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ABSTRACT

The applicationof Tikhonov regularisation to the least squares (LS) prob-
lem arises frequently in machine learning, for example, in regression
and the calculation of the excess risk (out-of-sample prediction error)
from a given set of noisy observations. It requires the minimisation
with respect to x of a function f (x, λ), where λ is the regularisation
parameter. If λ ≥ 0, there exists an optimal value λopt of λ such that
the vector x(λopt) that minimises f (x, λ) is numerically stable and its
error with respect to x(0) is small. It has been claimed that λopt may be
negative, and the aim of this article is the analysis of the consequences
of this condition. It is shown theoretically that the condition λ < 0 yields
a family of solutions x(λ), each of whose members has a large error
and is unstable. Furthermore, the L-curve, which is a method for the
calculation of the value of λopt, yields a good result for λ ≥ 0, and it also
shows that λ < 0 yields unsatisfactory solutions. The L-curve implies,
therefore, that λopt ≥ 0, which is in accord with the theoretical analysis.
Examples of LS problems that consider λ < 0 and λ ≥ 0 are shown, and
the unsatisfactory results for λ < 0 are evident.
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1. Introduction

It has been observed experimentally that overparameterised models in deep learning, that

is, models for which n ≪ p, where n is the number of data points and p is the number

of predictors, that interpolate training data generalise well on new data, with little or no

regularisation. This result is counter to classical theory, which suggests thatmodels that overfit

training data require significant regularisation for them to generalise on new data. There has

therefore been research to understand this result and it is motivated by the many practical

problems in which the condition n ≪ p arises, for example, variable selection in statistics,

chemometrics and genomics.

Regularisation is used in statistics to reduce the complexity of a model in order that

it has good generalisation properties, that is, it yields good results on new data. Variable

selection is an example of this reduction in complexity because it allows the determination

of the features that have the greatest effect on the response variable (Buccini et al. 2023;

Koukoudakis et al. 2025; Winkler et al. 2022). Also, regularisation allows the computation of
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a stable solution of an ill conditioned set of linear algebraic equations, which arises in inverse

problems.

Regularisation is applied to the least squares (LS) problem by the addition of a constraint

on the norm of the solution x of the unconstrained LS problem, such that it is required to

minimise the function f (x, λ) with respect to x,

f (x, λ) = ‖Ax − b‖2 + λ ‖x‖2 , A ∈ R
n×p, (1)

where ‖·‖ = ‖·‖2, rankA = min(n, p) and λ is the regularisation parameter. The vector x(λ)

that minimises f (x, λ) is

x(λ) = arg min
x∈Rp

f (x, λ) =
(

ATA + λIp
)−1

ATb, (2)

where Ip is the identity matrix of order p. The stationary points of f (x, λ) are defined by the

value of λ:

• If n ≥ p and λ > −σ 2
s = −σ 2

p , where σi, i = 1, . . . , s = min(n, p), are the singular values of

A, arranged in non-increasing order, then x(λ) is the global minimum of f (x, λ) because

ATA + λIp is positive definite. If n < p, the expression (2) is written in a slightly different

form because ATA is singular, and this modified form shows that x(λ) is the global

minimum of f (x, λ) if λ > −σ 2
s = −σ 2

n , λ �= 0.

• If −σ 2
1 ≤ λ ≤ −σ 2

s , then xT(ATA + λIp)x may be less than zero, equal to zero, or greater

than zero, depending on the formof x, and thusATA + λIp is indefinite. Also, ‖x(λ)‖ → ∞
as λ → −σ 2

i , i = 1, . . . , s, because ATA + λIp is singular.

• If λ < −σ 2
1 , then x(λ) is the global maximum of f (x, λ) because ATA + λIp is negative

definite.

The second and third points are inconsistent with the minimisation function in (2).

A spiked covariance model is used in (Kobak et al. 2020) to analyse microarray data of

p = 3116 genes in n = 64 rats. It is claimed the optimal value λopt of λ may be negative if p

is much larger than n, where λopt is the value of λ such that
∥

∥Ax(λopt) − b
∥

∥ and
∥

∥x(λopt)
∥

∥

areminimised approximately. The objective of this article is consideration of the properties of

x(λ) for λ < 0 and it is shown that λ < 0 yields a family of solutions x(λ) that have undesirable

properties, such that a solution x(λ) for λ < 0 cannot be considered:

• The solutions x(λ) for λ < 0 are unstable with respect to a perturbation in b, but x(λopt) is

stable with respect to a perturbation in b, where λopt ≥ 0 is the optimal value of λ.

• The error ‖x(λ) − x(0)‖/‖x(0)‖ and residual ‖Ax(λ) − b‖/‖b‖ for λ < 0 aremuch greater

than their values for λ ≥ 0. Furthermore, these error measures increase monotonically to

their maximum value of one as λ > 0 increases. Their properties for λ < 0 are significantly

different because they have many local minima and they are unbounded as λ → −σ 2
i , i =

1, . . . , s.

• The L-curve is a parametric plot of log10 ‖Ax(λ) − b‖ against log10 ‖x(λ)‖ that allows

the value of λopt to be calculated (Hansen 1998, §4.6). If λ > 0 and the LS problem is ill

conditioned, then λopt is the value of λ in the corner of the L, but the curve has a very

different form if λ < 0, fromwhich it is clear there does not exist an optimal value of λ that

is negative.
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The main claim of this article follows from these three points, specifically, λ < 0 cannot be

considered because it yields solutions x(λ) that are computationally unreliable. The optimal

value of λ achieves a balance between the fidelity of the model and the suppression of the

effects of noise in the data, and it is shown that this balance requires λ ≥ 0. The conclusion of

this article is achieved by error analysis and refined condition estimation of the LS problem,

and examples of overdetermined and underdetermined LS problems that demonstrate the

theory are shown.

Section 2 reviews work in which the consequences of a negative value of λ are analysed,

and regularisation is considered in Section 3. The numerical stability of x(λ) with respect

to a perturbation in b, and the error and residual of x(λ), are considered in Sections 4

and 5 respectively. These sections include an example of regression using exponential basis

functions and the results show that x(λ) is unstable and has a large error if λ < 0, which must

be compared with the results for x(λopt), λopt ≥ 0, which is stable and has a small error. The

L-curve, which is a method for calculating the value of λopt, is discussed in Section 6 and it is

shown that the results are consistent with the results in Sections 3, 4 and 5 because the form

of the L-curve shows that λ cannot be negative, and that λ, and therefore λopt, must be greater

than or equal to zero. Refined condition estimation and error analysis are used in Section 7 to

analyse the simulation in (Kobak et al. 2020, § 2). The solution x(0) of the LS problem for this

data is stable, which differs from the solution of the LS problem for the example of regression

in Sections 4, 5, and 6, which is unstable. The article is summarised in Section 8.

