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A őctionalist theory of universals
Tim Button and Robert Trueman

February 24, 2023

We are Fregean realists. Very roughly speaking, this means that we believe in a

vast type-hierarchy, and we insist that the typing is strict, so that every entity has a

unique type. For example: we believe in properties, but we never confuse properties

with objects.

Our question in this paper is whether Fregean realists should believe in uni-

versals as well as properties. By ‘universals’, we mean object-level correlates of

properties, such as wisdom, mortality and the colour blue. There are good reasons

to reject the existence of universals, but various natural language constructions

appear to force us to believe in them. We explore a őctionalist response to this

problem. Our őctionalist theory of universals allows us to speak as if universals

existed, whilst denying that any really do.

We start by presenting our type theory in ğ1. Then, in ğ2, we introduce Fregean

realism, and sketch the Disquotation Argument for it. In ğ3, we motivate a őctionalist

account of universals. We present our particular brand of őctionalism in ğğ4ś5, and

apply it to a range of natural language constructions in ğğ6ś7. We end by discussing

the limits of our őctionalism in ğ8.

1 Partial-Functions Type Theory

In this paper, we will draw a sharp distinction between properties and universals.

This might initially seem like a distinction without a difference; for us, however, it

marks a crucial difference in type. We will operate with a version of Church’s typed

functional 𝜆-calculus. The full details of the system are in ğA, but we will start with

a quick overview.

Our system has two basic types, e and t. Type e expressions correspond to

natural language names, like ‘Socrates’ and ‘Plato’, and should be thought of as

purporting to refer to objects.1 Type t expressions correspond to natural language

sentences, like ‘Socrates is wise’ and ‘Plato pontiőcates’, and should be thought of

as expressing propositions.2

We also have complex types: if 𝛼 and 𝛽 are types, then (𝛼𝛽) is also a type. We

often omit outermost brackets in names for complex types, e.g. writing 𝛼(𝛼𝛽) rather

than (𝛼(𝛼𝛽)).

A type 𝛼𝛽 expression combines with a type 𝛼 expression to form a type 𝛽

expression, as follows: (B𝛼𝛽A𝛼)𝛽. (If 𝛾 ≠ 𝛼, then B𝛼𝛽A𝛾 is ill-formed.) Intuitively,

1 Montague (1973: 18ś19) treated natural language names as having type (et)t; Partee (1986: 360ff)
instead suggests that they are ‘basically of type e’ and sometimes ‘derivatively’ lifted to type (et)t.
We side with Partee, but everything we say in this paper could be reworked according to Montague’s
scheme.

2 You might have thought that they express states of affairs rather than propositions, but see
Trueman (2021: chs.11ś13) for an argument that states of affairs are propositions.
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an expression of type 𝛼𝛽 expresses a function from entities of type 𝛼 to entities of

type 𝛽. Throughout this paper, we move back and forth between types of expression

and types of entity. As we understand it: an entity is of type 𝛼 just in case it is a

value of a type 𝛼 variable. We reserve ‘object’ for entities of type e.

Natural language predicates like ‘is wise’ and ‘pontiőcates’ are of type et: they

combine with names (type e) to form sentences (type t); ‘Socrates’ is a name, and

when you combine it with ‘is wise’, you get the sentence ‘Socrates is wise’. We

call the functions that these predicates express properties of objects. In other words,

properties of objects are functions of type et, from objects to propositions. We

also have other types of property in the type hierarchy. For example, type (et)t

functions are properties of properties of objects. Intuitively, any function which has

propositions as values is a property of some type. However, type et properties are

our main focus in this paper, and they are the functions we mean by any unqualiőed

use of ‘property’.

Our theory includes the various logical constants you would expect, enabling

us to handle sentential connectives and quantiőcation over each type. We also

have the device of 𝜆-abstraction, and each type, 𝛼, has its own identity relation,

=
𝛼(𝛼t)
𝛼 . (In general: an expression’s superscript indicates the expression’s type, and

we omit the superscript if it is obvious from context; an expression’s subscript is

an undetachable part of the expression, and it reminds us of a particularly salient

argument-type to the expression. So in ‘=
𝛼(𝛼t)
𝛼 ’, the subscript reminds us that this

is an identity-relation for type 𝛼 entities.)

So far, our type theory is essentially Church’s. We depart from Church in

allowing for partial functions, and so we call our logic PFTT, for Partial-Functions

Type Theory.3 We have an explicitly deőned existence predicate for each type,

∃𝛼t
𝛼 ,4

and a notion of ‘identical if existent’, deőned as follows:

A𝛼 ≃𝛼 B𝛼
≔ (

∃

A ∨

∃

B) → A =𝛼 B

As this illustrates, we will use inőx notation when convenient, and we will omit

brackets, subscripts, and superscripts where doing so will improve readability and

no ambiguity will arise. Likewise, whilst all functions in this system are monadicÐ

so that polyadic functions are handled by curryingÐwe often use uncurried no-

tation for readability. For example, we let B𝛼1(𝛼2(𝛼3𝛽))(A𝛼1

1 ,A𝛼2 ,A𝛼3) abbreviate

((B𝛼1(𝛼2(𝛼3𝛽))A𝛼1

1 )A𝛼2

2 )A𝛼3

3 .

2 Fregean realism

Having outlined our type theory, we now want to discuss our philosophical attitude

towards it. Simply put, we think that PFTT describes a hierarchy of types of entity,

and that every entity has a unique type in this hierarchy. However, putting things

3 Allowing for non-total functions allows us to deal easily with empty deőnite descriptions (see
e.g. Heim and Kratzer 1998: 73ś5, 154) or to handle claims like ‘There is exactly one real number 𝑛
such that (3 ÷ 𝑛) does not exist’ (example from Tichý 1988: 9).

4 Given by

∃

𝛼A𝛼 ≔ A =𝛼 A.
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this way requires a grain of salt. Our őrst aim in this section is to present our view,

which we call Fregean realism, more carefully and without the seasoning (ğ2.1). After

that, we will explain what we think motivates Fregean realism (ğğ2.2ś2.3).

2.1 What is Fregean realism?

Fregean realism is a reaction against a more traditional form of realism. According

to this traditional realism, every entity of every type is also an object; there is no type

of entity which cannot (at least in principle) be named. Take properties, for example:

properties are type et functions, which can be expressed by type et predicates, like

‘is wise’; but according to traditional realism, properties are also type e objects,

which can be referred to by type e names, like ‘wisdom’.5

Fregean realists reject traditional realism. Roughly, Fregean realism is the doc-

trine that every entity has a unique type. So, for example, no property is an object:6

the type et function expressed by ‘is wise’ cannot be referred to by any type e name,

not even by ‘wisdom’. (We call this ‘Fregean’ realism, because Frege famously in-

sisted that no propertyÐor in his terminology, no conceptÐis an object.)7

Unfortunately, though, that really is a rough statement of Fregean realism. The

trouble is that, if every entity has a unique type, then it is impossible to say that

every entity has a unique type. Focus on properties and objects again. If properties

are not objects, then no function of type et can take a property as argument; in other

words, nothing that can be said of an object can also be said of a property. We can

say of an object that it is an object, and so ‘is an object’ must be a predicate of type

et. (You might formalize it in PFTT as (𝜆𝑥e∃𝑦e 𝑥 =e 𝑦)et.) But that means that it

must be nonsense to say of a property that it is an object. And since the negation of

nonsense is also nonsense, it follows that we cannot say of a property that it is not

an object. (And, indeed, both (𝜆𝑥e∃𝑦e 𝑥 =e 𝑦)
etAet and its negation are ill-formed

in PFTT.)

This is the heart of Frege’s notorious concept horse paradox. To avoid this

paradox, we must steadfastly avoid saying things like ‘Properties are not objects’.

We might instead try to articulate Fregean realism as follows: different types of

entity are incomparable, in the sense that what can be said of one type of entity

cannot be said of another. That is certainly an improvement, but even this statement

of Fregean realism is self-undermining. After all, to say that properties and objects

are incomparable is still to try to compare them.

5 Traditional realists include the early Russell (1903), Gaskin (1995, 2008), Wright (1998), Hale (2010,
2013: ch.1), Hale and Wright (2012), Hale and Linnebo (2020), MacBride (2011), Menzel (forthcoming:
ğ1.4), Liebesman (2015), Price (2016), and Rieppel (2016, 2018).

6 More generally, no function is an object, where ‘function’ is understood in the sense of PFTT. So,
in particular, the functions of PFTT are not to be thought of as sets, or any other objects.

7 Frege (1892). As many of the papers in this volume demonstrate, Fregean realism has enjoyed
a recent surge of popularity (though not always by that name). Fregean realists include Prior (1971),
Geach (1976), Rayo and Yablo (2001), Williamson (2003, 2013), Noonan (2006), Krämer (2014), Trueman
(2015, 2021), Dorr (2016), Jones (2016, 2018), and Goodman (2017). (Prior would have resented being
called a ‘realist’, but see Trueman (2021: chs 7 & 9) for discussion of just how minimal that label is in
a higher-order setting.)
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Really, then, Fregean realism should not be seen as a doctrine at all. Rather,

Fregean realism is best seen as a kind of non-propositional attitude towards PFTT.

To be a Fregean realist is to accept the limits of PFTT as the limits on what can be

expressed, and so to dismiss any attempt to transcend them as nonsense: Bet = Ae

is ill-formed in PFTT, and so we dismiss any attempt to say that properties are, or

are not, objects.8 Still, though, it can often be convenient to speak as if Fregean

realism were the doctrine that every entity has a unique type, and we will do so

whenever that would not be too seriously misleading.

2.2 Against the abductive argument for Fregean realism

We are Fregean realists. We will give our reasons for adopting Fregean realism in

ğ2.3. First, we would like to set aside a bad argument for Fregean realism.

A Fregean realist might try to motivate their view with a kind of abductive

argument. The argument would go like this: Metaphysicians are aiming to őnd the

metaphysical theory with the best balance of virtues (or perhaps just a metaphys-

ical theory with a sufficiently good balance of virtues). Having the power to solve

philosophical puzzles is high on the list of virtues for a metaphysical theory. And,

happily, Fregean realism offers neat solutions to a range of longstanding puzzles.

Here is one of the simplest (although not necessarily one of the deepest) examples:9

Platonists believe that properties are not spatiotemporally located; aristotelians believe that
properties are located when and where their instances are. However, it only makes sense to
say that an object is or is not located: ‘is located’ is a predicate of type et. So, given Fregean
realism, it does not really make sense to say that a property is, or is not, located. If we tried,
we would end up saying something nonsensical, like ‘is wise is (not) located’. So, if Fregean
realism is right, then the whole debate between platonists and aristotelians is misguided.

According to the abductive argument, solutions like this provide us with (defeasible)

reasons to adopt Fregean realism.

This abductive argument is extremely weak. Fregean realism does provide

‘solutions’ to several puzzles, but we think that these ‘solutions’ will only satisfy

those who already embrace Fregean realism. This is because every Fregean ‘solution’

to a puzzle is really a dissolution: it works by pointing out that any statement of

the puzzle tries to say of a property something that can be said of an object, which

is nonsensical by Fregean lights.10 Such abduction-to-nonsensicality should have

little sway with an impartial judge.

For one thing, the purported beneőts of abduction-to-nonsensicality are not

obviously beneőts. To illustrate, return to the platonist/aristotelian debate. Fregean

8 See Trueman (2021: ch. 9) for related discussion.
9 Jones (2018), Trueman (2021: ch.10), and Skiba (2020) discuss this and other examples in more

detail.
10 Not that this is always obvious. For example, Williamson (2003) has shown that Fregean realists

can account for absolutely unrestricted őrst-order quantiőcation without running into Russell’s Para-
dox. On the face of it, this has nothing to do with denying that certain claims make sense. However,
Fregean realists can only accommodate unrestricted quantiőcation because they deny that it makes
sense to ask whether a domain could include both properties and objects (see Button and Trueman
forthcoming: ğ7, contra Florio and Jones 2019).
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realists purport to resolve this debate by denying that it makes any sense. But, at

least initially, the debate does seem to make sense: philosophers have certainly been

arguing over it for some time, and, by and large, they appear to have understood

one another. It is, then, not obvious that we should want our theory to dissolve the

debate.

For another thing, the costs of abduction-to-nonsensicality can seem astronom-

ical. The expressive limits imposed by Fregean realism do not just prevent us from

formulating (for example) the platonism/aristotelianism debate; they also prevent

us from formulating Fregean realism itself (see ğ2.1). Now, we have offered a way

around the threat of self-stultiőcationÐby denying that Fregean realism should be

thought of as a doctrineÐbut we recognise that many philosophers will consider

this to be a serious cost of the view.11

Given all this, we doubt that an impartial judge should be won over to Fregean

realism, if all they have to go on is the abductive argument. In fact, at this stage, they

are much more likely to regard Fregean realists as trying to have their cake and eat

it too: Fregean realists apparently help themselves to a rich ontology of functions,

whilst attempting to excuse themselves from any deep metaphysical inquiry into

that ontology on the (avowedly unintelligible) grounds that functions are not objects.

2.3 The Disquotation Argument for Fregean realism

Fortunately, there is a much better argument for Fregean realism, previously pre-

sented by Trueman.12

Suppose you want to say that some entities belong to more than one type. In

particular, suppose you want to say that some property (type et) is an object (type

e).13 As we noted in ğ2.1, that is not something that can be said within PFTT: there

is no reading of ‘=’ on which Bet = Ae is well-formed. So to say that some property

is an object, you will have to őnd some way of transcending PFTT. But there are

only two strategies for trying to do that, and both fail.

Strategy 1: relaxing the formation rules. In PFTT, names and predicates are never

intersubstitutable salva congruitate: if 𝜙(Ae) is a well-formed sentence, then 𝜙(Bet)

is not. But we could relax those formation rules, and allow names and predicates

to be intersubstitutable in some, or even all, contexts.14 If we did, then there would

be nothing stopping us from admitting Bet = Ae as a well-formed formula.

However, it is important to remember that the formation rules built into PFTT

are not just arbitrary syntactic impositions. Type e expressions are meant to corre-

spond to natural language names like ‘Socrates’ and ‘Plato’; and type et expressions

11 For example, see Linnebo (2006: ğ.4), Hale and Wright (2012: ğIII), Proops (2013), and Hale and
Linnebo (2020).

12 Trueman (2021: chs 1ś9).
13 We focus on this case, but a similar argument will work no matter what types you choose.
14 Linnebo and Rayo’s (2012) cumulative type theory relaxes its formation rules in just this way; for

criticism, see Button and Trueman (forthcoming).
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are meant to correspond to natural language predicates like ‘is wise’ and ‘pontiő-

cates’. Names and predicates play two very different semantic roles. Consider the

following natural language sentence, along with its formalization in PFTT:

(1) Socrates is wise

wiseet(socratese)

In this sentence, ‘Socrates’ refers to Socrates, and ‘is wise’ says of him that he is wise.

