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ARTICLE INFO ABSTRACT

Keywords: Background: Neoadjuvant chemoradiotherapy is a standard treatment for locally advanced rectal cancer, but
Rectal cancer acute diarrhoea remains a significant side effect, affecting the completion of chemoradiotherapy treatment.
Radiotherapy

Purpose: This study aimed to predict acute diarrhoea after neoadjuvant chemoradiotherapy for rectal cancer and
further develop a strategic tool to individualise rectal cancer treatment.

Materials and methods: The ARISTOTLE trial is a phase III trial comparing capecitabine chemo-radiotherapy
(CRT) versus capecitabine-irinotecan CRT as a pre-operative treatment for locally advanced rectal cancer. We
included 589 trial patients across 73 institutions. The volume of the Al-segmented small bowel receiving at least
10 Gy (V10gy) was used alongside the treatment arm, patient age, and performance status in a logistic regression
model to predict a more than 2-grade increase in acute diarrhoea toxicity from baseline (AG > 2). Finally, based
on the prediction, we identified a sub-cohort of patients for whom a viable dose decrease would result in a
reduction of toxicity, and conversely, we also identified individuals for whom adding irinotecan may not cause
toxicity.

Results: The average mean receiver operating characteristic curve (AUROC) for predicting AG > 2 is 0.71 [95 %
CI 0.58-0.82] on the independent test dataset. Based on the prediction, we identified 71 patients (14 %) who
could potentially benefit from irinotecan addition without a dose decrease to maintain AG < 2, and 77 patients
(15 %) who could potentially benefit from irinotecan addition but need a dose decrease to maintain AG < 2.
Conclusion: The multi-institutional cohort of 73 centres strengthens the reliability of these findings, demon-
strating the model’s potential as a strategic tool to individualise rectal cancer treatment while mitigating severe
diarrhoea.

Acute diarrhoea
Predictive model
Clinical application
Machine learning

Introduction

Acute diarrhoea is a common side effect of chemoradiotherapy (CRT)
for rectal cancer, occurring in 12-39 % of patients undergoing preop-
erative treatment [1-3]. It is caused by intestinal mucosal dysfunction,
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which leads to impairment of water absorption. Treatment-induced
inflammation may cause hyper-mobility and further impairment of in-
testinal function [4]. Failure to respond to medical management and
dietary measures may lead to an inability to complete chemo-
radiotherapy treatment and/or be associated with chronic diarrhoea.
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The establishment of intestinal radiation dose metrics correlating with
the risk of acute diarrhoea could direct further efforts to reduce the
incidence of this morbid side effect.

The impact of radiation dose on the small bowel and its predictive
power on acute diarrhoea has been explored in several studies [1,5-7]
using different patient cohorts and small bowel Vygy (volume that re-
ceives a radiation dose of x Gy or more). These studies emphasised the
significance of a low radiation dose to a high volume of the small bowel
as a predictor for acute diarrhoea in rectal cancer treatment. However,
the largest patient cohort among these studies consisted of only 203
individuals [7]. This relatively small sample size raises concerns about
the generalizability and robustness of the findings. To establish more
reliable and comprehensive guidelines for treatment planning, further
research involving larger patient cohorts and external validations is
required.

This study aims to predict acute diarrhoea grade increases from the
baseline scores to grades 2 and above (AG > 2) using a high-quality
clinical trial dataset. We used novel approaches to optimise this anal-
ysis including an Al-segmented small bowel contouring to reduce inter-
operator variability and using treatment scenario simulation to identify
per-patient radiotherapy and concurrent chemotherapy toxicity risk. To
the best of our knowledge, this has not been incorporated previously in
prediction modelling. These results may contribute to patient selection
efforts, allowing clinicians to tailor treatment plans based on individual
patient characteristics and predicted toxicity profiles.

