and low
(< 2 km above ground) levels (%), 1-hourly;

– column-integrated water vapor (kg m−2), 3-hourly;

– precipitation (mm per month), 3-hourly;

– 2 m temperature (K), 3-hourly;

– 2 m dew point temperature (K), 3-hourly;

– mean sea level pressure (Pa), 3-hourly;

– u and v wind at pressure levels 200 and 600 hPa (m s−1),
3-hourly.
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Figure 2. ICON model setup, outer domain with 26 km grid spacing (green), inner domain with 13 km grid spacing (brown) and domain for
which output data are stored (blue).

The data necessitate approximately 475 GB of storage space.
The output quantities from the ICON simulations are val-

idated. In Sect. 2.2.3, validation of surrogate models was
introduced to assess their accuracy based on given ICON
model simulations, ignoring that the ICON simulations do
not represent the true state of the atmosphere. For the valida-
tion in this section, the ICON model output is compared to
our best estimate of the true state of the atmosphere averaged
over the simulated time taken from ERA5 data. For precip-
itation, GPM IMERG data (Huffman et al., 2019) are addi-
tionally included as reference. For this purpose, the ICON
model output (horizontal resolution of 0.1°), native ERA5
data (horizontal resolution of 0.25°) and native GPM IMERG
data (horizontal resolution of 0.1°) are linearly remapped
on a rectangular grid with a mesh size of 0.5°. Similar to
Sect. 2.2.3, the measures

RMSE=

√√√√ 1
nval

nval∑
i=1

(
yi − yval,i

)2
, (11)

NMSE=
1
σ 2
y

1
nval

nval∑
i=1

(
yi − yval,i

)2 (12)

are used as validation criteria. Here, yi is the averaged output
value over all ICON simulations, and yval,i is correspond-
ing ERA5 (or GPM IMERG) data at locations i = 1 . . . nval,
where nval is the number of grid points of the remapped grid.
For the NMSE, the mean squared error is normalized with
respect to the spatial variance of data σ 2

y over the considered
domain. We emphasize that the spatial variance strongly de-

pends on the considered domain. However, it is still used to
obtain dimensionless reference values instead of using the
temporal variance because the latter may become 0 in cer-
tain regions (e.g., precipitation or cloud cover in the Saharan
region), which causes the measure to fail.

2.4 Quantities of interest

In this section, we describe the QoIs we selected to char-
acterize the WAM and explain how these quantities are de-
termined from the ICON model output. The results for all
QoIs are averaged over the study time (1 to 31 August of the
years 2016, 2017, 2018 and 2019) using all data with the tem-
poral resolution given in Sect. 2.3.2. A schematic illustration
of the monsoon system is given in Fig. 1.

2.4.1 Accumulated precipitation (mm per month)

The accumulated precipitation fields are computed and aver-
aged over the study region to obtain one scalar value repre-
senting the overall precipitation.

2.4.2 Precipitation latitude (° N)

The latitude of the rain belt is determined to investigate the
potential influence of model parameters on a north–south
shift in the average precipitation. For this purpose, the lati-
tudinal center of the accumulated precipitation is computed
in the study region between 12° W and 2° E (Fig. 3a) as
a weighted average where the accumulated precipitation at
each grid point is taken as the weight for its latitude. The
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Figure 3. Illustrations of selected QoI computations: (a) accumulated precipitation used for the determination of the precipitation center
latitude, (b) u wind at 600 hPa used for the determination of the AEJ latitude, (c) 2 m dew point temperature used for the determination of
the ITD latitude based on a threshold value of 14 °C and (d) mean sea level pressure used for the determination quantification of the southern
boundary of the SHL based on a threshold value of 1009 hPa. All scales are linear.

longitudinal range is chosen such that distinct topographi-
cal effects (Guinea highlands to the west, Cameroon line and
wet Niger Delta to the east) are reduced, so the influence of
model parameters on the precipitation distribution becomes
more evident. The range is fixed for all simulations to ensure
comparability of the results.

2.4.3 Column-integrated water vapor (kg m−2)

The averaged column-integrated water vapor over the study
region is computed.

2.4.4 Cloud cover (high, middle, low) (%)

The averaged cloud cover at high, middle and low levels over
the study region is computed.

2.4.5 Jet latitude (° N)

TEJ and AEJ are the main zonal wind features of the WAM
system. They are characterized by the same measures ap-
plied at different pressure levels (200 hPa for TEJ, 600 hPa
for AEJ). The averaged latitudes of the jet streams are consid-
ered in order to investigate the potential influence of model
parameters on the north–south shift of the jet streams. Com-
puting only the latitude of the maximum zonal wind speeds
turned out to be a non-robust measure, since it is very sensi-
tive and likely to fluctuate for small parameter changes due
to the chaotic nature of the atmosphere. Therefore, we intro-
duce a more robust measure that takes the neighboring lati-

tudes into account to compute an averaged latitude of max-
imum zonal wind speeds. First, we compute the averaged
zonal wind speeds for each latitude on the grid. This step
simplifies the data to a manageable form with one average
wind speed value for each latitude on the grid. The distri-
bution of these wind speeds is still relatively flat, making it
difficult to robustly determine the latitude of maximum wind
speed. We thus employ a strategy where we exponentiate the
average wind values (here, an exponent of 3 yielded useful
results) to assign higher weight to the highest values and to
reduce the influence of values far from the jet center which
are still relatively high (Figs. 6.5 and .6). Finally, we deter-
mine the weighted average of latitudes analogously as for
the precipitation center (Fig. 3b). Without the exponentiation
strategy the chosen latitudinal range for the analysis would
have a major effect on the result, which should be avoided.

