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Abstract
Improving the predictive capability of credit scoring models is always an active area of 
research in the financial sector. Recognising the impressive effectiveness of neural net-
works in different domains (such as computer vision and natural language processing), 
various neural networks have been tested to potentially improve loan default prediction 
on credit data. Nevertheless, a significant challenge emerges due to the predominantly 
tabular nature of credit data, which is not well-suited to the structure and strengths of 
neural networks, hindering their ability to surpass traditional machine learning models in 
credit scoring. To overcome the challenge, we propose a novel data transformation method 
called Tabular Image that converts tabular data into images to take advantage of the 
powerful two-dimensional convolutional neural networks that perform extremely well on 
images while mitigating the challenges tabular data poses to deep networks. The Tabular 
Image can convert tabular data into compact and resilient images compared with existing 
transformation methods by creatively embedding two crucial measures in credit scoring, 
the weight of evidence and information value, in the image. Applications to three credit 
scoring benchmark datasets suggest that simply training a two-dimensional convolutional 
neural network with Tabular Image can provide state-of-the-art predictive performance. 
In addition, the advantage of our proposed method’s prediction is more evident in the 
large dataset. Our innovative approach raises the possibility of leveraging two-dimensional 
convolutional neural networks in credit scoring using a proper data representation method. 
Furthermore, a flexible framework is provided to suit various tabular datasets in other 
domains.

Keywords  Risk management · Credit scoring · Deep learning · Convolutional neural 
networks · Tabular data
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1  Introduction

Credit risk management holds a prominent position in most financial institutions to miti-
gate loan losses and optimise profit. Historically, financial institutions separated default 
and non-default credit applicants by credit managers’ intuitive experience to control credit 
risk (Lewis, 1992). However, as the total loans grew and the volume of loan applications 
increased, credit managers needed a fast and accurate way to identify default credit appli-
cants because even a fraction of percent of increment in default rate may relate to a signifi-
cant amount of loan losses (Baesens et al., 2003; Henley & Hand, 1997; West, 2000). As 
a result, credit scoring was proposed to separate default and non-default credit applicants 
by using prediction models to convert credit applicants’ financial information into a score 
representing credit applicants’ creditworthiness (Lewis, 1992). Durand (1942) was the first 
to use statistical models to separate default and non-default credit applicants. After that, 
various statistical and machine learning models such as logistic regression (Dumitrescu et 
al., 2022; Wiginton, 1980), random forest (Brown & Mues, 2012; Wang et al., 2012), sup-
port vector machine (Harris, 2015; Huang et al., 2007), and gradient boosting decision trees 
(Chang et al., 2018; Gunnarsson et al., 2021; Lessmann et al., 2015) were applied to iden-
tify more accurate credit scoring models to achieve even small improvements in prediction 
accuracy. Despite the application of various statistical and machine learning models, it is 
still challenging to identify a consistently superior approach for credit scoring tasks (Dastile 
et al., 2020; Lessmann et al., 2015), so developing more accurate credit scoring models 
continues to be one of the crucial goals of credit scoring research.

To meet this goal, an emerging area in credit scoring research is applying neural net-
works to predict the probability of default. Because data used in credit scoring is usually 
tabular data represented in one-dimensional (1D) format, previous studies have tended to 
focus on MLP-like architectures (Baesens et al., 2003; Elhoseny et al., 2022; Hamori et al., 
2018; Lessmann et al., 2015; West, 2000; Zhao et al., 2015) and 1D convolutional neural 
networks (CNNs) (Huang et al., 2023; Kvamme et al., 2018; Qian et al., 2023) that accept 
1D format data as input. Although recent studies have explored the possibility of using neu-
ral networks in credit scoring, the application of deep networks is still a challenge because 
of the characteristics of tabular data, such as mixed feature types (numerical, ordinal, and 
categorical), data sparsity (missing values), and lack of robustness to uninformative features 
(Grinsztajn et al., 2022; Shwartz-Ziv & Armon, 2022). In addition, MLPs and 1D CNNs 
suffer from the vanishing gradient problem (Giles et al., 1992), thus making adding hid-
den layers to boost performance difficult. These challenges led to the result that eXtreme 
Gradient Boosting (XGBoost) was usually demonstrated to outperform neural networks for 
tabular data in credit scoring and raise the necessity of exploring the possibility of applying 
other novel neural networks (Gunnarsson et al., 2021).

So far, due to the nature of the tabular data, little attention has been paid to the more 
advanced, well-developed, and powerful deep learning networks such as two-dimensional 
(2D) CNNs. Compared to MLPs and 1D CNNs, 2D CNNs achieved impressive results or 
even outperformed human experts in computer vision, recognition and prediction, gaming, 
art imitation, etc. (Abdel-Hamid et al., 2014; Karpathy et al., 2014; Krizhevsky et al., 2017; 
LeCun et al., 2015; Mahbobi et al., 2023; Yuan et al., 2017). Furthermore, 2D convolutional 
neural networks (CNNs) have an inherent capability to capture high-level features automati-
cally through stacking deep convolutional, pooling, and activation layers. This aligns with 
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the process of feature engineering, which is a crucial and time-consuming step in building 
credit scoring. 2D CNNs can automate this process, minimising the need for manual feature 
engineering that otherwise relies heavily on expert knowledge and is resource-intensive.

This paper proposed a novel method to convert tabular data into images to utilise power-
ful 2D CNNs that perform exceptionally well on homogeneous data (such as images and 
videos) while mitigating the challenges neural networks meet when applied to tabular data. 
We call our method Tabular Image, which transforms tabular data into images based on 
the weight of evidence (WOE) (Siddiqi, 2012) and information value (IV) (Hand, 2005). 
The results demonstrated that the proposed Tabular Image training with a 2D CNN model 
performed better than its shallower counterpart, 1D CNN and outperformed most prediction 
models trained on tabular data, indicating the potential of Tabular Image and the power 
of 2D CNNs. Our proposed method also outperformed 2D CNNs with other tabular data-
image transformation methods, showing Tabular Image can aid 2D CNNs in extracting 
signals in data, thus further boosting the prediction performance. Meanwhile, transforming 
tabular data into images with Tabular Image can enhance human-computer interaction. It 
provides an intuitive understanding of complicated tabular data, thus helping credit manag-
ers gain insight into data and identify suspicious loan applications.

The remainder of this paper is organised as follows. Section 2 reviews the deep learning 
models used in credit scoring and techniques used to transform tabular data into images. 
Section 3 describes the detailed processes of converting tabular data into images. Section 4 
describes the data preparation process, the details of models and the evaluation metrics used 
in this study. Section 5 presents the results. The discussion is presented in Sect. 6. We then 
provide a conclusion with some future perspectives in Sect. 7.

2  Related works

2.1  Deep neural networks in credit scoring

As computing power and the volume of data continue to grow, the interest in applying neural 
networks to credit scoring tasks increases. Extensive research has been conducted regarding 
the application of fully connected neural networks in credit scoring. Among various neural 
networks, multilayer perceptron (MLP), restricted Boltzmann machine (RBM), and deep 
belief neural networks (DBN) have been mainly used to construct credit scoring models 
(Dastile et al., 2020; Gunnarsson et al., 2021). For example, Blanco et al. (2013) fitted 14 
MLP credit scoring models and compared these models with linear discriminant analysis, 
quadratic discriminant analysis, and logistic regression. The result showed that MLP credit 
scoring models provided higher accuracy and lower misclassification costs than traditional 
models. Tomczak and Zięba (2015) applied classification RBMs to construct an explainable 
scoring table and provided high prediction performance. Luo et al. (2017) applied deep 
belief networks, which consist of a stack of RBMs, to construct a corporate credit scoring 
model. The prediction performance of the DBN provided the best performance compared 
with logistic regression, MLP and support vector machine.

Besides fully connected neural networks, deep learning architectures that demonstrated 
success in natural language processing (NLP) and computer vision (CV) have been inves-
tigated, with the expectation of shedding some light on improving the prediction accuracy 
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of credit scoring models. Wang et al. (2019) and Shen et al. (2021) applied long short-term 
memory (LSTM), a deep learning model commonly used in NLP, on transaction data to 
improve the prediction accuracy. By combining LSTM with data balancing techniques and 
attention mechanisms, their results showed a noticeable improvement compared to tradi-
tional credit scoring models. Apart from the success of recurrent neural networks, CNNs 
have also been tested in the credit scoring domain. Kvamme et al. (2018) used CNNs to 
predict mortgage default and provided high prediction performance on transaction data. 
He and Fan (2021) constructed a CNN as a feature generation method and constructed 
an ensemble model for default prediction, which significantly improved prediction perfor-
mance. Although these studies showed promising results in applying neural networks to 
credit scoring, the prediction performance of neural networks in credit scoring is debatable.

On the one hand, some studies present evidence that neural networks can surpass the 
performance of traditional models in credit scoring. West (2000) compared five neural net-
works with five quantitative models and claimed that neural networks achieve better per-
formance than five statistical and machine learning models in credit scoring tasks. Yu et 
al. (2015) conducted a comprehensive review of the social credit literature and pointed out 
that neural networks outperform statistical models in credit risk detection tasks. Dastile et 
al. (2020) systematically reviewed 74 articles ranging from 2010 to 2018 and claimed that 
neural networks perform better than statistical and machine learning models.

On the other hand, some literature suggests that the advantages of neural networks are 
not always clear-cut. Baesens et al. (2003) compared the performance of various statisti-
cal, traditional machine learning and deep learning models and concluded that the perfor-
mance of logistic regression was not statistically different from neural networks. Lessmann 
et al. (2015) compared 41 classifiers on eight credit scoring datasets and observed that the 
prediction performance of random forest outperformed neural networks. Gunnarsson et al. 
(2021) compared MLP and DBN with logistic regression, decision tree, random forest and 
XGBoost. The results showed that neural networks did not outperform machine learning 
models, and XGBoost was the best method among the models tested in this study.