More generally, names refer to objects, and predicates say things of objects. (That

is the sense in which predicates express functions from objects to propositions.)

These roles are clearly designed to work together, and if we try to intersubstitute

them, we end up with meaningless nonsense, such as:

(2) Socrates Plato

platoe(socratese)

(3) pontiőcates is wise

wiseet(pontiőcateset)

Crucially, (2) is not just ungrammatical, but wholly meaningless: ‘Plato’ is a name,

and so its job is merely to refer to an object, not to say anything of the referent of

‘Socrates’.15 Similar remarks apply to (3): ‘pontiőcates’ is a predicate, and so its job

is to say something of an object, not merely to provide a referent for ‘is wise’ to say

something of.16

It is not an option, then, simply to relax PFTT’s formation rules. If type e

expressions behave as names, and type et expressions behave as predicates, then it

would be meaningless to intersubstitute them.

Strategy 2: metalinguistic ascent. Rather than trying to say that some property is

an object directly in PFTT, we might try to say it indirectly in a metalanguage. For

example, here is how we might try to say that property 𝑏et is identical to object 𝑎e:

(4) the referent of ‘𝑏et’ = the referent of ‘𝑎e’

But why should we think of (4) as an indirect way of identifying 𝑏et with 𝑎e? The

answer must be that we are presupposing that 𝑏et is the referent of ‘𝑏et’, and 𝑎e is

the referent of ‘𝑎e’. In other words, we are presupposing that we can use reference

to disquote ‘𝑏et’ and ‘𝑎e’.17 However, since (as we have just argued) names and

predicates cannot be meaningfully intersubstituted, no single notion of reference

could be used to disquote predicates as well as names. Instead, we will need two

15 Magidor (2009) claims that (2) is meaningful but false; we think this overlooks the crucial
difference in semantic role between names and predicates.

16 This argument does not assume that ‘pontiőcates’ is non-referring. (That assumption would be
question-begging in the current context.) The point is that, even if ‘pontiőcates’ refers to an object, it
is also meant to say something of an object, which is a role it cannot discharge in (3).

17 We are not assuming that reference is exhausted by disquotational principles; only that disquota-
tional principles are correct (for the home language).
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referent functions, one of type ee to disquote names, and one of type e(et) to disquote

predicates:18

(5) referentee
e
(‘𝑎e’) =e 𝑎

e

(6) referente(et)
et

(‘𝑏et’) =et 𝑏
et

And now that we have drawn this distinction between referent
e

and referent
et

, we

face the same problem in the metalanguage that we previously faced in the object-

language: ‘referent
e
(ł𝑎ež)’ and ‘referent

et
(ł𝑏etž)’ have different typesÐrespectively

e and etÐso that ‘referent
e
(ł𝑎ež) = referent

et
(ł𝑏etž)’ is ill-formed.19 (Of course,

you might try to sidestep this problem by relaxing the formation rules in your

metalanguage, but that would just be a re-run of Strategy 1.)

That, in a nutshell, is the Disquotation Argument for Fregean realism. We should

emphasise that this is a quick summary of a complex argument, presented fully

elsewhere (Trueman 2021: chs 1ś9). There are a number of points at which you

might object. Ultimately, though, we think that this argument succeeds, and this is

why we are Fregean realists.

3 Universals and Nominalization

Although we are Fregean realists, we must admit that natural languages appear

to ŕout Fregean realism’s strict type-distinctions. In particular, natural languages

provide us with a variety of devices for nominalizing predicates, i.e. for converting

predicates (expressions of type et) into names (expressions of type e). To illustrate,

consider these two natural English sentences:

(1) Socrates is wise

(7) Wisdom is a virtue

‘Wisdom’ is a nominalization of ‘wise’.20 But intuitively, despite this type difference,

the name ‘wisdom’ should refer to the very property expressed by the predicate

‘wise’: what (7) declares to be a virtue should be precisely the property that (1)

applies to Socrates.

What is more, nominalization appears to be a feature, not a bug, of natural

language. Anyone who has spent any time working within a strictly typed system

will know just how difficult it can be to obey type-restrictions consistently. (To

give just one example, in a strictly typed system, it is impossible to generalize over

every type of entity all at once; at best, we can simulate such generalizations with

typically ambiguous schemes.) Pushing every entity down into type e, where old type

18 As in ğ1: the subscripts on ‘referent
e
’ and ‘referent

et
’ are undetachable; they serve as mnemonics

for the types of expression they can disquote.
19 Equally, ‘(𝜆𝑥e∃𝑦e 𝑥 =e 𝑦)

et(referent
et
(ł𝑏etž))’ is also ill-formed.

20 In principle, you could try to dispute this. In particular, you could try claiming that ‘wisdom’
is really type et, just like ‘wise’. However, the cases of mixed-predication discussed in ğ7.1Ðe.g.
‘Plato loves Socrates and wisdom’Ðprovide clear linguistic evidence that nominalized predicates are
genuine names. This point is rightly emphasized by Hofweber (2018: ğ3).
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distinctions can safely be ignored, makes natural language a far more convenient

communicative tool.

The main aim of this paper is to resolve this tension between Fregean realism

and natural language. In this section, we will sketch (ğ3.1) and motivate (ğğ3.2ś3.4)

our preferred resolution.

3.1 Fictionalism about universals

The őrst thing to be clear about is that Fregean realism does not forbid nominaliza-

tion. All that Fregean realism tells us is that nominalized predicates, being type e

names, cannot refer to type et properties. At best, they can refer to special, object-

level correlates of properties, which we will call universals. (This is stipulative but

not unmotivated: the argument we are about to present is one of Armstrong’s ar-

guments for universals.21) Given Fregean realism, it would be a type-confusion to

identify a property with a universal.

In our new terminology, then, nominalized predicates are names which purport

to refer to universals. But do they actually succeed? Are there any universals, or are

nominalized predicates systematically empty names? A familiar style of argument

seems to show that some nominalized predicates do, indeed, successfully refer to

universals. Return to (7):

(7) Wisdom is a virtue

Intuitively, this sentence is not just meaningful, but also true.22 And given stan-

dard semantic clauses, (7) cannot be true unless ‘wisdom’ is a referring name. So

‘wisdom’ refers, and at least one universal exists.23

We want to resist this argument, and so we deny that (7) is really true. More

generally, we deny that any atomic sentence featuring a nominalized predicate is

true. However, we do not wish to deny that many of these sentences are still

assertible. Instead, we advocate a őctionalism about universals, according to which

a sentence about universals is assertible iff it is true in the őction of universals. We

lay out the details of this őctionalism in ğğ4ś5. First, though, we will present three

reasons why a Fregean realist should be a őctionalist about universals.24

3.2 Motivating őctionalism: representational aids

Here is a natural story for Fregean realists to tell about the usefulness of nominal-

ization:

21 Armstrong (1978: ch. 6).
22 If you disagree that (7) is intuitively true, substitute in your favourite example.
23 Closely related arguments have been presented by: Pap (1959), Jackson (1977), Armstrong (1978:

ch. 6), Schiffer (2003: ğ2.3), and Thomasson (2014: ch. 3). There is, of course, another famous argument
for universals, namely the Problem of Universals (see Armstrong 1978, 1980, 1989: 88ś9, 2004: 39ś42;
Rodriguez-Pereyra 2000). We will not consider that argument here, since Trueman (2021: ğ10.1) has
already argued that the Problem of Universals has no force against Fregean realists.

24 Båve (2015) also recommends combining higher-order logic with őctionalism about universals.
However, he does not provide a Conservativeness Theorem (contrast our ğğ4.2 & C), and he does not
discuss mixed-predication (contrast our ğğ7.1 & E). For further discussion of Båve, see footnote 30.
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As we conceded earlier, actually speaking in a strictly typed language is often inconvenient.
Indeed, even the most ardent Fregean realists usually allow themselves to speak ‘loosely’,
as if properties were objects. But what we are really doing when we speak ‘loosely’ is
introducing objects to represent real properties. These are the objects that we are now
calling ‘universals’. These universals are really nothing more than representational aids:
it is worth asserting sentences about universals because those sentences have implications
about properties, and it is those implications that really matter.

We think that this story is basically right. And it would be a small step from here

to a őctionalism about universals.

Granted, it would still be a step. You could consistently concede that universals

are just representational aids, whilst insisting that they really exist.25 But őctional-

ism seems like the more attractive option (assuming its details can be worked out).

If the whole value of an assertion about universals is its implications for properties,

it would seem gratuitous to postulate any special entities just to make that assertion

true.26

3.3 Motivating őctionalism: philosophical puzzles

In ğ2.2, we noted that Fregean realism promises to solve various philosophical

puzzles about properties. Now, to repeat: we do not think that these solutions by

themselves provide any motivation for Fregean realism; rather, Fregean realism is

motivated by the Disquotation Argument of ğ2.3. Nonetheless, once you have been

convinced by the Disquotation Argument, it is philosophically pleasing that you

can now (dis)solve these puzzles.

However, if we admit universals into our ontology, then all those old puzzles

will threaten to return as puzzles about universals. As we explained in ğ2.2, the

Fregean solutions work by observing that, since properties are not objects, the

traditional puzzles about properties are really just nonsensical pseudo-problems.

But universals are objects. So Fregean realists could not so easily dismiss these

problems, if they were reworked to concern universals. For example, the debate

between platonists and aristotelians would start back up, this time as a debate over

whether universals are spatiotemporally located.

Now, that would not be a complete disaster. Even if all the old puzzles did

return as puzzles about universals, we would still have made progress by demon-

strating that they do not concern the notion of property involved in predication.27

Nonetheless, Fregean realism undeniably gives us the most philosophical bang for

our philosophical buck if we deny that there are any universals.

25 In fact, this seems to have been Frege’s (1892) view at one time. By way of contrast, see Frege
(1891ś5, 1924/5: 269ś70).

26 This motivation for őctionalism about universals is structurally identical to one of the standard
motivations for őctionalism about mathematical entities (see Field 1980/2016; Balaguer 1996; Yablo
2005). However, that does not mean that these two őctionalisms stand or fall together. It might be, for
example, that őctionalism about mathematical entities faces special difficulties that do not confront
our őctionalism about universals.

27 In fact, the Fregean realist solution to Bradley’s Regress works whether or not there are universals;
it requires only that we not identify universals with properties. See Trueman (2021: ğ10.2) for details.
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3.4 Motivating őctionalism: Cantor’s Theorem

Any systematic theory of universals needs a device of nominalization.28 Intuitively,

given an input property, this device should output the corresponding universal.

For now, we will represent this device by underlining, so that wise is wisdom. Now,

consider two attractive principles:

Nom-Coext. ∀𝑢et∀𝑣et(𝑢 =e 𝑣 → ∀𝑥e(𝑢𝑥 ↔ 𝑣𝑥))

Nom-Always. ∀𝑢et

∃

𝑢

Principle Nom-Coext says that properties which correspond to the same universal

are coextensive. This allows that some properties may not correspond to any

universal. But that is ruled out by Nom-Always, which says that every property

corresponds to a universal.

Unfortunately combining Nom-Coext with Nom-Always immediately leads to

inconsistency, by an unsurprising version of Cantor’s Theorem.29 We must, then,

choose between Nom-Coext and Nom-Always.30

The choice is easy, and independent of our advocacy of Fregean realism. If

Nom-Coext fails, then there are 𝑎et and 𝑏et, such that 𝑎-ness is 𝑏-ness, even though

some object is 𝑎 but not 𝑏, i.e. some 𝑥e is such that 𝑎𝑥 but ¬𝑏𝑥. Since 𝑎𝑥 but ¬𝑏𝑥,

presumably also 𝑥 instantiates 𝑎-ness but not 𝑏-ness. But, despite all this, we are

supposed to insist that 𝑎-ness is 𝑏-ness. That is surely absurd.31 We therefore

embrace Nom-Coext.

Accordingly, we must reject Nom-Always, and allow that some properties cor-

respond to no universal. Indeed, since we are dealing with Cantor’s Theorem, most

properties correspond to no universal.32 So we face an obligatory question: which

properties have corresponding universals? Fictionalists offer two pleasingly simple

answers:

Literally speaking: no property has a corresponding universal.

Fictionally speaking: all and only the real properties (i.e. the properties which exist,

literally speaking) have corresponding universals.

The literal answer follows immediately from the őctionalist’s (literal) denial that

there are any universals. The őctional answer is just a well-motivated principle

which we can (and will) embrace when setting up our őction (see ğ4).

28 For other uses of a nominalization operator, see e.g. Cocchiarella (1974: 552ś3), Chierchia (1984:
47ff, 1985: 422ff), Chierchia and Turner (1988: 266ff), Partee (1986: 362ś3), and Hale and Linnebo
(2020: 86ff).

29 See Corollary 3 in ğA.3. This holds in PFTT, so the problem could in principle be blocked by
(substantially) revising PFTT (e.g. by embracing paraconsistency, or by modifying Comprehension).
We do not have space to explore alternative logics, but we remark that the cost is high: PFTT seems
perfectly suited for Fregean realists, up until the moment we are forced to consider universals.

30 In footnote 24, we mentioned Båve’s őctionalism about universals. In our terms, Båve’s (2015: 29)
őction includes Nom-Always and ∀𝑥e∀𝑢et((𝑥 instantiates 𝑢) ↔ 𝑢𝑥). Given standard comprehension,
these are inconsistent: just consider 𝜆𝑥e¬(𝑥 instantiates 𝑥). Båve gives no suggestion as to how he
would avoid this inconsistency.

31 Although one person’s ponens is another’s tollens: Cocchiarella (1972: 169, 1974, 1975a: 41ś2,
1975b: 346ś7) developed a system which can be (re-)interpreted as rejecting Nom-Coext in favour of
Nom-Always.