2.4.6 Jet speed (m s−1)

The jet speed is determined by averaging the zonal wind
along the obtained jet latitude. It should be noted that the
maximum jet speed at instantaneous points in time is much
higher, since we consider the average of wind speeds over
time for the sake of a greater robustness.

2.4.7 ITD latitude (° N)

The ITD indicates the location where dry northeasterly winds
from the Sahara and moist southwesterly winds from the
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tropical Atlantic Ocean meet. The ITD is characterized by
a marked jump in moisture content near the surface. We use
the 14 °C 2 m dew point temperature as a measure for the ITD
latitude (Fink et al., 2017). The average over latitude values
between 12° W and 8° E is used as shown in Fig. 3c. Com-
pared to the longitudinal range for the precipitation latitude,
a broader range can be employed here for the sake of a more
robust analysis, as the ITD behaves relatively steadily.

2.4.8 SHL strength (Pa)

The characteristic heat low in the region of the Sahara, one of
the main drivers of the WAM, is characterized by its strength.
For this purpose, the average pressure field is determined
within the region from 15 to 25° N and 15° W to 5° E, where
the heat low is expected on the basis of climatological results
(Lavaysse et al., 2009), for each August month. The SHL
strength is characterized by the average of the 10 % lowest
mean sea level pressure (MSLP) values within this region.

2.4.9 SHL latitude (° N)

The latitude of the SHL is characterized by the southern
boundary of the SHL region based on a MSLP threshold of
1009 hPa between 9 and 1° W as shown in Fig. 3d. Sim-
ulations for the investigated years indicate that the given
threshold value and longitudinal range are robust measures.
A broader latitude range or a higher threshold value would
potentially lead to a situation where the threshold value is
not reached anymore for certain longitudes, and the charac-
terization would not be meaningful anymore. The latitudes
are computed for each monthly averaged pressure field, and
resulting latitudes of the 4 months are averaged.

2.4.10 2 m temperature (K)

The average 2 m temperature over the whole study region is
computed.

2.4.11 2 m dew point temperature (K)

The average 2 m dew point temperature over the whole study
region is computed.

2.5 Local parameter studies

In Sect. 2.2, surrogate modeling methods for investigating
the dependency between uncertain model parameters and
QoIs are introduced. However, since QoIs are defined as sin-
gle values according to Sect. 2.4, information on spatial vari-
ability is lost for the benefit of robust analysis. In this section,
we therefore discuss an alternative approach to bring out the
influence of uncertain model parameters on the geographi-
cal distribution of the chosen output quantities (Sect. 2.3.2).
For this purpose, all training points from the experimental
design (Sect. 2.2.1) are used, but for each model parameter i

the training points with the 25 % lowest and the 25 % highest
xi values are selected. Let these sets for each model param-
eter i be Xi,low and Xi,high. For example, the set Xentrorg,low
includes the 15 training points (25 % of 60 training points)
with the lowest values of entrorg within the experimental de-
sign. For each training point, an ICON model simulation has
been conducted, and output fields are available. These out-
put fields are averaged over the whole evaluation period (4
August months). Furthermore, they are then averaged over
the Xi,low and Xi,high sets. As a result, the average spatial
output data are obtained for low and for high values of the
considered uncertain model parameters. For example, us-
ing the Xentrorg,low set, all average output fields for low en-
trorg values are computed. Finally, the averaged fields with
low (Xi,low) and high (Xi,high) values are subtracted to ob-
tain a spatial variability field. The variability plot indicates in
which regions the output value becomes higher or lower for
an increase in model parameter i.

This procedure is applied to all combinations of model pa-
rameters and available output data. To quantify the signifi-
cance of such investigations, a Kruskal–Wallis test (Kruskal
and Wallis, 1952) is performed. Since we cannot assume nor-
mally distributed data due to selecting 25 % of training points
from the tails of the distributions, a standard t test is not ap-
plicable. For the Kruskal–Wallis test the difference between
the data of the Xi,low and Xi,high sets from a zero field is con-
sidered. Statistical tests are conducted for every grid point,
and results are averaged over the whole region to include a
sufficient amount of data. The test indicates whether there are
significant signals in the variability fields other than random
noise.

As a reference, the mean field plots can be obtained for
each meteorological variable by averaging output data ob-
tained from all available training points. These reference
plots together with the variability plots can then serve as a
basis for interpretation of regional influences of model pa-
rameters.

3 Results

3.1 Model validation

Validation is an essential step before discussing the results of
the conducted studies. It offers insight into how informative
and significant the analysis of this work is. We conducted
validation for the outputs of the ICON model simulations
(see Sect. 2.3.2) and for the obtained surrogate models (see
Sect. 2.2.3).