2.2  Data transformation

Given the ongoing debate in the literature, it is evident that further investigation is needed 
to better understand and enhance the applications of neural networks in credit scoring. One 
way to utilise neural networks is to transform the tabular data into a more homogeneous for-
mat (Borisov et al., 2022). By implementing this type of transformation, researchers expect 
to be able to apply neural networks, such as 2D CNNs, which perform extremely well 
for classification tasks on homogeneous data. To the best of our knowledge, there is very 
limited research on data transformation in credit scoring. Hosaka (2019) proposed a data 
transformation method to utilise financial ratios extracted from a company’s financial state-
ments by transforming these ratios into a grayscale image to predict bankruptcy. While this 
transformation method can convert tabular data into images and utilise 2D CNNs, it does 
not accept categorical features as input, which is required in other application areas such as 
individual credit default prediction. Furthermore, financial ratios are features mainly used 
for company bankruptcy prediction, making it difficult to extend this method to individual 
credit default prediction datasets. Zhu et al. (2018) proposed a hybrid model using a relief 
algorithm as a feature selection tool and a 2D CNN to predict the probability of default. 
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This study transformed tabular data into grey images to utilise 2D CNNs. This study first 
applied discretisation to numerical features to convert them into categorical features. It then 
reshaped features into binary vectors using one-hot encoding (Hancock & Khoshgoftaar, 
2020) and combined all features into a sparse binary matrix, which can be considered a 
pixel matrix. The result showed that the Relief-CNN yielded better prediction performance 
than random forest and logistic regression. Similarly, Dastile and Celik (2021) presented 
attempts at applying a 2D CNN to credit scoring by transforming numerical and categorical 
features into grey images. This study first discretised numerical features and then converted 
both discretised numerical features and categorical features into a pixel matrix using one-
hot encoding. Although these two studies applied data transformation on tabular data, the 
transformation technique they used, one-hot encoding, may exacerbate the “curse of dimen-
sionality” problem and create high-dimensional sparse feature vectors which are composed 
of a large number of pixels not containing information (Borisov et al., 2022). As a result, 
a significant proportion of the image may be blank. Also, the transformation method may 
generate large images when there is a considerable number of features or a large number of 
categories in categorical features, which may require a large amount of computer resources 
to train the CNN.

In contrast, data transformation is widely used in other fields. Sharma et al. (2019) pro-
posed the DeepInsight method to transform RNA-seq data into images by projecting the 
high dimensional data to a 2D space using feature similarity measuring techniques and 
dimensionality reduction techniques, and its results outperformed those of the random for-
est. Bazgir et al. (2020) proposed the REFINE method to convert unorganised tabular data 
into images based on the similarity between features calculated by a Bayesian metric mul-
tidimensional scaling approach. The results demonstrated that the method provided bet-
ter predictive accuracy than conventional models. Zhu et al. (2021) proposed the IGTD 
method for converting tabular data into compact images by assigning features to pixels 
based on the difference in pairwise distance rankings between features and assigned pixels. 
The result showed that the IGTD method performed better than DeepInsight and REFINE 
on drug screening datasets. Although methods proposed by Sharma et al. (2019), Bazgir et 
al. (2020), and Zhu et al. (2021) produced promising results, these methods were designed 
with the assumption that data with strong feature similarities, such as RNA sequence, gene 
or drug data, would be used, which may not be suitable for credit scoring datasets. Sun 
et al. (2019) proposed the superTML method to project features in the tabular data onto 
black-and-white images and applied the method to four popular datasets available on the 
UCI Machine Learning Repository and the Kaggle platform. By projecting features in the 
tabular data onto images, CNNs are able to learn the shape of numbers and extract nonlinear 
features in the images.

3  Proposed methodology

The goal of Tabular Image is to transform each sample of tabular data into an image of 
Nh × Nw pixels, where Nh and Nw denote the height and the width of the image, respec-
tively. Figure  1 shows the proposed transformation framework. Different from images 
formed by pixels, tabular data usually contains a mix of numerical and categorical features. 
To convert tabular data into images, a measure is needed to convert the values of the cat-
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egorical features to numerical values. Also, the measure needs to represent a feature’s ability 
to separate default and non-default credit applicants, as this is the goal of building credit 
scoring models. Based on these two requirements, we selected a classic data preprocessing 
method in credit scoring, the WOE transformation (Siddiqi, 2012), in which the difference 

Fig. 1  The overall framework of Tabular Image
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between the proportion of default and non-default credit applicants for each bin replaces the 
values of the categorical features.

After transforming categorical features into WOEs, the dataset was normalised using 
z-score normalisation and assigned to pre-defined Nh × Nw images based on feature cor-
relation and IVs. All 2D CNNs were trained and tested in this study using five-fold cross-
validation for a fair comparison. Note that to avoid misleading performance caused by data 
leakage (Kaufman et al., 2012), the WOEs and IVs were calculated based on the training 
set only and passed to the test set for the transformation in every iteration in the five-fold 
cross-validation. In other words, the default/non-default class information in the test set is 
not used in tabular data-image transformation in the training.

3.1  Weight of evidence transformation

The first step of transforming original tabular data into images is to convert the values in 
categorical features into WOEs. The same categorical value will be given the same WOE. 
The WOE of categorical value i can be defined as:

	
WOEi = ln

(
Nbi

NB

)
− ln

(
Ngi

NG

)
� (1)

where Nbi denotes the number of default (‘bad’) credit applicants with categorical value i, 
Ngi denotes the number of non-default (‘good’) credit applicants with categorical value i, 
NB  denotes the total number of default credit applicants in the (training) dataset, and NG 
denotes the total number of non-default credit applicants in the (training) dataset. A large 
WOE means a strong relationship exists between the categorical value and the binary target 
variable in identifying default credit applicants.

3.2  Information value

When the calculation of WOEs is completed, the information value of each feature is calcu-
lated to evaluate the feature importance in separating default and non-default credit appli-
cants. IV of feature i can be defined as:

	
IV =

n∑
i=1

(
Nbi

NB
− Ngi

NG

)
∗ WOEi� (2)

where n denotes the number of categorical values in each feature. For numerical features, 
values are first discretised into 10 bins using a quantile-based discretisation (Thomas et al., 
2017) before calculating the WOEs of each feature. Note that WOEs of numerical features 
are only used to calculate IVs of numerical features.

3.3  Feature arrangement

In the context of CNNs, the pixels in an image are spatially related, meaning pixels next 
to each other represent relevant information or patterns. However, in tabular data, such 
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spatial relationships between features don’t always exist. Thus, the problem in transforming 
Tabular Image is to allocate pixels in adjacent areas to represent feature values in tabular 
data while the spatial locations of pixels are still meaningful for tabular data features. In 
this study, we aim to maximise the Spearman correlation among features in a certain block 
of the image to represent the spatial relationship as Spearman correlation can assess both 
linear and non-linear correlations without assuming the frequency distribution of the input 
variables (Hauke & Kossowski, 2011). Figure 2 provides an example illustrating the fea-
ture arrangement process. The pseudocode of the feature arrangement method is shown in 
Algorithm 1.

Algorithm 1  Feature arrangement method

Fig. 2  Example: A simple illustration of the feature arrangement process of Tabular Image
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To achieve the goal, firstly, two input parameters, the height Nh and the width Nw of 
a tabular image, are set up to define the image size. The product of these two parameters 
defines the total number of pixels NP  in a tabular image that can be assigned to features in 
the transformation. The transformation then calculates the total number of pixels assigned to 
each feature. We define Npi, the total number of pixels assigned to each feature i, by finding 
the proportion of IV of each feature in the sum of IV of all features:

	
Npi = floor

(
IVi

IVT
∗ (NP − Nf )

)
+ 1� (3)

where floor(·) is a function that rounds numbers down to the nearest integer. NP  denotes 
the total number of pixels in a tabular image, Nf  denotes the number of features in the data-
set, IVi denotes the IV of feature i, and IVT  denotes the sum of the IV of all features. The 
reason for using rounding down rather than rounding up is that it can avoid the possibility 
of the sum of Npi of all features exceeding NP . Note that each feature is assigned to at least 
one pixel.

After calculating Npi, a block size, Nb, is defined, indicating the adjacent area of the 
image that needs to be maximised. Then, we calculate the Spearman correlation coefficient 
between features and the target variable (default or non-default class). A feature name vec-
tor, V, is created by sorting the Spearman correlation coefficient between features and the 
target variable in descending order. After creating V, we calculate the Spearman correlation 
coefficient matrix S among features. Once the Spearman correlation coefficient matrix is 
calculated, we start to maximise the absolute value of the Spearman correlation coefficient 
in a block of size Nb × Nb (see line 9 to line 17 in Algorithm 1). The maximisation process 
can be seen and solved as a standard 0/1 integer programming problem1 (Han et al., 2019). 
To begin the maximisation process, we assign the first Nw feature in V to the first row of 
the feature arrangement matrix O to reduce the computation complexity of the optimisation 
process (Han et al., 2019). Then, we iteratively find the feature names that should be used in 
each block from the upper left to the bottom right of the feature arrangement matrix.