32 Pace Partee’s (1986: 363) claim that nominalization ‘is łalmostž total’.
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This provides our őnal motivation for őctionalism about universals: realists

about universals have no similarly simple answer to the obligatory question. To

begin with, they cannot mirror the őctionalist’s őctional answer. After all, being

realists, they draw no real/őctional distinction. So if they try to say that, literally,

all and only the real properties have corresponding universals, this amounts to

the claim that every property has a corresponding universal; and that is precisely

the (catastrophic) principle Nom-Always.33 Realists about universals cannot, then,

treat all real properties equally: they can only allow a select few to correspond with

universals. But it will still be useful to speak as if all real properties corresponded

to universals, for the reasons given in ğ3.2. So, even would-be realists should be

őctionalists about most universals. And, at this point, it is not clear what there is

to be gained from resisting our thoroughgoing őctionalism, which applies to all

universals across the board.

4 A formal theory of universals

We have outlined our reasons for favouring őctionalism about universals. Our aim

in this section is to provide a formal theory which can handle universals. In the

next section, we will develop our őctionalist interpretation of that formal theory.

4.1 Restricting to real entities

Let 𝑇 be a PFTT-theory which we use to assert sober, literal truths, without making

any mention of universals. So, 𝑇 will not include any nominalization operators.

The idea is to move from 𝑇 to some őctional theory, 𝑇u, which does admit universals.

We start by modifying 𝑇 itself. Implicitly, 𝑇 talks only about real entities (i.e.

entities that literally exist); this needs to be made explicit. We do this by introducing

new constants, real𝛼t𝛼 , for each 𝛼, reading ‘real𝛼t𝛼 (A𝛼)’ as ‘A is real’. (In what follows,

we tend to suppress both subscripts and superscripts on ‘real’, since they are obvious

from context.) We then replace each sentence At of 𝑇 with Atr, where the latter

results from the former by restricting all discourse to real entities. If we were

simply using őrst-order logic, we could achieve this by mapping each formula ∀𝑥𝜙

to ∀𝑥(real(𝑥) → 𝜙). Since PFTT is a much richer logic, the speciőcation of the

restriction is inevitably more complicated, but the intuitive idea is just the same

(see ğB for the details). The result is the real-restricted version of 𝑇, the theory

𝑇r = {Atr : 𝑇 ⊢ At}.

33 Some pragmatist-inclined philosophers accuse őctionalists of drawing a spurious distinction
between the real and the őctional (Schiller 1912: 99ś100; Blackburn 1987: 56ś60, 2005; Thomasson
2013: 1039, 2014: 197). In general, we think that this is an important challenge against őctionalists.
However, the reasoning we just offered gives us a good answer to it in this particular case: collapsing
the real/őctional distinction would plunge us right back into the tricky predicament we just raised
against realists about universals.
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4.2 Nominalization and Application Theory, NAT

The next step is to augment 𝑇r with a theory which describes the behaviour of

nominalization in general. We call this NAT, for Nominalization and Application

Theory. To spell it out, we begin with some intuitive ideas.

Nominalization. We need devices for nominalizing (real) higher-typed entities.

To this end, we have a constant, nom𝛼e
𝛼 , for any type 𝛼 ≠ e.34 For readability, we

extend the convention developed in ğ3.4 and abbreviate nom𝛼(A
𝛼) as A𝛼. (So, we

continue to regard wisdom as wise.) Mnemonically, think of underlining as pulling

an entity down to the level of objects. To make certain principles easier to formulate,

we sometimes also write Ae as an alternative to Ae, even though there is no operator

nome, and no need for one.

Application. In PFTT, we apply higher-order entities to one another. We want

a way to keep track of this among their nominalizations.35 So, for each 𝑛, we

introduce a new constant, app
e(...(ee)...)
𝑛 , with 𝑛+2-occurrences of e, i.e. it will map

𝑛+1 input objects to an object. We read ‘app𝑛(B,A1 , . . . ,A𝑛)’ as ‘the result of

applying B to A1 , . . . ,A𝑛 in that order’. So app
2
(lovese(et) , plato, socrates) is the result

of applying Love to Plato and Socrates (in that order), and want this to be identicale
to lovese(et)(plato, socrates).

We can now lay down the axiom schemes of NAT:36

Nom-real real(𝑥𝛼) =t

∃

𝑥 all 𝛼 ≠ e

Nom-nonreal ¬reale(𝑣
𝛼) all 𝛼 ≠ e

Prop-real real(𝑥t)

Nom-inj (

∃

𝑢𝛼 ∧

∃

𝑣𝛼) → (𝑢 =𝛼 𝑣) =t (𝑢 =e 𝑣) all 𝛼 ≠ e

Nom-diff 𝑢𝛼 ≠e 𝑣
𝛽 𝛼, 𝛽, e all distinct

Application (

∃

𝑢𝛼1(𝛼2(...(𝛼𝑛𝛽)...)) ∧

∃

𝑣𝛼1

1
∧ . . . ∧

∃

𝑣𝛼𝑛
𝑛 ) →

app𝑛(𝑢, 𝑣1 , . . . , 𝑣𝑛) ≃e 𝑢(𝑣1 , . . . , 𝑣𝑛) all 𝛼1 , . . . , 𝛼𝑛 , 𝛽

The Nom-real scheme tells us that all and only real entities have nominalizations,

and Nom-nonreal says that nominalizations are never real. However, all propo-

sitions are real, by Prop-real. Next, Nom-inj and Nom-diff schemes tell us that

nominalization is injective, i.e. that nominalizations of entities are identical iff those

34 Natural languages actually allow us to nominalize expressions in a variety of different ways,
and you might think that different kinds of nominalization refer to different kinds of object. For
example, you might think that the gerund ‘Sharon’s laughing’ refers to an event, whereas the clause
‘that Sharon laughs’ refers to a reiőed-proposition (see ğ6.4). Our focus in this paper is exclusively on
nominalizations which intuitively appear to co-refer with their de-nominalized counterparts (cf. the
argument at the start of ğ3), and this focus is reŕected in the axioms of NAT.

35 Strictly speaking, nominalization is a language-level operation, but for ease of expression, we
will also use ‘nominalization’ to describe the corresponding world-level operation; so we will call
‘wise’ a nominalization of the predicate ‘wise’, but we will also call the object wise a nominalization of
the property wise.

36 Here, and throughout, and throughout, A ≠𝛼 B abbreviates ¬(A =𝛼 B). NAT bears some
similarities to Hale and Linnebo’s (2020: 102ś3) theory of nominalization. Compare our Nom-inj
with their (Bridge-=); and our Application with their (Bridge-App). The main technical differences
concern: our use of PFTT (Hale and Linnebo use monadic relational type theory); our desire that
𝑇u should obey unrestricted Comprehension (contrast Hale and Linnebo 2020: 103n.53); and our
subsequent inclusion of bridge-principles which will ultimately allow for self-predication (see ğ7.3).
Note also that Hale and Linnebo are traditional realists.



13

entities are identical.37 Finally, the Application scheme says that application among

nominalized entities tracks the behaviour of higher-typed entities.

This completes the speciőcation of NAT. We now deőne 𝑇u as 𝑇r ∪ NAT, i.e. the

addition of NAT to 𝑇, when the latter’s implicit restriction to real entities is made

explicit. Our central result is that 𝑇u is a conservative extension of 𝑇, in this sense

(see ğC):

Conservativeness Theorem: Let 𝑇 be a PFTT theory in some signature, ℒ, which

is disjoint from NAT’s non-logical vocabulary. If 𝑇u ⊢ Ar then 𝑇 ⊢ A, for any

ℒ-sentence At.

This Theorem immediately entails NAT’s consistency.38 But it is worth speciő-

cally noting that NAT avoids the inconsistency we discussed in ğ3.4 by disavowing

Nom-Always (importantly, Nom-inj is a conditional). Moreover, as promised, NAT

proves Nom-Coext,39 and states that all and only the real properties correspond to

universals (via Nom-real).

4.3 Deőnable notions and richer őctions

Within NAT, we can deőne some further notions, which will be extremely useful in

what follows.

Flattening. Any type 𝛼1(. . . (𝛼𝑛t) . . .) property can be ŕattened. We write the

ŕattening of A as A. Intuitively, some objects satisfy A iff those objects are the

nominalizations of entities that satisfy A. In detail, for each A𝛼1(...(𝛼𝑛t)...):40

A(𝑣𝛼1

1
, . . . , 𝑣𝛼𝑛

𝑛 ) =t A(𝑣1 , . . . , 𝑣𝑛) if

∃

𝑣𝑖 for all 1 ≤ 𝑖 ≤ 𝑛

A(𝑥1 , . . . , 𝑥𝑛) =t Falset for all other cases

To illustrate, PFTT allows us to symbolize the claim that something is wise as

Σe(wiseet); Σe(wise) is then identicalt to Σe(wise).

Instantiation. We can also deőne a notion of instantiation. Speciőcally, we can

deőne a formula A 𝜀 B, which should be read ‘A instantiates B’. Thus, ‘Socrates

instantiates wisdom’ can be formalized as ‘socratese 𝜀 wiseet’. More generally, for

37 In fact, Nom-inj gives us more than the biconditional (𝑢 =𝛼 𝑣) ↔ 𝑢 =e 𝑣); it gives us a
propositional-identity (𝑢 =𝛼 𝑣) =t (𝑢 =e 𝑣). Certain realists about universals might favour the weaker
principle. But we are őctionalists, aiming for the Conservativeness Theorem; and the conservativeness
of the stronger principle immediately entails the conservativeness of the weaker principle. (Similar
remarks apply to Nom-real.) That said, our deőnition of instantiation relies explicitly on identity; see
ğ4.3 and footnote 42.

38 This is because an inconsistent theory is conservative only over inconsistent theories. More
formally: let 𝑇 be the PFTT theory with no axioms; suppose NAT is inconsistent, i.e. NAT ⊢ ⊥; then
𝑇u ⊢ ⊥, so, by the Conservativeness Theorem, 𝑇 ⊢ ⊥, which is absurd.

39 Indeed, it proves the stronger principle 𝑢et =e 𝑣
et → 𝑢 =et 𝑣. Proof. Suppose 𝑢et = 𝑣et. So

∃

𝑢
and

∃

𝑣, by Crt (see ğA.3); now 𝑢 =et 𝑣 by Nom-inj and our initial supposition.
40 At the expense of legibility, this deőnition can be presented austerely in PFTT. For example, let

D abbreviate ( 𝜄𝑥𝛼𝑣e =e 𝑥); then A𝛼t is 𝜆𝑣e 𝜄𝑠t((

∃

D → 𝑠 =t AD) ∧ (¬

∃

D → 𝑠 =t Falset)).
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each 𝑛, we can explicitly deőne an 𝑛+1-place instantiation relation, 𝜀
e(...(et)...)
𝑛 , as

follows (we drop the subscript on ‘𝜀𝑛’, when no confusion can arise):41

(𝑦e
1
, . . . , 𝑦e𝑛 𝜀𝑛 𝑥e) ≔

{
𝑠t if 𝑠 =e app𝑛(𝑥, 𝑦1 , . . . , 𝑦𝑛)

Falset if there is no such 𝑠t

We might pronounce the left-hand-side here as ‘𝑦1 , . . . , 𝑦𝑛 , in that order, instantiate

𝑥’. So, to say that (plato, socrates 𝜀2 lovese(et)) is to say that Plato and Socrates, in that

order, instantiate Love. Now NAT proves the following scheme, which is analogous

to Application:42

(

∃

𝑢𝛼1(𝛼2(...(𝛼𝑛t)...)) ∧

∃

𝑣𝛼1

1
∧ . . . ∧

∃

𝑣𝛼𝑛
𝑛 ) →

(𝑣1 , . . . , 𝑣𝑛 𝜀𝑛 𝑢) =t 𝑢(𝑣1 , . . . , 𝑣𝑛) for all 𝛼1 , . . . , 𝛼𝑛

So: (socrates 𝜀 wise) is identicalt to wise(socrates).

For all its strengths, the theory NAT is very far from complete. To illustrate:

NAT is compatible with the claim that (platoe 𝜀 socratese), which is the sort of thing

we might want to rule out, since no one, surely, wants to say that Plato instantiates

Socrates. We can easily enrich NAT to rule out such things; the result remains

conservative; and indeed NAT can be enriched further still, whilst retaining the

Conservativeness Theorem. We say more about this in ğ7 and ğD, but we will not

dwell on it now since, for the time being, we will only need the principles mentioned

in ğ4.2.

5 Fictionalism

We think that NAT is literally false. In fact, we can locate its falsity very precisely:

őve of NAT’s six schemes are true; but Nom-real is false. After all, since no uni-

versals exist, ‘

∃

(wise)’ is false, but ‘real(wise)’ is true, so that ‘real(wise) =t

∃

(wise)’ is

false.

But although NAT is literally false, it is still a useful őction. Speciőcally, and

as we will now explain, our Conservativeness Theorem allows us to advance a

őctionalism about universals, modelled after Field’s őctionalism about numbers.43

41 At the expense of legibility, this deőnition can be presented austerely in PFTT. For example, let
A abbreviate app

1
(𝑥, 𝑦); then 𝜀1 is 𝜆𝑦e𝜆𝑥e 𝜄𝑠t((

∃

A → 𝑠 =e A) ∧ (¬

∃

A → 𝑠 =t Falset)).
42 Proof. By Prop-real and Nom-real,

∃

(𝑢(𝑣1 , . . . , 𝑣𝑛)). So app𝑛(𝑢, 𝑣1 , . . . , 𝑣𝑛) =e 𝑢(𝑣1 , . . . , 𝑣𝑛)
by Application. Now use Nom-inj and the deőnition of 𝜀𝑛 . As mentioned in footnote 37, this
(essentially) relies upon the propositional-identity in Nom-inj, which some realists about universals
might reject. Indeed, they are likely to eschew the identiőcation, (𝑣1 , . . . , 𝑣𝑛 𝜀𝑛 𝑢) =t 𝑢(𝑣1 , . . . , 𝑣𝑛),
in favour of the weaker biconditional, (𝑣1 , . . . , 𝑣𝑛 𝜀𝑛 𝑢) ↔ 𝑢(𝑣1 , . . . , 𝑣𝑛). In that case, rather than
deőning instantiation explicitly, they should take each instantation-predicate as a primitive, governed
by schemes: 𝑠t =e app𝑛(𝑥

e , 𝑦e
1
, . . . , 𝑦e𝑛) → ((𝑦1 , . . . , 𝑦𝑛 𝜀𝑛 𝑥) ↔ 𝑠) and (𝑦1 , . . . , 𝑦𝑛 𝜀𝑛 𝑥) → ∃𝑠t 𝑠 =e

app𝑛(𝑥, 𝑦1 , . . . , 𝑦𝑛).
43 See Field (1980/2016, 1989/1991). In particular, we share Field’s (1980/2016: P4) response to

the distinction between hermeneutic and revolutionary őctionalism (see Burgess and Rosen 1997: pt. I
ch. A; Stanley 2001; Burgess 2004). Our (limited) interest in that distinction can be summed up as
follows: we recommend that Fregean realists should not (falsely) believe that universals exist, and so
should engage in pretence insofar as they want to continue to use universals-discourse.
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Our őctionalism is primarily intended to answer the following obligatory ques-

tion: Why is it that, barring occasional mistakes by individual speakers, speaking as if

universals existed does not lead us from obvious truths to obvious falsehoods? Realists

about universals have an easy answer to this question: because universals really do

exist. But our Conservativeness Theorem provides us with an alternative answer:

even though there are no universals, positing such universals is conservative over the literal

truths, and this is why they never lead us astray.