The validation results for the averaged ICON model out-
puts with respect to ERA5 data – and additionally GPM
IMERG data for precipitation – are shown in Table 2. For the
purpose of validation, the average over the 4 August months
on the 0.5° grid is used, which should represent the clima-
tological spatial distribution. The RMSE for precipitation is
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47.7 (62.3) mm per month for GPM IMERG (ERA5), which
corresponds to 15.8 % (19.4 %) in NMSE. An inspection of
the spatial distribution shows that the differences are mostly
due to wetter conditions along the rainy southwestern coast
of West Africa and the Niger Delta region in ERA5 (not
shown). Differences in cloudiness are also substantial. While
high clouds agree best with 7.6 % RMSE, low- and mid-level
cloud cover is substantially higher in ICON with RMSEs of
15.5 % and 6 %, respectively. These correspond to NMSEs of
46.9 % and 24.1 %, indicating substantial disagreement. Low
clouds over tropical West Africa are controlled by a subtle
balance of advective, radiative and turbulent processes (Lo-
hou et al., 2020), and differences between models tend to
be large (Hannak et al., 2017). Cloud cover and precipita-
tion are strongly influenced by model parameterizations, and
therefore differences are to be expected. Moreover, ERA5 it-
self, although much improved compared to earlier products,
may still have difficulties with these quantities (Gbode et al.,
2023). The other moisture variables, i.e., column-integrated
water vapor and 2 m dew point temperature, however, show
only minor disagreement, as does MSLP. Differences in 2 m
temperature in contrast are larger (1.7 K RMSE and 20.1 %
NMSE). This is mostly due to a warmer Sahara in ICON
(not shown). Modeling near-surface temperature in deserts
is challenging due to the enormous solar heating and turbu-
lent surface sensible heat fluxes, which can lead to supera-
diabatic lapse rates in the lowest meters of the atmosphere
(e.g., Knippertz et al., 2009). Finally, the four wind variables
show good agreement, with the exception of v at 600 hPa
(NMSE 26.4 %, which, however, corresponds to an RMSE
of only 0.6 m s−1). This is mostly due to stronger northerlies
over the Sahara in ERA5 (not shown). These validation re-
sults show that the model setup can generally be considered
to be valid, even though there are considerable differences in
certain quantities. Since in this work sensitivity studies are
conducted based on the ICON model alone, perfect agree-
ment of simulation output and ERA5 data is not a require-
ment. However, for the overall significance of this work, the
obtained differences should be taken into account.

For validation of the surrogate models, leave-k-out (k = 2)
cross-validation is applied to all QoIs individually, since sep-
arate surrogate models have been obtained for each QoI. The
RMSE and NMSE are shown in Table 3. Errors include both
aleatoric uncertainties in weather simulations (which are in-
evitable due to the chaotic nature of the system) and surro-
gate model uncertainties. The prediction variance (Eq. 4) is a
measure of the uncertainty of the surrogate model. Therefore,
large errors do not necessarily mean that a surrogate model
with low accuracy was obtained, but it could also mean that
high aleatoric uncertainties in this QoI are present. The stan-
dard deviation σn of the Gaussian noise in the regression
model (see Sect. 2.2.2) provides an estimate of the aleatoric
uncertainty in the ICON data. The results from the maximum
likelihood estimation are also given in Table 3. Given that the
values of σn are generally lower but still of a similar magni-

Table 2. Validation results for the ICON model outputs with ERA5
data.

Output quantity RMSE Unit NMSE

Cloud cover (high) 7.60 % 8.80 %

Cloud cover (middle) 6.03 % 24.14 %

Cloud cover (low) 15.5 % 46.92 %

Precipitation
ERA5 62.3

mm per month
19.35 %

GPM IMERG 47.7 15.78 %

Column-integrated water vapor 1.44 kg m−2 2.58 %

MSLP 50.7 Pa 4.76 %

Temperature (2 m) 1.70 K 20.09 %

Dew point temp. (2 m) 0.964 K 3.46 %

u wind (600 hPa) 0.609 m s−1 3.34 %

u wind (200 hPa) 1.37 m s−1 4.19 %

v wind (600 hPa) 0.599 m s−1 26.43 %

v wind (200 hPa) 0.598 m s−1 3.82 %

tude compared to the RMSE, this indicates that a significant
proportion of the observed validation errors may be ascribed
to aleatory uncertainties inherent in the weather model. The
error attributed to the uncertainty in the surrogate model is
already relatively low but could be further reduced by in-
cluding more training points or averaging over more data
(i.e., more years). A small RMSE (or NMSE) indicates that
surrogate model accuracy is high and aleatoric uncertainty
is small. Small validation errors are therefore evidence that
sensitivity analysis and parameter studies are meaningful. In
this study, NMSEs are considered to be small for all QoIs ex-
cept for the AEJ speed and precipitation latitude. However,
the small RMSEs for these quantities indicate that the abso-
lute errors are very small. Since changes in these QoIs are
very small (see also Fig. 5), the variance σ 2

y of data used for
the normalization in Eq. (12) becomes very small, too, and
NMSE values become larger. Thus, large NMSE values in
these cases do not affect the overall validity of this study.

3.2 Global sensitivity analysis

The results of the global sensitivity analysis are shown in
Fig. 4. For each QoI, the bar plots indicate the main and total
effect sensitivity indices of the six uncertain model param-
eters. The results should be considered to be relative con-
tributions to the total variance of each QoI such that com-
parison of the magnitudes between the different QoIs is not
meaningful. A comparison between the absolute uncertainty
contributions on the different QoIs is difficult or impossible
in any case, as they have different units. Overall, the main
and total effect indices do not differ strongly, which indicates
that interactions between the parameters are relatively weak.
This justifies interpreting influences on QoIs of individual
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Table 3. Validation results for the surrogate models of all QoIs with cross-validation.