3.4  Tabular Image

Once WOEs, IVs and a feature arrangement matrix are calculated, a Tabular Image trans-
formation can be conducted. The pseudocode of Tabular Image is shown in Algorithm 2. 
The Tabular Image transformation first applies a z-score normalisation to feature values to 
reach faster convergence. After the normalisation, the Tabular Image transformation itera-
tively converts each tabular data sample into an image. Given a tabular data sample, Tabular 
Image transformation iteratively creates a pixel matrix for each feature by replacing feature 
names in the feature arrangement matrix with the corresponding feature value. After creat-
ing a pixel matrix for all features, padding is applied to the image using the median value of 
the pixel matrix if the number of pixels assigned to all features is less than the initial NP . 
The number of paddings for the image is calculated by

1 Approximate optimal solutions can be found by using Python package pyomo with gurobi solver.
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Npaddings = NP −

n∑
i=1

Npi� (4)

where n is the total number of features. After padding, an image or a pixel matrix that is 
transformed from one row (i.e., one sample) of the original tabular data is created. After 
transforming every sample in the dataset, the tabular images can be used as inputs to 2D 
CNNs. Figure 3a shows five default tabular images and Fig. 3b shows five non-default tabu-
lar images.2 The grey level of a normalised pixel represents the normalised value of the cor-
responding sample. Figure 3 shows clearly different visual patterns between the default and 
non-default credit applicants, where the tabular images of non-default credit applicants are 
darker than default credit applicants. This also indicates that the transformation of tabular 
data into images might offer unique opportunities for data visualisation and interpretation, 
such as the heat maps in financial analysis (Argyriou et al., 2014), credit risk visualisation 
tools (Leite et al., 2018), etc., aiding in a quicker and more intuitive understanding of the 
credit data.

Algorithm 2  Tabular Image

4  Experiments
4.1  Data preparation

To evaluate the performance of Tabular Image on 2D CNNs, we applied the transformation 
on a standard benchmark dataset named Taiwan Credit (TC)3 (Yeh & Lien, 2009) which is 
widely used in credit scoring literature (Dumitrescu et al., 2022; Jiang et al., 2023; Shi et al., 
2024). Then, a more complex dataset, namely home credit default risk (HC)4 (Anna Mon-

2 These default/non-default images are converted from samples in the later introduced Taiwan Credit dataset 
that have the highest/lowest five probability of default calculated by our later constructed 2D CNN for 
comparison purposes.

3 See: ​h​t​t​p​s​:​​/​/​a​r​c​​h​i​v​e​.​i​​c​s​.​u​​c​i​.​e​d​​u​/​d​a​t​​a​s​e​t​/​3​​5​0​/​d​​e​f​a​u​l​t​+​o​f​+​c​r​e​d​i​t​+​c​a​r​d​+​c​l​i​e​n​t​s.
4 See: ​h​t​t​p​s​:​​/​/​w​w​w​​.​k​a​g​g​l​​e​.​c​o​​m​/​c​/​h​​o​m​e​-​c​​r​e​d​i​t​-​​d​e​f​a​​u​l​t​-​r​i​s​k​/​o​v​e​r​v​i​e​w.
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toya & KirillOdintsov, 2018) was considered. Home credit is a multinational consumer 
finance provider focusing on instalment lending primarily to borrowers with little or no 
credit history, adding to the data’s complexity. Finally, another complex dataset, namely 
Fannie Mae (FM)5 was selected. Fannie Mae is a government-sponsored enterprise that 
mainly focuses on mortgage loans in the US. We define a loan as default if a loan is more 
than 90 days past the due date (DPD)6 based on major financial standards such as Basel II 
and IFRS 9 (Mushava & Murray, 2022). The original dataset contains more than ten million 
loan records. Due to the computing resource limitation, stratified sampling was performed 
to randomly sample data from a relatively stable economic period from 2009 to 2016 (Chen 
et al., 2021). Features that contain 99% or more missing values are dropped. The details of 
the three datasets are shown in Table 1. All the datasets are imbalanced, which matches real-
world situations in a credit scoring context, as defaulting credit applicants are far fewer than 
non-defaulting ones. The HC and FM datasets present significant challenges, particularly 
due to their large sample sizes and notably lower default rates. The HC dataset, in particular, 
poses additional complexities with its large feature sizes and samples primarily belonging 
to the unbanked population.

The complexity and real-world applicability of these datasets make them a rigorous test-
ing ground for different models. In this context, even a modest improvement in performance 
is significant and may lead to huge economic benefits (Blöchlinger & Leippold, 2006).

We separately applied the Tabular Image transformation on TC, HC and FM datasets to 
generate their tabular images. The size of each image was set to 32 × 32 = 1024 pixels with 
a block size 3 × 3 pixels.7

A standard pre-processing method, as detailed by Gunnarsson et al. (2021), was applied 
when using tabular data as input for logistic regression, support vector machine (SVM), 
decision tree (DT), random forest, Adaptive Boosting (AdaBoost), Gradient-boosted deci-
sion trees (GBDT), XGBoost, MLP, and 1D CNN. First, categorical features were trans-

5 See: ​h​t​t​p​s​:​​/​/​c​a​p​​i​t​a​l​m​a​​r​k​e​t​​s​.​f​a​n​​n​i​e​m​a​​e​.​c​o​m​/​​c​r​e​d​​i​t​-​r​i​​s​k​-​t​r​​a​n​s​f​e​r​​/​s​i​n​​g​l​e​-​f​​a​m​i​l​y​​-​c​r​e​d​i​​t​-​r​i​​s​k​-​t​r​​a​n​s​f​e​​r​/​f​a​n​n​​i​e​-​m​​a​
e​-​s​i​​n​g​l​e​-​​f​a​m​i​l​y​​-​l​o​a​​n​-​p​e​r​f​o​r​m​a​n​c​e​-​d​a​t​a.

6 We consider the loan as default even if the loan is cured after 90 DPD.
7 The block size in our model is tuned as a hyper-parameter. A block size of 3 × 3 is optimal for our study.

Fig. 3  Example images of the TC dataset. a is images of five default samples in the TC dataset generated 
by proposed Tabular Image. b is images of non-default samples in the TC dataset generated by proposed 
Tabular Image
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formed into WOEs, with missing values being regarded as separate categorical values. 
Then, missing values in numerical features were imputed with their median values. After 
processing missing values, random oversampling was applied to the training set, a technique 
proven effective in addressing data imbalance issues in the credit scoring field (Jiang et al., 
2023). After that, features were standardised using z-score normalisation.

For comparison purposes, we also transformed the TC, HC and FM datasets into images 
using the One-hot (Dastile & Celik, 2021) and DeepInsight (Sharma et al., 2019) transfor-
mation methods. For One-hot transformation, we first discretised numerical features using 
the quantile-based discretisation method, akin to the Tabular Image approach. Then, sparse 
binary pixel matrices (Dastile & Celik, 2021), which are matrices consisting of values 0 
and 1, were created to represent the one-hot encoding of each feature. Features with IV 
larger than 0.1 were selected, as suggested by Dastile and Celik (2021). The image size was 
resized to 32 × 32 as the original image size does not meet the minimum input requirement 
of the 2D CNN used. For the DeepInsight transformation, we first pre-process tabular data 
using the method suggested by Gunnarsson et al. (2021). After this, tabular data was trans-
formed into images with a size of 32 × 32 pixels.

4.2  Models construction

This study constructed ten prediction models,8 including logistic regression (Wiginton, 
1980), SVM (Cortes & Vapnik, 1995), DT (Breiman, 1984), random forest (Brown & Mues, 
2012; Wang et al., 2012), AdaBoost (Freund & Schapire, 1997), GBDT (Friedman, 2001), 
XGBoost (Lessmann et al., 2015), MLP (Gunnarsson et al., 2021), 1D CNN (Shwartz-Ziv & 
Armon, 2022), and a 2D CNN named ConvNeXt (Woo et al., 2023). Logistic regression was 
selected as an industry standard. SVM and DT were chosen as benchmark individual clas-
sifiers. Random forest was chosen as a benchmark bagging ensemble classifier as suggested 
by Lessmann et al. (2015), along with two mainstream boosting ensemble models, Ada-
Boost and GBDT (Shi et al., 2024). XGBoost was regarded as the state-of-the-art ensemble 
classifier in this study as it yields superior performance among machine learning models 
(Grinsztajn et al., 2022; Gunnarsson et al., 2021). As 2D CNNs are not suitable for tabular 
data (Damri et al., 2023), we utilised a 1D CNN and an MLP to analyse the performance 
of neural networks on tabular data. ConvNeXt was selected to train our proposed Tabular 
Image because it is a state-of-the-art 2D CNN architecture and serves as a backbone of 
advanced 2D CNNs (Woo et al., 2023). Details and hyper-parameter setting of each model 
are presented in the following paragraphs.

8 For logistic regression, SVM, DT, Random forest, AdaBoost, GBDT and MLP, we used the implementation 
from a Python machine learning library called Scikit-Learn (see: https://scikit-learn.org/). For XGBoost, 
we used the XGBoost library (see: https://xgboost.ai/) in Python. For 1D and 2D CNNs, models were con-
structed using Pytorch (see: https://pytorch.org/).

Dataset Sample size No. of 
features

Default samples Default rate 
(%)

TC 30,000 23 6636 22.1
HC 307,511 120 24,825 8.1
FM 300,000 36 925 0.3

Table 1  Information of credit 
datasets used in this study
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The ConvNeXt architecture is proposed by Woo et al. (2023), which is a state-of-the-art 
2D CNN architecture upgraded from ResNet (He et al., 2016). By introducing shortcut con-
nections (He et al., 2016), ResNet-like architecture mitigates the vanishing gradient prob-
lem when the depth of CNN increases to make the construction of very deep CNN possible 
and performs remarkably well. Furthermore, the depthwise convolution and global response 
normalisation (GRN) layers in ConvNeXt allow it to pay attention to specific areas of an 
image, which works similarly to feature selection, an important step in credit scoring.

We used the Nesterov stochastic gradient descent as the optimiser with a momentum of 
0.9. Binary cross entropy was selected as the loss function. The batch size was set to 128 for 
the TC dataset and 1024 for the HC dataset. The learning rate was initialised as 0.001 for TC 
and HC and 0.0001 for the FM dataset. The initial learning rate was divided by ten every ten 
epochs during training to avoid overfitting. Early stopping was also used to avoid overfitting 
by stopping the training process when the AUC of the validation set stopped increasing. A 
patient of five was set to avoid local minima.