Methods and materials
Patient cohort/imaging

This is an institutionally approved post-hoc analysis using data from
a phase III trial comparing standard versus novel CRT as the pre-
operative treatment for locally advanced rectal cancer (ARISTOTLE,
trial identification number: ISRCTN09351447) [8]. This multicentre (73
institutions), open-label trial, enrolled 589 patients between October
2011 and July 2018, randomly assigning (1:1) patients to pre-operative
3D conformal radiotherapy (RT) 45 Gy/25 fractions, combined with
either arm A (standard arm): capecitabine 900 mg/m? orally twice daily
on days of radiotherapy for five weeks or arm B (experimental arm):
irinotecan 60 mg/m? intravenously once weekly from week 1 to 4 only
with capecitabine 650 mg/m? orally twice daily on days of radiotherapy
for five weeks. The patient characteristics are listed in Table 1.

Of the 589 patients enrolled, 567 had acute diarrhoea toxicity grade
recorded based on Common Terminology Criteria for Adverse Events
(CTCAE) Version 4.02. A further 67 were excluded due to the following
reasons: 62 missing radiotherapy data, 4 received less than 50 % of the
planned dose radiotherapy dose (< 20 Gy), and 1 toxicity recording was
discontinued prematurely at week 2, indicating non-completion of the
treatment regimen. 500 patients recruited from 73 randomising sites
remained for the toxicity study.

All patients had assessments for diarrhoea recorded pre-
randomisation, pre-treatment, weekly during CRT (week 1-5), at week
6 (1 week after CRT), and week 10. The baseline acute toxicity was pre-
treatment diarrhoea.

Auto-segmentation for small bowel

The ARISTOTLE trial was conducted prior to the routine imple-
mentation of intensity-modulated radiotherapy (IMRT) and therefore
routine small bowel contouring was not mandated in the trial protocol.
We required dose-volume metrics of the small bowel for predictive
models. We therefore deployed an existing Al-based auto segmentation
tool, TotalSegmentator [9] to obtain the necessary small bowel con-
tours. The performance of TotalSegmentator on small bowel is shown in
Appendix A.
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Table 1
Patient and tumour characteristics. The percentage number represents the
fraction of patients within that category that possess a particular feature.

Variables Arm A (n = 250) Arm B (n = 250)
Median IQR Median IQR
Age (years) 61 53-67 60 53-68
Small bowel Vyggy (cc) 120.2 25.6-220.0 123.1 23.4-221.5
Number  Percentage Number  Percentage
Acute diarrhoea toxicity AG 31 12.4 % 94 37.6 %
>2
Sex
Female 78 31.2% 155 62.0 %
Male 172 68.8 % 95 38.0 %
T stage
T2 17 6.8 % 14 5.6 %
T3 194 77.6 % 187 74.8 %
T4 37 14.8 % 44 17.6 %
Unknown 2 0.8 % 5 2.0%
N stage
NO 72 28.8 % 44 17.6 %
N1 106 42.4 % 124 49.6 %
N2 70 28.0 % 75 30.0 %
N3 0 0.0 % 1 0.4 %
Unknown 2 0.8 % 6 2.4 %
Performance status
1 177 70.8 % 171 68.4 %
0 47 18.8 % 54 21.6 %
Unknown 26 10.4 % 25 10.0 %

Abbreviations: IQR: Interquartile range, T /N stage: MRI-defined tumour/node
stage based on 5th AJCC cancer staging manual. Performance status: Eastern
Cooperative Oncology Group (ECOG) performance status. 1 means patients are
fully active. 0 means patients are ambulatory.

cc: cubic centimetre.

Model evaluation procedure and evaluation metrics

The worst acute toxicity from weeks 1 to 10 was used to calculate the
treatment-caused grade increase from baseline, categorised dichoto-
mously between cases where AG > 2 and cases where AG < 2, which was
the prediction target in our study. Logistic regression was selected for
AG > 2 prediction due to its simplicity and easy interpretation. The
features used include age, ECOG performance, small bowel V10 and
arm.

