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Abstract

This paper considers estimation and inference for quantile partially linear varying coefficients

models, where some of the observations are missing at random. The unknown parameters are esti-

mated using two different two step procedures, one of which is based on iteration and the other is

based on profiling. Both procedures are based on inverse probability weighting, where the weights

can be estimated either parametrically or nonparametrically. The paper proposes two computa-

tionally simple resampling techniques that can be used to consistently estimate the asymptotic

distributions and the asymptotic variances of the unknown finite dimensional parameters estima-

tors. For inference, the paper proposes new test statistics for both the finite and infinite dimensional

parameters, including a test for constancy of the varying coefficients part of the model. Monte Carlo

simulations show that the proposed estimators and test statistics have good finite sample properties.

Finally, the paper contains a real data application.
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1 Introduction

Since its introduction as a generalization of the linear regression model, parametric quantile regressions

(Basset & Koenker 1978, Koenker & Bassett 1978) have been widely used in economics, finance,

and statistics - see Koenker (2005) for a review of applications. Compared to linear regressions,

quantile regressions provide a more complete characterization of the conditional distribution of the

responses given a set of covariates, being at the same time more robust to the presence of possible

outliers. Despite these appealing features, parametric quantile regressions can be limited due to the

potential risk of misspecification and lack of flexibility. For these reasons, various nonparametric and

semiparametric extensions to quantile regression models have been considered in the literature; here

we mention a number of contributions (among many others) that are most related to the results

of this paper. Chauduri (1991) considered local polynomial estimation of a nonparametric quantile

regression model and obtained a (pointwise) Bahadur expansion for the resulting estimator; Chauduri,

Doksum & Samarov (1997) built upon the results of Chauduri (1991) and considered an average quantile

regression model; Yu & Jones (1998) considered (a possibly double kernel based) local linear estimation

of a nonparametric quantile regression; Kim (2007) and Cai & Xu (2008) considered quantile varying

coefficients models; Kong, Linton & Xia (2010) and Guerre & Sabbah (2012) extended the results

of Chauduri (1991) to obtain Bahadur expansions of their proposed local polynomial estimators of a

nonparametric quantile regression model that are uniform in the conditioning variables and also in

the bandwidth, respectively. Lee (2003) considered efficient estimation of a quantile partially linear

regression model; Kai, Li & Zou (2011), Wang, Zhu & Zhou (2009) and Cai & Xiao (2012) proposed a

two step estimation procedure for a quantile partially linear varying coefficients model, and Sherwood

(2016) proposed a one step estimation procedure for a partially linear additive quantile regression

model with missing covariates.

With the exception of Sherwood (2016), all of the above results assume that the observations are

always observable. However, in many situations of empirical relevance some of the observations in the

sample are missing; for example, in a survey of empirical research in top economics journals, Abrevaya

& Donald (2017) found that missing data occurs in 40% of the publications, and, depending on the

missing mechanism, simply ignoring this fact may result in inconsistent and/ or inefficient estimators

with possibly great loss of information. The missing mechanism considered in this paper is missing

at random (MAR henceforth) (Rubin 1976), which specifies that the probability of missing - often

called selection probability- depends on variables that are always observed. MAR has been widely

applied in a number of econometric and statistical models, including program evaluation (Imbens

2004), non-classical measurement error (Robins, Hseih & Newey 1995, Chen, Hong & Tamer 2005),

missing covariates (Robins, Rotnitzky & Zhao 1994) and attrition in panel data (Robins, Rotnisky &

Zhao 1995); see Little & Rubin (2002) for other applications of MAR.

In this paper, we provide a unifying framework for estimating and testing quantile partially lin-

ear varying coefficients (QPLVC henceforth) models with MAR observations. As mentioned by Kai

et al. (2011) and others, compared to the fully nonparametric approach of Chauduri (1991) and Guerre

& Sabbah (2012), and the quantile varying coefficients models of Kim (2007) and Cai & Xu (2008),
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the QPLVC specification avoids the curse of dimensionality and allows partial information about the

linearity of some of the components to be incorporated while retaining the flexibility offered by the

nonparametric part of the model. An important feature of this paper is the fact that the MAR observa-

tions are allowed to be in both the responses and some of the covariates, or in the responses only, or in

the covariates only, making the results of this paper very general and applicable to most situations with

missing data problems. To deal with MAR observations we use the inverse probability weighting (IPW

henceforth) method (Horvitz & Thompson 1952), which has been used in many semiparametric models

with MAR observations, including semiparametric regressions (Wang, Hardle & Linton 2004, Bianco,

Boente, Gonzales-Mantiega & Perez-Gonzales 2010) and semiparametric treatment effects (Hirano, Im-

bens & Ridder 2003), among many others. IPW has been used previously in the context of quantile

models with missing data: Firpo (2007) considered efficient estimation of quantile treatment effects,

Chen, Wan & Zhou (2015) considered efficient estimation of parametric quantile models with MAR

observations, whereas Wang, Tian & Tang (2022) considered estimation of nonparametric quantile

models with MAR observations. None of these contributions considered the class of semiparametric

quantile regression models considered in this paper. In fact, to the best of our knowledge, this is the

first paper that considers IPW-based estimation (and inference) for QPLVC models with the general

MAR assumption considered.

We propose two different estimation procedures for the unknown parameters: the first one is based

on a two step iterative M-type estimation (often called backfitting), in which the first step is used to

estimate locally all the unknown parameters using the local linear estimator of Fan & Gijbels (1996),

while the second step is used to re-estimate the finite dimensional unknown parameters, and then

iterate between the two steps until convergence. This procedure is similar to the one proposed by Kai

et al. (2011) and Cai & Xiao (2012), although neither of these authors considered missing data, and

the latter used a different estimation method for the second step estimation. The second procedure is

based on a profiled two step Z-type estimation, in which the unknown infinite dimensional parameter is

indexed by the finite dimensional parameter, and estimation of the latter is not iterative. Each methods

have their own merits: the one based on iteration is simpler to compute but requires undersmoothing

and is computationally more intensive. The one based on profiling is not computationally intensive

but requires the computation of the derivative of the unknown infinite dimensional parameter, which is

difficult given the nonsmoothness of the model. In order to simplify the computation of the proposed

estimators, we use the MM algorithm (Hunter & Lange 2000), which replaces the nonsmooth objective

function used in the quantile estimation with a certain smooth majorizing function that can be easily

minimized by standard iterative methods - see Section 6 for more details. We note that if the unknown

infinite dimensional parameters are of direct interest, as for example in 4.4), an additional step can be

added, in which the infinite dimensional parameters are re-estimated locally, see Remark 1 in Section

2 below.

For inference, we consider Wald statistics that can be used to test local and global linear hypotheses

on, respectively, the infinite and finite dimensional unknown parameters; we also propose a ”distance”

statistic that can be used to test general hypotheses on the infinite dimensional parameters, including

the important one of constancy over its whole support. The proposed distance statistic is in the same
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spirit as the one proposed by Fan, Zhang & Zhang (2001) for varying coefficients models, and, as we

are aware of, has not been proposed for QPLVC models, even without missing variables.

We now discuss in some detail the novel contributions this paper makes to the literature on quantile

semiparametric models with missing data:

First, profile estimation for the finite dimensional parameter in QPLVC models is new (even without

missing observations). We note that without missing data, a simple modification of the proposed profile

estimator achieves the semiparametric efficiency bound, which, in the context of this paper is given by

τ(1− τ)(E[(fε|X(0))2X⊗2
1 ]− E[E(fε|X(0)2X1X

T
2 |X3)E(fε|X(0)2X⊗2

2 |X3)
−1E(fε|X(0)2X2X

T
1 |X3)).

(1.1)

We also note that its asymptotic distribution is different from that of corresponding iterative two step

estimator because of the presence of missing observations. This result is consistent with that of Hu,

Wang & Carroll (2004), who showed that once you move away from the i.i.d. assumption, backfit-

ting and profile estimation in semiparametric models results in estimators with different asymptotic

variances.

Second, we consider two different estimators for the probabilities of missing appearing in the IPW,

one based on a parametric specification and one based on a nonparametric one. The former has

the advantage of being computationally simpler and not depending on the dimension of the missing

variables vector, whereas the latter has the advantage of being robust to possible misspecification of

the probability of missing mechanism, but it may suffer from the curse of dimensionality. We show that

the asymptotic variance of the infinite dimensional parameters estimator is the same, regardless of the

choice of the probability of missing estimator, as long as the additional ”undersmoothing” condition

A2(ii) is satisfied, see the discussion after the assumptions in Section 3.1 and Remark 2 for more details.

On the other hand, choosing a parametric or nonparametric estimator for the probabilities of missing

has bearings for the asymptotic variance (and hence efficiency) of the finite dimensional parameters

estimator, which are very different, see Remarks 3 and 4 for a discussion.

Third, in order to derive the asymptotic distribution of the unknown infinite dimensional parameters

estimator, we obtain a Bahadur expansion that is uniform in the conditioning variable regardless as

to which estimator is used for the probabilities of missing. The expansion is based on the quadratic

approximation lemma of Fan & Gijbels (1996), which avoids stochastic equicontinuity arguments often

used in the literature, see the proof of Theorem 1 for more details. For the unknown finite dimensional

parameters estimator, we show that using a nonparametric estimator for the probability of missing

results in an asymptotic variance that corresponds to that obtained by using the so-called augmented

IPW estimating equations originally proposed by Robins et al. (1994), see also Chen et al. (2015), to

increase the efficiency of the estimator. On the other hand stochastic equicontinuity arguments are

needed to derive the asymptotic distribution of the profile estimator, see the proof of Theorem 5 for

more details.