Quantity of interest (QoI) RMSE σn Unit NMSE

Cloud cover (high) 0.862 0.247 % 1.22 %
Cloud cover (middle) 0.193 0.106 % 1.71 %
Cloud cover (low) 0.223 0.128 % 4.73 %
Column-integrated water vapor 0.125 0.071 kg m−2 7.04 %
Temperature (2 m) 0.054 0.025 K 3.88 %
Dew point temp. (2 m) 0.052 0.030 K 5.05 %
Accumulated precipitation 1.365 0.385 mm per month 11.64 %
AEJ speed 0.069 0.088 m s−1 55.24 %
TEJ speed 0.116 0.059 m s−1 7.02 %
ITD latitude 0.100 0.055 ° 7.23 %
SHL latitude 0.145 0.095 ° 4.75 %
AEJ latitude 0.078 0.053 ° 5.81 %
Precipitation center latitude 0.057 0.049 ° 28.98 %
TEJ latitude 0.044 0.022 ° 17.62 %
SHL pressure 5.392 4.061 Pa 9.62 %

Figure 4. Main and total effect sensitivity indices of the six selected uncertain model parameters for all QoIs, resulting from the global
sensitivity analysis FAST.

model parameters separately as done in this study. The inter-
actions between the parameters is expected to be larger for
broader parameter ranges as nonlinear effects may become
more dominant.

Sensitivities of cloud cover (leftmost columns in Fig. 4)
are generally dominated by the two deep-cloud parameters,
the entrainment rate (entrorg) and the terminal fall velocity

of ice (zvz0i). High-level clouds are strongly affected by en-
trainment, which can prevent convection reaching high lev-
els, in contrast to mid-level clouds, where effects are mi-
nor. The fall velocity of ice controls the dissolution of high
clouds but also has a dominant effect on mid-level clouds.
Low-level clouds are affected by more parameters in a more
complex way. As expected, below-cloud and boundary layer
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parameters have a substantial effect at these altitudes. Partic-
ularly, the relative humidity threshold for onset of evapora-
tion below the cloud base (rhebc_land_trop) and the surface
area density of the evaporative soil surface (c_soil) dominate
the influence on low clouds, whereas deep-cloud parameters
only play a minor role (20 % combined).

Column water vapor is mostly influenced by the deep-
cloud parameters, similar to high clouds, but the boundary
layer parameters also play a minor role. This suggests that
this variable is in fact more sensitive to interactions with
clouds at middle and high levels than to changes in evap-
oration and vertical mixing at low levels. Somewhat unex-
pectedly, 2 m temperature and 2 m dew point temperature are
mostly influenced by the deep-cloud parameters, too, with
the entrainment rate playing the biggest role. This suggests
that these parameters must cause substantial indirect effects
outside of the clouds. More obviously, c_soil significantly
affects the thermodynamics at the surface level. Precipita-
tion shows the overall most complex response being affected
to various degrees by all model parameters except the con-
vective area fraction used for computing evaporation below
the cloud base (rcucov_trop). While the impact of deep-cloud
parameters is no surprise, there is also a considerable impact
from the boundary layer parameters, indicating the impor-
tance of low-level moisture for precipitation. The parameter
rhebc_land_trop also shows a small influence due to the ef-
fect of evaporation below the cloud base on surface rainfall.

The eight rightmost double columns in Fig. 4 show corre-
sponding sensitivities for the AEJ, TEJ and SHL strengths, as
well as the latitude of various WAM features. The AEJ speed
and position are most sensitive to entrorg followed by zvz0i.
This suggests that deep clouds matter most, likely through
their effects on baroclinicity and vertical momentum trans-
port. It is interesting to note that the AEJ speed is the only pa-
rameter with a considerable contribution from rcucov_trop,
possibly due to its location in the relatively dry Sahel, where
evaporation below the cloud base is large. The latitudes of the
ITD and the AEJ show similar sensitivities, suggesting a rela-
tively tight coupling between the two. The TEJ speed is dom-
inated by zvz0i, as this controls the divergent outflow from
convective anvils, which feeds the jet (Lemburg et al., 2019).
Interestingly, its position is also sensitive to entrainment and
even boundary layer parameters and shows the largest dif-
ference between the total and main effect. The strength and
latitude of the SHL are most sensitive to entrorg, which is
surprising given the absence of deep clouds over most of the
Sahara. A potential explanation is that entrainment affects
free-tropospheric water vapor content, which is a strong con-
trol on longwave cooling in dry regions (Pante and Knip-
pertz, 2019). Finally, the latitude of the precipitation maxi-
mum is most sensitive to rhebc_land_trop (∼ 65 % contri-
bution) with minor contributions from all other parameters.
This behavior is in stark contrast to precipitation amount and
essentially all other QoIs shown in Fig. 4. Given the large
gradient in absolute and relative humidity across the Sahel, it

demonstrates that shifting the onset of subcloud evaporation
in the model is a powerful mechanism to shift the entire rain
belt meridionally. This result may help explain some of the
variability in rain belt position seen in many model intercom-
parison projects (e.g., Fotso-Nguemo et al., 2017).

3.3 Parameter studies

Results of the parameter studies for the QoIs based on the
surrogate models described in Sect. 2.2 and of the local pa-
rameter studies described in Sect. 2.5 are discussed here con-
secutively for the six uncertain model parameters.

As surrogate model predictions depend on all six parame-
ters, the full relationship cannot be visualized graphically. In-
stead, it is possible to illustrate one-at-a-time changes. Since
parameter interactions were shown to be relatively low in
Sect. 3.2, such illustrations are meaningful. Figure 5 shows
the individual relationships between each model parameter
and each QoI, while all other model parameters are set to
their mean values which correspond to the ICON default val-
ues. Due to the low parameter interactions, choosing differ-
ent fixed values from the mean values would predominantly
result in vertical displacements of the presented curves in our
analysis. The prediction variance from the Gaussian process
regression (Eq. 4) is indicated by the shaded areas around the
curves.