We used a validation strategy (workflow illustrated in Appendix B.3)
to assess the performance of logistic regression in predicting AG > 2. The
500 patients were divided randomly into two groups: an independent
test dataset and an internal training dataset. First, institutions were
randomly selected to form an independent dataset, ensuring that the
patients from these institutions account for at least 10 % of the total
patient cohort. The remaining patients formed the internal dataset. The
internal dataset was used in 2000 bootstrapping. Each bootstrap sample
was generated by randomly selecting patients from the internal dataset
with replacement until the sample size matched that of the original in-
ternal dataset [10]. The model was trained on each bootstrap sample
and was tested on the independent dataset. This whole procedure was
repeated 1000 times with different independent datasets to assess lo-
gistic regression’s predictive performance across various patient pop-
ulations, enabling a full evaluation of each feature’s influence on the
probability of AG > 2, referred to as P(AG > 2). Model performance was
evaluated using AUROC, recall, specificity, and precision [11] for
bootstrapping samples and independent datasets. Results are summa-
rized as mean + 95 % confidence interval for AUROC, recall, specificity,
and precision. SHAP analysis [12] was adopted for model interpretation.

The details related to feature selection, handling data missingness,
data curation and outlier detection can also be found in Appendix B.
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Model-guided personalised treatment to reduce acute diarrhoea toxicity
risk and rationally select for systemic treatment intensification

We deployed the models to investigate two clinical scenarios:

1. Toxicity reduction:

(i) For a given patient receiving rectal CRT with a high predicted
toxicity risk, what reduction in the small bowel Vjog, would
reduce the P(AG > 2) < 0.5?

(ii) For patients from arm B (experimental arm) in the 1(i) scenario
where dose reduction is not feasible, does the removal of irino-
tecan make P(AG > 2) < 0.5?

2. Identifying patients from the standard arm (A) who could safely
receive additional irinotecan, without a toxicity penalty:

(i) For a given patient from arm A with a low predicted toxicity risk,
does the model predict that irinotecan could be added without
increasing the P(AG > 2) > 0.5?

(ii) For patients in the 2(i) scenario whose P(AG > 2) > 0.5 after the
addition of irinotecan, is there a feasible dose reduction in small
bowel Vyggy that would reduce P(AG > 2) < 0.5?

We used a per-patient analysis to evaluate these hypotheses. Given
the variability in model predictions when using different training
datasets, relying on a single model for clinical decision-making at this
stage poses limitations. To predict outcomes for an individual patient,
we employed a bootstrapping approach to generate a distribution of
predictions from models trained on different subsets of the patient
cohort. The patient of interest was initially excluded from the cohort,
and the remaining patients’ data were used for 5000 bootstrapping. We
generated a distribution of predicted probabilities for AG > 2 for each
held-out patient under the four clinical scenarios by training multiple
models on bootstrap datasets. A successful proposed alteration of the
treatment would satisfy two criteria: the average P(AG > 2) is reduced
below 0.5, as well as a statistically different distribution than the non-
altered treatment, as calculated from the Baumgartner-Weiss-Schindler
(BWS) test (p < 0.05) [13]. The Baumgartner-Weiss-Schindler test was
used because BWS is more robust to outliers and non-normal data.

Results
Model evaluation

The logistic regression showed consistent performance across
training (AUROC: 0.72, 95 % CI: 0.67-0.77) and independent datasets
(AUROC: 0.71, 95 % CI: 0.58-0.82) on average. The average recall and
specificity of the test sets are 0.66 and 0.68, respectively. The low
average precision (~0.40) indicated a high false-positive rate, primarily
in irinotecan-treated patients from arm B. Results are presented in
Table 2.