Fourth, we propose a computationally simple resampling method for the estimation of the unknown

finite dimensional parameters that is well suited for both estimators with MAR observations, as it

preserves the missing structure of the observations in the original sample. The method is based on
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the so-called multiplier bootstrap (see for example Van der Vaart & Wellner (1996) and Kosorov

(2008)) and consists of randomly perturbing the objective functions by a sequence of independent

and identically distributed random variables independent of the original sample of observations, and

re-estimate the unknown parameters. Bose & Chatterjee (2003), Chen et al. (2015), and Cheng &

Huang (2010) showed the consistency of such resampling method for parametric quantile regression

and general semiparametric M estimators, respectively. We show the consistency of the proposed

multiplier bootstrap, and how it can be used to consistently estimate the asymptotic variances of the

proposed estimators., which is a topic often ignored in the multiplier bootstrap literature.

Fifth, we consider inference for both the unknown finite and infinite dimensional parameters. For the

former, we propose aWald statistic for a set of linear restrictions that, under a standard undersmoothing

condition, is shown to be asymptotically Chi-squared distributed under the null hypothesis and a

sequence of Pitman-type alternatives, as well as consistent under fixed alternative hypotheses. For

the latter, we propose a Wald statistic for local linear hypotheses (that is hypotheses evaluated at a

single point in the support of the random variate associated to the infinite dimensional parameter)

that are asymptotically Chi-squared distributed under the null hypothesis and a sequence of Pitman-

type alternatives, as well as consistent under fixed alternative hypotheses. We also consider global

hypotheses (that is hypotheses evaluated over the whole support of the random variate associated

to the infinite dimensional parameter) and show that a distance statistic based on the IPW-quantile

objective function is asymptotically normal when appropriately standardized. The proposed distance

statistic can be interpreted as a generalized likelihood ratio as in Fan et al. (2001), however, as opposed

to Fan et al. (2001), the so-called Wilks’ phenomenon, that is the proposed statistic is asymptotically

independent of nuisance parameters and (nearly) Chi-squared distributed, does not hold because of the

IPW. On the other hand, without MAR observations the Wilks’ phenomenon still holds, see Proposition

10 and the simulation results in Section 6 for more details.

Finally, we use a Monte Carlo study and an empirical application to illustrate the finite sample

properties and the applicability of the proposed estimators and test statistics.

The rest of the paper is structured as follows: next section introduces the model and the estimators.

Sections 2 and 4 introduce the estimators and test statistics, whereas sections 3 and 5 contain the main

asymptotic results; Section 6 first describes some details on the MM algorithm used to compute the

proposed estimators, and then reports the results of the Monte Carlo study, whereas Section 7 contains

the empirical application. Finally, Section 8 contains some concluding remarks. All proofs are contained

in a Supplemental Appendix, which also contains some additional simulations’ results.

The following notation is used throughout the paper: “T ” indicates transpose, a prime “ ′ ” and

double prime ” ′′ ” denote first and second derivatives of the unknown vector of real valued functions

θ0τ (·) with respect to the argument ·; finally for any vector v, v⊗2 = vvT .

2 The model and the estimators

Consider the QPLVC model

Y = XT
1 β0τ +XT

2 θ0τ (X3) + ε, (2.1)
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where β0τ is a k dimensional vector of unknown parameters, θ0τ (·) is a p dimensional vector of unknown

real valued functions and the unobservable error ε satisfies the τth conditional quantile restriction

qτ (ε|X) = 0 for X =
[
XT

1 , X
T
2 , X3

]T
. Model (2.1) assumes that for a chosen τth conditional quantile

qτ , X1 and X2 are the key covariates while allowing for possible nonlinear interactions between X2 and

X3 such that a different level of X3 is associated to a different quantile regression, and it is this feature

that makes (2.1) very flexible and useful in practice.

Let
([

Yi, X
T
1i, X

T
2i, X3i

]T)n
i=1

denote an (incomplete) random sample, and let (Zoi)
n
i=1 denote the

corresponding sample containing all the always observed data. For example, if some of the (Yi)
n
i=1

responses and some of the (X1i)
n
i=1 and (X2i)

n
i=1 covariates (could be either of them or both) are

missing, then (Zoi)
n
i=1 =

([
XT

oi, X3i

]T)n
i=1

, where Xoi are the always observed covariates; if some of

the observations in all of the
([

XT
1i, X

T
2i

]T)n
i=1

covariates are missing, then (Zoi)
n
i=1 =

(
[Yi, X3i]

T
)n
i=1

.

In what follows, we assume that Zoi =
[
XT

oi, X3i

]T
, noting that the cases of missing covariates only or

missing responses only can be easily accommodated by changing the selection probability defined in

(2.2) and the related expressions in Sections 3 and 5 below, accordingly. Let δY and δXm denote the

binary indicators for the missing responses and covariates, where a 0 indicates a missing observation,

and, for δ = δY δXm , let

Pr (δ = 1|Y,X) = Pr (δ = 1|Zo) := π0 (Zo) > 0 a.s., (2.2)

denote the selection probability, which specifies that the probability of missing depends only on the

always observed variables.

We first describe the two step iterative estimation procedure, which can be interpreted as an IPW-M

estimation process. Let

Qn (βτ , θτ , π) =
n∑

i=1

δi
π (Zoi)

ρτ
(
Yi −XT

1iβτ −XT
2iθτ (X3i)

)
(2.3)

be the IPW objective function, where ρτ (·) = · (τ − I (· < 0)) denotes the check function.

Let π̂ (Zoi) denote an estimator for π0 (Zoi) and let

θ0τ (X3) ≈ θ0τ (x3) + θ′0τ (x3) (X3 − x3) := aτ + bτ (X3 − x3) (2.4)

denote the local linear approximation of θ0τ (X3) in a neighbourhood of x3.

The two step iterative estimation procedure for the unknown parameters β0τ and θ0τ (·) is based

on the following two steps:

Step 1 Estimate β0τ and θ0τ (·) locally using (2.4), that is

(β̂l
τ , â

l
τ , b̂

l
τ ) = arg min

aτ ,bτ ,βτ

Qn (βτ , aτ + bτ (X3i − x3) , π̂)Kh (X3i − x3) , (2.5)

where Kh (·) = K (·/h) is a kernel function and h := h(n) is the bandwidth.

Step 2 Estimate β0τ using

β̂τ = arg min
βτ∈B

Qn

(
βτ , θ̂

l
τ , π̂
)
. (2.6)

where θ̂lτ = âlτ , obtained in Step 1.
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Then iterate between the two steps until convergence of β̂τ .

Remark 1 Note that to further improve the efficiency of the estimators âlτ and b̂lτ obtained in Step 1,

an additional third step local estimation can be added, which consists of re-estimating θ0τ (·) using

(âτ , b̂τ ) = arg min
aτ ,bτ

Qn

(
β̂τ , aτ + bτ (X3i − x3) , π̂

)
Kh (X3i − x3) ,

where β̂τ is defined in Step 2.

For the profile estimation procedure we follow the same approach as that used by Wong & Severini

(1991) and Severini & Wong (1992), which is based on the notion of least favourable curve θβτ (x3),

which, in the context of this paper, is defined as the minimizer of

E[ρτ (Yi −XT
1iβτ −XT

2iη)|X3i = x3] (2.7)

satisfying
∂

∂η
E[ρτ (Yi −XT

1iβτ −XT
2iη]|X3i = x3]|η=θβτ (u)

= 0.

As with the two step estimator we consider the local linear approximation θ0τ (X3i) ≈ aτ + bτ (X3i−x3)

so that for a fixed βτ the least favourable curve minimises Qn(βτ , aτ + bτ (X3i − x3), π̂i)Kb(X3i − x3).

Using θ̂βτ =: aτ and ∂θ̂βτ /∂β
T
τ =: bτ the profile estimator β̂p

τ is defined as

β̂p
τ = arg min

βτ∈B
||Mn(βτ , θ̂βτ , ∂θ̂βτ /∂β

T
τ , π̂)||, (2.8)

where

Mn(βτ , θβτ , ∂θβτ /∂β
T
τ , π) =

1

n

n∑
i=1

δi
πi
(X1i +

(
∂θβτ (X3i)

∂βT
τ

)T

X2i)ρ
′
τ (Yi −XT

1iβτ −XT
2iθβτ (X3i)),

that is the subgradient of Qn(βτ , θβτ , π) with ρ′τ (·) = τ − I (· < 0).

We conclude this section by discussing the form of π̂ (Zoi), which depends on whether we assume a

parametric or a nonparametric specification for π0 (Zo). For the former, we assume that π0 (Zo) =

π (Zo, α) is a parametric model (such as a probit or logit model) where α ∈ A ⊆ Rl is an unknown

parameter. For the latter, the estimator takes the form

π̂ (z) =

∑n
i=1 δiLb (Zoi − z)∑n
i=1 Lb (Zoi − z)

, (2.9)

where Lb (·) = L (·/b) is a product kernel function with another bandwidth b := b (n).