2. Related work

The literature on regularisation for λ > 0 is extensive, but there has been much less consid-

eration of the properties of x(λ) for λ < 0. The first work in machine learning that considers

λ < 0 is (Kobak et al. 2020), and more detailed consideration of this condition is in (LeJeune

et al. 2024, §6.2; Patil, Du, and Tibshirani 2024, pp. 24–26; Tsigler and Bartlett 2023, §8; Wu

and Xu 2020, §5). These papers consider linear regression,

aTi θ = bi + ǫi, i = 1, . . . , n, (3)

where the entries of each feature vector ai ∈ R
p are independent and identically distributed

random variables with zero mean, ǫi ∈ R is a noise sample whose mean is zero, bi ∈ R is the

corresponding response variable and θ ∈ R
p is the parameter vector. The determination of

the properties of the excess risk of a new data sample (ã, b̃), where ã ∈ R
p and b̃ ∈ R, for

overparameterised models is the focus of much research because, as noted in Section 1, these

models interpolate training data and yield excellent results on new data with little or no

regularisation, which is inconsistent with established knowledge.

The application of random projections to overparameterised systems is considered in

(LeJeune et al. 2024, §6.2), and the condition that leads to λ < 0 is considered. The properties

of λopt and the excess risk when the distributions of the training data and test data differ

are considered in (Patil, Du, and Tibshirani 2024, Thm. 4) and it is shown that λopt may be

negative in an overparameterised system if covariate shift (a change in the distribution of the

training data and the new data) occurs. Also, the differences between positive and negative

regularisation parameters for underdetermined and overdetermined LS problems are shown

geometrically in (Patil, Du, and Tibshirani 2024, pp. 24-26). Sufficient conditions for λopt < 0

to hold are established in (Tsigler and Bartlett 2023, §8) from the upper bound of the excess
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risk for some negative values of λ. The effect of noise onmodels derived from linear regression

is considered in (Ullah andWelsh 2024, p. 14 and §3.6) and it is claimed that a negative value

of λ may reduce shrinkage, that is, the effects of sampling variation, due to noise.

The excess risk of θ(λ) for the generalised ridge regression,

θ(λ) =
(

ATA + λ�w

)−1
ATb, (4)

where �w is a positive definite weighting matrix, is considered in (Wu and Xu 2020, §5). The

conditions that define the sign of λopt, based on the covariance matrix of A and the prior on

the covariance matrix of the true coefficients of the predictors, in the limit p/n → γ ∈ (1,∞)

are derived. Also, a negative value of λ has been used in linearmodels in climatology (Cannon

2009) and in the calculation of estimators for variable selection (Hua and Gunst 1983).

3. Regularisation

Regularisation is a method for the computation of an approximate and stable solution of

an ill conditioned problem by the formation of a neighbouring well conditioned problem,

such that the error in this approximate solution with respect to the exact solution of the

ill conditioned problem is small. Regularisation is applied to ill conditioned problems that

include the calculation of the joint angles of a robot when it loses one or more degrees of

freedom (Berthet-Rayne et al. 2018), the computation of the solution of fractional diffusion

equations (Djennadi, Shawagfeh, and Arqub 2021a, 2021b; Djennadi et al. 2021) and the

restoration of a blurred image to its exact form (Hansen, Nagy, and O’Leary 2006). The well

conditioned problem is formed by the addition of a penalty whose effect is the inclusion of a

property in the approximate solution that the theoretically exact solution must satisfy.

The application of regularisation to the LS problem yields (1) and the vector x(λ) that

minimises f (x, λ) is stated in (2), where the regularisation parameter λ controls the severity

with which the constraint on ‖x(λ)‖ is imposed. The value λ = 0 yields the LS problem,

‖x(λ)‖ → 0 as λ → ∞, and the L-curve, which is considered in Section 6, is a method for

the computation of the optimal value of λ. The expression for x(λ) in (2) is not valid for λ = 0

if n < p because ATA is singular. It must therefore be written in a different form, and this is

considered in Lemma 1.

Lemma 1. If ATA + λIp and AA
T + λIn are non-singular, then

(ATA + λIp)
−1AT ≡ AT(AAT + λIn)

−1, (5)

where λ �= 0 if A is strictly rectangular.

It follows from (5) and the singular value decomposition (SVD) U�VT of A that (2) can

be written as

x(λ) =
{

(

ATA + λIp
)−1

ATb = V
(

�T� + λIp
)−1

�TUTb, n ≥ p,

AT
(

AAT + λIn
)−1

b = V�T
(

��T + λIn
)−1

UTb, n < p,
(6)

and the forms on the right hand side of this equation are used in the sequel.

It is stated above that x(λopt) is an acceptable approximation to x(0) if the regularisation

error is small, and x(λopt) must be stable with respect to a perturbation in b. This leads to the

premise on which regularisation is based:
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Figure 1. The LS problem P whose solution x(0) is unstable and the neighbouring problem P∗ whose
solution x(λopt) is stable and regularisation error is small.

There is a trade-off between the regularisation error and the stability of the regularised

solution x(λopt): The solution x(λopt) is accepted because (i) its error with respect to x(0) is

small, and (ii) it is stable, and much more stable than x(0).

This trade-off between the regularisation error and the stability of the regularised solution

is shown in Figure 1. The figure shows the problemP , which is the LS problemwhose solution

x(0) is unstable, and the neighbouring problemP∗ whose solution x(λopt) is stable and a very
good approximation to x(0). This trade-off is acceptable, that is, the regularisation error is

small and x(λopt) is stable with respect to a perturbation in b, if the discrete Picard condition,

which is a condition on the rate of decay of the singular values ofA, is satisfied (Hansen 1998,

p. 82). This condition requires that

|ci|
σi

→ 0 as i → s = min(n, p), c = {ci}ni=1 = UTb, (7)

and it is shown in Section 4 that it can be derived from a refined condition number of the LS

problem. If (7) is satisfied, there exists an optimal value λopt of λ such that regularisation yields

a stable solution x(λopt) whose error is small (Winkler and Mitrouli 2020). If, however, (7) is

not satisfied, regularisation yields an unacceptable solution because the regularisation error is

large for all values of λ > 0. The properties of x(λopt)with respect to condition estimation and

overfitting for λ ≥ 0 are considered in (Winkler 2024), but the properties of x(λ) for λ < 0 are

significantly different and they are considered in Section 3.1.

The application of regularisation requires that (7) be satisfied by the theoretically exact

solution x(0), but it is not satisfied in the presence of noise δb = Uδc. The solution of the LS

problem in the presence of noise is x(0) + δx(0) and it is shown in (Winkler and Mitrouli

2020, Fig. 5) that if x(0) satisfies (7), then

s
∑

i=1

|ci + δci|
σi

≈
|δcs|
σs

and x(0) + δx(0) ≈
( |δcs|

σs

)

vs, (8)

in the presence of noise, where vs is the sth column of V and s = min(n, p). It follows that the

solution of the LS problem in the presence of noise is dominated by the noise and the small

singular values of A, and it is concluded that:
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• The theoretically exact solution x(0) is dominated by the large singular values of A if (7) is

satisfied.

• If x(0) satisfies (7), then the perturbed solution x(0) + δx(0) is dominated by the small

singular values of A.