Here is that answer in a little more detail. Suppose we start with some PFTT

theory, 𝑇. We then make explicit the implicit assumption that 𝑇 concerns only

real entities, and so move to 𝑇r. Now, by the Conservativeness Theorem, any real-

restricted claim (i.e. any claim which exclusively concerns real entities) which can be

proven using 𝑇r together with the machinery of nominalization, could have been

proved without relying upon such devices. So the machinery of nominalization

is provably reliable for reasoning about what is real. Speciőcally, it never leads us

from a true real-restricted claim to a false real-restricted claim.

This answer also allows us to continue to speak as if universals exist, even though

we deny that they do. 𝑇u is a convenient tool for drawing inferences between true,

real-restricted claims; and it is provably reliable, in this regard. So there is no need

to jettison this tool. Indeed, the Conservativeness Theorem allows Fregean realists

to pretend that universals exist, with a perfectly clear conscience. And that is what

we recommend.

In the next few sections, we will illustrate 𝑇u’s utility. First, we should empha-

sise that (Field-style) őctionalism is the live option, rather than eliminativism. It

is easy to eliminate the nominalizations from some sentences. For example, the

őctional sentence ‘Socrates instantiates wisdom’ can easily be replaced with the

real-restricted sentence ‘Socrates is wise’; indeed, 𝑇u proves their equivalence (see

ğ4.3).44 However, it is not always possible to paraphrase nominalizations away. For

example, the őctional sentence ‘Socrates is not identical to wisdom’ is a theorem of

𝑇u (by Nom-nonreal), but there is no equivalent real-restricted sentence.

6 Some simple applications

In the remainder of this paper, we will apply our őctionalism to a variety of natural

language constructions. The basic idea is this: plenty of natural English construc-

tions seem to require us to move between types; strictly-typed logics, like PFTT,

struggle with this; but our őctionalism has the resources to make it easy.

6.1 On virtues

We started ğ3 with this example:

(7) Wisdom is a virtue

44 Here (and throughout) we assume that Socrates is a real object, and that wise is a real property,
and that both ‘socrates’ and ‘wise’ are atomic constants. Similar points apply for other examples in
ğğ6ś7 (e.g.: virtue, believes, plato, lovee, and love

e(et)).
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As we explained, we think that (7) is literally false, because we do not believe in the

universal wisdom. However, we also think that there is a nearby literal truth about

the property wiseet:

(7a) virtue(et)t(wiseet)

It is essential that we sharply distinguish virtue(et)t from the notion of virtue at play

in the original (7): the English predicate ‘is a virtue’ is type et, and it expresses

a type et property that is supposed to apply to certain universals; by contrast,

virtue(et)t is a type (et)t property that applies to certain type et properties. (If you

are wondering where this new type (et)t property came from, or what it could

possibly have to do with virtue, please hold that thought; we will come back to it in

ğ6.2.) Unlike (7), sentence (7a) makes no mention of universals, and so we are free

to accept it as a literal truth.

But now that we have (7a) as a literal truth, our őction allows us to infer the

following claim about the universal wisdom:

(7b) virtue(et)t(wiseet)

(Indeed, in the őction, (7a) is identical to (7b); see ğ4.3.) We would like to offer

(7b) as our formalization of (7). In other words, our proposal is that ‘is a virtue’

should be formalized in PFTT as ‘virtue(et)t’, just as ‘wisdom’ should be formalized

as ‘wiseet’. On this proposal, (7) is literally false but assertible nonetheless, since its

formalization, i.e. (7b), is true in our (conservative) őction.

6.2 Reverse-engineering őctions

In our efforts to make (7) true within our őction, we helped ourselves to a new type

(et)t property, virtue(et)t. But this might seem to raise a number of questions, for

example: What does it take for a type et property, such as wiseet, to satisfy virtue(et)t?

Or to put the question another way: What exactly is (7a) meant to say? And: What

justiőes our proposal to formalize ‘is a virtue’ as ‘virtue(et)t’? These might seem like

urgent questions for our őctionalist account of universals. In fact, they can be

bypassed entirely. To explain why, we need to outline two ways of thinking about

our őction.

Our discussion in ğğ4ś5 might suggest the following picture:

The Bolt-On Picture. We start with a real theory, 𝑇, which expresses a body of literal truths
without using any nominalization-devices. We then enrich 𝑇, moving to 𝑇u, by bolting on
NAT’s nominalization-devices. This move is justiőed by the Conservativeness Theorem.

If the Bolt-On Picture were taken as a description of the actual, temporal process

of how humans arrive at 𝑇u, then the above questions about virtue(et)t would be

pressing. But that is not the point of the Bolt-On Picture. The Bolt-On Picture

can be used to explain why, given 𝑇, we can employ 𝑇u and act as if universals

existed. But, of course, no one actually starts out (in the temporal sense of ‘starts

out’) with the real theory,𝑇, pristine and fully acceptable to Fregean realists. Rather,

they arrive at 𝑇 after some reŕection. That process of reŕection is more accurately

described using an alternative picture:
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The Reverse-Engineering Picture. We start out with a class of assertible sentences. Some
of these sentences feature nominalized predicates in referential position. Philosophical
argument, however, makes us leery of universals. So: rather than accepting the sentences
in our class as literally true, we grant them the status true in the őction of universals. Now
our job is to reverse-engineer this őction, to arrive at our real theory, 𝑇.45

This alternative Picture offers us a way around the apparently pressing questions

about virtue(et)t. Our initial class of assertible sentences includes a variety of sen-

tences that describe certain universals as virtues, including:

(7) Wisdom is a virtue

Since (7) is assertible, its formalization should be true in our őction. To achieve this,

we hypothesize that the English predicate ‘is a virtue’ expresses the ŕattening of

some real type (et)t property, 𝑥(et)t, such that 𝑥(wise). It is only at the end of this

process of reverse-engineering that we introduce the label ‘virtue(et)t’ for 𝑥: it is

really just a helpful mnemonic, to remind us that this is the real type (et)t property

we posited in order to make sentences like (7) true in our őction.46

6.3 Instantiation

Now that we have explained how to use our őction, we would like to offer two more

examples of it in action. As we noted in ğ4.3, NAT allows us to deőne a notion of

instantiation, and hence to formalize a claim like ‘Socrates instantiates wisdom’ via:

(1b) socrates 𝜀 wise

This allows us to explain the validity of various natural-language inference-patterns.

For example, consider this intuitively valid inference:

(1) Socrates is wise

(7) Wisdom is a virtue

(8) Therefore, Socrates has a virtue

We can formalize this inference as follows:

(1a) wise(socrates)

(1b) ∴ socrates 𝜀 wise

(7b) virtue(et)t(wise)

45 This is probably still an oversimpliőcation. It assumes that every sentence in our initial class of
sentences will make its way into our őction. In fact, in the course of regimenting the real/őctional
distinction, we might be led to revise our view of which sentences are really assertible; indeed, we
may need to go back and forth repeatedly, until we reach a reŕective equilibrium. However, this
complication does not affect our point here.

46 Our discussion of reverse-engineering is somewhat reminiscent of easy-road mathematical őction-
alism (e.g. Balaguer 1998: ğ3.2; Melia 2000; Leng 2010). Easy-road őctionalists also start with a class of
assertible sentencesÐthose delivered by mathematical scienceÐand work backwards to (what they
take to be) the literal truth. However, there is also an important difference. Easy-road őctionalists
deny, or at least refuse to assert, that it is possible to state (what they take to be) the literal truth
directly, without going via their őction. By contrast, the end-product of our reverse-engineering is
precisely a direct statement of (what we take to be) the literal truth.
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(8b) ∴ ∃𝑥e((socrates 𝜀 𝑥) ∧ virtue(et)t(𝑥))

This argument is valid within our őction, since (1a) implies (1b) in the őction,47

and then (8b) follows from (1b) and (7b) by elementary inference rules.48 Moreover,

given that (1a) and (7b) are both true in the őction, the argument is not just valid but

sound in the őction.

6.4 Propositions

Our focus in this paper is on the nominalization of type et expressions. But our

őction can smoothly nominalize other types too. Consider the following natural

language sentence:

(9) Gottlob believes that arithmetic is reducible to logic

Some philosophers and linguists take the complementizer ‘that’ to function as a

device for nominalizing sentences (type t).49 According to these philosophers,

‘believes’ expresses a type e(et) relation between Gottlob and a reiőed proposition,

i.e. the nominalization of a type t proposition. The argument for universals that we

presented in ğ3.1 can now be reworked as an argument for reiőed propositions: (9)

is true; (9) cannot be true unless ‘that arithmetic reduces to logic’ refers to a reiőed

proposition; therefore at least one reiőed proposition exists.

We do not believe in reiőed propositions any more than we believe in universals,

and so we want to resist this argument. We distinguish two possible lines of

resistance. The őrst was proposed in earlier work by Trueman.50 He suggested

that, rather than being a device of nominalization, the complementizer is actually

semantically vacuous. According to this suggestion, then, we should formalize (9)

in PFTT as:

(9a) believese(tt)(gottlobe , (arithmetic-is-reducible-to-logic)t)

If this is the right way to formalize (9), then it does not express a relation between

Gottlob and a reiőed proposition (type e); it expresses a relation between Gottlob

and a proposition proper (type t).

The second line of resistance is made available by our őctionalism (and should

be compared with our discussion of ‘virtue(et)t’ in ğ6.1). We can grant that the

complementizer in (9) is a nominalization device, but then deny that (9) is literally

true; it is really only true within the őction of universals. This result can be secured

in three steps. First, we take (9a) to be a literal truth. Second, we use our őction to

infer:

(9b) believese(tt)(gottlobe , (arithmetic-is-reducible-to-logic)t)

47 Indeed, in the őction, they are identicalt.
48 Note that 𝑇u is a PFTT-theory, and hence uses the natural deduction system outlined in ğA.3.
49 This view is extremely widespread; see e.g. Cresswell (1973: 166ś9), Parsons (1979: 132), Künne

(2003), and King et al. (2014).
50 Trueman (2018, 2020, 2021: ch.12ś13). Trueman’s discussions draw heavily on Prior (1971: esp.

ch.2). See also Montague (1973: 18ś19) and Rosefeldt (2008).
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Third, and őnally, we offer (9b) as our formalization of (9). In other words: we

propose that the English predicate ‘believes’ should be formalized as ‘believese(tt)’.

We do not want to take a őnal stand on the best way to formalize (9) itself. That

said, it is worth noting that the őctionalist strategy is forced upon us in at least some

cases. Consider:

(10) Gottlob believes logicism

‘Logicism’ is clearly a nominalization,51 and so when it comes to (10), we have no

choice but to deploy our őction.

Our őction not only copes with simple belief-reports like (9), but it can also

handle iterated belief-reports, such as:

(11) Bertrand believes that Gottlob believes that arithmetic is reducible to logic

We can formalize this in either of the following ways:

(11a) believese(tt)(bertrande , believese(tt)(gottlobe , (arithmetic-is-reducible-to-logic)t))

(11b) believese(tt)(bertrande , believese(tt)(gottlobe , (arithmetic-is-reducible-to-logic)t))

Fregean realists can, of course, regard (11a) as literally true. Moreover, in the őction,

it entails (11b); indeed, in the őction, they are identicalt.52

7 Bridge-Principles

So far, we have focussed on relatively simple natural language constructions. In

this section, we will discuss two more challenging kinds of case: mixed-predication

(ğ7.1) and pseudo-self-predication (ğ7.3). As we will see, these cases can be handled

if we augment our őction with certain bridge-principles, whose status we explore in

ğ7.2.

7.1 Mixed-predication

Natural language allows us to construct cases of mixed-predication, where one and

the same thing is predicated of a universal and of an ordinary object. Here are some

examples:53

(12) Plato loves Socrates and wisdom

(13) Not only are individual electrons physical, but so is electronhood itself

51 We can use cases of mixed-predication to show that ‘logicism’ is a name; see e.g. (17) below.
52 By the deőnition of ŕattening, (9a) =t (9b); so believese(tt)(bertrand, (9a)) =t

believese(tt)(bertrand, (9b)); so believese(tt)(bertrand, (9a)) =t believese(tt)(bertrand, (9b)), hence (11a) =t
(11b). Note that we are here substituting sentences within the the scope of propositional attitudes; that
is not entirely uncontroversial, but we will not attempt to settle the proper logic for hyper-intensional
contexts here.

53 Chierchia (1982: 310ś3, 1984: 8ś9) seems to have been the őrst author to raise mixed-predication
as a problem for Montagovians (focussing on gerunds and inőnitives; see also Chierchia and Turner
1988: 293); we adapt (15) and (16) from him. See also Parsons (1979: 130) for an example similar to
(16).
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(14) Mary can see roses, but not the colour red

(15) The M25 is dangerous, and so is reckless driving

(16) Hillary talked about Nancy and running for president

(17) Logicism and Ludwig both frustrated Gottlob

(18) This book is about Lovelace and exponentiation

Now, some of these examples may strike you as puns, on a par with the following

zeugma:

(19) My mother taught me how to prove dough and theorems.

If so, our aim is not to convince you otherwise. Our point is only that (12)ś(18)

strike us as reasonable assertions, which illustrate a general phenomenon. We will

offer a way to handle this phenomenon, focussing on the case of (12). However, our

discussion naturally extends to cover any cases of mixed-predication which you do

not want to dismiss as puns.

Unfortunately, as it stands, our őction cannot accommodate (12). To see why, let

us split (12) into two parts:

(20) Plato loves Socrates

(21) Plato loves wisdom

Sentence (20) obviously does not pose any problems. We can formalize it as:

(20a) loves
e(et)
e (plato, socrates)

This makes no mention of universals, and so we can accept it as a literal truth.