3 Asymptotic results for estimation

3.1 Two step iterative estimation

Let Fε|X (·), fε|X (·) and fX3 (·) denote the conditional distribution and density of ε, and the marginal

density of X3, respectively. Assume that:
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A1 (i) Fε|X=x (0) = τ and fε|X=x (0) are continuous and positive for all x ∈ X = X1 × X2 × X3, (ii)

the marginal density fX3 (x) of X3 is continuous and positive at x = x3, (iii) X1, X2 and X3 have

bounded supports X1, X2 and X3, (iv) the parameter space B is a compact set.

A2 (i) The kernel functions K (·) and L (·) are symmetric with bounded support, with bandwidths

satisfying, respectively, nh → ∞ and nbdim(Zo) → ∞, (ii) h = o
(
bdim(Zo)

)
and nhb4 → 0.

A3 (i) θ′′τ (x) is continuous at x = x3, (ii) the matrix Σ (x3) defined in (10.4) in the Supplemental

Appendix is nonsingular for all x3 ∈ X3.

Either

A4 (i) infZo∈Zo π (Zo, α) > 0 for all α ∈ A, (ii) there exists a α0 ∈ A such that π (Zo, α0) = π0 (Zo),

(iii) E supα∈A ∥∂π (Zo, α) /∂α∥δ < ∞ for some δ > 2, (iv) the maximum likelihood estimator α̂

has the following stochastic expansion:

n1/2 (α̂− α0) = I (α0)
−1 1

n1/2

n∑
i=1

s (Zoi, α0) + op (1) ,

where E [s (Zo, α0)] = 0, E
[
∂2 log π (Zo, α0) / (∂α)

⊗2
]
= −I (α0) and

n1/2 (α̂− α0)
d→ N

(
0, I (α0)

−1
)
.

Or

A5 (i) infZo∈Zo π0 (Zo) > 0, (ii) π0 (Zo) is twice continuously differentiable with bounded derivatives.

The above regularity conditions are fairly standard: A1(i) is standard in the quantile regression

literature, see for example Koenker (2005). A1(ii)-A3 are commonly used in nonparametric estimation,

see for example Chauduri (1991); A2(ii) can be interpreted as an undersmoothing type condition,

where the degree of undersmoothing depends on the dimension of the observable covariates Zo and

the selected bandwidth b; for example, if b = n−1/5 and dim (Zo) = 1, then h = n−1/4 would satisfy

it. More generally, for h ∝ n−a and b ∝ n−c A2(ii) requires a > c dim (Zo). Finally A4 and A5 are

commonly used in the MAR literature, see for example Robins et al. (1994). Note that A4(i) and A5(i)

can be indirectly verified by examining the distribution of the estimated selected probabilities.

The following theorem gives the asymptotic distribution of the estimators β̂l
τ and θ̂lτ (x3) = âlτ

obtained in Step 1; let κj =
∫
tjK (t) dt and vj =

∫
tjK2 (t) dt for j = 0, 1, 2.

Theorem 1 Under assumptions A1-A5

(nh)1/2
[

β̂l
τ − β0τ

θ̂lτ (x3)− θ0τ (x3)
−B (x3)

]
d→ N

(
0,Σ1 (x3)

−1Σ1π (x3) Σ1 (x3)
−1
)
,

where

B (x3) =
h2

2
fX3 (x3) Σ1 (x3)

−1E

{
κ2fε|X (0)

[
X1X

T
2

X⊗2
2

]
|X3 = x3

}
θ′′0τ (x3) ,
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Σ1 (x3) = fX3 (x3)E

fε|X (0)

[
X1

X2

]⊗2

|X3 = x3

 ,

Σ1π (x3) = fX3 (x3)E

τ (1− τ) v0
π0 (Zo)

[
X1

X2

]⊗2

|X3 = x3

 .

The following theorem gives the asymptotic distribution of the estimator θ̂τ (·) suggested in Remark

1.

Theorem 2 Under the same assumptions of Theorem 1

(nh)1/2
(
θ̂τ (x3)− θ0τ (x3)−

h2κ2θ
′′
0τ (x3)

2

)
d→ N

(
0,Σ3 (x3)

−1Σ3π (x3) Σ3 (x3)
−1
)
,

where

Σ3 (x3) = fX3 (x3)E
[
fε|X (0)X⊗2

2 |X3 = x3
]
,

Σ3π (x3) = fX3 (x3)E

[
τ (1− τ) v0
π0 (Zo)

X⊗2
2 |X3 = x3

]
.

Remark 2 Theorem 1 shows that the asymptotic variance of the IPW local estimator depends on the

unknown selection probabilities and is larger than the corresponding one without missing observations,

see for example Kai et al. (2011) and Wang et al. (2009) for a comparison. The asymptotic variance

does not depend on the type of estimator used to estimate the selection probabilities π0 (Zo), because

of the faster convergence rate of the parametric estimator π̂ (Zio, α̂) and A2(ii), which implies that

the estimation effect coming from the nonparametric estimation of π0 (Zo) is asymptotically negligible.

Theorem 2 shows that the additional estimator suggested in Remark 1 has the same asymptotic bias

as that of the quantile varying coefficient model considered for example by Cai & Xu (2008). The

explanation of this result is that β̂τ converges at a faster rate than that of the estimator of the unknown

infinite dimensional parameters, which effectively makes the QPLVC model a quantile varying coefficient

model, meaning that the argument of the check function ρτ (.) in (2.3) can be replaced by say Ỹi −
XT

2iθτ (X3i), with Ỹi = Yi −XT
1iβ̂τ .

Next we obtain the asymptotic distribution of the estimator (2.6) defined in Step 2. We first consider

the case of parametric estimation of the selection probabilities, so that the estimator for βτ0 is defined

as

β̂τ = arg min
βτ∈B

Qn

(
βτ , θ̂τ , π̂ (Zoi, α̂)

)
.

Let

φ (Xi) = E
[
fε|X (0)X1X

T
2 |X3 = X3i

]
SΣ (X3i)

−1

 X1i

X2i

0p

 ,

where S = [Opk, Ip, Opp] is a selection matrix with Opk a p× k matrix of zeroes, Ip the identity matrix

of order p, Opp a p× p matrix of zeroes, 0p a p× 1 vector of zeroes, and Σ (X3i) is defined in (10.4) in

the Supplemental Appendix. Assume that
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A6 E
(
fε|X (0)X⊗2

1

)
:= Σ2 is nonsingular.

Theorem 3 Under assumptions A1-A4, A6 and E supα∈A ∥(∂π0 (Z,α) /∂α) /π0 (Zo, α)∥2 < ∞, for

nh4 → 0

n1/2
(
β̂τ − β0τ

)
d→ N

(
0,Σ−1

2 Σ2pΣ
−1
2

)
,

where

Σ2p = E

[
((X1 − φ (X)) ρ′τ (ε))

⊗2

π0 (Zo, α)

]
− E

[
(X1 − φ (X)) ρ′τ (ε)

π0 (Zo, α)

∂π0 (Zo)

∂αT

]
×

I (α0)
−1E

[
(X1 − φ (X)) ρ′τ (ε)

π0 (Zo, α)

∂π0 (Zo, α)

∂αT

]T
.

In the case of nonparametric estimation of the selection probabilities, the estimator for β0τ is defined

as

β̂τ = argmin
β∈B

Qn

(
βτ , θ̂τ , π̂ (Zoi)

)
,

where π̂ (Zoi) is defined in (2.9).

Theorem 4 Under assumptions A1-A3, A5 and A6 for nh4 → 0 and nb4 → 0

n1/2
(
β̂τ − β0τ

)
d→ N

(
0,Σ−1

2 Σ2npΣ
−1
2

)
,

where

Σ2np = E

[
((X1 − φ (X)) ρ′τ (ε))

⊗2

π0 (Zo)

]
− E

(
1− π0 (Zo)

π0 (Zo)
E
[(
(X1 − φ (X)) ρ′τ (ε)

)
|Zo

]⊗2
)
.

Remark 3 Note that for h ∝ n−a and b ∝ n−c the undersmoothing condition nh4 → 0 requires a > 1/4,

which implies max {1/4, cdim (Zo)} < a < 1, which in turn implies that for a second order kernel (like

the one used in this paper) the undersmoothing condition nb4 → 0 is satisfied for dim (Zo) < 4,

which represents a limitation (the well known curse of dimensionality) of the proposed nonparametric

estimation of π0 (Zo). Alternatively, one could use a higher order kernel, say of order r > 2, which

would imply dim (Zo) < 2r for the resulting undersmoothing condition nb2r → 0 to be satisfied. However

higher order kernels might result in negative estimates of the selection probabilities, which is clearly

something undesirable.