• Regularisation removes the components of x(0) + δx(0) that are associated with the small

singular values ofA, such that it is dominated by the large singular values ofA, which yields

a small regularisation error.

3.1. Properties of x(λ) for λ < 0

It is stated in Section 1 that x(λ) is the unique minimum of f (x, λ) if λ > 0, but f (x, λ) may

not possess a minimum if λ < 0. This section considers the properties of x(λ) as λ assumes

different values, which allows the nature of the stationary point(s) of f (x, λ) to be analysed.

Example 1. Consider the matrix A and the diagonal matrix � of its singular values,

A =

⎡

⎣

−2 1

3 −2

−4 −3

⎤

⎦ , ATA =
[

29 4

4 14

]

, � =

⎡

⎣

σ1 0

0 σ2
0 0

⎤

⎦=

⎡

⎣

√
30 0

0
√
13

0 0

⎤

⎦ .

Figure 2 shows the surface h(x, λ) for six values of λ,

h(x, λ) = xT
(

ATA + λI2
)

x = zT
(

�T� + λI2
)

z, z = VTx, x =
[

x1 x2
]T

. (9)

1. If λ = −σ 2
1 = −30, then ATA + λI2 is negative semidefinite and the maximum value of

h(x, λ) is zero. This value occurs at all points r = α[x1 x2]T = α[4 1]T , where α is an

arbitrary constant and (ATA − 30I2)r = 0.

2. If λ = −σ 2
2 = −13, then ATA + λI2 is positive semidefinite and the minimum value of

h(x, λ) is zero. This value occurs at all points r = α[x1 x2]T = α[1 − 4]T , where α is an

arbitrary constant and (ATA − 13I2)r = 0.

3. The surface h(x, λ) has a saddle point for λ = −20 and λ = −25.

Example 1 shows that f (x, λ) does not necessarily have a minimum if λ < 0 and thus this

condition in (1) requires further consideration. The differences between the properties of x(λ)

for λ ≥ 0 and λ < 0 show that the stability of x(λ) and the regularisation error for λ < 0, that

is, the fundamental properties of x(λ) to be considered when regularisation is applied, must

be addressed. These topics are considered in Sections 4 and 5, respectively.

3.2. The filters fi(λ)

This section introduces filters fi(λ), i = 1, . . . , s = min(n, p), in which x(λ) can be expressed

and it is shown they define the stability and error of x(λ).

It follows from (6) and the SVD of A that x(λ) can be written as

x(λ) =
s
∑

i=1

(

σ 2
i

σ 2
i + λ

)(

ci

σi

)

vi =
s
∑

i=1

(

fi(λ)

(

ci

σi

))

vi, (10)
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Figure 2. The surface (9) for −40 ≤ x1 ≤ 40, −20 ≤ x2 ≤ 20 and λ = 25, 5, −20, −25, −30, −50, for
Example 1.

where vi is the ith column of V , the right singular matrix of A from its SVD, and

fi(λ) =
σ 2
i

σ 2
i + λ

, i = 1, . . . , s, (11)

is a filter that removes the coefficient ci/σi from x(λ) if λ > 0, and more coefficients, and

therefore more singular values, are removed as λ increases because fi(λ) is a monotonically

decreasing function and fi(λ) > 0. The properties of fi(λ) for λ < 0 are different because it is

infinite at λ = −σ 2
i , it is positive for λ > −σ 2

i , and it is negative for λ < −σ 2
i . It follows that

the condition λ < 0 may amplify some or all of the components of x(λ), and it is shown in

Section 4 it may lead to a decrease in the stability of x(0), which is undesirable. The error

and stability of x(λ) require that bounds on the minimum and maximum eigenvalues of the

product of symmetric positive definite matrices be considered, and they are established in

Theorem 1.

Theorem 1. Let P andQ be symmetric positive definite matrices and letμ(P),μ(Q) andμ(PQ)

be the set of eigenvalues of P, Q and PQ, respectively. Bounds on the minimum and maximum

eigenvalues of PQ are

μmin(PQ) ≥ μmin(P)μmin(Q) and μmax(PQ) ≤ μmax(P)μmax(Q). (12)

Proof. The bound on the maximum eigenvalue of PQ follows from ‖PQ‖ ≤ ‖P‖ ‖Q‖ and

μmax(P) = ‖P‖ for a symmetric positive definite matrix P.

The bound on the minimum eigenvalue of PQ follows from
∥

∥(PQ)−1
∥

∥≤
∥

∥P−1
∥

∥

∥

∥Q−1
∥

∥

and the eigenvalues of a non-singular matrix X, which are equal to the reciprocals of the

eigenvalues of X−1. It therefore follows that

1

μmin(PQ)
≤
(

1

μmin(P)

)(

1

μmin(Q)

)

, (13)

which establishes the result.
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Figure 3. Left: The variation of log10 fi(λ) with i for (a) λ = 10−8, (b) λ = 10−5, (c) λ = 10−2, (d) λ = 10.
Right: The variation of log10 |fi(λ)| with i for (a) λ = −0.075, (b) λ = −0.050, (c) λ = −0.025, (d) λ =
−0.010, for Example 2.

Theorem 1 is extended in the sequel to the product of an arbitrary number of matrices,

which will include the diagonal matrices F(λ) and Is − F(λ),

F(λ) = diag
{

fi(λ)
}s

i=1
= diag

{

σ 2
i

σ 2
i +λ

}s

i=1
,

Is − F(λ) = diag
{

1 − fi(λ)
}s

i=1
= diag

{

λ

σ 2
i +λ

}s

i=1
.

(14)

Thematrix F(λ) is positive definite forλ > −σ 2
s and it is negative definite forλ < −σ 2

1 , and

Is − F(λ) is positive definite for λ > 0 or λ < −σ 2
1 , and it is negative definite for−σ 2

s < λ < 0.

The product of symmetric positive definite matrices is used in Section 7 to analyse the results

of the computations in (Kobak et al. 2020, §2.3). Example 2 considers the properties of the

filters fi(λ) for λ ≥ 0 and λ < 0 for the Hilbert matrix of order seven and it is shown there are

significant differences between these two situations.

Example 2. Figure 3 shows the variation of the filters fi(λ) with i for positive and negative

values of λ for the Hilbert matrix of order seven. Figure 3 (left) shows that the filters are

monotonically decreasing functions ifλ > 0, but Figure 3 (right) shows that thismonotonicity

is not preserved for negative values of λ. The filters fi(λ) may be larger than one for λ < 0, in

which case they amplify the components of x(λ) and thus they do not perform a filtering

operation. The filters assume positive and negative values if λ < 0, which marks a difference

between λ < 0 and λ ≥ 0 because the filters are strictly positive for λ ≥ 0. Figure 4 shows the

variation of fi(λ) with positive and negative values of λ, and it assumes very large negative

values and very large positive values when λ ≈ −σ 2
i , but 0 < fi(λ) ≤ 1 if λ ≥ 0.
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Figure 4. The variation of log10 |fi(λ)|with λ < 0 for i = 1, 3, 5, 7, for Example 2.