Sentence (21) is a little trickier, but we can approach it in much the same way that

we approached (7) in ğ6.1. We help ourselves to a type e((et)t) relation, loves
e((et)t)
et .

We then take it to be literally true that Plato bears this relation to wiseet:

(21a) loves
e((et)t)
et (plato,wise)

Finally, we use the őction of universals to infer:54

(21b) loves
e((et)t)
et (plato,wise)

We think this a good formalization of (21). But, even though we now have formal-

izations for (20) and (21), we still cannot yet formalize (12). The trouble is that, even

in the őction, lovese is distinct from loveset.55

To solve this problem, we need to augment our őction with a principle that, in

effect, extends lovese to include pairs of objects which stand in the loveset relation

too. More precisely, we lay down the following bridge-principle:

(real(𝑢e) ∧ real(𝑣et)) → lovese(𝑢, 𝑣) =t loveset(𝑢, 𝑣)

Given this bridge-principle, (21a) implies:

54 We should repeat the assumption, from footnote 44, that we are tacitly assuming that the various
wffs in these examples are atomic.

55 Indeed, in the őction, (20a) is true but loveset(plato, socrates) is false. Recall, in the őction:
loveset(𝑥

e , 𝑦e) iff 𝑥e and 𝑦e are nominalizations of entities between which loveset obtains; but socrates
is not the nominalization of any type et entity (by Nom-nonreal).
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(21c) lovese(plato,wise)

Together with (20a), this őnally implies:

(12a) lovese(plato, socrates) ∧ lovese(plato,wise)

which is our formalisation, within our őction, of (12).

7.2 Licensing the use of bridge-principles

We have dealt with mixed-predication using bridge-principles. We now need to

address two questions concerning the use of such principles.

The most immediate question is: what permits us to add these bridge-principles

to our őction? Roughly put, our answer is that, if we take even a modicum of care,

then adding bridge-principles to our őction will still be conservative. To make this

more precise, we must deőne some notions. We stipulate that a bridge-principle is

any formula of this shape:

(
real(𝑢𝛼1

1
) ∧ . . . ∧ real(𝑢𝛼𝑛

𝑛 )
)
→ Ae(...(et)...)(𝑢1 , . . . , 𝑢𝑛) =t B𝛼1(...(𝛼𝑛t)...)(𝑢1 , . . . , 𝑢𝑛)

where A and B are 𝑇-constants, and some type 𝛼𝑖 is not e. (This last clause ensures

that some nominalization is, in fact, being invoked.) Then we can prove, roughly,

that a set of bridge-principles, Δ, can be conservatively added to 𝑇u, provided that

it is impossible for the bridge-principles to conŕict with each other.

Of course, this notion of ‘impossibility of conŕict’ needs to be made more precise.

So let us start by thinking about some cases where conŕict is possible. Conŕict is

clearly possible if we insist, for example, both that lovese(𝑢
e , 𝑣et) =t loveset(𝑢, 𝑣)

and that lovese(𝑢
e , 𝑣et) =t hateset(𝑢, 𝑣). Only slightly less clearly: imagine that

𝑇 ⊢ ploveset =et lovese(plato). (Recall that we tend to write the decurried expression

‘lovese(plato, 𝑥e)’ in place of ‘(lovese(plato))(𝑥e)’; but here we are relying on the fact

that ‘lovese(plato)’ is a type et expression, roughly corresponding to the English

predicate ‘Plato loves . . . ’.) In that case, conŕict would be possible between a bridge-

principle which mentioned lovese and one which mentioned ploves. Fortunately, it

is not hard to lay down a condition which rules out exactly these kinds of conŕicts;

this is the notion of 𝑇-friendliness (see Deőnition 7 of ğE). And we can then prove

that any set of 𝑇-friendly bridge-principles is conservative over 𝑇. (For full details,

though, the reader will have to consult ğE.)

This explains what permits us to introduce bridge-principles. But we should

also ask: what motivates their introduction? For example, why should we introduce

a bridge-principle between loves
e(et)
e and loves

e((et)t)
et ? It is tempting to answer that

lovese and loveset are two types of loving-relation. But that answer would be strictly

nonsensical, given Fregean realism, since nothing that can be said of one type can

be said of another.

As in ğ6.2, this question can be addressed by recalling that we are reverse-

engineering our őction. To illustrate, consider our example of mixed-predication,

and its formalization:

(12) Plato loves both Socrates and wisdom
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(12a) lovese(plato, socrates) ∧ lovese(plato,wise)

Suppose that (12) is assertible. In that case, (12a) should be true in our őction. Now,

since lovese(plato, socrates) is assertible and makes no reference to universals, we can

accept it as a literal truth (and hence also as true in the őction). And, given the

assertibility of lovese(plato,wise), we reverse-engineer our őction to include some

‘corresponding’ relation of type e((et)t) which holds between plato and wise. Our

bridge-principles simply formalize the intuitive talk of a ‘corresponding relation’.

So, these bridge-principles serve as a formal link (within the őction) between the

familiar type e(et) relation lovese, and the reverse-engineered type e((et)t) relation.

7.3 Pseudo-self-predication

Now that we have a general licence to invoke bridge-principles, we can put them to

further work. For example, consider this case:

(22) Plato loves love

This is much like (21), except that it is a case of pseudo-self-predication, where a

relation is applied to its own nominalization.56 To handle this, as in ğ7.1, we

introduce another type of love, loves
e((e(et))t)

e(et)
, and accept the following as a literal

truth:

(22a) lovese(et)(plato, lovese)

Within our őction, (22a) is identicalt to:

(22b) lovese(et)(plato, lovese)

But lovese(et) is distinct from lovese, and so (22b) does not apply a relation to its own

nominalization. To overcome this, we lay down another bridge-principle:
(
real(𝑢e) ∧ real(𝑣e(et))

)
→ lovese(𝑢, 𝑣) =t lovese(et)(𝑢, 𝑣)

Using this, (22a) is identicalt in the őction to:

(22c) lovese(plato, lovese)

And this is a genuine case of pseudo-self-predication, in which lovese is applied to

its own nominalization.

The approach generalises. Using bridge-principles, we can easily handle other

cases which have been thought to pose difficulties for strictly typed theories, such

as:57

(23) Kindness is kind

(23a) kinde(kinde)

(24) Plato loves loving love

(24a) lovese(plato,𝜆𝑥e lovese(𝑥, lovese))

We leave it to the reader to specify the suitable bridge-principles.
56 It is only pseudo-self-predication: Fregean realism prohibits the application of a relation to itself.
57 Example (23) is modelled off Chierchia (1984: 12, 1985: 418) and Chierchia and Turner (1988:

293).
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8 Limits of the őction

In ğğ6ś7, we gave a sense of the power and ŕexibility of our őction. Our hope is

that this will allow us to accommodate enough of the ordinary use of nominalized

predicates, to allow us to continue speaking as if there were universals in everyday

and scientiőc contexts. Whilst there is obviously no way to prove that our hope has

been fulőlled, we think it is extremely plausible.

However, we should also admit that there are limits to our őction. In partic-

ular, our őction cannot handle cases that involve nominalizing the unreal entities

introduced by NAT. Here is a particularly striking example. Consider these two

sentences:

(25) Socrates does not instantiate himself

(26) Socrates instantiates non-self-instantiation

We can easily formalise (25) as follows, where A /𝜀 A abbreviates ¬(A 𝜀 A):58

(25a) socrates /𝜀 socrates

However, there is no adequate way to formalise (26). In the őction, we can consider

the property of non-self-instantiation, 𝑑et =et (𝜆𝑥
e 𝑥 /𝜀 𝑥); so we might offer:

(26a) socrates 𝜀 𝑑

But, since 𝑑 is not real, it has no nominalization,59 so (26a) is false.

This is, then, a limitation on NAT. But, given our aims, it is no real shortcoming.

As we explained in ğ5, the point of our őctionalism is to explain why ordinary

discourse about universals does not lead from real-restricted truths to real-restricted

falsehoods, without conceding that universals really exist. We doubt that (26) is

any part of the ordinary discourse about universals. Of course, (26) is part of the

philosophical discourse about universals. But notoriously, philosophers have been

led from truths to falsehoods by sentences like (26), which are just one step away

from Russell’s Paradox, in the form ‘non-self-instantiation instantiates non-self-

instantiation’.

9 Conclusion

Fregean realists reject the suggestion that properties are objects (see ğ2). Neverthe-

less, Fregean realism is compatible with the claim that (at least some) properties

correspond to certain special objects, which we call universals. Moreover, various

ordinary natural language constructions imply that universals exist. At the same

time, however, Fregean realists have good reason to deny that there really are any

universals (see ğ3). So, Fregean realists have good reason to embrace őctional-

ism about universals. We have gone some way to showing how this can be done:

58 By itself, NAT does not entail (25a), for reasons noted at the end of ğ4.3, but see ğD.
59 For reductio, suppose

∃

𝑑. By the instantiation-scheme of ğ4.3, we have (𝑑 𝜀 𝑑) =t (𝑑 𝜀 𝑑) =t 𝑑𝑑.
Also, 𝑑𝑑 =t (𝑑 /𝜀 𝑑) by Red and

∃

It (see ğA.3). So (𝑑 𝜀 𝑑) =t (𝑑 /𝜀 𝑑), which is a contradiction.
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Fregean realists can help themselves to a provably conservative őction of universals

(see ğğ4ś5).

This őction allows us to provide a face-value semantics for a wide variety of

natural language constructions (see ğ6), including cases of mixed-predication and

pseudo-self-predication (see ğ7). Inevitably, Russell’s Paradox places limits on

what can be achieved within the őction, but these limits seem somewhat recherché

(see ğ8). Indeed, it seems that wherever one might naturally want to speak as if

there were universals, Fregean realists can do just that, and in good conscience, by

invoking their conservative őction.

A PFTT’s deductive system

In this appendix, we outline the formal system PFTT. This retains bivalence, but

remains suitable for partial functions. It is a minor modiőcation of Farmer’s (1990)

system PF; the main difference is that PFTT allows there to be more than two

propositions.

A.1 PFTT’s grammar

We have two basic types: e and t. For any types 𝛼 and 𝛽, we have the type (𝛼𝛽).

These are our only types. Since we have no product-types, we officially handle

relations by currying. However, for readability, we often use decurried expressions.

(See ğ1 for this, and other, notational conventions.)

For each type 𝛼, we have primitive symbols as follows:60

• Improper symbols: 𝜆, (, )

• Logical constants: Falset
t
, ¬tt, ∨t(tt), ∧t(tt), →t(tt), =

𝛼(𝛼t)
𝛼 , Σ

(𝛼t)t
𝛼 , Π

(𝛼t)t
𝛼 , 𝜄

(𝛼t)𝛼
𝛼

• Variables: 𝑎𝛼 , . . . , 𝑧𝛼, with subscripts as necessary

• Non-logical constants: as we see őt

We indicate the types of expressions with superscripts. The grammar is standard:61

every constant or variable of type 𝛼 is a wff𝛼; if x𝛼 is a variable and B𝛽 is a wff𝛽,

then (𝜆x𝛼B𝛽)𝛼𝛽 is a wff𝛼𝛽; if A𝛼 is a wff𝛼 and B𝛼𝛽 is a wff𝛼𝛽, then (BA)𝛼 is a wff𝛽;

nothing else is a wff.

It is convenient to introduce some deőnitions:62

∀x𝛼At ≔ Π𝛼(𝜆x𝛼A)

∃x𝛼At ≔ Σ𝛼(𝜆x𝛼A)

𝜄x𝛼At ≔ 𝜄𝛼(𝜆x𝛼A)

Uni
(𝛼t)t
𝛼 ≔ 𝜆𝑣𝛼t∃𝑥𝛼∀𝑦𝛼(𝑣(𝑦) ↔ 𝑥 =𝛼 𝑦)

∃

A𝛼
≔ A =𝛼 A

A𝛼 ≃𝛼 B𝛼
≔ (

∃

A ∨

∃

B) → A =𝛼 B

60 Farmer’s (1990) PF allows for only two t-entities; so he adapts an equational HenkinśAndrews
system (see e.g. Andrews 2002: ch.5). To allow for multiple t-entities, we must revert from an
equational system to a system more like Church’s (1940) original. We have more primitives than
usual, but treat ↔ as a conjunction of conditionals.

61 ‘wff𝛼’ abbreviates ‘wff of type 𝛼’. Bold capital letters stand for wffs of the indicated type. Bold
lowercase letters stand for variables of the indicated type.

62 See Church (1940: 58) for ∀ and 𝜄; cf. Farmer (1990) for False𝛼𝛽 ; and our

∃

is based on Farmer’s ↓.
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Intuitively: Uni𝛼 indicates that a property is uniquely instantiated;

∃

A indicates

that A exists; and A ≃ B indicates that they are identical if either exists.

A.2 Handling empty terms

Our system allows for empty terms. Intuitively, applying any term to an empty

term causes a ‘crash’. Our precise implementation of this idea follows Farmer. We

recursively specify two kinds of types:

Definition 1: e is e-kind; t is t-kind; and 𝛼𝛽 is the same kind as 𝛽.

Intuitively, ‘crashing’ for e-kinds will amount to undeőnedness; ‘crashing’ for t-

kinds will amount to falsity. More precisely:

(i) e-kind expressions stand for partial functions. If 𝛽 is e-kind then B𝛼𝛽A𝛼

denotes iff B denotes some 𝑏 and A denotes some 𝑎, and 𝑏(𝑎) is deőned; in

that case, BA denotes 𝑏(𝑎).

(ii) t-kind expressions stand for total functions. If A is empty, then B𝛼tA𝛼 is false.

Clause (ii) allows us to have a negative-free logic. In fact, we will want to extend

the condition on falsity, to deal with the general case of B𝛼𝛽A𝛼 when 𝛽 is t-kind.

We use the following recursive deőnition:

False
𝛼𝛽

𝛼𝛽 ≔ 𝜆𝑥𝛼False
𝛽

𝛽, for all t-kind 𝛽

So, Falset
t

is a logical constant, which we will treat as a primitive, canonical, falsity;

then the various False𝛼𝛽s allow us to push higher-typed entities (ultimately) to Falset.

To illustrate this: suppose that 𝑐𝛼 is non-existent; then (=𝛼𝑐
𝛼) should be a function

which yields Falset for any type 𝛼 input, i.e. we want that (=𝛼𝑐
𝛼) =𝛼t False𝛼t.