Remark 4 It is important to note that the asymptotic variance Σ2np corresponds to the asymptotic

variance of the augmented IPW estimating equation

0 =
1

n

n∑
i=1

{
δi

π0 (Zoi)
(X1i − φ (Xi)) ρ

′
τ (εi)− (3.1)

δi − π0 (Zoi)

π0 (Zoi)
E
[
(X1i − φ (Xi)) ρ

′
τ (εi) |Zoi

]
},

which can be used to obtain a more efficient estimator for βτ0, see for example Robins et al. (1994) for

the case of MAR covariates. Thus, the proposed estimation method results in more efficient estimators

without having to estimate the additional conditional expectation in (3.1).
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3.2 Profile estimation

For some α > 1, let Cα
M (RX) denote the space of continuous functions RX → R with Holder norm

bounded by a finite M . Assume that:

A1’ (i) A1(i)-(iv) hold; (ii) ΘB = {θβτ , ∂θβτ /∂β
T
τ ∈ Cα

M (X3)}, (iii) ng8 → 0 and nh8g−4 → 0, (iv)

∂E(X1 + (∂θ0τ/∂β
T
τ )

TX2)ρ
′
τ (Y − XT

1 βτ − XT
2 θ0τ )/∂β

T
τ exists, is continuous at βτ and has full

column rank,

A6’ (i) E(fε|X(0)(X1 + (∂θβτ (X3)/∂β
T
τ )

TX2)
⊗2) := Σ4 is nonsingular, (ii) E||∂2θβτ (x3)/∂β

T
τ ∂βτj || <

∞ uniformly in x3 ∈ X3 for j = 1, ..., k,

and note that A1’(iii) is satisfied for h ∝ n−1/5 and g ∝ n−1/7. Let

φp(Xi) = [E(X2X
T
2 |X3 = X3i)

−1E(X2X
T
1 |X3 = X3i)]

TX2i

Theorem 5 Under A1’, A2-A4, A6’ and E supα∈A ∥(∂π0 (Z,α) /∂α) /π0 (Zo, α)∥2 < ∞

n1/2(β̂p
τ − β0τ )

d→ N
(
0,Σ−1

4 Σ4pΣ
−1
4

)
,

where

Σ4p = E

[
((X1 − φp (X)) ρ′τ (ε))

⊗2

π0 (Zo, α)

]
− E

[
(X1 − φp (X)) ρ′τ (ε)

π0 (Zo, α)

∂π0 (Zo)

∂αT

]
×

I (α0)
−1E

[
(X1 − φp (X)) ρ′τ (ε)

π0 (Zo, α)

∂π0 (Zo, α)

∂αT

]T
.

Under A1’, A2-A3, A5 and A6’

n1/2
(
β̂p
τ − β0τ

)
d→ N

(
0,Σ−1

4 Σ4npΣ
−1
4

)
,

where

Σ4np = E

[
((X1 − φp (X)) ρ′τ (ε))

⊗2

π0 (Zo)

]
− E

(
1− π0 (Zo)

π0 (Zo)
E
[(
(X1 − φp (X)) ρ′τ (ε)

)
|Zo

]⊗2
)
.

Remark 5 As mentioned in the Introduction the profile estimator does not require undersmoothing,

however we still need the same type of undersmoothing condition in A5 for the nonparametric estimation

of the selection probabilities, although a wider range of bandwidths can be used. Note that the asymptotic

variances have the same structure as that of those given in Theorems 3 and 4, but they are different

because of the profiling estimation. We also note that β̂p
τ can be used in Theorem 2.

3.3 Resampling

The asymptotic variances of the estimators of Theorems 3, 4 and 5 are rather complicated to estimate,

so in this section we suggest a resampling technique that is based on the multiplier bootstrap and has

been previously used in quantile regressions by Jin, Ying & Wei (2001), Zhou (2006) and Xie, Wan &
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Zhou (2015) among others. We generate B random samples {ξi}ni=1 from the random variable ξ with

E (ξ) = 1 and V ar (ξ) = 1 and compute

β̂∗
τ = argmin

β∈B
Qξn

(
βτ , θ̂τ , π̂

)
where

Qξn

(
βτ , θ̂τ , π̂

)
=

n∑
i=1

δiξi
π̂ (Zoi)

ρτ

(
Yi −XT

1iβτ −XT
2iθ̂τ (X3i)

)
for the two step iterative estimator β̂τ . For the profile estimator β̂p

τ we compute

β̂p∗
τ = arg min

βτ∈B
||Mξn(βτ , θ̂βτ , ∂θ̂βτ /∂β

T
τ )||,

where

Mξn(βτ , θ̂βτ , ∂θ̂βτ /∂β
T
τ ) = Σ̂−1

4

1

n

n∑
i=1

δiξi
π̂(Zoi)

(X1i − φ̂p(Xi))ρ
′
τ (Yi −XT

1iβτ −XT
2iθ̂βτ (X3i))(X1i − φ̂p(Xi)),

with

Σ̂4 =
1

n

n∑
i=1

δi
π̂i
f̂ε̂i|Xi

(0)(X1i +

(
∂θ̂βτ (X3i)

∂βT
τ

)T

X2i)
⊗2,

φ̂p(Xi) =

 1

ng

n∑
j ̸=i

δi
π̂i
X⊗2

2i Hg(X3j −X3i)

−1

1

ng

n∑
j ̸=i

δi
π̂i
X2iX

T
1iHg(X3j −X3i)

T

X2i,

f̂ε̂i|Xi
(0) is a nonparametric (conditional) density estimator, ε̂i is the QPLVC residual and Hg(·) is

another kernel with bandwidth g.

Theorem 6 Under the same assumptions of Theorems 3-4, conditionally on
([

Yi, δi, X
T
i

]T)n
i=1

n1/2
(
β̂∗
τ − β̂τ

)
d→ N

(
0,Σ−1

2 Σ2∗Σ
−1
2

)
,

where Σ2 and Σ2∗, with ∗ corresponding to either Σ2p or Σ2np, are given in Theorems 3-4.

Under the assumptions of Theorem 5 and the additional assumption (i) supXi∈X

∣∣∣f̂ε̂i|Xi
(0)− fε|X (0)

∣∣∣ =
op (1), conditionally on

([
Yi, δi, X

T
i

]T)n
i=1

n1/2
(
β̂p∗
τ − β̂p

τ

)
d→ N

(
0,Σ−1

4 Σ4∗Σ
−1
4

)
,

where Σ4∗, with ∗ is either Σ4p or Σ4np given in Theorem 5.

Theorem 6 shows that the proposed resampling technique consistently estimate the distributions

of the estimators proposed in Sections 3.1 and 3.2. However, it is not sufficient to obtain consistent

asymptotic variance estimators. To do so we need the following additional assumptions:
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A7 (i) E
∥∥∥[XT

1 , X
T
2

]T∥∥∥2+ϵ
< ∞, (ii) E ∥s (Z,α0)∥2+ϵ < ∞, (iii) infz∈Z |π0 (Z)|2+ϵ > 0, (iv) E |δ − π0 (Z)|2+ϵ <

∞ and (v) E |ξ|2+ϵ < ∞ for some ϵ > 0.

Let

V̂ ∗ =
1

B

B∑
b=1

(
β̂∗(b)
τ − β̂τ

)⊗2
, V̂ p∗ =

1

B

B∑
b=1

(β̂p∗(b)
τ − β̂p

τ )
⊗2,

denote the resampled variances, where β̂
∗(b)
τ and β̂

p∗(b)
τ denote the estimators from the b− th sample.

Corollary 7 Under the assumptions of Theorem 6 and A7, conditionally on
([

Yi, δi, X
T
i

]T)n
i=1

V̂ ∗ p→ Σ−1
2 Σ2∗Σ

−1
2 , V̂ p∗ p→ Σ−1

4 Σ4∗Σ
−1
4 .

Corollary 7 is important because it can be used to obtain confidence intervals for βτ using the

normal approximation and test statistical hypotheses on βτ using the χ2 approximation and the delta

method.

4 Some tests of statistical hypotheses

The results of Section 3 can be used to test statistical hypotheses about both the finite and infinite

dimensional parameters βτ and θτ (·). First, Theorem 2 can be used to construct a Wald statistic

to test local hypotheses about θτ (·), that is hypotheses that are valid at a given point x∗3 ∈ X3. To

investigate the asymptotic properties of such statistic, we consider the following local hypothesis with

a Pitman drift

Hn : Rθτ (x
∗
3) = rτ (x

∗
3) + γnτ (x

∗
3) , (4.1)

where R is an l × p (l ≤ p) matrix of constants, rτ (x
∗
3) is an l-dimensional vector of known constants

and γτn (·) is a bounded continuous function that may depend on n. Let

Wl (x
∗
3) = nh

(
Rθ̂τ (x

∗
3)− rτ (x

∗
3)
)T (

RΣ̂3 (x
∗
3)

−1 Σ̂3π̂ (x
∗
3) Σ̂3 (x

∗
3)

−1RT
)−1 (

Rθ̂τ (x
∗
3)− rτ (x

∗
3)
)

denote the local Wald statistic, where

Σ̂3 (x
∗
3) = f̂X3 (x

∗
3)

1

nh

n∑
i=1

δi
π̂ (Zoi)

f̂ε̂i|Xi
(0)X⊗2

2i Kh (X3i − x∗3) , (4.2)

Σ̂3π̂ (x
∗
3) =

τ (1− τ) v0
nh

f̂X3 (x
∗
3)

n∑
i=1

δi

π̂ (Zoi)
2X

⊗2
2i Kh (X3i − x∗3) ,

and π̂ (·) is either the parametric or the nonparametric estimator of π0 (·) described in Section 2.