The architecture of the 1D CNN is similar to LeNet-5 (LeCun et al., 1989), comprising 
one input layer, two 1D convolutional layers with ReLU activation function, two average 
pooling layers, two fully connected layers and one output layer. The batch size, optimiser, 
and loss function were set identically to ConvNeXt. The learning rate was initialised as 0.1 
and divided by ten every ten epochs.

Also, a 5-layer MLP was constructed to evaluate the effect of fully connected artificial 
neural networks with tabular data. The ReLU activation function was used in each hidden 
layer. The optimiser and loss function were set identically to ConvNeXt. The batch size was 
set to 200 for all datasets.

4.3  Hyper-parameter tunning

To guarantee a fair and rigorous comparison among the various machine learning models, 
including ours, we conducted an extensive hyper-parameter tuning process for each model 
to achieve their optimal performance. This involved a meticulous grid search to identify 
the best hyper-parameters for each model. The hyper-parameter search space is shown in 
Table 2. The chosen values of each model were either recommended by literature (e.g. Gun-
narsson et al. 2021) or derived from our own exploratory analysis. This thorough approach 
to tuning ensures that the performance results presented are the best possible for each model. 
Consequently, even slight improvements achieved by our model carry significant weight, 
underlining its effectiveness compared to others.

4.4  Evaluation metrics

This study evaluates a model’s overall performance and the maximum ability to separate 
default and non-default credit applicants using three metrics that are commonly used in 
credit scoring (Baesens et al., 2003; Lessmann et al., 2015), the area under the receiver 
operating characteristic curve (AUC), the Kolmogorov–Smirnov statistic (KS) and the 
H-measure. The AUC is a metric that evaluates the overall discrimination ability of a model 
by measuring the area under the receiver operating characteristic (ROC) curve. In credit 
scoring tasks, it is equivalent to the probability that the credit score of a randomly cho-
sen default credit applicant is higher than a randomly chosen non-default credit applicant 
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(Lessmann et al., 2015). Since the AUC considers a model’s global performance, it assumes 
that all thresholds are equally possible to use as cutoff points in credit scoring, which is not 
plausible in practice (Hand, 2005). Because of this, it is also essential to find the cutoff point 
that can maximise the distance between default and non-default credit applicants in order to 
evaluate the maximum ability of a model to separate default and non-default credit appli-
cants. Therefore, the KS was selected to concentrate on measuring the maximum distance 
between default and non-default credit applicants that a model can separate (i.e. the KS 
point). The H-measure (Hand, 2009) is a coherent alternative metric compared to the AUC. 

Number 
of models 
need to be 
search

Hyper-parameters Grid range

Logistic 
regression

1 – –

SVM 6 C 0.1, 1, 10
Gamma 1/(n ∗ V ar(X)),

1/n

DT 54 Minimum number of 
samples for each split

2, 3, 4, 5, 6, 7, 
8, 9, 10

Minimal cost-complex-
ity pruning

0, 0.1, 0.2, 0.3, 
0.4, 0.5

Random 
forests

30 Number of trees 100, 250, 500, 
750, 1000

Number of features √
n, log2(n)

Ratio of samples to be 
selected

0.5, 0.75, 1

AdaBoost 24 Number of gradient 
boosted trees

50, 100, 150, 
200, 300, 500

Learning rate 0.1, 0.2, 0.3, 0.4
GBDT 216 Number of gradient 

boosted trees
50, 100, 150, 
200, 300, 500

Maximum tree depth 1, 2, 3
Learning rate 0.1, 0.2, 0.3, 0.4
Ratio of samples to be 
selected

0.5, 0.75, 1

XGBoost 216 Number of gradient 
boosted trees

50, 100, 150, 
200, 300, 500

Maximum tree depth 1, 2, 3
Learning rate 0.1, 0.2, 0.3, 0.4
Ratio of samples to be 
selected

0.5, 0.75, 1

MLPa 253 Number of hidden units 
in each layer

5, 10, 15, 20, 
25, 40, 100

Number of layers 1, 5
Learning rate 0.001, 0.0001, 

0.00001
Strength of the L2 
regularization

0, 0.001. 0.01, 
0.1

Tabular 
Image

3 Block size 2, 3, 4

Table 2  Hyper-parameter tuning 
grid

aMLPs that have a growing 
number of hidden units in layers 
were not taken into account as 
they tend not to generalise well
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It is equivalent to the percentage improvement of the expected minimum loss a classifier 
gains compared to a classifier that randomly assigns samples to classes. H-measure allows 
us to specify a misclassification cost during evaluation, which is essential since misclas-
sifying a default borrower to non-default is considered a more severe case in credit scor-
ing applications. In this study, the misclassification cost was set to the number of default 
samples divided by the number of non-default samples (Hand & Anagnostopoulos, 2014). 
Lastly, these three metrics, the AUC, the KS and the H-measure, are robust toward data 
imbalance (Lessmann et al., 2015), which is vital since the datasets used in this study show 
various degrees of data imbalance.

5  Results

5.1  Distribution analysis of tabular data and tabular images

To investigate the effectiveness of Tabular Image, we plotted three mean pixel value density 
plots and three mean tabular data value density plots by using tabular images and tabular 
data converted from samples in the test set of the TC, HC, and FM datasets. Figure 4b, d, 
and f are three mean pixel value density plots of the TC, HC, and FM datasets, respectively. 
The range of the X-axis in Fig. 4b, d, and f is from 0 (black pixels) to 255 (white pixels), 
which indicates the pixel value range of grayscale images. Figure 4a, c, and e are three 
mean tabular data value density plots of the TC, HC, and FM datasets, respectively. The 
range of the X-axis in Fig. 4a, c, and e is from 0 to 1, which indicates the tabular data value 
after min-max normalisation. The distribution of non-default and default samples is signifi-
cantly overlapped in Fig. 4a, c, and e, indicating the difficulty in distinguishing these two 
distributions using raw tabular data. However, it is apparent that after being transformed by 
Tabular Image, the separation of the distribution of non-default and default samples is more 
pronounced. Specifically, in the transformed tabular images, the majority of pixels in non-
default tabular images are distributed in the left part of the X-axis, which means they are 
generally darker than those in the default tabular images, which aligns with the observation 
of Fig. 3 in Sect. 3.4. The more pronounced separation between the distribution of non-
default and default samples further demonstrated the power of Tabular Image, indicating 
the effectiveness of our method.

5.2  Comparison of 2D CNN with machine learning models

To better evaluate the discriminatory performance of the Tabular Image, we implemented 
a stratified five-fold cross-validation process to ensure the reliability of the results. In each 
iteration, one fold was reserved as the test set, which had not been previously encountered 
by the model, thereby evaluating the performance of the model. For the other four folds, 
we used 80% of the samples as the training set and the remaining 20% of the samples as 
the validation set for hyper-parameter tuning. We first evaluated traditional prediction mod-
els with original tabular data, including XGBoost, Random forest, Logistic regression, and 
MLP, as a baseline. Those baseline models tell us how good the performance can be with the 
original tabular data. Then we used our proposed Tabular Image with a ConvNeXt. Because 
ConvNeXt cannot accept tabular data as input, we also ran a 1D CNN on the original tabular 
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data to examine the effect of the CNN when using tabular data. In order to discuss the effects 
of different tabular data-image transformation methods on prediction performance, we also 
applied the One-hot transformation (Dastile & Celik, 2021) and DeepInsight (Sharma et al., 

Fig. 4  The density plot of mean pixel values of tabular images and the density plot of mean tabular data 
value for the test set in the TC, HC, and FM datasets. The range of the X-axis in (b), (d), (f) is from 
0 (black pixels) to 255 (white pixels), which indicates the pixel value range of grayscale images. The 
range of the X-axis in (a), (c), (e) is from 0 to 1, which indicates the tabular data value after min–max 
normalisation
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2019) on ConvNeXt, respectively. Moreover, we also ran the Tabular Image with different 
image sizes and allocation methods to assess the robustness of our proposed method.

5.2.1  Performance of 2D CNN and machine learning models

We first compared 2D CNN using tabular images with traditional prediction models. 
Tables 3, 4 and 5 present the average test set AUC, H-measure, KS, and their corresponding 
standard deviations from five-fold cross-validation for each prediction model on the TC, HC 
and FM datasets, respectively. The best performance for each metric is highlighted in bold.

On the smaller TC dataset, with the proposed Tabular Image, a 2D CNN outperformed 
all individual classifiers, including its 1D counterpart, 1D CNN, by approximately 1–20% 
in terms of AUC and H-measure. Note that 1D CNN performed only slightly better than 
the weakest logistic regression in terms of AUC and H-measure. These results indicated 
that a 2D ConvNeXt could utilise 2D kernels to better capture features in the data after 
transforming tabular data into images than 1D CNN that extracts signals in 1D tabular 
data with 1D kernels. Meanwhile, as an individual classifier, our method outperformed the 
ensemble benchmark classifier, random forest, on all evaluation metrics and achieved simi-
lar results compared to the state-of-the-art GBDT and XGBoost. These results indicate that 

Table 3  The average (standard deviation) test set AUC, H-measure, and KS in five-fold cross-validation for 
each prediction model and the 2D CNN with tabular images: TC dataset

Model AUC H-measure KS
Individual classifier Logistic regression 76.51% ± (0.83%) 27.61% ± (2.06%) 0.4160 ± (0.0224)

SVM 76.37% ± (1.14%) 26.99% ± (2.18%) 0.4154 ± (0.0209)
DT 63.09% ± (0.61%) 8.95% ± (0.71%) 0.2452 ± (0.0115)
MLP 77.12% ± (0.71%) 28.01% ± (1.54%) 0.4180 ± (0.0176)
1D CNN 76.80% ± (0.83%) 27.85% ± (1.67%) 0.4214 ± (0.0171)