SHAP analysis and clinical interpretation

We adopted the SHAP analysis on 5000 fitted models (randomly
selected from 2,000,000 models in Section 2.3) to explain the contri-
bution of each feature to the model’s output. Fig. 1(a) illustrates the
relationship between each feature’s value and its corresponding SHAP

Table 2

Performance metrics for predicting A Grade > 2 of small bowel toxicity.
AUROC Precision Recall Specificity
Train
0.72(0.67-0.77) 0.39(0.33-0.45) 0.74(0.67-0.81) 0.61(0.56-0.67)
Test

0.71(0.58-0.82) 0.40(0.26-0.55) 0.66(0.43-0.86) 0.68(0.54-0.81)

For all metrics: Mean (95% confidence interval) across 2,000,000 models.
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value (representing the feature’s direct influence on the model predic-
tion) for 5000 models trained on different subsets of the cohort. The
plots illustrate the uncertainty of a feature’ influence on P(AG > 2),
indicated by the blue shade, while the red line represents the average
influence for a given feature across the 5000 models.

Fig. 1(b) summarises the average relationship between features and
their SHAP values in a beeswarm plot, enabling reliable clinical inter-
pretation of the overall trends in feature contributions to model pre-
dictions. The plot displays features in descending order of importance.
The treatment arm emerges as the strongest predictor, in keeping with
the expected adverse event profile of irinotecan. Better ECOG perfor-
mance status (negative SHAP values) correlates with a lower risk of AG
> 2, likely due to better bowel movement and water absorption asso-
ciated with increased physical activity. Age contributes, with older pa-
tients exhibiting higher SHAP values, indicating a greater risk of
toxicity. Lower small bowel Viogy values correspond to lower SHAP
values, suggesting that reducing small bowel radiation dose can mitigate
the risk of AG > 2.

Model-guided personalised treatment aiming to minimise acute diarrhoea
toxicity risk

We present model-guided personalized treatment for four patients,
two for each clinical scenario defined in section 2.4. This individual
patient analysis is followed by an investigation of cohort-level statistics
to gain a broader understanding of the treatment effects and potential
for toxicity reduction across the entire study population.

Fig. 2(a) presents two patients assigned to arm B who experienced
AG > 2. The boxplot in Fig. 2(a) suggests that reducing patient A’s Vyogy
by 52 % (from 296 cc to 141 cc) could potentially shift the model’s
prediction from AG > 2 to AG < 2. In contrast, for patient B, the model
predicts a high P(AG > 2) even with a hypothetical Vyogy of 0 cc, indi-
cating that reducing Vocy alone may be insufficient to manage toxicity
risk for this patient. However, the removal of irinotecan from the
treatment plan could allow for AG < 2 in patient B.

Fig. 2(b) presents two patients assigned to arm A who exhibited AG
< 2. We explored the possibility of benefiting from the addition of iri-
notecan (arm B) by changing their arm label to arm B and investigating
the effect of reducing the small bowel Viogy to maintain AG < 2. The
boxplot in Fig. 2(b) reveals that when patient C’s V1qgy is reduced below
130 cc (25 %), switching the treatment strategy to include irinotecan is
not predicted to change the toxicity outcome label. In contrast, for pa-
tient D, the model predicts a high P(AG > 2), with the hypothetical
treatment strategy switch to Arm B, even with a Viogy of O cc. This
suggests that reducing Viocy alone may be insufficient to manage the
toxicity risk for patient D due to the influence of other contributing
factors.

We applied model-guided personalized treatment for all 500 pa-
tients. Fig. 3 illustrates the proportion of patients experiencing changes
in the predicted P(AG > 2) based on two potential interventions:
reducing the small bowel V;ogy and/or modifying the treatment strategy
by adding/removing irinotecan.

Table 3 summarizes the predictive features for two groups of patients
based on the predicted probabilities from bootstrapped models: 1)
cohort of patients who can potentially benefit from the addition of iri-
notecan without an increase in bowel toxicity and 2) patients for whom
using irinotecan would lead to AG > 2, regardless of the radiation
adaptation strategy. The patients who can potentially benefit from iri-
notecan are predominantly performance status 1, younger, and have
lower small bowel Viogy values.