4. Condition estimation

Regularisation imposes stability on the solution of the LS problem, and this section considers

the numerical condition of this problem. It is shown that its properties for λ < 0 are

significantly different from its properties for λ ≥ 0.

It follows from (6) that

δx(λ) =
{

(

ATA + λIp
)−1

ATδb, n ≥ p,

AT
(

AAT + λIn
)−1

δb, n < p,
(15)

and thus the effective condition number η(A, b, λ), which is the maximum value of the ratio

of the relative error in x(λ) to the relative error in b with respect to a perturbation δb in b, is

(Winkler and Mitrouli 2020, §5.2)

η(A, b, λ) = max
δb∈Rn

�x(λ)

�b
=

⎧

⎨

⎩

∥

∥(ATA+λIp)
−1AT

∥

∥‖b‖
‖(ATA+λIp)−1ATb‖ =

∥

∥(�T�+λIp)
−1�T

∥

∥‖c‖
‖(�T�+λIp)−1�Tc‖ , n ≥ p,

∥

∥AT(AAT+λIn)
−1
∥

∥‖b‖
‖AT(AAT+λIn)−1b‖ =

∥

∥�T(��T+λIn)
−1
∥

∥‖c‖
‖�T(��T+λIn)−1c‖ , n < p,

(16)

where �x(λ) and �b are the relative errors in x(λ) and b,

�x(λ) =
‖δx(λ)‖
‖x(λ)‖

and �b =
‖δb‖
‖b‖

, (17)

the terms on the right follow from the SVD of A and c = UTb. The expressions (16) for

η(A, b, λ) can be combined,

η(A, b, λ) =
maxi=1,...,s

{

σi

|σ 2
i +λ|

}

‖c‖
∥

∥

∥

∥

diag
{

σi
σ 2
i +λ

}s

i=1
{ci}si=1

∥

∥

∥

∥

=
maxi=1,...,s

{

σi

|σ 2
i +λ|

}

‖c‖
∥

∥

∥
diag

{

fi(λ)
}s

i=1

{

ci
σi

}s

i=1

∥

∥

∥

, (18)
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where the filters fi(λ) are defined in (11) and the denominator shows that numerical problems

may occur if λ < 0. These problems do not occur if λ ≥ 0 and the distinction between these

two regimes is therefore in accord with Example 2.

The condition of the LS problem (λ = 0) must be considered because it determines if

regularisation is required. This issue is addressed in Theorem 2.

Theorem 2. The effective condition number η(A, b, 0) of the LS problem satisfies

η(A, b, 0) ≤
κ(A)

cos θ
, cos θ =

√

∑s
i=1 c

2
i

‖c‖
, s = min(n, p), (19)

where θ is the angle between b and its component that lies in the column space of A.

Proof. It follows from (16) that

η(A, b, 0) =
1

σs

‖b‖
∥

∥A†b
∥

∥

=
‖c‖

σs

√

∑s
i=1

(

ci
σi

)2
≥ 1, (20)

which is a refined measure of the stability of x(0) because it is a function of A and b.

The relationship between η(A, b, 0) and the condition number κ(A) of A requires that the

conditions n ≤ p and n > p be considered separately because b ∈ C(A) if n ≤ p, but b /∈ C(A)

if n > p, where C(A) is the column space of A.

Consider the situation n ≤ p, and thus s = n and cos θ = 1, and

max
b∈Rn

η(A, b, 0) = max
c∈Rn

η(A, b, 0) = max
δb,b∈Rn

�x(λ)

�b

∣

∣

∣

∣

λ=0

= κ(A), n ≤ p, (21)

where κ(A) = σ1/σn. Equality of η(A, b, 0) and κ(A) occurs when c = e1 where ei is the ith

unit basis vector, and thus b = Uc = Ue1, that is, b is equal to the first column of U. More

generally, it follows from (20) that

max
b∈Rn

η(A, b, 0) ≈ κ(A), n ≤ p, (22)

when the discrete Picard condition (7) is satisfied.

Consider now the situation n > p, and thus s = p, for which b /∈ C(A). It follows from (20)

that

η(A, b, 0) =
1

σp

⎛

⎜

⎜

⎝

‖c‖
√

∑p
i=1

(

ci
σi

)2

⎞

⎟

⎟

⎠

≤ κ(A)

⎛

⎜

⎝

‖c‖
√

∑p
i=1 c

2
i

⎞

⎟

⎠
, κ(A) =

σ1

σp
, (23)

and thus the result (19) is established.

If the SVD of A is written as

A = U�VT =
[

U1 U2

]

[

�1

0

]

VT , UT
1 U1 = Ip, (24)

where U1 ∈ R
n×p, U2 ∈ R

n×(n−p) and �1 ∈ R
p×p, and if c is partitioned as

c = {ci}ni=1 =
[

c̃1
c̃2

]

=
[

UT
1

UT
2

]

b, c̃1 ∈ R
p, c̃2 ∈ R

n−p, (25)
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Figure 5. The ratio log10 |ci|/σi for the exact data, and the ratio log10 |ci + δci|/σi for the perturbed data,
for Example 3.

then it follows from (19) that

cos2 θ =
∥

∥c̃1
∥

∥

2

‖c‖2
=
∥

∥UT
1 b
∥

∥

2

‖b‖2
=
∥

∥bTU1

(

UT
1 U1

)

UT
1 b
∥

∥

‖b‖2
=
∥

∥U1U
T
1 b
∥

∥

2

‖b‖2
, (26)

where U1U
T
1 b is the component of b that lies in the column space of A.

The dependence of η(A, b, 0) on b suggests that η(A, b, 0), rather than κ(A), which is a

function of A only, should be used to compute the stability of x(0). This is incorrect because

it is shown in (Winkler 2024, Theorem 4) that to first order in δb,

�η(A, b, 0)

�b
≤ 1 + η(A, b, 0), �η(A, b, 0) =

|δη(A, b, 0)|
η(A, b, 0)

, (27)

and thus η(A, b, 0) is unstable, and therefore x(0) is also unstable, with respect to a perturba-

tion in b if η(A, b, 0) ≫ 1. This is a disadvantage of this condition number, but it is instructive

to consider it because the discrete Picard condition (7) follows from the denominator of the

expression for η(A, b, 0) in (20).

Example 3. Consider the approximation of a function f (x) that is defined at m = 76 points

by n = 25 exponential basis functions,

f (xi) =
n
∑

j=1

aj exp

(

−(xi − μj)
2

2σ 2

)

, i = 1, . . . ,m, (28)

where σ = 1.35 and the 76 points are uniformly distributed in the interval I = [0, . . . , 15].

The centres μj of the basis functions are uniformly distributed in I, A ∈ R
76×25 and b ∈ R

76,

where the entries of b are the function values f (xi). The condition number and effective

condition number are κ(A) = 1.53 × 108 and η(A, b, 0) = 1.41 × 108, respectively, and thus

the coefficients aj are unstable with respect to a perturbation in the function values f (xi).