Ensemble classifier Random forest 77.14% ± (0.88%) 28.02% ± (1.87%) 0.4177 ± (0.0168)
AdaBoost 77.50% ± (0.92%) 28.25% ± (1.98%) 0.4204 ± (0.0201)
GBDT 78.00% ± (0.92%) 29.09% ± (1.90%) 0.4319 ± (0.0206)
XGBoost 77.99% ± (0.89%) 29.14% ± (1.84%) 0.4307 ± (0.0206)

Proposed method ConvNeXt 77.98% ± (1.03%) 28.88% ± (2.08%) 0.4281 ± (0.0236)

Table 4  The average (standard deviation) test set AUC, H-measure, and KS in five-fold cross-validation for 
each prediction model and the 2D CNN with tabular images: HC dataset

Model AUC H-measure KS
Individual classifier Logistic regression 73.72% ± (0.97%) 17.65% ± (1.32%) 0.3544 ± (0.0147)

SVM 57.74% ± (2.17%) 2.85% ± (1.19%) 0.1181 ± (0.0296)
DT 53.40% ± (0.66%) 1.29% ± (0.36%) 0.0675 ± (0.0126)
MLP 73.96% ± (0.31%) 17.87% ± (0.41%) 0.3589 ± (0.0056)
1D CNN 70.61% ± (3.58%) 13.66% ± (4.83%) 0.3056 ± (0.0530)

Ensemble classifier Random forest 74.06% ± (0.22%) 18.43% ± (0.52%) 0.3611 ± (0.0044)
AdaBoost 74.04% ± (1.03%) 18.12% ± (1.61%) 0.3573 ± (0.0158)
GBDT 74.57% ± (0.85%) 18.76% ± (1.36%) 0.3653 ± (0.0134)
XGBoost 74.28% ± (0.98%) 18.31% ± (1.58%) 0.3600 ± (0.0148)

Proposed method ConvNeXt 75.06% ± (0.36%) 19.70% ± (0.72%) 0.3729 ± (0.0093)
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our method captured linear and non-linear relationships in the data better after transform-
ing tabular data into images than neural networks directly using tabular data as input. Our 
results also confirmed the findings in Gunnarsson et al. (2021) that XGBoost can outperform 
other benchmark models with traditional tabular data on small datasets.

On the HC dataset, which has a much larger sample size and more challenging test-
ing conditions, the ConvNeXt with tabular images outperformed individual classifiers by 
approximately 1–22% in terms of AUC and H-measure. Notably, our method even outper-
formed the ensemble classifiers, including the state-of-the-art GBDT and XGBoost, across 
all evaluation metrics. It becomes even more pronounced regarding the H-measure, par-
ticularly with an increment of 1.39%, whereas other benchmark models suffered a decrease 
ranging from 0.5 to 21.1% compared to GBDT and XGBoost.

The FM dataset, which is large and extremely imbalanced, presented a different chal-
lenge. Again, the ConvNeXt with tabular images outperformed individual classifiers with 
an increase of approximately 5–29% in terms of AUC and H-measure. What stands out in 
this table is that our method outperformed the GBDT and XGBoost across all evaluation 
metrics. The improvement becomes even more pronounced regarding the H-measure with 
an improvement of 4.37% from GBDT and 5.68% from XGBoost.

To further investigate the predictive performance of our method, we particularly analyse 
subprime borrowers9 in the FM dataset. Subprime borrowers are considered riskier for a 
lender and difficult to predict. Thus, a model that can perform well on subprime borrowers 
can be considered more advanced and help reduce loan loss. Similar to the previous results 
format, Table  6 shows the performance of each prediction model on subprime samples. 
The best performance for each metric is highlighted in bold. We can see that ConvNeXt 
with tabular images outperformed all individual and ensemble classifiers in terms of AUC, 
H-measure, and KS with an improvement of approximately 8–21%, 22–46%, 0.20–0.35, 
respectively.

The success of our model in those datasets highlights the effectiveness of our data trans-
formation method, indicating a higher level of robustness. On the one hand, our method 
adapts better to varying data complexities and sizes, which is crucial in practical appli-
cations (Grinsztajn et al., 2022). On the other hand, with the Tabular Image, ConvNeXt 
can better extract both linear and non-linear relationships in a complicated dataset, making 

9 A rule of thumb is that a subprime borrower is one who has a FICO score lower than 670. See ​h​t​t​p​s​:​​/​/​w​w​w​​
.​e​x​p​e​r​​i​a​n​.​​c​o​m​/​b​​l​o​g​s​/​​a​s​k​-​e​x​​p​e​r​i​​a​n​/​w​h​a​t​-​i​s​-​s​u​b​p​r​i​m​e​/.

Table 5  The average (standard deviation) test set AUC, H-measure, and KS in five-fold cross-validation for 
each prediction model and the 2D CNN with tabular images: FM dataset

Model AUC H-measure KS
Individual classifier Logistic regression 87.15% ± (1.01%) 43.56% ± (2.30%) 0.5962 ± (0.0157)

SVM 80.86% ± (2.29%) 34.59% ± (3.25%) 0.4945 ± (0.0338)
DT 74.63% ± (0.84%) 26.17% ± (1.59%) 0.4926 ± (0.0168)
MLP 85.01% ± (0.86%) 37.85% ± (2.00%) 0.5558 ± (0.0256)
1D CNN 84.45% ± (1.70%) 36.83% ± (3.67%) 0.5572 ± (0.0328)

Ensemble classifier Random forest 89.92% ± (0.56%) 49.44% ± (1.61%) 0.6439 ± (0.0086)
AdaBoost 88.59% ± (1.63%) 46.74% ± (2.65%) 0.6321 ± (0.0340)
GBDT 90.12% ± (2.16%) 50.68% ± (4.03%) 0.6446 ± (0.0483)
XGBoost 89.43% ± (3.87%) 49.19% ± (6.43%) 0.6434 ± (0.0787)

Proposed method ConvNeXt 91.75% ± (1.15%) 55.05% ± (3.21%) 0.6827 ± (0.0355)
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it more powerful in prediction, demonstrating the effectiveness of the proposed Tabular 
Image. Interestingly, the performance of 1D CNN with tabular data is worse than that of 
logistic regression in the HC and FM datasets, with a decrease of more than 3% across all 
three metrics, indicating 1D CNN does not have sufficient ability to extract information in 
such large-scale, challenging datasets. In contrast, by converting tabular data into images, 
we unlock the full potential of the 2D CNN and identify an improvement of approximately 
1–5% across all three metrics compared to the classic logistic regression model. This further 
emphasises the transformative impact of our Tabular Image, showcasing its unique contri-
bution to advancing the capabilities of 2D CNNs in credit scoring.

Although we mainly focus on predictive performance, we noticed that the training time 
of ConvNeXt and the conversion time of Tabular Image are relatively short. It took less 
than ten epochs for a ConvNeXt trained on the TC dataset to converge, with a training time 
of less than 2 min on two P100 GPUs. The model trained on the HC and the FM datasets 
took about ten epochs to converge, with a training time of less than 15 min on two P100 
GPUs. As a complicated dataset with more noise and samples, the increase in training time 
in the HC and the FM datasets was expected, but one can easily reduce the training time 
by using multiple GPUs or a more advanced one.10 The Tabular Image involves a feature 
arrangement step, as described in Algorithm 1, and a tabular data-to-image conversion step, 
as described in Algorithm 2. Similar to tabular data transformation techniques, such as nor-
malisation in the preprocessing step, the feature arrangement step is a one-time calculation 
in order to generate a feature arrangement matrix. The feature arrangement matrix can be 
saved and used directly in the transformation of incoming data to reduce the computational 
cost. For the tabular data-to-images conversion step, the time complexity is linear O(n) 
since there is only a single loop within the tabular data-to-image conversion step. In our 
empirical evaluations, the practical runtime of the feature arrangement step was less than 
3 min for all the datasets considered in this study, with the use of an Apple M1 CPU. The 
total runtime of the tabular data-to-images conversion step was less than 15 s for the small 
TC dataset and less than 4 min for the larger HC and FM datasets, using the same CPU. 
This is a reasonable and manageable trade-off considering the significant improvement in 
predictive performance. Moreover, it is feasible to implement and further reduce the com-
putational cost in real-world applications with the use of advanced CPUs. The training time 

10 We observed a reduction of 87% of the training time to less than 2 min as we tested on one Nvidia L40s 
GPU compared to training on two P100 GPUs.

Table 6  The average (standard deviation) test set AUC, H-measure, and KS in five-fold cross-validation for 
each prediction model and the 2D CNN with tabular images: Subprime samples in the FM dataset

Model AUC H measure KS
Individual classifier Logistic regression 79.21% ± (4.81%) 29.13% ± (7.04%) 0.4937 ± (0.0662)

SVM 76.50% ± (5.30%) 28.01% ± (9.64%) 0.4401 ± (0.0689)
DT 69.82% ± (4.55%) 14.15% ± (5.53%) 0.3963 ± (0.0910)
MLP 76.10% ± (4.70%) 24.81% ± (4.79%) 0.4481 ± (0.0670)
1D CNN 80.34% ± (3.65%) 31.87% ± (4.94%) 0.5139 ± (0.0596)

Ensemble classifier Random forest 84.53% ± (2.17%) 37.71% ± (5.16%) 0.5498 ± (0.0485)
AdaBoost 80.84% ± (1.79%) 30.98% ± (2.39%) 0.5213 ± (0.0473)
GBDT 83.13% ± (4.87%) 38.06% ± (8.17%) 0.5329 ± (0.0753)
XGBoost 83.45% ± (2.59%) 35.95% ± (4.01%) 0.5139 ± (0.0596)

Proposed method ConvNeXt 91.06% ± (5.20%) 60.32% ± (16.94%) 0.7487 ± (0.1256)
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of the ConvNeXt model is also reasonable (e.g., minutes rather than seconds compared to 
traditional XGBoost), especially considering the potential to take advantage of the latest 
developments in both hardware and software that allow for faster training processes fully 
optimised and supported for 2D CNNs. Such scalability and efficiency of our proposed 
method indicate the potential for real-world application at scale (Xia et al., 2020). Because 
of the thriving online loan applications, the number of loan applications has increased expo-
nentially compared to traditional offline lending. Thus, more samples can be used to train 
credit scoring models. It is important to consider a more effective approach to using large 
datasets in order to keep up with the changing trends in lending services. Therefore, the 
slight and manageable increase in computational cost is outweighed by the enhanced predic-
tive performance of the proposed Tabular Image and its subsequent advantages.