Second, Theorem 2 can be used to test the global hypothesis

H0 : θτ (·) = θ0τ (·) , (4.3)

where θ0τ (·) is a p-dimensional vector of known functions, where we use the term global to emphasize

the fact that (4.3) is over the entire support X3 and not just over a given value x∗3 as in (4.1). Note
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that (4.3) includes the important hypothesis of constancy of the varying coefficients θτ (·), where θ0τ (·)
is assumed to be a possibly unknown constant function θc0τ , see Proposition 12 below for more details.

To test for (4.3) we use the following distance statistic

Dπ̂ (θ0τ ) =
n∑

i=1

δi
π̂ (Zoi)

ρτ

(
Yi −XT

1iβ̂τ −XT
2iθ̂τ−i (X3i)

)
− (4.4)

n∑
i=1

δi
π̂ (Zoi)

ρτ

(
Yi −XT

1iβ̂τ −XT
3iθ0τ (X3i)

)
.

where θ̂τ−i (·) is the leave-one-out version of the estimator considered in Theorem 2 (see (10.21) in the

Appendix for a definition), and note that the test statistic (4.4) is in the same spirit as that of the

generalized likelihood ratio proposed by Fan et al. (2001) for linear varying coefficients models.

Finally, we consider inference for the finite dimensional parameter βτ ; let

Hn : Rβτ = rτ + γnτ , (4.5)

where R is an l × k (l ≤ k) matrix of constants and γτn is a bounded continuous function that may

depend on n. Let

W = n
(
R
(
β̂τ − rτ

))T (
RΣ̂−1

2 Σ̂2∗Σ̂
−1
2 RT

)−1
R
(
β̂τ − rτ

)
(4.6)

W p = n(R(β̂p
τ − rτ ))

T (RΣ̂−1
4 Σ̂4∗Σ̂

−1
τ RT )−1R(β̂p

τ − rτ )

denote the Wald statistics for (4.5), where Σ̂2, Σ̂2∗, Σ̂4 and Σ̂4∗ are estimators of the matrices of

Theorems 3, 4 and 5 such as their sample analogues or those obtained using the resampling technique

proposed in Section 3.3.

5 Asymptotic results for the statistical hypotheses tests

The following proposition establishes the asymptotic distribution of the local Wald statistic Wl (x
∗
3)

under (4.1) as well as its consistency, under some mild high level assumptions, which can however be

verified by standard assumptions on the uniform convergence of kernel estimators1, see for example

Masry (1996).

Proposition 8 Under the assumptions of Theorem 2, if rank (R) = l, supXi∈X

∣∣∣f̂ε̂i|Xi
(0)− fε|X (0)

∣∣∣ =
op (1), supx3∈X3

∣∣∣f̂ (x3)− f (x3)
∣∣∣ = op (1), supZ∈Z |π̂ (Zi)− π0 (Zi)| = op (1) and nh4 → 0, then under

(4.1) (i) for (nh)1/2 γnτ (x
∗
3) → γτ (x

∗
3) > 0 (for some ∥γτ (x∗3)∥ < ∞)

Wl (x
∗
3)

d→ χ2 (κ, l) ,

1For the parametric estimator of π̂ (Zi) = π̂ (Zi, α̂), its uniform consistency follows by assuming that

E supα∈A ∥∂π (Z,α) /∂α∥δ < ∞ for δ > 2, as in Assumption A4(iii).
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where χ2 (κ, l) is a noncentral Chi-squared distribution with l degrees of freedom and noncentrality

parameter

κ = fX3 (x
∗
3) γτ (x

∗
3)

T
(
RΣ3 (x

∗
3)

−1Σ3π (x
∗
3) Σ3 (x

∗
3)

−1RT
)−1

γτ (x
∗
3) ;

(ii) for (nh)1/2 γτn (x
∗
3) → ∞,

Wl (x
∗
3)

p→ ∞.

The following theorem establishes the asymptotic distribution of the distance statistic (4.4); let

µπ =
tr

2h
E

[
τ (1− τ)

π0 (Zo) fX3 (X3)
Σ3 (X3)

−1X⊗2
2

]
κ2, dπ = n1/2h2 (T1π − T3π)− nh4T2,

T1π =
1

n1/2

n∑
i=1

δi
π0 (Zoi)

XT
2iρ

′
τ (εi) θ

′′
0τ (X3i)κ2,

T2 = −1

8
E
[
f
ε|X (0) θ′′0τ (X3)

T X⊗2
2 θ′′0τ (X3)

] ∫ ∫
t2 (t+ s)2K (t)K (t+ s) dtds,

T3π =
1

2n1/2

n∑
i=1

δi
π0 (Zoi)

XT
2iρ

′
τ (εi) θ

′′
0τ (X3i)

∫ ∫
t2 (t+ s)2K (t)K (t+ s) dtds,

σ2
π =

2

h
tr

(
E

(
τ (1− τ)

π0 (Zo) fX3 (X3)
Σ12 (X3)

−1X⊗2
2

)2 ∫
(2Kh (t)−Kh ∗Kh (t))

2 dt

)
.

Theorem 9 Under the assumptions of Theorem 2 and if h → 0 and nh3/2 → ∞, then

1

σπ
(Dπ̂ (θ0τ )− µπ − dπ)

d→ N (0, 1) .

Furthermore, if θ0τ (·) is linear or nh4 → 0, then

1

σπ
(Dπ̂ (θ0τ )− µπ)

d→ N (0, 1) .

Theorem 9 shows that the distance statistic Dπ (θ0τ ), when appropriately scaled and centred, is

asymptotically standard normal. As noted in the Introduction, as opposed to the generalized likelihood

ratio statistic proposed by Fan et al. (2001), the Wilks’ phenomenon does not hold for Dπ (θ0τ ),

because of the IPW estimation, see for example Bravo (2020). On the other hand, without the MAR

observations, the Wilks’ phenomenon still holds, as next proposition shows. Note that in this case, as

in Fan et al. (2001), we use the full estimator θ̂τ (·) and not its leave-one version θ̂τ−i (·), hence the

appearance of the constant K (0) in Proposition 10. Let

D (θ0τ ) =

n∑
i=1

ρτ

(
Yi −XT

1iβ̂τ −XT
2iθ̂τ (X3i)

)
−

n∑
i=1

ρτ

(
Yi −XT

1iβ̂τ −XT
3iθ0τ (X3i)

)
.

Proposition 10 Under the assumptions of Theorem 9, if θ0τ (·) is linear or nh4 → 0 and there are no

MAR observations, then

rKD (θ0τ )
d→ χ2 (rKµ) ,
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where

rK =
(
K (0)− κ2

2

)
/

∫ (
Kh (t)−

Kh ∗Kh (t)

2

)2

dt and

µ =
p

h
|X3| τ (1− τ)

(
K (0)− κ2

2

)
.

To compute the terms in the statistic Dπ (θ0τ ), we need consistent estimators of µπ, dπ and σπ; let

µ̂π̂ =
1

2nh

n∑
i=1

[
τ (1− τ)

π̂ (Zoi) f̂X3 (X3i)
Σ̂3 (X3i)

−1X⊗2
2i

]
κ2,

T̂1π̂ =
1

n1/2

n∑
i=1

δi
π̂ (Zoi)

XT
2iρ

′
τ (ε̂i) θ̂

′′
τ (X3i)κ2,

T̂2 = − 1

8n

n∑
i=1

[
f̂
ε̂i|Xi

(0) θ̂′′0τ (X3i)
T X⊗2

2i θ̂′′τ (X3i)
] ∫ ∫

t2 (t+ s)2K (t)K (t+ s) dtds,

T̂3π̂ =
1

2n1/2

n∑
i=1

δi
π̂ (Zoi)

XT
2iρ

′
τ (ε̂i) θ̂

′′
τ (X3i)

∫ ∫
t2 (t+ s)2K (t)K (t+ s) dtds (1 + op (1)) ,

σ̂2
π̂ =

2

nh
tr

 n∑
i=1

(
τ (1− τ)

π̂ (Zoi) f̂X3 (X3i)
Σ̂3 (X3i)

−1X⊗2
2i

)2 ∫
(2Kh (t)−Kh ∗Kh (t))

2 dt

 ,

where, as in Proposition 8 π̂ (·), is either a parametric or nonparametric estimator of π0 (·), f̂X3 (·)
is a standard kernel estimator for the unknown density of X3, Σ̂3 (·) and f̂ε̂i|Xi

(·) are as defined in

(4.2), ε̂i is the QPLVC residual and θ̂′′τ (·) is an estimator for the second derivative of the unknown

parameter θ′′0τ (·), which can be computed, for example, using a local quadratic estimator. The following

proposition is in the same spirit as Proposition 8 in terms of its regularity conditions.

Proposition 11 Assume that supZoi∈Z |π̂ (Zoi)− π0 (Zoi)| = op (1), supX3i∈X3

∣∣∣f̂X3 (X3i)− fX3 (X3i)
∣∣∣ =

op (1), supX3i∈X3

∣∣∣θ̂′′0τ (X3i)− θ′′0τ (X3i)
∣∣∣ = op (1), supXi∈X

∣∣∣f̂ε̂i|Xi
(0)− fε|X (0)

∣∣∣ = op (1); then

|µ̂π̂ − µπ| = op (1) ,∣∣∣T̂jπ̂ − Tjπ

∣∣∣ = op (1) j = 1 and 3,∣∣∣T̂2 − T2

∣∣∣ = op (1)∣∣σ̂2
π̂ − σ2

π

∣∣ = op (1) ,

and
1

σ̂π̂

(
Dπ̂ (θ0τ )− µ̂π̂ − d̂π̂

)
d→ N (0, 1) .