Noise δb was added to b such that ‖b‖/‖δb‖ = 42.6, and Figure 5 shows the ratio (7) for

the exact and perturbed data. The effect of noise is significant, which follows from the large

value of η(A, b, 0), and thus the LS problemmust be regularised. Figure 6 shows the variation

of κ(A), η(A, b, λ) and η(A, b + δb, λ) with λ ≥ 0. It is seen that η(A, b, λ) is a decreasing

function of λ for λ ≤ 1, and it is approximately constant at its minimum value of one for
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Figure 6. The variation of the condition number log10 κ(A), and effective condition numbers
log10 η(A, b, λ) and log10 η(A, b + δb, λ), with λ, for Example 3.

Figure 7. The variation of, left, log10 η(A, b, λ), and right, log10 η(A, b + δb, λ), with λ, for Example 3.

λ > 1, which shows that regularisation imposes stability on x(λ). The unstable property of

η(A, b, λ) for λ ≈ 0 is evident because η(A, b, 0) and η(A, b + δb, 0) differ by five orders of

magnitude, which confirms (27).

Figure 7 shows the variation of η(A, b, λ) and η(A, b + δb, λ) with positive and negative

values of λ. The figure shows that η(A, b, λ) and η(A, b + δb, λ) have two important differ-

ences for λ < 0 and λ ≥ 0:

• η(A, b, λ) and η(A, b + δb, λ) decay rapidly as λ ≥ 0 increases, and their values for λ > 0

are smaller than their values for λ < 0.

• An increase in the value of λ < 0 to λ = 0 may cause a significant increase in the values of

η(A, b, λ) and η(A, b + δb, λ), which is unacceptable because an increase in the value of λ

should yield a decrease in their values.
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Example 3 shows that negative values of λ yield large values of η(A, b, λ), and the values of

η(A, b, λ) for λ < 0 are larger than their values for λ ≥ 0. It follows that negative values of λ

cannot regularise the solution of the LS problem.

It was shown in Section 3 that regularisation requires a trade-off between the stability

and regularisation error of x(λ). The stability of x(λ) is considered in this section, and the

regularisation error is considered in the next section.

5. Errors in the regularised solution

The vector x(λ) in (2) that minimises f (x, λ), λ > 0, in (1) is not equal to the solution x(0) of

the LS problem, and there is therefore an error between x(λ) and x(0) for λ > 0. This error

is called the regularisation error (residual), and the optimal value λopt of λ yields a solution

x(λopt) (i) whose error with respect to x(0) is small, and (ii) that ismuchmore stable than x(0)

with respect to a perturbation in b. The value λ = λopt achieves an optimal trade-off between

the regularisation error, which is small, and a large increase in the stability of x(λ), and the

L-curve, which is considered in Section 6, is a method for the calculation of the value of λopt.

This section considers the variation of the regularisation error and relative error of x(λ) with

λ. These errors are, respectively,

eres(λ) =
‖Ax(λ) − b‖

‖b‖
and erel(λ) =

‖x(λ) − x(0)‖
‖x(0)‖

, (29)

and expressions for them that are derived from (10) are stated in Theorem 3.

Theorem 3. The absolute residual is

‖Ax(λ) − b‖ =

∥

∥

∥

∥

∥

[

diag
{

λ

σ 2
i +λ

}s

i=1
In−s

]

[

c̃1
c̃2

]

∥

∥

∥

∥

∥

=
(

s
∑

i=1

(

λ

σ 2
i + λ

)2

c̃21,i +
n
∑

i=s+1

c̃22,i

)
1
2

, (30)

where the filters fi(λ) are defined in (11),

c = {ci}ni=1 =
[

c̃1
c̃2

]

=
[

UT
1

UT
2

]

b, c̃1 ∈ R
s, c̃2 ∈ R

n−s, (31)

and the relative error is

erel(λ) =

⎛

⎜

⎝

∑s
i=1

(

c̃1,i
σi

)2 (
λ

σ 2
i +λ

)2

∑s
i=1

(

c̃1,i
σi

)2

⎞

⎟

⎠

1
2

=

⎛

⎜

⎝

∑s
i=1

(

c̃1,i
σi

)2
(

1 − fi(λ)
)2

∑s
i=1

(

c̃1,i
σi

)2

⎞

⎟

⎠

1
2

. (32)

It follows from (29) and (30) that

e2res(0) =
‖Ax(0) − b‖2

‖b‖2
=
∥

∥c̃2
∥

∥

2

‖c‖2
= 1 −

∥

∥c̃1
∥

∥

2

‖c‖2
= 1 − cos2 θ , (33)

where cos θ is defined in (26).
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Figure 8. The variation of, left, log10 erel(λ), and right, log10 eres(λ), with λ, for Example 4.

Example 4. The variation of log10 eres(λ) and log10 erel(λ)with λ for the problem in Example

3 is shown in Figure 8. The curves are very similar and both of them have local maxima of

large magnitude for λ < 0, they increase monotonically for λ ≥ 0, and the errors for λ < 0 are

much larger than the errors for λ ≥ 0.

The differences in the residual between λ < 0 and λ ≥ 0 follow from (14) and (30),

‖Ax(λ) − b‖2 = cT
[

(Is − F(λ))2

In−s

]

c = c̃T1 (Is − F(λ))2 c̃1 + c̃T2 c̃2, (34)

where c̃1 and c̃2 are defined in (31), and thus

d
(

‖Ax(λ) − b‖2
)

dλ
= −2c̃T1 (Is − F(λ))

dF(λ)

dλ
c̃1, (35)

where, from (14),

dF(λ)

dλ
=

d

dλ

(

diag
{

fi(λ)
}s

i=1

)

= −diag

{

σ 2
i

(

σ 2
i + λ

)2

}s

i=1

, (36)

and hence

dF(λ)

dλ
= −diag

{(

1

λ

)(

λ

σ 2
i + λ

)(

σ 2
i

σ 2
i + λ

)}s

i=1

= −
(

1

λ

)

(Is − F(λ)) F(λ). (37)

It follows that

d
(

‖Ax(λ) − b‖2
)

dλ
= 2

(

d (‖Ax(λ) − b‖)
dλ

)

‖Ax(λ) − b‖

=
(

2

λ

)

c̃T1 (Is − F(λ))2 F(λ)c̃1, (38)
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and thus

d (‖Ax(λ) − b‖)
dλ

=
(

1

λ

)(

c̃T1 (Is − F(λ))2 F(λ)c̃1

‖Ax(λ) − b‖

)

=

∑s
i=1

(

λσ 2
i

(σ 2
i +λ)

3

)

c̃21,i

(

∑s
i=1

(

λ

σ 2
i +λ

)2
c̃21,i +

∑n
i=s+1 c̃

2
2,i

)
1
2

, (39)

and since the entries of F(λ) and Is − F(λ) are strictly positive for λ > 0, it follows that the

residual eres(λ) increases monotonically to one as λ → ∞. If, however, λ < 0, then eres(λ) is

not a monotonic function because the signs of the entries of F(λ) and Is − F(λ) are functions

of λ, and therefore eres(λ) has local minima and maxima, and (39) shows that its derivative is

unbounded as λ → −σ 2
i , i = 1, . . . , s.