A.3 PFTT’s natural deduction system

We provide a natural deduction system for PFTT.63 We help ourselves to some

standard classical introduction and elimination rules for Falset, ¬, ∨, ∧, and →;

here are the new rules (where ‘⊩’ indicates a permissible inference):64

Red:

∃

A𝛼
⊩ (𝜆x𝛼B𝛽)A ≃𝛽 B[A//x] where B[A//x] is the result of replacing every

instance of x in B with A, if neither x nor any of A’s free variables are bound in B

≃E: A𝛼 ≃𝛼 B𝛼 ,Ct ⊩ C[B/A] where C[B/A] is the result of replacing any occurrence

of A in C with an occurrence of B, if that occurrence is not immediately preceded by 𝜆

ΠE: Π𝛼B𝛼t ,

∃

A𝛼
⊩ BA

ΠI: B𝛼tx𝛼 ⊩ Π𝛼B if x is not free in B or in any open assumption

ΣE: Σ𝛼B𝛼t ,Bx𝛼 → At ⊩ A if x is not free in B, in A, or in any open assumption

ΣI: B𝛼tA𝛼
⊩ Σ𝛼B

63 Farmer (1990) offers a Hilbert-style axiomatization.
64 So we write e.g. A,B ⊩ C for what you might write in a Gentzen-style system as A B

C . Since
Falset is our canonical absurdity, the rule ex falso might be given as: Falset ⊩ .
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𝜄I: Uni𝛼A𝛼t
⊩ A(𝜄𝛼A)

𝜄Ee:

∃

(𝜄𝛼A𝛼t) ⊩ Uni𝛼A if 𝛼 is e-kind

𝜄Et: (𝜄𝛼A𝛼t) ≠𝛼 False𝛼 ⊩ Uni𝛼A if 𝛼 is t-kind

∃

Ie: ⊩

∃

A𝛼 if A is a variable, a logical constant, or a 𝜆-term

∃

It: ⊩

∃

A𝛼 if 𝛼 is t-kind

Cre:

∃

(B𝛼𝛽A𝛼) ⊩

∃

B if 𝛽 is e-kind

Cre:

∃

(B𝛼𝛽A𝛼) ⊩

∃

A if 𝛽 is e-kind

Crt: ¬

∃

A𝛼
⊩ B𝛼𝛽A𝛼

=𝛽 False𝛽 if 𝛽 is t-kind

Ext: (A𝛼𝛽x𝛼) ≃𝛽 (B𝛼𝛽x) ⊩ A ≃𝛼𝛽 B if x is not free in A, in B, or in any open assumption

To illustrate the character of this deductive system, here is a useful theorem scheme,

which provides a generalization of higher-order Cantor’s Theorem.65 Our informal

proof is easily formalizable within the strict deductive system we just outlined:

Theorem 2 (for any 𝛼, 𝛽): Fix a function 𝑓 (𝛼𝛽)𝛼, a relation 𝑟𝛼(𝛼t), and distinct type 𝛽

entities 0𝛽 ≠𝛽 1𝛽. Consider the function 𝑐𝛼𝛽 such that:66

𝑐𝑥𝛼 ≔

{
1 if ∃𝑣𝛼𝛽(𝑟(𝑥, 𝑓 𝑣) ∧ 𝑣𝑥 =𝛽 0)

0 otherwise

If 𝑟( 𝑓 𝑐, 𝑓 𝑐), then 𝑐( 𝑓 𝑐) =𝛽 1, so that also ∃𝑑𝛼𝛽(𝑟( 𝑓 𝑐, 𝑓 𝑑) ∧ 𝑑( 𝑓 𝑐) =𝛽 0).

Proof. For reductio, suppose 𝑐( 𝑓 𝑐) =𝛽 0; so ∀𝑣𝛼𝛽(𝑟( 𝑓 𝑐, 𝑓 𝑣) → 𝑣( 𝑓 𝑐) ≠𝛽 0). In-

stantiating, 𝑟( 𝑓 𝑐, 𝑓 𝑐) → 𝑐( 𝑓 𝑐) ≠𝛽 0. By assumption, 𝑟( 𝑓 𝑐, 𝑓 𝑐); so 𝑐( 𝑓 𝑐) ≠𝛽 0, a

contradiction. Discharging the reductio, 𝑐( 𝑓 𝑐) =𝛽 1. □

Corollary 3: If 𝑓 (𝛼e)𝛼 is total, then 𝑓 is not injective. Indeed, in this case there are

non-coextensive 𝑐𝛼e and 𝑑𝛼e such that 𝑓 𝑐 =𝛼 𝑓 𝑑.

Proof. Use Theorem 2, with 𝛽 as t, 0t as Falset, 1t as ¬Falset, and 𝑟𝛼(𝛼t) as =𝛼. Since

𝑓 (𝛼t)𝛼 is total, 𝑓 𝑐 =𝛼 𝑓 𝑐. So 𝑐( 𝑓 𝑐) =t ¬Falset, and there is 𝑑et such that 𝑓 𝑐 =𝛼 𝑓 𝑑

and 𝑑( 𝑓 𝑐) =t Falset. Now ¬(𝑐( 𝑓 𝑐) ↔ 𝑑( 𝑓 𝑐)). □

This corollary is the unsurprising version of Cantor’s Theorem mentioned in ğ3.4.

A.4 Henkin semantics for PFTT

PFTT has a (sound and complete) Henkin semantics. Again, this follows Farmer

closely. Note that the Henkin semantics assigns wffs, of all types, to objects from set

theory with urelements. So we do not regard the Henkin semantics as our intended

semantics for PFTT (see ğ2.1, especially footnote 6); rather, we regard it as a useful

mathematical instrument.

A PFTT-interpretation, ℳ, comprises non-empty domains 𝑀𝛼 for each type 𝛼,

with a particular subset 𝑀des ⊆ 𝑀t, and a particular entity f. Intuitively, 𝑀des

65 Compare e.g. Linnebo (forthcoming: ğ3).
66 i.e. 𝑐 =𝛼𝛽 𝜆𝑥𝛼 𝜄𝑧𝛽((𝜙(𝑥) → 𝑧 =𝛽 1) ∧ (¬𝜙(𝑥) → 𝑧 =𝛽 0)), with 𝜙(𝑥) abbreviating ∃𝑣(𝑟(𝑥, 𝑓 𝑣) ∧

𝑣𝑥 =𝛽 0).
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will be our ‘designated values’ (our true propositions) and f will be a canonical

falsehood. We let 𝑀 =
⋃

𝛼 𝑀𝛼, and insist:

(1) f ∈ 𝑀t \ 𝑀des

(2) If 𝛼 is e-kind, then 𝑀𝛼𝛽 is a set of partial functions from 𝑀𝛼 to 𝑀𝛽

(3) If 𝛼 is t-kind, then 𝑀𝛼𝛽 is a set of total functions from 𝑀𝛼 to 𝑀𝛽

(4) If 𝛼 is t-kind, then fℳ𝛼 ∈ 𝑀𝛼, where fℳ
t

≔ f and f
ℳ
𝛼𝛽(𝑎) ≔ f

ℳ
𝛽 for all 𝑎 ∈ 𝑀𝛼

(5) If a constant C𝛼 is assigned, it is assigned to some Cℳ ∈ 𝑀𝛼; and C𝛼 must be

assigned if 𝛼 is t-kind

(6) Every logical constant is assigned; their assignments meet these rules:67

Falseℳ
t

= f = f
ℳ
t

¬ℳ(𝑎) ∈ 𝑀des iff 𝑎 ∉ 𝑀des

(𝑎 ∨ℳ 𝑏) ∈ 𝑀des iff either 𝑎 ∈ 𝑀des or 𝑏 ∈ 𝑀des

(𝑎 ∧ℳ 𝑏) ∈ 𝑀des iff both 𝑎 ∈ 𝑀des and 𝑏 ∈ 𝑀des

(𝑎 →ℳ 𝑏) ∈ 𝑀des iff either 𝑎 ∉ 𝑀des or 𝑏 ∈ 𝑀des

(𝑎 =
ℳ
𝛼 𝑏) ∈ 𝑀des iff 𝑎 = 𝑏

Σ
ℳ
𝛼 (𝑏) ∈ 𝑀des iff 𝑏(𝑥) ∈ 𝑀des for some 𝑥 ∈ 𝑀𝛼

Π
ℳ
𝛼 (𝑏) ∈ 𝑀des iff 𝑏(𝑥) ∈ 𝑀des for all 𝑥 ∈ 𝑀𝛼

𝜄ℳ𝛼 (𝑏) = the 𝑥 ∈ 𝑀𝛼 such that 𝑏(𝑥) ∈ 𝑀des, if there is one

𝜄ℳ𝛼 (𝑏) crashes, if there is not

Here, and in what follows, the sense of ‘crashes’ is as in ğA.2: so 𝜄ℳ𝛼 (𝑏) is

undeőned if 𝛼 is e-kind; and 𝜄ℳ𝛼 (𝑏) = fℳ𝛼 if 𝛼 is t-kind.

Given a PFTT-interpretation ℳ, a variable assignment for ℳ maps every type 𝛼

variable to an element of 𝑀𝛼. Where 𝜎 is a variable assignment ℳ, this is extended

to a (partial)68 function providing values for Aℳ
𝜎 , for all wffs A, via these recursive

clauses. (We omit the superscript ‘ℳ’ where it is obvious from context.) The clauses

for variables, x𝛼, and constants, C𝛼, are obvious:

x𝜎 = 𝜎(x)

C𝜎 = Cℳ if C is assigned in ℳ

C𝜎 is undeőned otherwise

Where possible, we distribute assignments over application. So, with (B𝛼𝛽A𝛼):

(BA)𝜎 = B𝜎A𝜎 if A𝜎 ,B𝜎 and B𝜎A𝜎 are all deőned

(BA)𝜎 crashes otherwise

67 We assume suitable domains. That is: the domain of ¬ℳ is 𝑀t; the domain of (Π𝛼)
ℳ and (𝜄𝛼)

ℳ

is 𝑀(𝛼t); etc. We tend to leave this assumption implicit in what follows.
68 Farmer (1990) provides a total function by having a ‘default’ value of ⊥ ∉ 𝑀 such that, where

we would say that Aℳ
𝜎 is undeőned, he lets Aℳ

𝜎 = ⊥.
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where, recall, crashing amounts to: if 𝛽 is e-kind then (BA)𝜎 is undeőned; if 𝛽 is

t-kind then (BA)𝜎 = f
ℳ
𝛽 . (Note: when 𝛽 is t-kind, clause (4) of our semantics

guarantees that both B𝜎 and B𝜎A𝜎 are deőned.) Finally, we consider 𝜆-terms:

(𝜆x𝛼B𝛽)𝜎 is the function in 𝑀𝛼𝛽 such that for all 𝑎 ∈ 𝑀𝑎 :

(𝜆xB)𝜎(𝑎) = B𝜎[x:𝑎] if B𝜎[x:𝑎] is deőned

(𝜆xB)𝜎(𝑎) is undeőned otherwise

where 𝜎[x:𝑎] is the variable assignment which differs from 𝜎, if at all, by mapping

x to 𝑎.

A PFTT-interpretation ℳ is a PFTT-structure iff, for every variable assignment

𝜎 and every A𝛼: if 𝛼 is e-kind then either A𝛼
𝜎 is undeőned or A𝛼

𝜎 ∈ 𝑀𝛼; and if 𝛼 is

t-kind then A𝛼
𝜎 ∈ 𝑀𝛼.

When ℳ is a PFTT-structure and A is a closed wff, Aℳ
𝜎 does not depend on the

choice of 𝜎; so we can write simply Aℳ . We write ℳ ⊨ At iff Aℳ ∈ 𝑀des. We write

ℳ ⊨ 𝑇 iff ℳ ⊨ At for all At ∈ 𝑇; in this case, we can say that ℳ is a model of 𝑇.

The natural deduction system is provably sound and complete for PFTT-

structures. This can be shown by making minor adjustments to Farmer’s proof

of soundness and completeness for his system PF.

A.5 Fineness of grain in PFTT

To repeat: PFTT is a minor adjustment to Farmer’s PF, which modiőes Church’s

theory of types. Our main departure is to allow more than two t entities. We

should brieŕy comment on our reasons for this departure.

One might worry that PFTT’s rule Ext makes the framework rather coarse-

grained. For example, the apparently analogous principle of second-order logic,

∀𝑥(𝐹𝑥 ↔ 𝐺𝑥) → 𝐹 = 𝐺, identiőes all coextensive properties. However, since PFTT

allows for more than two t entities, its rule Ext does not have the same consequence.

To illustrate, in PFTT: cordateet and renateet are distinct properties iff there is some

𝑥e such that cordate(𝑥) ≠t renate(𝑥); since PFTT allows that there can be more than

two propositions, this situation is compatible with ∀𝑥e(cordate(𝑥) ↔ renate(𝑥)).