Averages of all output variables over all available ICON
simulations and the entire evaluation period (Augusts 2016–
2019) are shown in Fig. 6. Spatial variability plots for all
three groups of model parameters are shown in Figs. 7–9.
The idea to compare the 25 % lowest and highest values of
the model parameters to investigate the regional dependen-
cies is supported by the fact that changes in QoIs are, if
present, monotonic and in some cases even close to linear
(see Fig. 5).

Results from the statistical Kruskal–Wallis test for the
variability fields are denoted in Figs. 7–9. Variability fields
are denoted with two asterisks (∗∗) for average p values
p < 0.05 (statistical significance on a 5 % level) and with one
asterisk (∗) for average p values 0.05< p < 0.10 (statistical
significance on a 10 % level). While a 5 % significance level
is a common choice, Quinn and Keough (2002) suggest that
this threshold should not be rigid and should depend on spe-
cific circumstances. For instance, a larger sample size is more
likely to yield statistically significant results. Given that our
analysis includes only 60 training points, it is considered rea-
sonable to include a less stringent significance level (10 %)
as well. However, care must be taken to avoid overconfident
statements. Overall, the validation results should be taken
into account in the interpretation of local influences of the
model parameters. Variability fields for entrorg and zvz0i are
much more significant than for others. Significance is closely
related to the sensitivities; i.e., the greater the influence of a
model parameter on a QoI (see Fig. 4), the more significant
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Figure 5. Dependencies of all QoIs (ordinate) with respect to the six selected uncertain model parameter (abscissa). The shaded area around
the curves illustrates prediction variance (see Eq. 4). In each plot, only one model parameter is varied, while all other model parameters are
set to their mean value. Model parameter PDFs, including their mean value, are shown at the bottom.

the variability field of the corresponding output quantity is in
general.

3.3.1 Deep-cloud parameters

The effect of the investigated deep-cloud parameters, entrain-
ment rate (entrorg) and the terminal fall velocity of ice (zvz0i)
is considerably greater for most QoIs than that of other pa-
rameters, as evident from Fig. 4 (blue-colored bars) and
Fig. 5. Both parameters directly affect cloudy regions only,

and thus signals outside the rain belt will to some extent be
due to indirect effects.

As shown in Fig. 5, the main effects of a larger entrorg are
a decrease in 2 m dew point, column water vapor, high-level
cloud cover and precipitation, suggesting an overall drying
of the WAM system, which is also accompanied by an in-
crease in 2 m temperature and lower pressure in the SHL. In
addition, we see a consistent southward shift of the north-
ern WAM features ITD, SHL boundary and AEJ, while the
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Figure 6. Average of selected output fields over the evaluation period (August 2016–2019), averaged over all available ICON simulations.
Figure numbers are chosen in accordance with the variables and labels in Figs. 7–9. All scales are linear.

southern features, precipitation center and TEJ, remain at
their latitudes. The strengths of the jets as well as low- and
mid-level cloud cover are hardly affected.

Figure 7a (i.e., first and third columns from left) shows the
corresponding results on a horizontal map, which are all sta-
tistically significant on a 5 % level according to the Kruskal–
Wallis test. Increasing entrorg reduces precipitation to the
north and south of the rain belt, as expected from Fig. 5,
but surprisingly slightly increases precipitation within a nar-
row strip through the rain belt (Fig. 7a4). We interpret this

increase as a concentration of rain in areas where ambient
conditions are most suitable, while the higher entrainment
suppresses rain in more marginal areas. It is also conceiv-
able that the southward shift of the AEJ (Fig. 5) alters the
distribution of low-level wind shear, which is important for
convective organization (Fink and Reiner, 2003). Despite the
local precipitation increase, high clouds decrease over the en-
tire domain by up to 25 % (Fig. 7a1) but less so over the rain
belt, where they maximize climatologically (Fig. 6.1). Never-
theless, this may indicate that weaker convective systems are
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Figure 7. Spatial variability of selected output fields for the uncertain model parameters entrorg and zvz0i. The difference in the output
quantity with respect to an increase in the model parameter value based on the Xi,low and Xi,high sets (see Sect. 2.5) is shown. Results of the
statistical test are denoted with the following: (∗∗) – statistical significance on a 5 % level, (∗) – statistical significance on a 10 % level. All
scales are linear.

suppressed and that rainfall is generated more effectively by
fewer, more intense systems. A higher entrorg also yields an
increase in mid-level clouds in the southeastern parts of the
domain (Fig. 7a2), while ocean and western land areas show
a slight decrease. It is generally plausible that entrainment
reduces convective instability and thus retains clouds at the
middle levels in marginally unstable regions, but the reasons
for the details of the spatial distribution are not clear. With re-
spect to low-level cloud cover (Fig. 7a3), more entrainment
implies widespread reduction over the Sahel, indicating that
the northern edge of the low-cloud zone over southern West
Africa (see Fig. 6.3) retreats southward, while values over the
ocean and coastal areas increase. This shift may be related to
the overall southward shift of several WAM features, already
discussed in the context of Fig. 5. The large sensitivity of

high-level clouds determines the signal in total cloud cover
(not shown).