Theorem 9 and Proposition 11 can be used to test the empirically relevant hypothesis of constancy

of the varying coefficients H0 : θ0τ (·) = θcτ , where θcτ can be a specific value, say θcτ0, or is unknown, in
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which case it can be the parametric quantile estimator θ̂τ ; let

Dπ̂ (θ
c
τ ) =

n∑
i=1

δi
π̂ (Zoi)

ρτ

(
Yi −XT

1iβ̂τ −XT
2iθ̂τ−i (X3i)

)
− (5.1)

n∑
i=1

δi
π̂ (Zoi)

ρτ

(
Yi −XT

1iβ̂τ −XT
2iθ

c
τ

)
,

denote the resulting distance statistic.

Proposition 12 Under the same assumptions of Theorem 9

1

σ̂π̂
(Dπ̂ (θ

c
τ )− µ̂π̂)

d→ N (0, 1) .

To investigate the power properties of the statistic Dπ (θ0τ ), we focus on the case where θ0τ is linear

(or assume that h = o
(
n−1/4

)
so that the term dπ can be ignored asymptotically). We consider local

hypotheses of the form

Hn : θnτ (·) = θ0τ (·) + γnτ (·) , (5.2)

where γnτ (·) is a bounded function with bounded first and second derivatives, and note that γnτ (·) =
γτ (·) / (nh)1/2 corresponds to the standard Pitman drift. Let

dn =
n

2
E
(
fε|X (0) γnτ (X3)

T X⊗2
2 γnτ (X3)

)
−

nh4

8
E
[
f
ε|X (0) γ′′nτ (X3)

T X⊗2
2 γ′′nτ (X3)

] ∫ ∫
t2 (t+ s)2K (t)K (t+ s) dtds

σ2
γπ = σ2

π + nE

(
τ (1− τ)

π0 (Zo)
XT

2 γnτ (X3)
⊗2X2

)

Theorem 13 Under the same assumption of Theorem 9 and (5.2), if nhE
(
γnτ (X3)

T X⊗2
2 γnτ (X3)

)
=

O (1) and E
(
γnτ (X3)

T X⊗2
2 γnτ (X3) ρ

′ (ε)2
)2

= O
(
(nh)−3/2

)
, then

1

σ̂γπ̂

(
Dπ̂ (θ0τ )− µ̂π̂ − d̂n

)
d→ N (0, 1) ,

where σ̂γπ̂ and d̂2n are the sample analogues of σγπ and dn.

Finally, the following proposition establishes the asymptotic distributions of the Wald statistics W

and W p given in (4.6) under (4.5) as well as their consistency.

Proposition 14 Under the assumptions of Theorems 3 and 4, if rank (R) = l,
∥∥∥Σ̂2 − Σ2

∥∥∥ = op (1),∥∥∥Σ̂2∗ − Σ2∗

∥∥∥ = op (1) and nh4 → 0, then under (4.5) (i) for n1/2γτn → γτ > 0 (for some ∥γτ∥ < ∞)

W
d→ χ2 (κ, l) ,
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where χ2 (κ, l) is a noncentral Chi-squared distribution with l degrees of freedom and noncentrality

parameter κ = γTτ
(
RΣ−1

2 Σ2∗Σ
−1
2 RT

)−1
γτ ; (ii) for n1/2γτn → ∞,

W
p→ ∞.

Under the assumptions of Theorem 5, if rank(R) = l, ||Σ̂4 − Σ4|| = op(1), ||Σ̂4∗ − Σ4∗|| = op(1), then

under (4.5) (i) for n1/2γτn → γτ > 0 (for some ∥γτ∥ < ∞)

W p p→ ∞,

where χ2 (κ, l) is a noncentral Chi-squared distribution with l degrees of freedom and noncentrality

parameter κ = γTτ
(
RΣ−1

4 Σ4∗Σ
−1
4 RT

)−1
γτ ; (ii) for n1/2γτn → ∞,

W p p→ ∞.

6 Simulation study

We first discuss some computational aspects of the proposed estimators and describe how to use the

MM algorithm to estimate the unknown parameters. We begin with the two step iterative estimator;

let εi(k) = Yi −XT
1iβτ(k) −XT

2iθτ(k) (X3) denote the kth iterate in finding the minimum of the objective

function and let

ςτ
(
εi|εi(k)

)
=

1

4

[
ε2i

ϵ+
∣∣εi(k)∣∣ + (4τ − 2) εi + c(k)

]
denote the so-called surrogate function, where the constant c(k) is such that ς

(
ε(k)|ε(k)

)
is equal to

ρτ
(
ε(k)
)
and 0 < ϵ ≤ 1 is a tuning parameter to be selected. Then, since ς

(
εi|εi(k)

)
≥ ρτ (εi) for all

εi, the unknown parameters can be estimated by minimising both the local and the global majorising

objective functions

n∑
i=1

δi
π̂ (Zoi)

ςτ
(
εi|εi(k)

)
Kh (X3i − x3) ,

n∑
i=1

δi
π̂ (Zoi)

ςτ
(
ε̂i|ε̂i(k)

)
,

where ε̂i = Yi−XT
1iβτ−XT

2iθ̂τ (X3i). As in Hunter & Lange (2000), we use the Gauss-Newton algorithm

with direction

∆(k) (x3) = −
[
X (x3)

T W
(
δ, π̂ (·) , ε(k),K

)
X (x3)

]−1
X (x3)

T d (δ, π̂ (·) , ε,K) ,

∆(k) = −
[
XT

1 W
(
δ, π̂ (·) , ε(k)

)
X1

]−1
XT

1 d (δ, π̂ (·) , ε) ,
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where X (x3) is an n×(k + 2p) matrix containing the k, p and p covariates XT
1i, X

T
2i and XT

2i (X3i − x3)

(i = 1, ..., n),

W
(
δ, π̂ (·) , ε(k),K

)
= diag

[
δ1

π̂ (Zo1)

1

ϵ+ ε1(k)
Kh (X31 − x3) , ...,

δn
π̂ (Zon)

1

ϵ+ εn(k)
Kh (X3n − x3)

]T
,

d (δ, π̂ (·) , ε,K) =

[
δ1

π̂(Zo1)

(
1− 2τ − ε1

ϵ+ ε1

)
Kh (X31 − x3) , ...,

δn
π̂(Zon)

(
1− 2τ − εn

ϵ+ εn

)
Kh (X3n − x3)

]T
,

with W
(
δ, π̂ (·) , ε(k)

)
and d (δ, π̂ (·) , ε) defined similarly.

The implementation of the MM algorithm for the two step iterative estimator involves the following

steps:

1. Set k = 0, choose either the initial values
[
β0T
τ , a0Tτ , b0Tτ

]T
or β0

τ and set ϵn |ln ϵ| = δ, with

δ = 10−6,

2. Define either
[
βk+1T
τ , ak+1T

τ , bk+1T
τ

]T
=
[
βkT
τ , akTτ , bkτT

]T
+∆(k) (x2) /2

k or βk
τ = βk

τ +∆(k)/2
k,

3. Iterate until either
∥∥∥[βk+1T

τ , ak+1T
τ , bk+1T

τ

]T −
[
βkT
τ , akTτ , bkTτ

]T∥∥∥ < δ or
∥∥βk+1

τ − βk
τ

∥∥ < δ.

For the profile estimator we solve directly the first order conditions

n∑
i=1

δi
π̂(Zoi)

∂ςτ (ε̂i|ε̂i(k))
∂βT

τ

= 0, (6.1)

for βτ ,, where ε̂i = Yi −XT
1iβτ −XT

2iθ̂βτ (X3i).

Given an initial value β0
τ , the computation of the estimator can be carried out with few iterations

(typically one or two) until ||βp,k+1
τ − βp,k

τ || < δ with δ = 10−6.

Next, we discuss how to choose the bandwidths b, h and g. For the profile estimator we use standard

cross-validation for b and h, whereas we use g = s(X3i)n
−1/7 with s(X3i) the sample standard deviation

ofX3i. For the two step iterative estimator we still use cross-validation for b, but because of the assumed

undersmoothing, the choice of h is more delicate because of the nonparametric nature of the estimation

in Step 1, for which, as noted by El Gouch & van Keilegom (2009), the problem of optimally choosing

the bandwidth is still an open one. However, given the plug-in nature of the estimation in Step 2, as

long as the selected bandwidth does not result in a large bias for the infinite dimensional parameter

estimator, the finite dimensional parameter estimator should not be very sensitive to the bandwidth

choice, see Bickel & Kwon (2002) for a thorough discussion on this important point. In this paper,

we propose a two-fold method, which consists of computing for a random subset of the sample - the
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training set - St with 0 < t < 1[
β−tT
τ , a−tT

τ , b−tT
τ

]T
(h) = arg min

βτ ,aτ ,bτ

∑
i∈St

δi
π̂ (Zoi)

ςτ
(
εi|εi(k)

)
Kh (X3i − x3) ,

β̂−t
τ (h) = argmin

βτ

∑
i∈St

δi
π̂ (Zoi)

ςτ

(
ε̂−t
i |ε̂−t

i(k)

)
,

where ε̂−t
i = Yi − XT

1iβ
−t
τ − XT

2iθ̂
−t
τ (X3i) and then using the remaining part of the sample S1−t - the

validation set- to select h as

ĥ = argmin
h

∑
i∈S1−t

δi
π̂ (Zoi)

ςτ

(
ε̂−t
i (h) |ε̂−t

i(k) (h)
)
. (6.2)

In the simulations, 80% of the sample is used as the training set and the remaining 20% is used as the

validation set.