Indeed, PFTT deliberately says as little as possible about what it takes for propo-

sitions to be identical. If you want to say more about how őnely grained you think

propositions should be, then you are free to do so. For example: perhaps you favour

Booleanism, according to which 𝑢t =t (¬¬𝑢), and (¬𝑢t ∧ ¬𝑣t) =t ¬(𝑢 ∨ 𝑣), and so

forth.69 Feel free to add such claims; in the interests of inclusivity, we will remain

silent about them.70 Our desire for inclusivity also explains why PFTT has so many

distinct logical primitives.71

69 See Dorr (2016: 62ś70) for discussion.
70 Note, though: if you want these new principles also to hold in the őction, 𝑇u, you may need to

adjust the proof of the Conservativeness Theorem (albeit in routine ways).
71 That said, we should ŕag an area where we coarse-grain more than some would like. Roughly:

by Crt, ‘Freya is divine’ and ‘Odin is ticklish’ both express the same proposition, Falset. Greater
őne-graining for such crashes would require making substantial adjustments to PFTT.
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B The őctional theory

As explained in ğ5, the Fregean realist’s őctional theory, 𝑇u, is obtained by adding

NAT to the result of explicitly restricting the Fregean realist’s theory, 𝑇, to real enti-

ties. Having deőned NAT in ğ4.2, it only remains to deőne a recursive translation,

r, such that Ar can be thought of as ‘A as restricted to real entities’. We deőne the

recursive translation in this appendix, justifying the clauses in small groups. We

start with the easiest:

Cr is C, if C is a variable or a constant other than Σ, Π, 𝜄 or =

We do not really have any choice concerning variables or non-logical constants. For

the sentential connectives, i.e. Falset ,¬,∧,∨,→, we could have provided a more

complicated deőnition. However, by NAT’s scheme Prop-real, no new (non-real)

propositions are added when we move to the őctional theory; so they should just

be translated verbatim. We next consider the quantiőer-like constants:

(Σ𝛼)r is 𝜆𝑣𝛼t 𝜄𝑥t
(
(real(𝑣) → 𝑥 =t (∃𝑧

𝛼(real(𝑧) ∧ 𝑣𝑧))) ∧

(¬real(𝑣) → 𝑥 =t Falset)
)

(Π𝛼)r is 𝜆𝑣𝛼t 𝜄𝑥t
(
(real(𝑣) → 𝑥 =t (∀𝑧

𝛼(real(𝑧) → 𝑣𝑧))) ∧

(¬real(𝑣) → 𝑥 =t Falset)
)

(𝜄𝛼)r is 𝜆𝑣𝛼t 𝜄𝑥𝛼
(
(real(𝑣) → 𝑥 =𝛼

𝜄𝑦𝛼(real(𝑦) ∧ 𝑣𝑦)) ∧

(¬real(𝑣) → 𝑥 =𝛼 False𝛼)
)
, if 𝛼 is t-kind

(𝜄𝛼)r is 𝜆𝑣𝛼t 𝜄𝑥𝛼
(
(real(𝑣) → 𝑥 =𝛼

𝜄𝑦𝛼(real(𝑦) ∧ 𝑣𝑦)) ∧

(¬real(𝑣) → 𝑥 =𝛼

𝜄𝑧𝛼Falset)), if 𝛼 is e-kind

The intuitive idea behind these deőnitions is that a real-restricted quantiőer should

have its domain restricted to the real entities. In the particular case of existential

quantiőcation, this comes down to two ideas: (i) if 𝑣𝛼t is a real property, then

łsomething is 𝑣ž should be really true iff some real thing is 𝑣; (ii) if 𝑣𝛼t is a non-

real property, then łsomething is 𝑣ž should not really be true. Since Σ𝛼𝑣
𝛼t can be

rewritten as ∃𝑥𝛼𝑣𝛼t𝑥, ideas (i) and (ii) respectively motivate the two conjuncts in

the deőnition of (Σ𝛼)r. A similar line of thought justiőes our clauses Π and 𝜄. Next,

we consider = and 𝜆-terms:

(=𝛼)r is 𝜄𝑣𝛼(𝛼t)
(
real(𝑣) ∧ ∀𝑥𝛼∀𝑦𝛼((real(𝑥) ∧ real(𝑦)) → 𝑣(𝑥, 𝑦) =t (𝑥 =𝛼 𝑦))

)

(𝜆x𝛼B𝛽)
𝛼𝛽
r is 𝜄𝑣𝛼𝛽

(
real(𝑣) ∧ ∀𝑦𝛼(real(𝑦) → 𝑣𝑦 ≃𝛽 (𝜆xBr)𝑦)

)

The intuitive idea is that the real-restriction of őctional-= should be the (unique)

real entity which agrees precisely with őctional-= over all real entities; likewise for

𝜆-terms. Finally, r distributes over application:

(B𝛼𝛽A𝛼)r is (BrAr)

This completes our deőnition of r, and it allows us to deőne 𝑇u from 𝑇:

Definition 4: Let𝑇 be any PFTT theory in some signature, ℒ, which is disjoint from

NAT’s non-logical vocabulary. 𝑇’s őctionalization is then 𝑇u = NAT ∪ {Atr : 𝑇 ⊢ A}.
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C Conservativeness

We can now state and prove our main result:

Conservativeness Theorem: Let 𝑇 be a PFTT theory in some signature, ℒ, which

is disjoint from NAT’s non-logical vocabulary. If 𝑇u ⊢ Ar then 𝑇 ⊢ A, for any

ℒ-sentence At.

We prove this result via expansion-conservation.72 We will show how to transform

any Henkin model, ℳ, into a richer model, ℳ∗, so that the following holds:

Lemma 5: For any ℳ with signature ℒ:

(1) ℳ∗ ⊨ Ar iff ℳ ⊨ A, for any ℒ-sentence At; and

(2) ℳ∗ satisőes NAT.

The Conservativeness Theorem will then follow straightforwardly:

Proof of Conservativeness Theorem from Lemma 5. Suppose that 𝑇u ⊢ Ar. By Sound-

ness, 𝑇u ⊨ Ar. Let ℳ be any PFTT-structure such that ℳ ⊨ 𝑇; then ℳ∗ ⊨ 𝑇u by

Lemma 5 and hence ℳ∗ ⊨ Ar, so that ℳ ⊨ A by Lemma 5. Generalising, 𝑇 ⊨ A. By

Completeness, 𝑇 ⊢ A. □

It just remains to construct explain how to ℳ∗ from ℳ, and to prove Lemma 5. The

basic idea is simple. For each higher-type entity in ℳ, we create a new object to

serve as its nominalization; we close under all possible (partial) functions; then we

interpret the new vocabulary in the most obvious way. Admittedly, the details are

őddly, and spelling them out will take several steps (and the rest of this appendix).

But there is nothing essentially more complicated than this very simple idea.

Proof of Lemma 5. In what follows, ℳ can be any PFTT-structure in some signature

ℒ. Recall that 𝑀𝛼 is the set of entities which are values of type 𝛼 variables in ℳ,

with 𝑀 =
⋃

𝛼 𝑀𝛼. We describe the construction of ℳ∗ from ℳ in several steps. To

avoid a rash of asterisks, we will refer to ℳ∗ as 𝒩 , but this should not obscure that

𝒩 functionally depends on ℳ. Our proof has őve steps.

Step 1. Denizens of 𝒩 . We will want 𝒩 to have the same propositions as ℳ, and

to treat the same propositions as designated. So we stipulate:

𝑁t ≔ 𝑀t

𝑁des ≔ 𝑀des

However, we will want 𝒩 to contain some new nonreal objects, i.e. our universals.

To this end, for each 𝛼 ≠ e, we őx simultaneously a set 𝑈𝛼 and a bĳection 𝜇𝛼 :

𝑀𝛼 −→ 𝑈𝛼. Intuitively, 𝑈𝛼 will supply the universals obtained from nominalizing

type 𝛼 entities. We also insist that 𝑀 and all the 𝑈𝛼s are pairwise disjoint, and (for

convenience) that 𝜇e is the identity function on 𝑀e. Our type e domain is then:

72 See e.g. Button and Walsh (2018: 60ś2).
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𝑁e ≔ 𝑀e ∪
⋃

𝛼≠e

𝑈𝛼

We then ŕesh out the domains of complex types as richly as possible:

𝑁𝛼𝛽 ≔

{
the set of all partial functions from 𝑁𝛼 to 𝑁𝛽 if 𝛽 is e-kind

the set of all total functions from 𝑁𝛼 to 𝑁𝛽 if 𝛽 is t-kind

Step 2. Picking out ‘real’ entities. We now isolate some of 𝒩 ’s denizens as ‘real’.

Roughly, these should just be the denizens of 𝑀𝛼. However, that idea is too rough.

Where 𝛽 is t-kind, a function of type 𝛼𝛽 must be total; but the functions of 𝑀𝛼𝛽 will

not be total for 𝑁𝛼, since 𝑁𝛼 will contain entities not in 𝑀𝛼. We must make these

functions total.

To achieve this, we provide a recursive construction, simultaneously deőning

sets, 𝑅𝛼, for each type 𝛼 and a function, ★. Intuitively, 𝑅𝛼 comprises the ‘real’

entities of type 𝛼, and ★ provides a bĳection 𝑀𝛼 −→ 𝑅𝛼; this allows us to treat 𝑎★
as an ersatz for 𝑎 ∈ 𝑀.

We deőne 𝑅e ≔ 𝑀e and 𝑅t ≔ 𝑀t. Then, for each 𝑎 ∈ 𝑀e ∪ 𝑀t, we stipulate

that 𝑎★ ≔ 𝑎. For complex types: having deőned 𝑅𝛼, 𝑅𝛽, and ★ over the types 𝛼 and

𝛽, we will deőne 𝑎★ for each 𝑎 ∈ 𝑀𝛼𝛽 as a function with domain 𝑁𝛼, stipulating:

𝑎★(𝑥★) ≔ (𝑎(𝑥))★ if 𝑎(𝑥) is deőned

𝑎★(𝑦) crashes otherwise

As before (and throughout), to say that 𝑎★(𝑦) crashes is to say: 𝑎★(𝑦) is undeőned if

𝛽 is e-kind; and 𝑎★(𝑦) = f
𝒩
𝛽 if 𝛽 is t-kind. Finally, we deőne:

𝑅𝛼𝛽 ≔ {𝑎★ : 𝑎 ∈ 𝑀𝛼𝛽}

A routine induction conőrms that this is well-deőned and that, for each 𝛼, restricting

★ to 𝑀𝛼 is a bĳection 𝑀𝛼 −→ 𝑅𝛼.

Step 3. Non-logical constants. When C is a nonlogical ℒ-constant, we stipulate

C𝒩
≔ (Cℳ)★ if C is assigned in ℳ

C𝒩 crashes otherwise

We now turn to NAT’s non-logical constants. For each 𝛼, we stipulate:

real𝒩𝛼 (𝑎★) ≔ (𝑎 =
ℳ
𝛼 𝑎) if 𝑎★ ∈ 𝑅𝛼

real𝒩𝛼 (𝑏) ≔ f if 𝑏 ∈ 𝑁𝛼 \ 𝑅𝛼

We handle nominalization by stipulating, for each 𝛼 ≠ e:

nom𝒩
𝛼 (𝑎★) ≔ 𝜇𝛼(𝑎) if 𝑎★ ∈ 𝑅𝛼

nom𝒩
𝛼 (𝑏) crashes if 𝑏 ∈ 𝑁𝛼 \ 𝑅𝛼

For readability, in what follows, we write 𝑎 for nom𝒩
𝛼 (𝑎) if 𝑎 ∈ 𝑁𝛼 with 𝛼 ≠ e, and

also write 𝑎 as an alternative to 𝑎 when 𝑎 ∈ 𝑁e. To handle application, we stipulate
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that, for all 𝛼1 , . . . , 𝛼𝑛 , 𝛽:73

app𝒩𝑛 (𝑏, 𝑎1 , . . . , 𝑎𝑛) ≔ 𝑏(𝑎1 , . . . , 𝑎𝑛) if 𝑏 ∈ 𝑁𝛼1(...(𝛼𝑛𝛽)...), and each 𝑎𝑖 ∈ 𝑁𝛼𝑖 ,

and 𝑏 and each 𝑎𝑖 exist,

and 𝑏(𝑎1 , . . . , 𝑎𝑛) is deőned

app𝒩𝑛 (𝑑, 𝑐1 , . . . , 𝑐𝑛) crashes in all other cases

Step 4. Logical constants. It remains to interpret the logical constants. Since

𝑁t = 𝑀t, we retain the interpretations of sentential connectives, i.e.:

False𝒩
t

≔ Falseℳ
t

¬𝒩
≔ ¬ℳ ∨𝒩

≔ ∨ℳ ∧𝒩
≔ ∧ℳ →𝒩

≔ →ℳ

Concerning =, for each 𝛼, we stipulate that:

(𝑎★ =
𝒩
𝛼 𝑏★) ≔ (𝑎 =

ℳ
𝛼 𝑏) if 𝑎★, 𝑏★ ∈ 𝑅𝛼

(𝑎★ =
𝒩
e

𝑏★) ≔ (𝑎 =
ℳ
𝛼 𝑏) if 𝑎★, 𝑏★ ∈ 𝑅𝛼 and 𝛼 ≠ e

(𝑐 =𝒩
𝛼 𝑐) ≔ ¬ℳ(f) if 𝑐 ∈ 𝑁𝛼 \ 𝑅𝛼 and 𝛼 ≠ e

(𝑐 =𝒩
𝛼 𝑑) ≔ f in all other cases

We must handle Σ and Π more carefully (since we want to guarantee Fact 2, below).

For each 𝑎 ∈ 𝑀𝛼t, let 𝑎Σ be the function which arises by łrestrictingž 𝑎★ to real

inputs, i.e., let 𝑎Σ(𝑥) ≔ (real𝒩𝛼 (𝑥) ∧𝒩 𝑎★(𝑥)) for each 𝑥 ∈ 𝑁𝛼. Now stipulate:

Σ
𝒩
𝛼 (𝑎Σ) ≔ Σ

ℳ
𝛼 (𝑎) if 𝑎 ∈ 𝑀𝛼t

Σ
𝒩
𝛼 (𝑏) ≔ ¬ℳ(f) if 𝑏(𝑥) ∈ 𝑁des for some 𝑥 ∈ 𝑀𝛼, and 𝑏 ≠ 𝑎Σ for any 𝑎 ∈ 𝑀𝛼t

Σ
𝒩
𝛼 (𝑏) ≔ f in all other cases

Similarly, let 𝑎Π(𝑥) ≔ (real𝒩𝛼 (𝑥) →𝒩 𝑎★(𝑥)) for each 𝑥 ∈ 𝑁𝛼, and stipulate:

Π
𝒩
𝛼 (𝑎Π) ≔ Π

ℳ
𝛼 (𝑎) if 𝑎 ∈ 𝑀𝛼t

Π
𝒩
𝛼 (𝑏) ≔ ¬ℳ(f) if 𝑏(𝑥) ∈ 𝑁des for all 𝑥 ∈ 𝑀𝛼, and 𝑏 ≠ 𝑎Π for any 𝑎 ∈ 𝑀𝛼t

Π
𝒩
𝛼 (𝑏) ≔ f in all other cases

Finally, deőne each 𝜄𝒩𝛼 exactly as instructed by clause (6) of ğA.4. This completes the

construction of 𝒩 . It is easy to check that 𝒩 is a PFTT-structure, and it is standard

by construction.

Step 5. Conőrming Lemma 5. By construction, 𝒩 ⊨ NAT. This delivers Lemma

5.2. To secure Lemma 5.1, we őrst establish two facts:

Fact 1. If 𝑎, 𝑏 ∈ 𝑅𝛼𝛽 and 𝑎(𝑥) ≃ 𝑏(𝑥) for all 𝑥 ∈ 𝑅𝛼,74 then 𝑎 = 𝑏.