The column-integrated water vapor (Fig. 7a7) reduces in
and around regions with less precipitation and increases (or
remains the same) in wetter regions, in particular in the
southeast, where we also found increased mid-level clouds
(Fig. 7a2). Over the Sahara, the drying is also pronounced
at the surface (2 m dew point, Fig. 7a10) but less so farther
south. The decrease may be a combination of less rain and
evaporation plus a southward-shifted monsoon circulation.
The slight increases in the rain belt is probably a direct con-
sequence of more rainfall. The overall reduced cloud cover,
precipitation and thus evaporation cause a surface warming
over almost the entire land area of the domain (Fig. 7a9),
associated with a lower mean sea level pressure due to ther-
mal expansion (Fig. 7a8), the maximum of which is to the
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Figure 8. Spatial variability of selected output fields for the uncertain model parameters rhebc_land_trop and rcucov_trop. The difference
in the output quantity with respect to an increase in the model parameter value based on the Xi,low and Xi,high sets (see Sect. 2.5) is shown.
Results of the statistical test are denoted with the following: (∗∗) – statistical significance on a 5 % level, (∗) – statistical significance on a
10 % level. All scales are linear.

south of the climatological SHL center (Fig. 6.8), creating
a southward shift. In addition, altered temperature advection
associated with the southward shift of the ITD (see Fig. 5)
could play a role.

As already pointed out in the discussion of Fig. 5, the sen-
sitivity of the zonal jets to entrorg is less pronounced. The
most systematic signal is the clear southward shift in zonal
wind at 600 hPa (Fig. 7a6) with a decrease of several meters
per second to the south of the climatological axis (Fig. 6.6).
In the meridional direction (Fig. 7a12) we see an overall
strengthening of the climatological northerlies (Fig. 6.12),
indicating a stronger shallow monsoon circulation consis-
tent with the stronger SHL (Fig. 7a8). At the TEJ 200 hPa
level the broad climatological easterlies (Fig. 6.5) are slightly
weakened by larger entrainment, apart from the southeast-
ern corner of the domain (Fig. 7a5). In the meridional direc-

tion (Fig. 7a11), the reduced rainfall over the Guinea Coast
is associated with a weakening of the northerly divergent
outflow towards the equatorial Atlantic (Fig. 6.11), which
likely contributes to a weaker TEJ in the west (Lemburg
et al., 2019). At the same time, the outflow into the Northern
Hemisphere is slightly enhanced, shifting the relative impor-
tance of the two deep monsoonal overturning cells. Given the
large decrease in high-level cloud cover (Fig. 7a5), it is also
plausible that radiative cooling in the upper troposphere in-
creases (Stubenrauch et al., 2021), which would contribute
to a weaker monsoon cell, consistent with a Gill-type circu-
lation response to a decreased off-equatorial heating (Gill,
1980).

Comparing the effect of enhanced entrainment with that of
a faster terminal fall velocity of ice, we see many commonal-
ities despite the fundamentally different microphysical pro-
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Figure 9. Spatial variability of selected output fields for the uncertain model parameters tkhmin and c_soil. The difference in the output
quantity with respect to an increase in the model parameter value based on the Xi,low and Xi,high sets (see Sect. 2.5) is shown. Results of the
statistical test are denoted with the following (∗∗) – statistical significance on a 5 % level, (∗) – statistical significance on a 10 % level. All
scales are linear.

cesses at play. With respect to the overall effects displayed in
Fig. 5, most signals are consistent in sign (and even in mag-
nitude). The most notable differences are a northward shift
of the TEJ with higher zvz0i, a weaker impact on the SHL
strength, a decrease in mid-level clouds and a smaller impact
on the 2 m dew point. Looking at the corresponding hori-
zontal distributions (second and fourth columns in Fig. 7),
there is a striking similarity in spatial patterns, too, however
with some differences in magnitude, such as for example a
stronger signal in high-level cloud cover (Fig. 7b1), which is
directly impacted by ice particles, and weaker signals in sur-
face temperature, dew point and mean sea level pressure as
well as low-level cloud cover (Fig. 7b3 and b8–b10), where
effects can only be indirect. The most striking difference
is the absence of an anomalous behavior in the southeast-
ern part of the study domain. Here effects of larger zvz0i

are more consistent with other areas, i.e., implying less mid-
level clouds (faster dissolution), decreased column water va-
por and a weaker or unchanged TEJ (Fig. 7b2, b5 and b7).
Other changes in the circulation variables are almost iden-
tical (compare Fig. 7a6, a11, a12 with 7b6, b11, b12). The
impact of a larger zvz0i on precipitation also resembles that
for entrorg but with a smaller amplitude.

3.3.2 Below-cloud parameters

The investigated below-cloud parameters, namely the
relative humidity threshold for onset of evapora-
tion (rhebc_land_trop) and the convective area fraction
used for computing evaporation (rcucov_trop), also affect
cloudy areas only, and thus effects outside of the rain belt
will largely be indirect. Their impacts on almost all QoIs
(Fig. 4, green-colored bars, and Fig. 5) and output fields
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(Fig. 8) are considerably smaller than for the deep-cloud
parameters discussed in the previous subsection. Increased
evaporation leads to cooler subcloud layers, resulting in
greater negative buoyancy and enhanced lateral acceleration
compared to adjacent grid cells, somewhat akin to intensified
cold pools. However, the 13 km grid spacing in our exper-
iments may not adequately resolve this process, including
new storm triggering by cold pools. Our findings therefore
provide only limited insights into the actual significance of
cold pools in the monsoon system and the potential benefits
of a cold-pool parameterization.