The analysis of the relative error (32) is very similar, and thus the results in Figure 8 can be

explained by the properties of F(λ) and Is − F(λ).

Example 4 shows that λ < 0 yields large values of the residual and relative error, and that

they are much larger than their values for λ ≥ 0. These results are consistent with the results

in Section 4, which show that η(A, b, λ < 0) > η(A, b, λ ≥ 0).

Example 5 considers the relationship between the effective condition number and the

regularisation error.

Example 5. Consider the Hilbert matrix H of order 12 and the four forms b1, b2, b3 and b4
of b shown in Figure 9,

b1 = U(e1 + e2), b2 = U(e4 + e5), b3 = U(e7 + e8), b4 = U(e10 + e11), (40)

whereHx = b, ei is the ith unit basis vector and U is the left singular matrix from the SVD of

H.

The progression b1 → b2 → b3 → b4 is associatedwith a shift in the non-zero components

of b from the first few columns of U, that is, the large singular values of H, to the last few

columns ofU, that is, the small singular values ofH, and it causes a change in the effective con-

dition number. In particular, Figure 10 shows the variation of the effective condition numbers

η(H, b1, λ), η(H, b2, λ), η(H, b3, λ) and η(H, b4, λ) with λ, and the condition number κ(H).

Each effective condition number decreases to its minimum value, which is approximately

equal to one, as λ increases, it then increases, and this increase is significant for b = b4, but it

is very small for b = b1. It is seen that

κ(H) > η(H, b1, 0) ≫ η(H, b2, 0) ≫ η(H, b3, 0) ≫ η(H, b4, 0), (41)

which confirms that the progression b1 → b2 → b3 → b4 is associated with an increase in the

stability of x with respect to a perturbation in b.

Figure 11 shows the variation of the regularisation error with λ for b = b1, b = b2, b = b3
and b = b4. The smallest and largest errors occur for b = b1 and b = b4, respectively, which

is consistent with the graphs of the effective condition numbers in Figure 10. Figure 12 is a

parametric plot of the regularisation error against the effective condition number as a function

of λ, for b = b1, b = b2, b = b3 and b = b4. An increase in the value of λ from λ = λmin =
10−33 yields a significant decrease in the value of η(H, b1, λ), but the value of the error is
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Figure 9. The vectors b1, b2, b3 and b4 for Example 5.

Figure 10. The variation of the effective condition numbers η(H, b1, λ), η(H, b2, λ), η(H, b3, λ) and
η(H, b4, λ)with λ, and the condition number κ(H), for Example 5.

Figure 11. The variation of the regularisation error with λ, for b = b1, b = b2, b = b3 and b = b4, for
Example 5.
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Figure 12. The variation of the regularisation error and effective condition number as functions of λ, for
b = b1, b = b2, b = b3 and b = b4, for Example 5. The end points, λ = λmin = 10−33 and λ = λmax = 100,
are marked on each graph.

Figure 13. The variation of the product of the regularisation error and effective condition number as a
function of λ, for b = b1, b = b2, b = b3 and b = b4, for Example 5.

approximately constant at 10−16. The error increases when λ > λ∗, where η(H, b1, λ
∗) ≈ 108,

and similar properties are observed for b = b2, but to a lesser extent. The graphs for b = b3
and b = b4 are significantly different because the error is not constant as λ increases from

λ = λmin. There is, however, a range of values of λ for each vector b = b2, b = b3 and b = b4
for which the error is approximately equal to one.

Figure 13 shows the variation of the product of the regularisation error and effective

condition number with λ, for b = b1, b = b2, b = b3 and b = b4. The curve for b = b1 has

a well defined minimum, which confirms the trade-off between the regularisation error and

effective condition number at the optimal regularisation parameter. This minimum is poorly

defined for b = b2, and the curves for b = b3 and b = b4 do not possess a minimum, and

thus regularisation is effective in imposing stability on x1 = H−1b1, but it is less effective in

imposing stability on x2 = H−1b2. Regularisation cannot, however, be applied to x3 = H−1b3
and x4 = H−1b4.

6. The L-curve

It was shown in Sections 3, 4 and 5 that an acceptable solution x(λ) requires λ ≥ 0, and this

section considers the L-curve, which is a method for calculating the value of λopt (Hansen
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Figure 14. The L-curve.

Figure 15. The variation of log10 |ci|, log10 σi and log10 |ci|/σi with i, for Example 6.

1998, §4.6). The L-curve is a parametric plot of log10 ‖Ax(λ) − b‖ (horizontal axis) against

log10 ‖x(λ)‖ (vertical axis), and if the discrete Picard condition (7) is satisfied, the curve

has the form of an L, as shown in Figure 14. As λ increases from zero, ‖x(λ)‖ decreases

and ‖Ax(λ) − b‖ is approximately constant, until λ = λopt, which is the value of λ in the

corner of the L. As λ increases from λopt, ‖x(λ)‖ is approximately constant and ‖Ax(λ) − b‖
increases. The value λ = λopt is the optimal value of λ because ‖Ax(λ) − b‖ and ‖x(λ)‖ attain,
approximately, their minimum values for this value of λ, and thus λopt balances the fidelity of

the model and the satisfaction of the constraint on ‖x‖.

Example 6. Consider the problem in Example 3, for which Figure 15 shows the variation of

log10 |ci|, log10 σi and log10 |ci|/σi with i. The discrete Picard condition (7) is satisfied because
the constants |ci| decay to zero faster than the singular values σi decay to zero. Figure 5 shows

that the noise δb has a significant effect because the exact solution is dominated by the large

singular values of A, but the perturbed solution is dominated by its small singular values.

The L-curve for λ ≥ 0 is shown in Figure 16 and the optimal value λopt = 0.47014 of λ

minimises, approximately, the error ‖Ax(λ) − b‖ in the regression model and the magnitude

‖x(λ)‖ of the solution. Figure 17 shows the L-curve for −50 ≤ λ < 0 and the difference

between this L-curve and the L-curve in Figure 16 is clear. Figure 17 shows there does not
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Figure 16. The L-curve for λ ≥ 0, for Example 6.