We consider the following QPLVC model

Yi = XT
1iβ0τ +XT

2i

[
cos (πX3i) , X

2
3i

]T
+ εiτ i = 1, ..., n, (6.3)

where β0τ = [β10τ , β20τ ]
T = [1, 1/4]T , X1i = [1, X11i]

T , X11i is N (0, 0.2), X2i = [X21i, X22i]
T is

a bivariate normal with unit variance and correlation coefficient ρ = 0.1, X3i is U (0, 2) and the

unobservable (zero τ quantile) error term εiτ generated independently from the Xi covariates as either

a standard normal or a t distribution with 5 degrees of freedom (t (5)) or a (centred) Chi-squared

distribution with 4 degrees of freedom (χ2 (4) − 4); the selection probabilities (2.2) are specified as

either

π0 (Zoi) =
exp (α10 + α20X21i + α30X3i)

1 + exp (α10 + α20X21i + α30X3i)
, (6.4)

or

π0 (Zoi) =
exp (α10 + α20Yi + α30X3i)

1 + exp (α10 + α20Yi + α30X3i)
, (6.5)

corresponding, respectively, to the cases where some of the responses Yi and of the covariates X11i

and X22i are MAR (6.4) , and some of the covariates in X11i and X2i are MAR (6.5) with α0 =

[α10, α20, α30]
T chosen so that the average percentage of missing at the τ quantile are approximately

10% and 40%.

In the simulations, we use the Epanechnikov kernel for K (·), L (·), and H(·) with bandwidth

h = n−2/9ĥ with ĥ defined in (6.2) for K (·) for the two step iterative estimator. We consider three

quantiles τ = [0.25, 0.5, 0.75]T , two sample sizes: n = 100 and n = 400 and six different estimators for

[β10τ , β20τ ]
T , namely the complete case

[
β̂1τc, β̂2τc

]T
,
[
β̂p
1τc, β̂

p
2τc

]T
and the IPW based

[
β̂1τp, β̂2τp

]T
,[

β̂1τnp, β̂2τnp

]T
,
[
β̂p
1τp, β̂

p
2τnp

]T
and

[
β̂p
1τnp, β̂

p
2τnp

]T
estimators. Tables 1a-3c report the absolute bias

(bias), standard error (se), average length (length) and coverage (cov) of nominal 95% confidence

intervals for the six proposed estimators based on 1000 replications, with standard errors calculated

using the resampling technique of Section 3.3 with the number of replications B set to 500 and the

random variables ξi generated from an Exponential distribution with mean 1.

Tables 1a-3c approximately here
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The first two rows of each tables report the finite sample properties of the estimators
[
β̂1τ , β̂2τ

]T
and[

β̂p
1τ , β̂

p
2τ

]T
for the case without missing observations, and are used as benchmark for the missing ob-

servations cases. We note that across the three different quantiles and distributions of the unobservable

errors the finite sample biases are statistically insignificant, the standard errors and average lengths of

the confidence intervals are decreasing by a factor of two as the sample size is increased fourfold, as

implied by the asymptotic theory developed in the previous section, whereas the confidence intervals

are characterized by some undercoverage, which is however diminishing as the sample size increases.

With missing observations, a number of clear patterns emerge: first, as the percentage of MAR observa-

tions increases the bias of the complete estimators increases (albeit it is still statistically insignificant),

whereas that of the IPW estimators is comparable to that of the estimators without missing obser-

vations for both sample sizes. The profile estimator seems to have slightly better standard errors,

average lengths and coverage of the confidence intervals. Second, as expected, the standard errors of

the IPW estimators are typically larger than those based on the complete case, and this is reflected

in the average length of the corresponding confidence intervals, which are slightly longer than those

based on the complete case. Third, the coverage of the confidence intervals for the complete case show

considerable undercoverage compared to those based on the IPW estimators.

Figure 1 shows the nonparametric quantiles estimates at τ = [0.25, 0.5, 0.75]T of the two unknown

infinite dimensional parameters for the case of no missing observations and two different distributions

of the unobservable errors εiτ . Figure 2 shows the nonparametric quantile estimates with 40% missing

observations under the (6.5) MAR mechanism and IPW based on the nonparametric estimator (2.9)

for the selection probabilities. Figure 2 clearly shows that despite the missing observations the IPW

based estimates fit well the original unknown infinite dimensional parameters.

Figures 1-2 approximately here

In the remaining part of this section we only consider the MAR mechanism (6.5), as the results

based on (6.4) are similar or slightly better, especially for the IPW based estimators. We first consider

the finite sample properties of the distance statistic (4.4). Tables 4a-4b and Figure 3 report the finite

sample size and power of (4.4) for the hypothesis

Hn : θ1τ (X3) = (1 + γ) cos (πX3) ; θ2τ (X3) = (1 + γ)X2
3 (6.6)

for γ = [−1,−0.9, ..., 0.9, 1] with γ = 0 corresponding to the null hypothesis. The results are based on

1000 replications with the same bandwidth as that chosen in the previous simulation. The tables show

that with 10% MAR observations the finite sample sizes of the Dπ (θ0τ ) statistic based on the complete

case and IPW based estimators are broadly comparable, whereas with 40% MAR observations the

Dπ (θ0τ ) statistic based on the complete case estimator is characterized by a considerably bigger size

distortion compared to that based on both the IPW estimators. Figure 3 clearly shows that the size

adjusted finite sample power of the statistic Dπ (θ0τ ) based on the IPW estimators is higher compared

to the one based on the complete estimator.

Tables 4a-4b approx. here
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Figure 3 approx. here

Figure 4 demonstrates the Wilks’ phenomenon for the scaled statistic D (θ0τ ) defined in Proposition

(10). The figure is based on a kernel estimate of the distribution of the statistic based on 1000

simulations under the null hypothesis Hn : θ1τ (X3) = cos (πX3) with no missing observations and

three bandwidths, namely the same one used in the previous simulations b and two alternative ones

based on 1/2 and 3/2 of b. As expected, the simulated distribution looks like a Chi-squared regardless

of the bandwidth choice.

Figure 4 approx. here

Next, we consider the finite sample properties of the statistic Dπ (θ
c
τ ) defined in (5.1) for the

constancy of the functional parameters. Tables 5a-5c show the finite sample power of Dπ (θ
c
τ ) for the

hypothesis

Hn = θ1τ (X3) = γ cos (πX3) ; θ2τ (X3) = γX2
3

with γ = [−1,−0.8, ..., 0, ..., 0.8, 1] with γ = 0 corresponding to the null hypothesis. The results are

based on 1000 replications with 40% MAR observations using the same undersmoothed bandwidth as

that used in the previous simulations, and they show that theDπ (θ
c
τ ) statistic finite sample performance

in terms of both size and (size adjusted) power is clearly better forDπ (θ
c
τ ) based on the IPW estimators.

Finally, we consider the finite sample properties of the Wald statistics W and W p (4.6) for the

finite dimensional parameter β0τ = [β10τ , β20τ ]
T in (6.3). The null hypothesis is specified as H0 =

[β10τ , β20τ ]
T = [1, 1/4]T with the alternative hypothesis specified as the grid γ = [γ1, γ2] = [−1,−0.8, ..., 0.8, 1]×

[−1,−0.8, ..., 0.8, 1] . Tables 6a-6b report the finite sample sizes of W and W p, using 1000 replications

and the asymptotic variances Σ̂−1
2 Σ̂2∗Σ̂

−1
2 and Σ̂−1

4 Σ4∗Σ̂
−1
4 estimated by the same resampling technique

of Section 3.3 used to compute the standard errors of Tables 1a-3c.

Tables 6a-6b approx. here

As with Tables 4a-4b, Tables 6a-6b show that with 10% MAR observations the finite sample sizes of

the W andW p statistics based on the complete case and IPW based estimators are broadly comparable,

whereas with 40% MAR observations the W and W p statistic based on the complete case estimator

are characterized by larger size distortions compared to those based on both the IPW estimators. We

also note that W p has slightly better finite sample properties than those of the W statistic. Figure

5 shows the contour plots at the level 0.40 of the size adjusted finite sample powers of W p with 40%

MAR observations, N (0, 1) unobservable errors and n = 400. Note that smaller contour plots indicate

higher finite sample power.