Signals that stand out in Fig. 4 are those for low-level
cloud cover and precipitation latitude (both rhebc_land_trop)
and to a lesser extent those for precipitation amount, TEJ
speed, SHL latitude and intensity (all rhebc_land_trop)
and AEJ speed (rcucov_trop). Looking at the dependen-
cies of the QoIs in Fig. 5 reveals that allowing evapora-
tion at higher relative humidity in the model (i.e., increas-
ing rhebc_land_trop) suppresses precipitation and leads to
a slight southward shift of the rain belt due to a decrease
in precipitation in the Sahel (Fig. 8c4), where cloud bases
are higher and where subcloud relative humidity is close to
the threshold climatologically. At the same time, there is a
widespread increase in MSLP over the northern and central
parts of the domain (Fig. 8c8), associated with a weaken-
ing and slight northward shift of the SHL (Fig. 5). The in-
creased subcloud evaporation is also associated with more
low-level clouds over most inland areas south of the Sa-
hara (Fig. 8c3), but 2 m temperature and dew point do not
show significant changes (Fig. 8c9 and c10). The small sig-
nal in near-surface temperature could be the result of less
surface evaporation due to reduced rainfall and soil mois-
ture compensating for the reduced radiative heating due to
more low-level clouds and the increased subcloud evapora-
tive cooling. Changes in temperature advection due to the
weaker SHL may play a role, too. Interestingly, increasing
rhebc_land_trop also affects high- and mid-level clouds and
column water vapor (Fig. 8c1, c2 and c7) but mostly in ar-
eas away from the rain belt (i.e., Gulf of Guinea, Mauri-
tania) and with little or no statistical significance. The in-
creases in these areas are consistent with weaker overturn-
ing circulations associated with the suppressed precipitation
and possibly a redistribution of the moisture left in the atmo-
sphere. There are some mild indications of this in the 200 hPa
wind signals as well, showing a marginally significant de-
crease in the northerly outflow over Nigeria (Fig. 8c11) and
the strength of the TEJ (Fig. 8c5), while changes at 600 hPa
(Fig. 8c6 and c12) are insignificant. For rcucov_trop, the
only field that shows significant changes on a 10 % level
is MSLP (Fig. 8d8) with a pattern similar to the signal for
rhebc_land_trop (Fig. 8c8). In this case, the 2 m tempera-
ture decrease over the Sahel (Fig. 8d9) and 2 m dew point
increase over the Sahara (Fig. 8d10) are slightly more pro-
nounced but statistically still not significant. All other fields

in Fig. 8 show very weak signals, in particular the circulation
and precipitation variables, consistent with Figs. 4 and 5.

3.3.3 Boundary layer parameters

Effects of the scaling factor for minimum vertical diffusion
for heat and moisture (tkhmin) and the surface area density of
the evaporative soil surface (c_soil) are also less prominent
than for the deep-cloud parameters (Sect. 3.3.1). The largest
sensitivities are found for near-surface QoIs such as low-level
cloud cover, 2 m temperature and 2 m dew point but also for
integrated quantities like column water vapor and precipita-
tion (Fig. 4, brown-colored bars).

For a higher value of tkhmin, moisture is more effec-
tively transported upwards, leading to an increase in column-
integrated water vapor almost everywhere (Fig. 9e7, also ev-
ident in Fig. 5). Through the enhanced vertical transport of
moisture, high clouds increase quite homogeneously across
the domain (Fig. 9e1), while mid-level clouds increase over
the rain belt but not by a statistically significant amount
(Fig. 9e2). Low-level clouds are reduced consistently over
the Gulf of Guinea (Fig. 9e3), where more mixing brings
drier air from the mid-troposphere into the boundary layer,
supporting cloud dissolution. The mixing of drier air is also
evident in lower 2 m dew points in the Sahel, in contrast to
higher values in parts of the Sahara, where mixing may bring
moister air into the boundary layer (Fig. 9e10). The 2 m tem-
perature (Fig. 9e9) is hardly affected, apart from an increase
over the Sahara, where longwave warming due to the higher
column moisture and/or mixing of warm air from above the
top of the boundary layer inversion may play a role. The en-
hancement of the vertical exchange of moisture leads to a
slight increase in accumulated precipitation (Fig. 5), which,
however, is hardly visible in the spatial field (Fig. 9e4). A
similar result is found for MSLP, with a slight strengthen-
ing of the SHL (Fig. 5) but little signal in the spatial field
(Fig. 9e8). The fact that the small mean change in MSLP
is statistically significant on a 5 % level suggests that this
change is systematic without much random fluctuations.

In contrast, c_soil directly increases surface evaporation,
leading to a significantly higher 2 m dew point (Fig. 9f10)
and lower 2 m temperature (Fig. 9f9) almost everywhere over
land, which is also clearly visible in the overall dependencies
shown in Fig. 5. Column-integrated water vapor (Fig. 9f7)
is also enhanced but mostly to the north and south of the
rain belt, where increased precipitation (Fig. 9f4; see also
Fig. 5) likely removes some of the additional moisture but
also slightly (and insignificantly) increases high- but not mid-
level clouds (Fig. 9f1 and f2). As the increased surface latent
heat fluxes over land areas moisten the boundary layer, low-
level cloud cover increases over the southern parts of West
Africa (Fig. 9f3), which may further enhance near-surface
cooling. This cooling in turn leads to an increased pressure
(Fig. 9f8), resulting in a weakening of the SHL and north-
ward shift of the SHL and ITD (Fig. 5).
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Both tkhmin and c_soil have a remarkably similar effect
on the circulation. Since an increase in the parameters yields
stronger convection and more precipitation (Fig. 5), i.e., an
overall strengthening of the WAM system, the 200 hPa out-
flow from the rain belt to the south is enhanced (Fig. 9e11
and f11), and the TEJ is accelerated (Fig. 9e5 and f5). The
AEJ, in contrast, is only weakly affected.