5.2.2  Bayesian analysis

Bayesian correlated t-tests (Benavoli et al., 2017) were performed to test the statistical 
validity of the difference for evaluation metrics used in this study. It evaluates the mean 
difference of evaluation metrics produced by cross-validation on a single dataset between 
two models. We consider two models to be practically equivalent when the mean differ-
ence of AUC and H measure is less than 0.5%, and the mean difference of KS is less than 
0.005 for a dataset. Since larger and more challenging datasets are considered in this study, 
a threshold of 0.5% for the AUC and H measure and a threshold of 0.005 for KS is more 
appropriate as the difficulty of improving predictive performance increases. Furthermore, 
due to the recent large scale of the loan portfolio in financial institutions (Cornelli et al., 
2023), even a minor improvement can substantially reduce loan losses, leading to an opti-
mised loan portfolio. Thus, the region of practical equivalence (ROPE) is defined as 0.005. 
Bayesian correlated t-tests are then used to compare 2D CNN with Tabular Image and each 
benchmark model. Each test produces three posterior probabilities: the posterior probability 
P (2D CNN) that 2D CNN with Tabular Image performs practically better than a bench-
mark classifier; the posterior probability P (ROPE) that the two classifiers being practically 
equivalent; the posterior probability P (Benchmark) that a benchmark classifier performs 
practically better than the 2D CNN with Tabular Image. We consider the result as significant 
if one of the three probabilities exceeds 95%, along with introducing posterior odds by com-
puting o(2D CNN, Benchmark) = P (2D CNN)/P (Benchmark), o(ROPE, 2D CNN) = 
P (ROPE)/P (2D CNN), and o(ROPE, Benchmark) = P (ROPE)/P (Benchmark) to 
avoid limited dichotomous thinking when evaluating the results (Gunnarsson et al., 2021).

Figure 5 shows the results for 2D CNN with Tabular Image compared with each of the 
benchmark models for the TC dataset. For individual classifiers, as shown in Fig. 5, 2D 
CNN with Tabular Image significantly outperformed Logistic regression, SVM, DT, and 
1D CNN with a probability between 95.82 and 100%. There is also strong evidence to 
suggest that 2D CNN with Tabular Image performed practically better than MLP based 
on all three metrics considered with a posterior odd of o(2D CNN, Benchmark) between 
6.9 and 94.3. Regarding ensemble models, 2D CNN with Tabular Image performed sig-
nificantly better than the random forest in terms of AUC with a probability of 98.19%. 
In addition, strong evidence suggests that 2D CNN with Tabular Image performed prac-
tically better than AdaBoost based on the AUC (o(2D CNN, Benchmark) = 32.1) and 
H-measure (o(2D CNN, Benchmark) = 44.6). Furthermore, 2D CNN with Tabular Image 
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performed equally to the state-of-the-art GBDT and XGBoost based on all three metrics 
considered in support of positive o(ROPE, 2D CNN) ranging from 9.8 to 56.2 and positive 
o(ROPE, Benchmark) ranging from 1.83 to 21.5.

Figure  6 shows the results for 2D CNN with Tabular Image compared with each of 
the benchmark models for the HC dataset. From the graph, we can see that 2D CNN with 
Tabular Image significantly performed better than SVM, DT, and MLP in terms of AUC 
and H-measure in support of 2D CNN ranging from 95.99 to 100% and from 98.33 to 
100%, respectively. In addition, posterior probabilities also support that 2D CNN with Tab-
ular Image performed better than Logistic regression, 1D CNN and an ensemble model, 
random forest, in terms of AUC (81.53–92.77%), H-measure (85.79–93.56%), and KS 
(80.14–93.9%). It is apparent from this graph that our method positively outperformed all 
the ensemble boosting models considered, including the state-of-the-art XGBoost, with pos-
terior odds between 3.3 and 12.1 for all three metrics.

Figure  7 shows the results for 2D CNN with Tabular Image compared with each of 
the benchmark models for the FM dataset. From the graph, we can see that 2D CNN with 
Tabular Image significantly performs better than all individual models with a probability 
between 99.88 and 100%. Regarding the ensemble models, random forest and AdaBoost 
performed significantly worse than 2D CNN with Tabular Image in support of a probability 
between 95.37 and 97.21%. In addition, 2D CNN with Tabular Image, again, positively 
outperformed the state-of-the-art GBDT and XGBoost, with posterior odds between 2.3 and 
4.3 for all three metrics.

Fig. 5  Bayesian correlated t-tests for the difference between the 2D CNN with Tabular Image and each 
classifier considered in this study for each performance metric for the TC dataset. It shows a 3 × 3 ma-
trix of bar plots. Each bar plot has three types of bars:P (2D CNN) is the posterior probability that 2D 
CNN with Tabular Image performs practically better than the classifier mentioned in the title of each 
bar plot; P (ROPE) is the posterior probability of the two classifiers being practically equivalent; and 
P (Benchmark) is the posterior probability that the classifier mentioned in the title of each bar plot 
performs practically better than the 2D CNN with Tabular Image. The number on each bar represents the 
posterior probability of the Bayesian correlated t-test for each metric
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5.3  Comparison of different tabular data-image transformation methods

We compared our Tabular Image with other popular tabular data-image transformation 
methods: One-hot (Dastile & Celik, 2021), and DeepInsight (Sharma et al., 2019). Table 7 

Fig. 6  Bayesian correlated t-tests for the difference between the 2D CNN with Tabular Image and each 
classifier considered in this study for each performance metric for the HC dataset. It shows a 3 × 3 
matrix of bar plots. Each bar plot has three types of bars:P (2D CNN) is the posterior probability that 
2D CNN with Tabular Image performs practically better than the classifier mentioned in the title of each 
bar plot; P (ROPE) is the posterior probability of the two classifiers being practically equivalent; and 
P (Benchmark) is the posterior probability that the classifier mentioned in the title of each bar plot 
performs practically better than the 2D CNN with Tabular Image. The number on each bar represents the 
posterior probability of the Bayesian correlated t-test for each metric

 

Fig. 7  Bayesian correlated t-tests for the difference between the 2D CNN with Tabular Image and each 
classifier considered in this study for each performance metric for the FM dataset. It shows a 3 × 3 
matrix of bar plots. Each bar plot has three types of bars:P (2D CNN) is the posterior probability that 
2D CNN with Tabular Image performs practically better than the classifier mentioned in the title of each 
bar plot; P (ROPE) is the posterior probability of the two classifiers being practically equivalent; and 
P (Benchmark) is the posterior probability that the classifier mentioned in the title of each bar plot 
performs practically better than the 2D CNN with Tabular Image. The number on each bar represents the 
posterior probability of the Bayesian correlated t-test for each metric
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shows the average test set AUC, H-measure, KS, and their corresponding standard devia-
tion of five-fold cross-validation for each tabular data-image transformation method with 
the ConvNeXt on each dataset. The best performance for each metric within each dataset is 
highlighted in bold.

Overall, our Tabular Image tend to perform better than DeepInsight and One-hot trans-
formation for all evaluation metrics considered in both datasets. Our method outperformed 
DeepInsight with an improvement in AUC ranging from 11.33 to 25.24% while identifying 
an increment ranging from 0.89 to 41.75% in AUC compared to the One-hot transformation. 
Compared to One-hot and DeepInsight, our proposed Tabular Image can better preserve 
information than data transformation methods like DeepInsight and One-hot, which apply 
dimension reduction techniques or use a sparse matrix with value 0 and 1 to obtain a 2D 
image. The use of dimension reduction or a sparse matrix may result in information loss 
and thus hinder performance. Interestingly, we can see that the AUC of DeepInsight in TC 
and HC and the AUC of One-hot in the FM dataset are only slightly above 50%, showing 
limited improvement compared to random guesses. These results show that the performance 
of One-hot and DeepInsight is unstable across three datasets that have varying scales and 
complexity. In contrast, Tabular Image offers a more informative and stable approach that 
yields state-of-the-art performances across datasets of varying scales and complexity.

5.4  Robustness across different image sizes on Tabular Image

To test whether our proposed method is robust to the image size, we ran Tabular Image 
with different image size parameters on the TC, HC, and FM datasets. We ran the Tabular 
Image with three image sizes, small, regular, and large: 16 × 16, 32 × 32, and 96 × 96 
pixels, respectively. After data transformation, images of each size were fed into a Con-
vNeXt model. The optimiser and other hyper-parameters used in the robustness check are 
consistent with those we used in the Sect. 4.2. We evaluated the overall discriminative per-
formance by using AUC. Figure 8 shows the average of AUC in five-fold cross-validation 
across three image sizes. As can be seen, image sizes of 32 × 32 and 96 × 96 result in 
stable and similar AUC. However, a slight drop of about 0.2% in AUC can be seen in the 
TC and HC datasets, and a drop of about 0.5% in AUC can be seen in the FM dataset when 
the image size shrinks to 16 × 16. A possible explanation for this might be that the model 
architecture we used in this study is tailored for images greater than or equal to 32 × 32. 