Fact 2. (Cℳ)★ ≃ (Cr)
𝒩 for each 𝑇-constant C, whether logical or non-logical.

73 Since app𝑛 is e-kind, this leaves a tiny amount of choice over implementation. Speciőcally,

suppose that app𝒩
2
(𝑑, 𝑥) should crash for all 𝑥: then we can either let app𝒩

2
(𝑑) be the trivial partial

function which crashes for every input, or let app𝒩
2
(𝑑) crash. For concreteness, choose the former.

74 i.e. either 𝑎(𝑥) = 𝑏(𝑥), or both 𝑎(𝑥) and 𝑏(𝑥) are undeőned.
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We constructed𝒩 to satisfy Fact 1; the non-logical cases of Fact 2 are given explicitly,

and the logical cases can be easily check, using Fact 1 in the case of identity.

Using these Facts, we can secure Lemma 5.1 as follows. Where 𝜎 is any variable

assignment on ℳ, let 𝜎★ be the assignment on 𝒩 given by 𝜎★(𝑥) = (𝜎(𝑥))★. Relying

on Facts 1 and 2, a routine induction shows that (Aℳ
𝜎 )★ ≃ (Ar)

𝒩
𝜎★ for each ℒ-wff A𝛼.

So, in particular, ℳ ⊨ At iff 𝒩 ⊨ Atr, for any ℒ-sentence At. This completes the

proof of Lemma 5 (and hence of the Conservativeness Theorem). □

D Richer conservative őctions

As mentioned in ğ4.3, we could have used a richer theory than NAT, and still

obtained a Conservativeness Theorem. For example, consider these three schemes:

(a)

∃

(app𝑛(𝑢
e , 𝑥e

1
, . . . , 𝑥e𝑛)) → ¬real(𝑢)

(b)

∃

(app𝑛(𝑢
𝛼1(𝛼2(...(𝛼𝑛t)...)) , 𝑥e

1
, . . . , 𝑥e𝑛)) → (∃𝑣𝛼1

1
𝑥1 = 𝑣1 ∧ . . . ∧ ∃𝑣𝛼𝑛

𝑛 𝑥𝑛 = 𝑣𝑛)

(c) (real(𝑢𝛼𝛽) ∧ real(𝑣𝛼𝛽) ∧ ∀𝑥𝛼(real(𝑥) → 𝑢(𝑥) ≃𝛽 𝑣(𝑥))) → 𝑢 =𝛼𝛽 𝑣

The őrst says that no real object applies to any objects; this is sensible, since real

objects are not nominalizations of higher-order entities. (The same principle pre-

vents anything from instantiating Socrates.) The second ensures that meaningful

applications really must keep track of the behaviour of higher-order entities. (The

same principle prevents Socrates from instantiating virtue(et)t.) The third says that

real entities which agree on all real inputs are identical (cf. Step 5 Fact 2, above).

All three schemes can be added to NAT, and the result would still be conservative:

this is immediate from our proof of the Conservativeness Theorem, since 𝒩 , as

constructed, satisőes these schemes.

But there is no need to stop just with principles which we can read off from

𝒩 ; we can also tweak the construction a little. For example: in constructing the

structure, we might decide to add őctitious entities, which enable us to ‘tag’ each

object which is the nominalization of some type 𝛼-entity with a label indicating that

this is so. To do this, we would need a formal theory of such tagsÐsome theory of

syntax would doÐand then we would add some scheme like:

(d) tag(𝑥e) =e ⌜𝛼⌝↔ ∃𝑣𝛼(real(𝑣) ∧ 𝑥 = 𝑣) all 𝛼 ≠ e.

We could then go on to formulate principles concerning the higher-order origins

of nominalizations, within the őctional object language.75 To ensure the result

is conservative, we just need to take suitable care in constructing 𝒩 ; but this is

straightforward, given what has come before, and we leave the details to enthusiastic

readers who want to put the őction to even greater work.

E Bridge-principles

As discussed in ğ7.2, we can also add bridge-principles conservatively. Let r𝑛 be

the type of an 𝑛-place őrst-level relation, i.e. e(. . . (et) . . .), with 𝑛-occurrences of

75 Cf. Hale and Linnebo’s (2020: 102ś3) schemes (Bridge-OC) and (5.1).
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‘e’. Then we can restate the deőnition of a bridge-principle, which we gave in ğ7.2,

to include a useful index, P:

Definition 6: A bridge-principle, P, for a theory 𝑇 is a wfft of this form:

(
real(𝑢

𝛼P
1

1
) ∧ . . . ∧ real(𝑢

𝛼P
𝑛

𝑛 )
)
→ Ar𝑛

P
(𝑢1 , . . . , 𝑢𝑛) =t B

𝛼P
1
(...(𝛼P

𝑛t)...)

P
(𝑢1 , . . . , 𝑢𝑛)

where AP and BP are 𝑇-constants and 𝛼P
𝑖
≠ e for some 1 ≤ 𝑖 ≤ 𝑛.

The intuitive idea behind conservative addition of bridge-principles is this: bridge-

principles which cannot conŕict with each other cannot disrupt𝑇u. Here is a precise

way to spell out the impossibility of conŕict:

Definition 7: Where Δ is a set of bridge-principles for 𝑇, say that Δ is 𝑇-friendly iff

𝑇 proves every grammatical instance of this scheme, for all P,Q ∈ Δ:

AP(𝑢
e

1
, . . . , 𝑢e𝑖 ) = AQ(𝑣

e

1
, . . . , 𝑣e𝑗 ) → BP(𝑢1 , . . . , 𝑢𝑖) = BQ(𝑣1 , . . . , 𝑣 𝑗)

Note that, for example, we allow instances where AP has type r𝑛 and 𝑖 < 𝑛; then

AP(𝑢
e

1
, . . . , 𝑢e

𝑖
) has type r𝑛−𝑖 .

The reader can conőrm that Deőnition 7 covers the intuitive cases of possible conŕict

which we raised in ğ7.2. We can now prove the following strengthening of our

original Conservativeness Theorem:

Bridged Conservativeness Theorem: Let 𝑇 be a PFTT theory in some signature,

ℒ, which is disjoint from NAT’s non-logical vocabulary. Let Δ be a set of 𝑇-friendly

bridge-principles. If 𝑇u ∪ Δ ⊢ Ar then 𝑇 ⊢ A, for any ℒ-sentence At.

The proof strategy is exactly as for the original Conservativeness Theorem in ğC: we

show how to ‘expand’ any model ℳ of 𝑇 into a model 𝒩 of 𝑇u ∪NAT∪Δ. The only

part of our original proof which needs adjustment is Step 2, where we deőne ★ and

the 𝑅𝛼s; these deőnitions must be tweaked, to ensure that 𝒩 ⊨ 𝒩 . The remainder

of this appendix spells out that tweak.

For each type which is not some r𝑛 , we deőne ★ and 𝑅𝛼 exactly as in Step 2 of

ğC. We provide special treatment, though, for the r𝑛s. For each 𝑖 ≤ 𝑛 ∈ N, each

𝑎 ∈ 𝑀r𝑛 , all 𝑥1 , . . . , 𝑥𝑛−𝑖 ∈ 𝑀e, and all 𝑦1 , . . . , 𝑦𝑖 , say:76

𝑎★(®𝑥, ®𝑦) ≔





𝑎(®𝑥, ®𝑦) if ®𝑦 ∈ 𝑀e (1)

Bℳ
P (®𝑧, ®𝑠) if P ∈ Δ, and 𝑦𝑘 = 𝜇𝛼𝑚−𝑖+𝑘

(𝑠𝑘) for all 1 ≤ 𝑘 ≤ 𝑖, and

𝑧1 , . . . , 𝑧𝑚−𝑖 ∈ 𝑀e, and 𝑎(®𝑥) = (Ar𝑚
P
)ℳ(®𝑧) (2)

f otherwise (3)

Then, as before, we deőne 𝑅r𝑛 ≔ {𝑎★ : 𝑎 ∈ 𝑀r𝑛 }.

76 We use ® to abbreviate lists, allowing context to indicate their length. So 𝑎★(®𝑥, ®𝑦) abbreviates
𝑎★(𝑥1 , . . . , 𝑥𝑛−𝑖 , 𝑦1 , . . . , 𝑦𝑖).
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We must conőrm that ★ is well-deőned. First, observe that clauses (1) and (2)

cannot conŕict. Assume clause (2) applies. Then 𝛼P
𝑚−𝑖+𝑘

≠ e for some 1 ≤ 𝑘 ≤ 𝑖 by

Deőnition 6, so that 𝑦𝑘 = 𝜇𝛼P
𝑚−𝑖+𝑘

(𝑠𝑘) ∉ 𝑀e, as the 𝑈𝛼s are disjoint (see Step 2 of ğC).

So clause (1) does not apply.

To complete the demonstration that ★ is well-deőned, it suffices to show that

clause (2) never causes conŕict. So suppose that 𝑎★(®𝑥, ®𝑦) is to be deőned using

clause (2) and two witnessing bridge-principles P,Q ∈ Δ. So we have ®𝑢, ®𝑣 ∈ 𝑀e,

and 𝑎(®𝑥) = (A
r𝑙

P
)ℳ(®𝑢) = (Ar𝑚

Q
)ℳ(®𝑣), and we are to assign both:

𝑎★(®𝑥, ®𝑦) ≔ Bℳ
P (®𝑢, ®𝑠) where 𝑦𝑘 = 𝜇𝛼P

𝑙−𝑖+𝑘
(𝑠𝑘) for all 1 ≤ 𝑘 ≤ 𝑖

𝑎★(®𝑥, ®𝑦) ≔ Bℳ
Q (®𝑣, ®𝑡) where 𝑦𝑘 = 𝜇

𝛼
Q
𝑚−𝑖+𝑘

(𝑡𝑘) for all 1 ≤ 𝑘 ≤ 𝑖

Since ℳ ⊨ 𝑇 and Δ is 𝑇-friendly, Bℳ
P (®𝑢) = Bℳ

Q (®𝑣). For each 1 ≤ 𝑘 ≤ 𝑖, we have:

𝑦𝑘 = 𝜇𝛼P
𝑙−𝑖+𝑘

(𝑠𝑘) = 𝜇
𝛼

Q
𝑚−𝑖+𝑘

(𝑡𝑘), so that 𝑠𝑘 = 𝑡𝑘 by the bĳectivity of the 𝑈𝛼s. Hence

Bℳ
P (®𝑢, ®𝑠) = Bℳ

Q (®𝑣, ®𝑡). This completes the proof that ★ is well-deőned.

We now check that ★, as redeőned, still possesses the key properties which we

invoked in Steps 3ś5 of ğC.

First: restricting★provides a bĳection 𝑀𝛼 −→ 𝑅𝛼. When 𝛼 = r𝑛 for some 𝑛, this

is immediate from clause (1); otherwise, this holds as in ğC.

Second: ★ is distributive, in that 𝑎★(𝑥★) = (𝑎(𝑥))★, whenever 𝑎(𝑥) is deőned. If

𝑎 ∉ 𝑀r𝑛 for any 𝑛, this holds by deőnition (see Step 2 of ğC); so it suffices to consider

𝑎 ∈ 𝑀r𝑛 and 𝑥 ∈ 𝑀e. Since then 𝑥★ = 𝑥, it suffices to show that 𝑎★(𝑥) = (𝑎(𝑥))★.

For readability, let 𝑏 = 𝑎(𝑥); we want to show that 𝑎★(𝑥, ®𝑦) = (𝑎★(𝑥))( ®𝑦) = 𝑏★( ®𝑦) for

all ®𝑦 ∈ 𝑁e. There are three cases to consider, corresponding to the three clauses we

used to deőne ★:

Case (1). We have some ®𝑦 ∈ 𝑀e such that that 𝑎★(𝑥, ®𝑦) = 𝑎(𝑥, ®𝑦) = 𝑏( ®𝑦); now also

𝑏★( ®𝑦) = 𝑏( ®𝑦) by clause (1).

Case (2). We have some P ∈ Δ and ®𝑧 ∈ 𝑀e such that, relabelling ®𝑦 as ®𝑢, ®𝑣 and where

each 𝑣𝑘 = 𝜇𝛼𝑚−𝑖+𝑘
(𝑠𝑘), we have 𝑎★(𝑥, ®𝑦) = 𝑎★(𝑥, ®𝑢, ®𝑣) = Bℳ

P (®𝑧, ®𝑠) and 𝑎(𝑥, ®𝑢) =

(Ar𝑚
P
)ℳ(®𝑧). Since 𝑏(®𝑢) = (Ar𝑚

P
)ℳ(®𝑧), now also 𝑏★( ®𝑦) = 𝑏★(®𝑢, ®𝑣) = Bℳ

P (®𝑧, ®𝑠) by

clause (2).

Case (3). Similarly, 𝑏★( ®𝑦) = 𝑏( ®𝑦) = f by clause (3).

This shows that★, as redeőned, still possesses the key properties which we invoked

in Steps 3ś5 of ğC. It follows, as before, that 𝒩 satisőes 𝑇u ∪ NAT.

It remains to show that 𝒩 ⊨ Δ. Fix any P ∈ Δ. Recalling that AP and BP are both

t-kind, as in Step 5 both (Aℳ
P )

★
= A𝒩

P and (Bℳ
P )

★
= B𝒩

P . Fix 𝑥1 ∈ 𝑅𝛼1
, . . . , 𝑥𝑛 ∈ 𝑅𝛼𝑛 ;

by the properties of ★, for each 1 ≤ 𝑖 ≤ 𝑛 there is some unique 𝑠𝑖 ∈ 𝑀𝛼𝑖 such that

𝑥𝑖 = (𝑠𝑖)★, and moreover 𝑥𝑖 = 𝜇𝛼𝑖 (𝑠𝑖). Now 𝒩 ⊨ P as:
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A𝒩
P (𝑥1 , . . . , 𝑥𝑛) = (Aℳ

P )
★
(𝜇𝛼1

(𝑠1), . . . , 𝜇𝛼𝑛 (𝑠𝑛))

= Bℳ
P (𝑠1 , . . . , 𝑠𝑛)

= (B𝒩
P (𝑠1 , . . . , 𝑠𝑛))★

= (Bℳ
P )

★
((𝑠1)★, . . . , (𝑠𝑛)★)

= B𝒩
P (𝑥1 , . . . , 𝑥𝑛)

The second equality invokes clause (2), letting 𝑚 = 𝑖 = 𝑛; the third equality is as in

Step 5; and the fourth equality uses ★’s distributivity.
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