4 Conclusions

The aim of this study was to quantify uncertainty contribu-
tions of selected uncertain ICON model parameters for a set
of QoIs that characterizes the WAM system. Findings should
help to improve parameter specifications to make long-term
simulations and forecasts more accurate. Due to computa-
tional cost, surrogate models are used as a resource-friendly
alternative to describe the relationship between model pa-
rameters and QoIs. The study was based on a novel approach
by Fischer and Proppe (2023) to include parameter PDFs in
the construction of basis functions for universal kriging.

The dependency of QoIs on multiple model parameters
and the influence of single parameters on multiple QoIs re-
flect the complex coupled relationships in the WAM system.
Although the magnitude of the impact of individual model
parameters varies quite strongly, most parameters show dis-
tinct effects on many facets of the system, which are illus-
trated schematically for the four most important parameters
in Fig. 10. The results can be summarized as follows:

– The entrainment rate (entrorg) and terminal fall veloc-
ity of ice (zvz0i) have the strongest effects on the WAM
system (see Fig. 10a). An increase in these parameters
decreases cloud cover and precipitation, mainly to the
north and south of the rain belt across West Africa. Sur-
prisingly, particularly for entrorg, precipitation even in-
creases along a narrow strip through the rain belt, which
may benefit from the suppressed rain elsewhere. Larger
values of both parameters lead to a stronger SHL with
warmer and drier conditions in the Sahara and a stronger
shallow overturning as well as a southward shift of the
ITD and AEJ, while the TEJ weakens.

– The parameters rhebc_land_trop and rcucov_trop con-
trol the evaporation below the cloud base in the tropics
with an overall weaker impact on the WAM. An increase
in rhebc_land_trop (Fig. 10b) leads to less precipitation
and increased low-level clouds. This appears to weaken
the monsoon overturning, as reflected in a weaker SHL
and moister columns in the subsidence regions over the
northwestern Sahara and the Gulf of Guinea, however
with little impact on AEJ and TEJ. An increase in rcu-
cov_trop induces much weaker effects, particularly an
increase in low-level and a decrease in mid-level cloud
cover, with no substantial precipitation change.

Figure 10. Illustration of the qualitative effects on the WAM sys-
tem due to an increase in the investigated model parameters that
have the strongest impacts: (a) entrorg, zvz0i, (b) rhebc_land_trop,
(c) c_soil. See Sect. 3 for a more detailed discussion.
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– The scaling factor for vertical diffusion of heat and
moisture (tkhmin) impacts on the exchange of moisture
between the boundary layer and the free troposphere.
An increase in this parameter therefore increases col-
umn water vapor and leads to more high- and mid-
level clouds, but precipitation is hardly affected. The
evaporative soil surface (controlled by c_soil) also in-
creases column water vapor and cloud cover but in
this case mainly the low-level clouds, even leading to
a small increase in precipitation at the southern side
of the rain belt (see Fig. 10c). Near-surface tempera-
ture decreases through increased evaporation, while 2 m
dew point temperature and MSLP increase, shifting the
SHL northwards. Impacts on the AEJ and TEJ are rather
small for both tkhmin and c_soil.

Concerning the selected uncertain model parameters
(Sect. 2.1), given the limited information from the litera-
ture, the definitions are rough estimates, and obtained results
should be interpreted with some caution. Furthermore, only
six model parameters are included in the study, but other pa-
rameters may also have relevant uncertainty contributions.
Moreover, the results based on the ICON model version used
cannot directly be transferred to other model versions or even
other models, where different parameters are used in param-
eterizations. Nevertheless, the outcome of this study high-
lights the usefulness of the applied methodology including
training procedure and surrogate models. The methodology
is not limited to a few model parameters but can be extended.
The computational effort is expected to increase linearly with
the number of model parameters (see Sect. 2.2.1). As this
study has shown that the entrainment rate has a strong influ-
ence, other related parameters might be of interest, such as
distinction between turbulent and organized entrainment as
well as detrainment parameters. Another interesting parame-
ter for future studies might be cloud inhomogeneity.

This study has shown that it is mainly the entrainment
rate, the fall speed of ice and surface evaporation that should
be specified more accurately. This can be done by includ-
ing further investigations, measurements and expert knowl-
edge, including a more complex representation in parame-
terizations. Moreover, these parameters could be optimized
with respect to the WAM simulation through parameter iden-
tification studies by including reanalysis and satellite data as
observational references. The surrogate models that were ob-
tained in this study can serve as the basis to conduct such
identification studies. However, the outcome would be lim-
ited to the West African region. Thus, it might be possible
to specify parameters that should only be valid in regions
for which they have been optimized, as is already the case
for rhebc_land_trop and rcucov_trop, which have been tuned
for tropical regions. The implementation of parameter iden-
tification studies based on the obtained surrogate models is
currently ongoing.

Code availability. The computational framework used in this study
primarily relies on publicly available software packages, along
with some custom extensions. Gaussian process regression analy-
ses were performed using the scikit-learn package for Python (Pe-
dregosa et al., 2011), incorporating extensions based on Fischer and
Proppe (2023). Global sensitivity analysis was conducted using the
SALib package for Python (Iwanaga et al., 2022). Weather simula-
tions were executed within the ICON modeling framework (Zängl
et al., 2015).

Data availability. The data used for model validation in this
study include the ERA5 reanalysis data (Hersbach et al., 2020)
and the GPM IMERG precipitation data (Huffman et al., 2019)
(https://doi.org/10.5067/GPM/IMERG/3B-HH/06). These datasets
are publicly available and have been widely utilized in the mete-
orological research community.
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