Table 7  The average (standard deviation) test set AUC and KS of five-fold cross-validation for different 
image transformation methods on each dataset
Dataset Data transformation method AUC H measure KS
TC DeepInsight 52.74% ± (12.32%) 5.61% ± (4.61%) 0.2225 ± (0.0869)

OneHot 77.09% ± (0.90%) 28.32% ± (2.09%) 0.4236 ± (0.0238)
Tabular Image 77.98% ± (1.03%) 28.88% ± (2.08%) 0.4281 ± (0.0236)

HC DeepInsight 53.84% ± (6.31%) 1.41% ± (1.53%) 0.0951 ± (0.0346)
OneHot 72.43% ± (0.41%) 15.72% ± (0.70%) 0.3348 ± (0.0073)
Tabular Image 75.06% ± (0.36%) 19.70% ± (0.72%) 0.3729 ± (0.0093)

FM DeepInsight 80.42% ± (6.35%) 29.72% ± (10.07%) 0.4941 ± (0.1031)
OneHot 50.00% ± (0.00%) 0.00% ± (0.00%) 0.0000 ± (0.0000)
Tabular Image 91.75% ± (1.15%) 55.05% ± (3.21%) 0.6827 ± (0.0355)
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Therefore, using an image size of 16 × 16 requires resizing the images to at least 32 × 32 
using interpolation techniques. The drop in AUC indicates that interpolation techniques 
may hamper the information in tabular images, making extracting useful information in 
input images difficult. As a result, we suggest that when scaling tabular images, one should 
try to adjust the image size to the suggested image size of the selected 2D CNN when using 
Tabular Image. As a resilient method, Tabular Image can adjust the size of images without 
losing any information. This means that as long as the image size is sufficient for the input 
features one plans to use, it can be shrunk or enlarged to match the 2D CNN requirements, 
making it easier to use advanced 2D CNNs with different input size requirements with mini-
mal variance of performance.

5.5  Robustness across different feature arrangement methods on Tabular Image

We also ran the Tabular Image with three different feature arrangement methods, namely 
correlation method, descending pattern method, and random ordering, on the TC, HC and 
FM datasets to test the robustness of our proposed method to feature arrangement methods. 
Figure 9 shows the visualisation of a sample’s three different feature arrangement meth-
ods in the TC dataset. We first generated tabular images using the correlation method, as 

Fig. 8  The average AUC across three different image sizes in the five-fold cross-validation

 

Fig. 9  Example images of three types of feature arrangement methods of a sample in the TC dataset. 
These three images were generated following the correlation method, descending pattern method, and 
random method, respectively
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described in Sect. 3.3. The descending pattern method is similar to the correlation method, 
except that the order of the feature arrangement matrix is decided by the descending order 
of the IV of the corresponding feature rather than a correlation coefficient matrix. In other 
words, values of the same feature are adjacent to each other, which minimises the interac-
tion among features. Finally, we also generated tabular images using a random method by 
randomly shuffling the pixel locations for each image. In contrast to the aforementioned 
two methods that follow specific patterns, the pixel locations of every image in the random 
method do not follow the same pattern. In other words, each image follows a different fea-
ture arrangement pattern in the random method. The image size of three different feature 
arrangement methods was fixed to 32 × 32 pixels for a fair comparison. Next, each type of 
image was used as input in a ConvNeXt model, and the prediction performance was evalu-
ated using AUC in five-fold cross-validation. Figure 10 shows the average AUC in five-fold 
cross-validation across different feature arrangement methods. The AUC of the correlation 
method outperformed the descending pattern method, highlighting that correlation among 
features should be considered and can improve model performance when applying 2D 
CNN. In addition, we explored the relationship between the average Spearman correlation 
of features and the difference in AUC between correlation and descending Methods for TC, 
HC, and FM. From Fig. 11, it can be seen that as the average Spearman correlation of fea-
tures becomes stronger, the AUC between correlation and descending Methods increases, 
indicating Tabular Image can effectively extract information from Spearman correlation 
and improve the predictive performance. Furthermore, it is worth noting that the AUC of 
the random method significantly dropped from 5.23 to 17.79% compared to the correlation 
method, demonstrating that all images should follow the same pattern other than randomly 
arranging each image; otherwise, it is difficult for 2D CNNs to extract relationships between 
input features and default risk.

5.6  Robustness of random oversampling on Tabular Image

Class imbalance is a significant challenge in credit scoring applications, impacting the IV 
and its ability to evaluate the importance of features. As we use random oversampling as a 
rebalancing technique to mitigate the class imbalance problem, experiments are conducted 

Fig. 10  The average AUC of feature arrangement methods in the five-fold cross-validation in the TC 
dataset
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to assess whether the ranks of IVs of features changed before and after applying random 
oversampling across the three datasets used in this study. The changes are calculated by 
subtracting the rank of IV before applying random oversampling from the rank of IV after 
applying random oversampling. Figure 12 shows the histograms to illustrate the distribution 
of IV ranking differences, where most differences cluster around zero, indicating the mini-
mal impact of class balancing on the ranks of IVs. The p values, derived from the Wilcoxon 
signed-rank test, with the Taiwan Credit (p = 1.000), Home Credit (p = 0.683), and Fannie 
Mae (p = 0.867) showing no significant difference between the ranks of IVs of features 
before and after applying random oversampling. This suggests that our method is stable 

Fig. 11  Relationship between 
average spearman correlation 
of features and the difference in 
AUC between correlation and 
descending methods for TC, HC, 
and FM

 

Fig. 12  Distribution of the difference in information value (IV) ranking between balanced datasets and 
original datasets across three different datasets: Taiwan, Home, and Fannie Mae. The p values, derived 
from the Wilcoxon signed-rank test, indicate the significance level of the differences observed
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when using random oversampling, as random oversampling does not significantly alter the 
ranks of features as measured by IV.

6  Summary and discussion

We set out to take advantage of 2D CNNs in credit scoring tasks and mitigate the challenges 
neural networks encountered when applied to tabular data. The present research developed 
the Tabular Image, a novel data transformation method to convert tabular data into images 
for 2D CNNs and mitigates the mixed feature type problem and the data sparsity problem 
for credit scoring tasks. To investigate its effectiveness, we applied the Tabular Image to 
three credit datasets: TC, HC and FM. We trained a 2D CNN with tabular images to pre-
dict the probability of default on credit applicants. To better evaluate the proposed Tabular 
Image, the prediction performances were compared with nine benchmark machine learning 
methods and two tabular data-image transformation methods. We also evaluated the robust-
ness of the proposed Tabular Image.

The comparison with machine learning methods showed that the performance of 2D 
CNN trained on tabular images is consistently good, and its prediction advantage is more 
evident in the more complicated dataset, confirmed by Bayesian correlated t-tests. Particu-
larly, our proposed method with a deep 2D CNN constantly outperformed its shallower 
counterpart, 1D CNN. These results indicate that it is possible to dig more useful signals for 
default prediction utilising 2D CNNs with a proper data representation method. This find-
ing is especially valuable for companies which suffer from severe information asymmetry. 
For instance, companies serving subprime borrowers with little or no credit history usually 
face a high delinquency rate as borrowers tend to have higher credit risk. Meanwhile, the 
lack of credit data prevents these financial institutions from building better credit scoring 
models from existing data. Therefore, even a small fraction of improvement using existing 
data can be considered significant, saving a huge amount of loan loss. The results also show 
that the performance of 2D CNN with tabular images continues to increase as the sample 
size increases, which is consistent with the results of Doumpos et al. (2023) and Grinsztajn 
et al. (2022), indicating a promising future of applying Tabular Image to big data in credit 
scoring tasks.

The comparison with two tabular data-image transformation methods showed that Tabu-
lar Image provides the best prediction performance among the data transformations used in 
this study. Besides prediction performance, Tabular Image shows advantages compared to 
existing tabular data-image transformation methods. First, Tabular Image creates compact 
images while the DeepInsight and One-hot transformation method creates images where a 
large proportion of the matrices are blank (i.e. 0). Moreover, for the One-hot transforma-
tion method, the number of blank parts will increase if there are more bins in a discretised 
feature or if a categorical feature has many unique values. Second, Tabular Image can miti-
gate information loss by directly using feature values as pixels compared to DeepInsight, 
which needs to perform a dimension reduction technique before transforming tabular data to 
images. Third, our proposed method can create adaptive image width and height to suit the 
different input requirements of 2D CNNs. In contrast, the image size of the One-hot trans-
formation method is highly related to the number of features and WOE bins. For instance, 
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if one needs to apply deep 2D CNNs that require 224 × 224 image, the dataset should have 
224 features with a maximum bin of 224, which is usually difficult to achieve.

The robustness check on different image sizes for Tabular Image suggests that the input 
image size should match the requirement of the 2D CNN planned to use to gain the maxi-
mum performance. When using the proposed Tabular Image method, changing the image 
size will not affect the pixel values or the proportion of features in the image. Therefore, as 
long as the pixel values and number of features remain consistent and the image size is large 
enough to include all planned features, it should be possible to adjust the image size to meet 
the input requirements of different 2D CNN architectures without losing any information. 
This observation may be crucial to tabular data-image transformation methods applied to 
credit data because the traditional interpolation techniques for images may introduce unex-
pected noise when scaling an image, turning minority samples into majority samples and 
vice versa, damaging the dataset and misleading the model training process. In addition, 
this study investigated the performance of different feature arrangement methods applied 
to Tabular Image. We demonstrated that spatial relationships should be considered while 
forming images. This study used the Spearman correlation coefficient matrix to evaluate 
spatial relationships between features and yield better results than DeepInsight and the One-
hot transformation method. We also showed that during transformation, all images need 
to follow the same feature arrangement method; otherwise, it is difficult for a 2D CNN to 
extract relationships within a dataset.