Figure 17. The L-curve for−50 ≤ λ < 0, for Example 6.

exist an optimal value of λ that is negative, and in particular, it follows from (10) that

‖x(λ)‖ =

∥

∥

∥

∥

∥

diag

{

σ 2
i

σ 2
i + λ

}s

i=1

{

c̃1,i

σi

}s

i=1

∥

∥

∥

∥

∥

=
∥

∥

∥

∥

diag
{

fi(λ)
}s

i=1

{

c̃1,i

σi

}s

i=1

∥

∥

∥

∥

, (42)

where c̃1 =
{

c̃1,i
}s

i=1
is defined in (31), and hence

‖x(λ)‖2 = d̃T1 F
2(λ)d̃1 =

s
∑

i=1

(

σ 2
i

σ 2
i + λ

)2

d̃21,i, d̃1 =
{

c̃1,i

σi

}s

i=1

. (43)

It follows that

d
(

‖x(λ)‖2
)

dλ
= 2

d (‖x(λ)‖)
dλ

‖x(λ)‖ = 2d̃T1 F(λ)
dF(λ)

dλ
d̃1, (44)

and thus from (37),

d (‖x(λ)‖)
dλ

= −

∑s
i=1

(

σ 2
i

σ 2
i +λ

)2 (
1

σ 2
i +λ

)

d̃21,i
(

∑s
i=1

(

σ 2
i

σ 2
i +λ

)2

d̃21,i

)
1
2

, (45)

and hence ‖x(λ)‖ is a monotonically decreasing function of λ for λ > 0. It follows, however,

from the properties of Is − F(λ) and F(λ) that ‖x(λ)‖has localminima andmaxima forλ < 0,

and that its derivative is unbounded as λ → −σ 2
i , i = 1, . . . , s.
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Figure 18. Left, the coefficients log10 |ai| and log10 |ai + δai| of the exact and noisy solutions, respectively,
and right, the coefficients of the exact solution, and the coefficients of the regularised solution with λ =
λopt = 0.47014, for Example 6.

The difference between the L-curves in Figures 16 and 17 follows from the properties of

F(λ) and Is − F(λ):

• If λ > 0, F(λ) and Is − F(λ) are positive definite and thus ‖Ax(λ) − b‖ increases mono-

tonically, and ‖x(λ)‖ decreases monotonically, as λ increases from zero.

• If λ < 0, ‖Ax(λ) − b‖ and ‖x(λ)‖ have local minima and maxima, and thus they are not

monotonic functions as λ decreases from zero.

Figure 18 shows the coefficients ai, the coefficients ai + δai when noise δb is added to b,

and the coefficients after regularisation with λ = λopt = 0.47014. Figure 18 (left) shows that

the regression problem is ill conditioned, and Figure 18 (right) shows that regularisation is

effective in removing the effect of the perturbation δb on the coefficients ai because the error

between the exact and regularised solutions is very small.

The examples in Sections 3, 4, 5 and 6 considered the situation in which n ≥ p, and an

example in which n < p is considered in Section 7.

7. Simulation with a spiked covariancemodel

This section considers the simulation in (Kobak et al. 2020, §2) because its analysis led to

the conclusion that the optimal regularisation parameter may be negative. Each vector of

predictors ai ∈ R
p, i = 1, . . . , n, n = 64, p = 3116, is drawn from a normal distribution with

zero mean and covariance matrix S = Ip + ρT ∈ R
p×p that defines a spiked model, where

ρ = 0.1, all the entries of T ∈ R
p×p are one and the eigenvalues μi(S) of S are

μ1(S) = 1 + ρp, μi(S) = 1, i = 2, . . . , p. (46)
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The Cholesky decomposition LLT of S, where L ∈ R
p×p is lower triangular, allows the

covariance matrix of A := RLT , where the entries of R ∈ R
n×p are independent random

variables with zero mean and unit variance, to be equal to S,

E
{

ATA
}

= E
{

LRTRLT
}

= LE
{

RTR
}

LT = LLT = S, (47)

where E {·} is the expectation operator. The vector b̃ is defined as

b̃ := Ax̃, x̃ =
[

β β . . . β
]T ∈ R

p, β = σ

(

α

p(1 + pρ)

)
1
2

, (48)

where α is a constant and σ 2 = 1. The addition of noise ǫ toAx̃ yields the perturbed equation,

b := Ax̃ + ǫ, ǫ = {ǫi}ni=1 ∼ N (0, σ 2), (49)

and its regularised solution x(λ) and the signal-to-noise ratio (SNR) are

x(λ) = A†(λ)b and SNR =
∥

∥Ax̃
∥

∥

‖ǫ‖
, (50)

where the form of A†(λ) depends on the values of n and p, as shown in (6).

The conclusion in (Kobak et al. 2020) that λopt may be negative is derived from the risk

R(λ),

R(λ) = E
{

(b − Ax(λ))T (b − Ax(λ))
}

= E

{

(

(Ax̃ + ǫ) − Ax(λ)
)T (

(Ax̃ + ǫ) − Ax(λ)
)

}

=
(

x̃ − x(λ)
)T

E
{

ATA
} (

x̃ − x(λ)
)

+ 2
(

x̃ − x(λ)
)T

AT
E {ǫ} + E

{

ǫTǫ
}

=
(

x̃ − x(λ)
)T

LLT
(

x̃ − x(λ)
)

+ ‖ǫ‖2

=
(

x̃ − x(λ)
)T

S
(

x̃ − x(λ)
)

+ σ 2, (51)

which follows from (47) and (49).

Examples 7 and 8 follow the procedure in (Kobak et al. 2020, §2.3) with SNR = 10. They

demonstrate the theory in the previous sections and confirm that λ < 0 yields unacceptable

results.

Example 7. Figure 19 shows the variation of the condition number log10 κ(A) and effective

condition number log10 η(A, b, λ) for p = 25, 50, 75, 100, and −50 ≤ λ ≤ 50. The maximum

value of κ(A) is approximately 101.5 = 31.6 and thus the LS problem is well conditioned, and

η(A, b, λ) > κ(A) by several orders of magnitude if λ < 0, but η(A, b, λ) < κ(A) if λ ≥ 0. It

follows that λ < 0 yields an unstable solution x(λ), but a perturbation in b̃, which is defined in

(48), has little effect on x(λ) if λ ≥ 0. Figures 20 and 21 show, respectively, the singular values

log10 σi, the coefficients log10 |ci| and the ratios log10 |ci|/σi, and the singular values log10 σi,

the coefficients log10 |ci + δci| and the ratios log10 |ci + δci|/σi, for p = 25, 50, 75, 100,

where

c = UT b̃ and c + δc = UTb, (52)

and b̃ and b are defined in (48) and (49), respectively. The graphs in the figures are very similar

and Figure 20 shows that, for each value of p, the ratio |ci|/σi does not decay to zero as i

increases, and thus the discrete Picard condition (7) is not satisfied. It follows that x(0) is
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Figure 19. The variation of the effective condition number log10 η(A, b, λ) and condition number
log10 κ(A) for p = 25, 50, 75, 100, for Example 7.

Figure 20. (a) The singular values log10 σi , (b) coefficients log10 |ci| and ratios (c) log10 |ci|/σi for p =
25, 50, 75, 100, for Example 7.

stable, which is in accord with the low value of the effective condition number η(A, b, 0) for

each value of p, as shown in Figure 19. These graphs show that regularisation must not be

applied because it requires the deletion of the small singular values of A, which would yield a

large error in the regularised solution x(λ).

Figure 22 shows the L-curves for p = 25, 50, 75, 100, and λ ≥ 0, and they are significantly

different from the L-curve in Figure 16. In particular, the L-curves in Figure 22 do not have

a sharp corner that defines λopt, and an increase in the value of λ from λ = 0 causes little

or no decrease in ‖x(λ)‖, but a significant increase in ‖Ax(λ) − b‖. It follows that λopt =
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Figure 21. (a) The singular values log10 σi , (b) coefficients log10 |ci + δci| and ratios (c) log10 |ci + δci|/σi
for p = 25, 50, 75, 100, for Example 7.