Among the 500 patients, we identified 71 patients (14.2 %) who
could potentially receive additional without the need for bowel radia-
tion dose decrease to maintain P(AG > 2) < 0.5. 77 patients (15.4 %) can
potentially change their predicted toxicity label from 1 to 0 by reducing
the small bowel Viqgy. Of these 77 patients, 55 (11 %) require a Viogy
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Fig. 1. Model interpretation based on SHAP values. A) The dependence plots illustrate the relationship between a feature’s value and its corresponding SHAP value,
based on the results from 5000 models trained on various datasets. The inset histograms (grey areas) just above the x-axis display the distribution of raw feature
values. The mean SHAP values (red dots) and its 95 % CI (blue shade) of a feature for each patient are shown here versus raw feature values. The green horizontal line
in each plot represents a SHAP value of 0, indicating no influence on the model’s predictions relative to the average prediction. The further a SHAP value lies from
zero, the more strongly that feature influences the model’s prediction: positive values push the predicted risk upward, whereas negative values pull it downward. B)
The beeswarm plot visualises the SHAP values for each feature, with individual dots representing patients from the dataset. The colour gradient encodes the raw
feature values, with red dots indicating relatively higher values and blue dots representing relatively lower values. The horizontal position of a dot along the x-axis
signifies the magnitude and direction of the feature’s influence on the model’s output. Dots to the right of the origin (x = 0) have positive SHAP values, indicating
features that increase the predicted risk of the outcome, while dots to the left of the origin have negative SHAP values, corresponding to features that decrease the
predicted risk. The vertical stacking of dots with identical SHAP values enables the visualisation of density and distribution within the dataset. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Two clinical scenarios for model-guided application. A) The boxplot illustrates the distribution of predicted probabilities for patients assigned to arm B,

Predicted probability of toxicity (AGrade=2)

Predicted probability of toxicity (AGrade=2)
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considering both their original Vy¢gy values, reduced Vigy scenarios and removal of irinotecan. The red line at 0.5 represents the classification threshold separating
the two prediction classes. The patient highlighted in green exemplifies a case where a reduction in V;ogy successfully lowers the predicted P(AG > 2) to below 50 %.
In contrast, the patient marked in red cannot achieve AG < 2 by reducing V;gy alone, even when reduced to zero. However, the removal of irinotecan from the
treatment plan would allow this patient to achieve AG < 2. B) The boxplot shows the distribution of predicted probabilities of experiencing A G > 2 for the patients
who were assigned to arm A, under three scenarios: 1) their original arm and their original small bowel Viogy, 2) a hypothetical switch to arm B (including iri-
notecan) and their original Viogy, and 3) a hypothetical switch to arm B with the reduced Vogy value. The red line at 0.5 serves as the classification threshold that
separates the two prediction classes. The patient highlighted in green is identified by our model as potentially benefiting from a switched treatment strategy (from
arm A to arm B) with a reduction in V;ogy to maintain A G < 2 while potentially enhancing tumour control through the addition of irinotecan. Conversely, the patient
marked in red cannot achieve A G < 2 by reducing Vyogy with a switched treatment strategy, according to the model’s predictions. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.)



Y. Zhang et al.

Vi0ey Reduction

Toxicity Reduction

ArmiA

benefit from irinotecan

Identify patients who can

+lrinotecan

D Predicted probability of AG2 20.5

Radiotherapy and Oncology 210 (2025) 111032

-Irinotecan

> (7'8%’*,//—

Vi06y Reduction
:l Predicted probability of AG2 <0.5

Fig. 3. Sankey diagram to show the proportion of predicted probability changes corresponding to small bowel V1o, reduction and/or treatment strategy changes.
The red boxes indicate the cases whose predicted P(AG > 2) > 0.5 and green boxes indicate the cases whose predicted P(AG > 2) < 0.5. Patients who can potentially
benefit from Irinotecan with AG < 2 are marked by *. Patients who use irinotecan would lead to AG > 2 are marked by t. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Comparison of features for patients who can benefit from Irinotecan with AG < 2
and who cannot.