The effectiveness of deep learning methods in credit scoring remains a topic of active 
debate, particularly when compared to the state-of-the-art XGBoost. Our latest model out-
performed the XGBoost and other state-of-the-art models in large and challenging datasets. 
Moreover, we see it as a complementary approach that can enhance predictive performance 
on large datasets and offer additional benefits. XGBoost performs well on small datasets, but 
its performance on large datasets is less explored (Gunnarsson et al., 2021; Lessmann et al., 
2015). On the two larger datasets in our experiments, our method outperformed XGBoost 
in terms of AUC, H-measure, and KS, with positive results for all three metrics confirmed 
by Bayesian correlated t-tests. The consistent improvement across multiple large datasets 
demonstrates the robustness of our approach, showing the potential of applying 2D CNN 
on large datasets, which aligns with Borisov et al. (2022). We further demonstrated, using 
the HC and FM datasets, that our method outperformed all benchmark models in predict-
ing unbanked borrowers who have limited credit history and subprime borrowers who have 
lower credit scores. By applying 2D CNNs with the Tabular Image, lenders can more accu-
rately assess the risk of unbanked and subprime borrowers, potentially expanding their cus-
tomer base and increasing profitability. For unbanked and subprime borrowers who usually 
suffer from high interest rates due to the increased risk, our method can improve access to 
loans with fair interest rates by correctly estimating the risk, making loans less expensive, 
and thereby promoting greater financial inclusion.

Besides findings demonstrated by our experiments, our method introduces several addi-
tional unique contributions. First, Tabular Image introduces a novel way of converting 
tabular data into images by embedding the WOE and IV. This transformation allows us to 
leverage two-dimensional convolutional neural networks (2D CNNs), which are tradition-
ally used for image data, thereby opening new avenues for applying powerful 2D CNNs 
to tabular data. Second, while XGBoost captures interactions and non-linear relationships 
through feature splitting, 2D CNNs are capable of extracting new and high-level features 
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by leveraging spatial patterns and relationships between features within images. With the 
ability of feature extraction, 2D CNN with Tabular Image is able to explore and discover 
useful new features, thus enhancing feature engineering, one of the most important steps 
in developing a credit scoring model. Furthermore, new features can be used as input for 
XGBoost to create ensemble frameworks to further improve the performance (Khan et al., 
2022; Thongsuwan et al., 2021). Third, 2D CNNs can take advantage of the latest devel-
opments in both hardware and software, such as advanced GPUs and their corresponding 
software that allow for faster training processes and efficient training on extensive data, 
which is beneficial in the real-world lending business as the amount of loan has increased 
exponentially in the recent decade.11

The proposed method also contributes to the improvement of explainability, which is 
a critical requirement in credit scoring, emphasised by regulators across many countries 
(Bücker et al., 2022). To address this requirement, regulators such as the European Bank-
ing Authority and the French Prudential Supervision and Resolution Authority recommend 
using model-agnostic interpretation approaches to achieve interpretability (Chen et al., 
2024). The proposed Tabular Image performs a lossless data transformation, preserving 
original feature information and ensuring compatibility with model-agnostic explainability 
methods, such as SHapley Additive exPlanations (SHAP) (Lundberg & Lee, 2017), which 
have been frequently used to address the explainability problem in credit scoring (Chen et 
al., 2024; Korangi et al., 2023; Talaat et al., 2024; Zandi et al., 2024). Because each pixel 
in the tabular image directly corresponds to a specific feature in the original tabular data, 
standard explainability techniques that generate pixel-level importance, including SHAP, 
can be easily and directly applied to explain the predictions made by the downstream 2D 
CNN models. Such seamless compatibility with established interpretation methods ensures 
explainable model predictions, aligning closely with regulatory expectations without intro-
ducing additional complexity.

Another significant aspect of 2D CNN with Tabular Image is its future potential for 
practical applications. Our method enables transfer learning (Alzubaidi et al., 2021), which 
XGBoost does not naturally support. 2D CNN models can be pre-trained on large Tabular 
Image datasets and fine-tuned on a small one. By leveraging existing large datasets, transfer 
learning provides the potential to mitigate the cold-start problem, especially in scenarios 
when labelled data in the target domain is limited, such as launching a new business or 
expanding into a new market. In addition, our Tabular Image method could potentially 
enhance traditional visualisation techniques, facilitating a clearer understanding and the 
identification of unusual patterns within the data. For example, Tabular Image can be embed-
ded into the loan approval process to provide intuitive images for loan officers. This makes 
it more efficient to initially identify the risk of a potential borrower based on the brightness 
and pattern of the tabular image before checking various criteria in a tabular format that is 
not user-friendly. Besides optimising the decision process of loan officers, converting credit 
data into image format allows for the application of advanced image processing tools and 
techniques (e.g. pattern recognition algorithms) (Paolanti & Frontoni, 2020; Schmidhuber, 
2015), further aiding in the detection of subtle patterns and correlations that might be missed 
in tabular formats. Additionally, this image-based approach aligns with the trend towards 
more interactive and user-friendly data analytics tools (Keim & Kriegel, 1996; Leite et al., 
2018; Perrot et al., 2015), which are generally more engaging and easier to interpret.

11 See: ​h​t​t​p​s​:​​/​/​d​a​t​​a​.​w​o​r​l​​d​b​a​n​​k​.​o​r​g​​/​i​n​d​i​​c​a​t​o​r​/​​F​S​.​A​​S​T​.​P​R​V​T​.​G​D​.​Z​S.
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From a managerial perspective, the findings of this research provide insights into the 
potential of applying 2D CNNs to large credit datasets in real-world applications. On the 
one hand, because of the large number of total loans today, even a small fragment of perfor-
mance improvement by applying 2D CNNs with our proposed method can translate into a 
huge amount of loan loss savings. For instance, according to the 2019 financial report12 of 
Home Credit Group B.V., the provision for Expected Credit Losses on loans to customers 
was EUR 1.6 billion as of 31 December 2019, which indicate that even a 0.1% improvement 
may result in a loan saving of EUR 1.6 million. On the other hand, with more accurate credit 
scoring models, the possibility of the subprime and unbanked population accessing loans 
with fair interest rates may increase, thus increasing financial inclusion.

Besides promising results in credit scoring tasks, Tabular Image offers an adaptable 
framework that can be expanded to accommodate various datasets in other domains quickly. 
First, a binning algorithm can be designed and used to select discretisation cut points for 
numerical features to accommodate the aim of the research. For instance, Chi-squared, tree-
based, or entropy-based binning can also be applied to find appropriate cut points. Second, 
different measures can be implemented to numerically represent the strength of a bin, as 
long as the measure represents the importance of a feature in the research domain. For 
instance, entropy can be used to measure the impurity of a bin and information gain can be 
used to evaluate the importance of a feature. Lastly, the technique to evaluate correlation or 
distance between features, such as Kendall rank or Euclidean distance, can be changed to 
the one that better represents the relationship between two features in a specific field. This 
flexible framework leads to the potential of adjusting Tabular Image to suit various tabular 
datasets and requirements in other domains. For example, the field of credit card fraud 
detection usually contains features mixed with numerical and categorical features such as 
transaction amounts, types of cards, merchant information, and digital footprints generated 
by users, all in a tabular format. Transforming this data into images allows CNNs to capture 
correlations and subtle anomalies that might be overlooked by traditional methods, enhanc-
ing the detection of fraudulent activities and helping both normal users and companies to 
reduce potential loss. Another example of a potential field of application may be energy 
consumption forecasting. Energy providers usually collect features such as consumption 
patterns, weather conditions, and user demographics. These features are usually present in 
a tabular format and might exhibit high correlations. By classifying energy consumption 
patterns (e.g., high energy consumption, moderate, or low), energy providers can manage 
energy more efficiently, increasing environmental sustainability. Tabular data is one of the 
most common data types in real-world applications and is widely used in applications that 
are based on relational databases. Our proposed method, therefore, provides the potential 
to help other domains take advantage of advanced 2D CNNs to improve the model perfor-
mance in these domains further.

7  Conclusion and future work

This study has shown that with Tabular Image, 2D CNNs can yield good predictive perfor-
mance in credit scoring. We further extend the work of Gunnarsson et al. (2021) by explor-
ing the possibility of 2D CNNs and testing models on large datasets in the credit scoring 

12 ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​h​o​m​e​c​r​e​d​​i​​t​.​n​​​e​t​/​f​i​n​​a​n​c​i​​a​​l​-​d​i​​s​c​l​o​s​u​r​e​s​/.
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field. By proposing Tabular Image, this study provides a novel way to convert tabular data 
into compact images to take advantage of a 2D CNN by embedding two classical pieces 
of information used in credit scoring tasks, namely WOE and IV, in the image. Through 
rigorous testing of various models, we demonstrate that the proposed method with a deep 
2D CNN exhibits state-of-the-art predictive performance, especially in handling large and 
complicated datasets while better preserving information in tabular data compared to other 
tabular data-image transformation methods. This opens a gateway for applying powerful 
deep 2D CNNs and their corresponding modules, which have already demonstrated impres-
sive performance in other domains and are supported by advanced hardware and software 
techniques in the credit scoring field. Furthermore, with the flexible framework provided by 
Tabular Image, this advancement can be further extended to various other fields as tabular 
data is one of the most common data types in real-world applications and is widely used 
in medicine, finance, manufacturing, fraud detection, and many other applications that are 
based on relational databases.

Future research could explore more existing modules like advanced optimisers or regula-
tion techniques like label smoothing (Müller et al., 2019) to further improve the performance 
of 2D CNNs. Researchers may also try to explore more advanced setups for 2D CNNs, like 
masked image modelling (Han et al., 2023), or develop specially designed 2D CNNs for 
tabular image tasks. Future work could also usefully explore how data augmentation tech-
niques (Xu et al., 2023) in the image recognition domain can mitigate the long-lasting data 
imbalance problem in credit scoring. In addition, further research should be undertaken to 
explore how to improve the explainability of images to facilitate the analysis of a single 
observation to enhance instance-level model explanations. Visual explanation techniques 
like Grad-CAM (Selvaraju et al., 2017) and Saliency Maps (Simonyan et al., 2014) could 
also be investigated to enhance the explainability of 2D CNNs.
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