Figure 22. The L-curves for p = 25, 50, 75, 100, and λ ≥ 0, for Example 7.

0, which agrees with the results in Figures 19 and 20, and thus regularisation must not be

applied. The difference between these L-curves and the L-curve in Figure 16 arises because

the solution of the regression problem in Example 6 is unstable, but the solution of the LS

problem in (Kobak et al. 2020, §2.3) is stable. A parametric curve of log10 ‖Ax(λ) − b‖ against
log10 ‖x(λ)‖ assumes the form of an L if the discrete Picard condition (7) is satisfied, but

Figure 20 shows that this condition is not satisfied by the data in (Kobak et al. 2020, §2.3).

Figure 23 shows the L-curves for p = 25, 50, 75, 100, and −50 ≤ λ < 0, and it is clear that

there does not exist a value of λ < 0 that minimises, approximately, ‖Ax(λ) − b‖ and ‖x(λ)‖,
and thus an optimal value of λ that is negative does not exist. This result is in accord with the

L-curve in Figure 17 for Example 6.
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Figure 23. The L-curves for p = 25, 50, 75, 100, and−50 ≤ λ < 0, for Example 7.

Figure 24. The variation of the relative error log10 erel(λ)with λ for p = 25, 50, 75, 100, and−30 ≤ λ ≤ 30,
for Example 7.

Figure 24 shows the variation of the relative error log10 erel(λ), where erel(λ) is defined in

(32), with λ, for −30 ≤ λ ≤ 30. It is seen that erel(λ) for λ ≥ 0 is smaller, by up to about three

orders ofmagnitude, than erel(λ) forλ < 0. The differences in the properties of erel(λ) between

λ < 0 and λ ≥ 0 are considered in Example 4, and they also explain the graphs in Figure 24.

This analysis can be extended to determine the dependence of the risk R(λ), which is defined

in (51), with λ. This dependence is shown in Figure 25 for −100 ≤ λ ≤ 50 and it is seen that

the properties of R(λ) for λ < 0 are significantly different from its properties for λ ≥ 0. In

particular, R(λ) has many local minima and maxima for λ < 0, but it is a smooth function of

λ for λ ≥ 0. This difference, which is also present in Figure 24, is due to the difference in the
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Figure 25. The variation of log10 R(λ)with λ for p = 25, 50, 75, 100, and−100 ≤ λ ≤ 50, for Example 7.

Figure 26. The variation of the condition number log10 κ(A) and effective condition number
log10 η(A, b, λ)with λ, for p = 500, 1500, 2500, 3116, and−500 ≤ λ ≤ 500, for Example 8.

properties of the filters fi(λ) for λ < 0 and λ ≥ 0, and Figures 24 and 25 show that negative

values of λ yield large errors and they are therefore unacceptable. This result is in accord with

the values of η(A, b, λ) for λ < 0 in Figure 19.

Example 8. It is stated in (Kobak et al. 2020, §2.3) that λopt may be negative if p ≫ n, and

this example considers this scenario. In particular, four values of the predictors that satisfy

p ≫ n, p = 500, 1500, 2500, 3116, and n = 64, were considered, and −500 ≤ λ ≤ 500. Figure

26 shows the variation of the condition number log10 κ(A) and effective condition number

log10 η(A, b, λ) with λ. It is seen that (i) κ(A) < 10 for all λ, (ii) η(A, b, λ) > κ(A) for λ < 0,
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Figure 27. The L-curves for p = 500, 1500, 2500, 3116, and−500 ≤ λ ≤ 500, for Example 8.

and (iii) η(A, b, λ) < κ(A) for λ ≥ 0, from which it follows that regularisation must not be

applied to x(0) because it is stable. The graphs in Figures 20 and 21 for p = 25, 50, 75, 100,

are very similar to their equivalents for p = 500, 1500, 2500, 3116, and they confirm that the

discrete Picard condition (7) is not satisfied. Figure 27 shows the L-curves for these values

of the predictors and for −500 ≤ λ ≤ 500, and the differences in each curve for λ < 0 and

λ ≥ 0 follow from the properties of the filters (11). In particular, they decrease monotonically

as λ increases from λ = 0, and an increase in the value of λ is associated with an increase

in the residual ‖Ax(λ) − b‖ and a decrease in ‖x(λ)‖, and hence the progression along the

curve as λ increases from λ = 0 is unidirectional. The situation for λ < 0 is different because

‖Ax(λ) − b‖ and ‖x(λ)‖ may increase or decrease as λ decreases from zero, which is evident

in the L-curves in Figure 23. The progression along the L-curve as λ < 0 decreases from

zero is not unidirectional, and thus, as shown in Example 6, a negative value of λ cannot

be considered.

Examples 7 and 8 consider the problem in (Kobak et al. 2020, §2.3) and they show that

λopt = 0, which must be compared with the result λopt < 0 in (Kobak et al. 2020, §2.5). The

difference arises because the valueλopt < 0 follows from theminimisation of the riskR(λ), but

the value λopt = 0 arises from the simultaneous minimisation of ‖Ax(λ) − b‖2 and ‖x(λ)‖2.
In particular,R(λ) is equal to the expected value of ‖Ax(λ) − b‖2 and thus it does not consider
‖x(λ)‖, and it is minimised by λopt < 0 if p ≫ n and 0 < ρ ≪ 1, where ρ is defined in (46). It

follows that the failure of R(λ) to consider ‖x(λ)‖ explains the difference in the values of λopt
obtained by the L-curve and the minimisation of R(λ).

8. Summary

The study of a problem in statistical learning in (Kobak et al. 2020) led to the claim that

the regularisation parameter λ can be negative, and it is analysed in more detail in several

problems in machine learning in (LeJeune et al. 2024, §6.2; Patil, Du, and Tibshirani 2024,

pp. 24–26; Tsigler and Bartlett 2023, §8; Wu and Xu 2020, §5). This article has considered
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the numerical implications of the condition λ < 0 and it has been shown theoretically,

from the properties of convex functions, refined condition estimation and error analysis

of the regularised LS problem, and by example that it leads to unsatisfactory solutions for

underdetermined and overdetermined LS problems. In particular, the solution x(λ) for λ < 0

is unstable, even if x(λ) is stable forλ ≥ 0. Also, the residual and relative error in x(λ) forλ < 0

are significantly larger than their values for λ ≥ 0, and the L-curve shows that the optimal

value of λ cannot be negative. Furthermore, the condition λ ≥ 0 guarantees that the objective

function in Tikhonov regularisation has a unique minimum because the matrices ATA + λIp
and AAT + λIn are positive definite, but these matrices are positive definite, or indefinite, or

negative definite if λ < 0. It is concluded that a negative value of λ in Tikhonov regularisation

cannot be considered.
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