With irinotecan With irinotecan Statistics (p

<0.5() > 0.5() value)
Proportion of fully active =~ 95.9 58.8 ¥? square
patient in the sub- test: <0.001

cohort (%)
Median (IQR)

Age(years) 51(42-55) 64(60-69.25) t-test: <0.001

Small bowel Vogy (cc) 47.2(11.9-90.6) 125.2 t-test: <0.001
(with modified value) (24.1-222.9)

Original small bowel 116.7 125.2 t-test: 0.55
Viogy (c€) (31.8-217.6) (24.1-222.9)

Patient number 148 352

*represents patients who can potentially benefit from the Irinotecan with AG < 2
and 1 represents patients using irinotecan would lead to AG > 2 based on the
predicted probabilities of AG2 from bootstrapped models. The markers corre-
spond to the makers in Fig. 3.

reduction up to 85 % of their original Vigy, which is the average bowel
Viogy achievable when transitioning from Intensity-modulated radiation
therapy (IMRT) to proton therapy, as reported by Berman et al. [14]. 23
(4.6 %) of these patients need a reduction factor below 50 %, which is
the median small bowel V1ogy reduction attainable when switching from
IMRT or Three-dimensional conformal radiation therapy (3DCRT) to
proton therapy, as indicated by Colaco et al. [15]. The feasible reduction
ratio from proton to photon therapy is highly dependent on the relative
positions of the tumour and small bowel, necessitating individual vali-
dation of feasibility.

Discussion

This study presents the influence of predictive features on treatment-
related acute diarrhoea and models’ accuracy for AG > 2 based on the
largest patient cohort as part of a prospective multicentre randomised
trial. This larger cohort enhances the reliability of our predictive find-
ings compared to previous studies. We also proposed a strategy to utilise

the predictive models in guiding individualised radiotherapy plans,
specifically focusing on minimising small bowel toxicity.

Challenges in model development using clinical data

Although an AUROC of 0.71 (95 % CI: 0.60-0.82) on the external
dataset represents acceptable performance, it still offers only moderate
accuracy for decision-support in routine practice. To further improve the
model, we identified several challenges:

1 Human variability in contour delineation. The cases presented in
Appendix A highlighted the challenges associated with manual con-
touring and underscored the utility of using automated segmentation
tools for incorporating large datasets from various institutions into
predictive models. We used the TotalSegmentator [9] to segment the
small bowel in CT images to minimise inter-operator variability and
account for the lack of contours. The inclusion of a diverse patient
population, facilitated by the application of the TotalSegmentator,
enhanced the robustness and reliability of our study’s conclusions.

2 Lack of comprehensive clinical data for predictive models. The
clinical-trial report is still unpublished. Our current dataset lacked
detailed records on the administration of anti-diarrheal treatments to
individual patients. According to the trial protocol, loperamide was
recommended as a preventive treatment for diarrhoea. However, crucial
details regarding loperamide administration, such as dosage and fre-
quency, were not collected. Furthermore, for patients in arm B, who
received irinotecan, a chemotherapeutic agent known to cause diar-
rhoea, it remained unclear whether additional anti-diarrheal measures
were employed. Therefore, the toxicity grades in our dataset likely
represent symptoms after mitigation. Patients who would have met
criteria for grade-2 diarrhoea but achieved prompt relief through
loperamide, bulking agents, or diet modification may have been recor-
ded as lower-grade events, introducing outcome-label noise. This is
consistent with the high false-positive rate observed in Arm B (Section
3.2). If clinicians were aware of the elevated risk of AG > 2 in these
patients and proactively implemented effective anti-diarrhoea treatment
to mitigate small bowel toxicity [16], the model may have picked up
patterns related to this management, contributing to the higher false-
positive rate. This information gap is significant as the approach to
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managing diarrhoea can substantially influence the outcome of acute
toxicity. Several other factors known to affect the severity of diarrhoea
were not captured in our dataset, including specific dietary modifica-
tions, genetic predispositions, the presence of diabetes, smoking habits,
and the composition of the intestinal microbiota [17-20]. The devel-
opment of accurate predictive models heavily relies on the availability
of comprehensive and well-documented patient data. This necessitates
the implementation of a meticulous recording system that requires in-
puts from multiple sources, including not only clinicians but also pa-
tients themselves.

3 Development of model interpretation tools. In this study, we employed
a well-defined logistic regression model. However, the individual co-
efficients do not capture the interactions between variables. SHAP
values provide a comprehensive measure of each feature’s importance,
accounting for both its individual effect and its synergistic or antago-
nistic relationships with other variables, ensuring a fair attribution of
the model’s output to each feature. Having a transparent model inter-
pretation tool, such as SHAP, not only provides deeper insights into the
model’s decision-making process but also builds trust among clinicians
and researchers, enabling them to make informed decisions based on the
model’s predictions.

Clinical application

In this study, the model was evaluated using an independent test set
derived from the same multicentre clinical trial. Although both the
training and test data originated from the same trial, the test cases were
from different medical centres than those used for training. This pro-
vides a degree of external validity for the treatment regimen being
studied. In future work, we aim to further validate the model using
cohorts from additional institutions to strengthen its generalisability.
We also plan to investigate alternative treatment strategies, such as
intravenous 5-fluorouracil (5-FU), a commonly used alternative to oral
capecitabine in rectal cancer chemoradiotherapy, to examine whether
the observed dose-toxicity patterns and SHAP-based explanations
remain consistent across different treatment protocols and clinical
settings.

Previous studies have shown consistently that a low radiation dose to
a large volume of the small bowel is predictive of acute diarrhoea in
patients undergoing rectal cancer treatment and the correlation between
dose-volume metrics at different dose levels, for example, Viggy and
Visgy, is high [1,5,7]. In this study, we selected Vyocy build the model,
whilst Vy56y, being the commonly clinically accepted parameter [21] for
interventions to minimise toxicity because proton therapy offers a sig-
nificant difference at the 10 Gy dose levels, compared with 3D
conformal radiotherapy/IMRT due to the dosimetric properties of pro-
ton beams [22].

Intensity-modulated proton therapy has shown its advantages in
minimizing the dose to normal tissues [12,23,24], exploiting the steep
falloff of the Bragg peak. However, it is important to note that proton
therapy comes with higher initial costs compared to photon therapy
[25]. Our model permits the identification of patients who could
potentially see a greater benefit from proton therapy, based on their
likelihood of experiencing reduced toxicity from a lower Viogy. This
method of selection approach could serve as a validation of our pre-
dictive model and potentially offer a more personalized and effective
treatment option for patients at high risk of treatment-induced toxicity,
while also considering the cost-benefit aspect of employing proton
therapy over traditional photon therapy.

The missing information related to acute diarrhoea, along with
variability in the training data, contributes to the variability observed in
our model’s predictions. Enhancing the model with additional relevant
parameters will be explored in the future for further development and
clinic use.
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Conclusion

We demonstrated prediction models for the development of acute
diarrhoea toxicity due to chemoradiotherapy in the treatment of rectal
cancer. We proposed using the models’ predictions to inform clinical
decisions, specifically in the context of individualising radiotherapy
planning. By identifying patients at higher risk of experiencing signifi-
cantly increased toxicity, this per-patient analysis we proposed can
guide adjustments to treatment plans to minimise this risk. Our
approach demonstrated the potential to understand treatment outcomes
and personalise patient care.
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