Figure 5 approx. here

7 Empirical application

We illustrate the applicability of the proposed estimation and inference methods by considering the

New York air quality measurements data (from May to September 1973, available in the R package

datasets which consists of 153 daily observations of mean ozone parts (per billion) (O), solar radiations
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(S), wind speed (in mph) (W ) and temperature (in degrees F) (T ) and contains 37 missing ozone parts

observations (missing rate of around 24%) and 7 missing solar radiations observations (missing rate

of around 4.5%). As some of the missing responses and the covariates are missing at the same time,

the overall missing rate is around 27.3%. After some preliminary data analysis, the following quantile

partial linear regression specification

qτ (O|S,W, T ) = β1τ + β2τS + β3τT + θτ (W ) , (7.1)

is chosen; we consider the complete case β̂jτc, IPW parametric β̂jτp and IPW nonparametric β̂jτnp

estimators (j = 1, 2, 3) for the three quantiles τ = [0.25, 0.50, 0.75]T , with the selection probabilities

π (T,W ), which seems plausible given the well-known results of the effects of the temperature and the

wind on the ozone level and solar radiation, estimated either with a standard logit model or a bivariate

product Epanechnikov kernel L (T,W ). Tables 7a-7c report the estimates, standard errors, length of

95% confidence intervals and p-values of the three different sets of estimators, with the standard errors

calculated using the same resampling technique of Section 3.3.

Tables 7a-7c approx. here

Tables 7a-7c show that, across the three estimators, at the 0.25 quantile there is a positive relation-

ship between solar radiations and the mean ozone parts, but the same relation becomes statistically

insignificant at the higher quantiles. Temperature is also positively related with the mean ozone parts,

but as opposed to the solar radiations, the relationship is statistically significant at the three quantiles,

which confirms the widely accepted view among climate and environmental scientists that there is a

positive relationship between ozone (hence pollution) and temperature. Figure 6 shows the nonpara-

metric quantile estimates for θτ (W ); interestingly, as opposed to the finite dimensional parameters

case, there is a notable difference between the complete case estimator and the IPW based ones, as

the former shows a pattern that is counter-intuitive in that the wind speed negatively affects the mean

ozone parts up to a certain speed and then the relationship becomes positive. On the other hand, both

IPW estimators show a negative relationship between the ozone level and the wind speed, which seems

to be more in line with current empirical evidence, see for example Jammalamadoka & Lund (2006).

Figure 6 approx. here

To this end, we tested the constancy of the infinite dimensional parameter θτ (W ) using the statistic

(5.1) with the quantile parametric estimate as θcτ (W ); Table 8 reports the corresponding sample values

and corresponding p-values, which clearly supports the quantile partially linear specification 7.1.

Table 8 approx. here

To further support the chosen semiparametric specification, we compare the local goodness of fit mea-

sures R1
τ∗ proposed by Koenker & Machado (1999a)2, where ∗ indicates the complete case, IPW

2The local, as it depends on the chosen quantile τ , goodness of fit R1
τ∗ is defined as 1 − V̂τ∗/Ṽτ∗, where V̂τ∗ =∑n

i=1 ρτ (ε̂i∗), Ṽτ∗ =
∑n

i=1 ρτ (ε̃i∗), and ε̂i∗, ε̃i∗ are the residuals of the unrestricted and the restricted quantile regressions,

respectively. Here the restricted quantile regression model consists only of the intercept.
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parametric and IPW nonparametric estimators, between (7.1) and the restricted parametric model

qτ (O|S,W, T ) = β1τ + β2τS + β3τT + β4τW .

Table 9 approx. here

Table 9 clearly shows that the chosen quantile semiparametric specification has a higher R1
τ∗ compared

to that of the parametric one, across the three estimators and three chosen quantiles.

8 Conclusions

In this paper we propose a general method to estimate and test statistical hypotheses of the unknown

parameters in QPLVC models when some of the observations are missing at random. The proposed

estimators are based on the IPW method and can be efficiently computed using the MM algorithm. For

inference, we consider Wald statistics that can be used to test local linear hypotheses for the infinite

dimensional parameter and linear hypotheses for the finite dimensional parameter; we also consider

a distance statistic that can be used to test global hypotheses on the infinite dimensional parameter,

including the important one of constancy over the whole support of the underlying conditioning ran-

dom variate. Monte Carlo simulations show that the proposed IPW based estimators perform well

(compared to those based on the complete case) in finite samples, especially when the percentage of

MAR observations is higher, and similarly for both the Wald and distance statistics. Finally, an em-

pirical application illustrates the applicability and usefulness of the proposed estimation and inference

methods.
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9 Tables and figures

Table 1a ετ ∼ N (0, 1) , τ = 0.25

n 100 400

bias se length cov bias se length cov

β̂1τ

β̂2τ

β̂p
1τ

β̂p
2τ

.031 .183 .412 .943

.071 .812 .888 .944

.034 .175 .400 .951

.075 .786 .864 .953

.021 .096 .251 .946

.056 .432 .459 .946

.024 .086 .244 .951

.057 .401 .415 .953

MAR (6.4) 10% MAR (6.4) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.088 .189 .422 .893

.108 .831 .898 .896

.090 .194 .432 .884

.112 .829 .901 .890

.032 .193 .431 .940

.073 .829 .905 .942

.030 .192 .910 .945

.078 .199 .441 .946

.033 .196 .435 .940

.074 .834 .910 .941

.038 .201 .438 .945

.080 .845 .921 .952

.078 .098 .258 .902

.085 .440 .486 .904

.081 .102 .255 .898

.088 .448 .492 .900

.018 .098 .223 .942

.036 .451 .493 .943

.021 .453 .490 .947

.041 .445 .491 .946

.019 .101 .231 .942

.037 .496 .496 .943

.021 .099 .229 .945

.041 .475 .481 .947

MAR (6.4) 40% MAR (6.4) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.112 .199 .441 .880

.124 .895 .913 .878

.132 .212 .453 .874

.136 .899 .907 .872

.037 .198 .438 .941

.076 .835 .814 .940

.041 .202 .441 .938

.081 .826 .818 .938

.038 .201 .441 .941

.078 .841 .916 .940

.034 .197 .445 .946

.084 .838 .924 .943

.099 .119 .262 .890

.109 .495 .499 .899

.104 .121 .265 .884

.112 .501 .509 .942

.023 .101 .258 .943

.040 .483 .499 .944

.020 .099 .255 .941

.041 .478 .491 .951

.029 .105 .260 .941

.041 .491 .501 .942

.031 .108 .255 .943

.045 .485 .494 .948
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Table 1a Continued

n 100 400

bias se length cov bias se length cov

MAR (6.4) 10% MAR (6.4) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.095 .193 .423 .893

.111 .873 .908 .888

.101 .199 .442 .899

.112 .877 .451 .890

.033 .198 .434 .939

.076 .881 .903 .941

.034 .201 .431 .942

.081 .889 .908 .943

.037 .197 .438 .940

.078 .836 .912 .941

.039 .201 .441 .942

.075 .823 .913 .943

.081 .099 .251 .900

.093 .455 .490 .896

.083 .102 .254 .897

.095 .459 .493 .899

.020 .101 .230 .941

.035 .459 .499 .944

.022 .110 .231 .942

.038 109 .236 .941

.021 .103 .233 .940

.039 .468 .507 .941

.023 .109 .246 .943

.029 .456 .494 .940

MAR (6.5) 40% MAR (6.5) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.116 .210 .456 .878

.132 .958 .988 .881

.124 .221 .476 .873

.138 .949 .985 .870

.039 .200 .440 .940

.078 .842 .816 .941

.041 .197 .443 .938

.081 .837 .812 .937

.040 .202 .444 .940

.079 .848 .920 .941

.042 .199 .431 .945

.081 .845 .918 .943

.098 .109 .268 .891

.105 .489 .512 .889

.102 .116 .278 .890

.112 .492 .514 .887

.018 .099 .260 .942

.038 .421 .501 .943

.019 .101 .254 .946

.041 .451 .503 .944

.025 .095 .260 .944

.023 .101 .262 .943

.041 .451 .503 .944

.043 .444 .495 .947
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Table 1b ετ ∼ N (0, 1) , τ = 0.5

n 100 400

bias se length cov bias se length cov

β̂1τ

β̂2τ

β̂p
1τ

β̂p
2τ

.041 .163 .381 .941

.031 .721 .831 .942

.043 .154 .373 .942

.032 .702 .811 .944

.033 .087 .193 .943

.023 .402 .488 .943

.035 .073 .186 .952

.025 .388 .476 .955

MAR (6.4) 10% MAR (6.4) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂1τnp

β̂p
2τnp

.098 .171 .393 .893

.099 .789 .849 .894

.092 .165 .388 .895

.095 .771 .833 .892

.040 .174 .403 .942

.034 .791 .889 .943

.041 .170 .835 .944

.042 .169 .936 .946

.043 .179 .402 .942

.035 .789 .891 .941

.046 .175 .405 .943

.038 .781 .407 .944

.077 .103 .172 .901

.084 .532 .458 .902

.081 .100 .174 .897

.088 .527 .455 .903

.028 .088 .219 .942

.030 .362 .471 .946

.027 .090 .218 .942

.033 .366 .213 .942

.036 .090 .213 .942

.028 .371 .478 .942

.037 .095 .481 .941

.027 .369 .212 .942

MAR (6.4) 40% MAR (6.4) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.121 .185 .399 .881

.128 .805 .836 .883

.125 .189 .403 .884

.130 .832 .841 .889

.045 .183 .407 .941

.038 .792 .841 .940

.044 .181 .400 .942

.036 .799 .843 .942

.047 .184 .403 .942

.040 .801 .883 .942

.048 .187 .405 .941

.041 .803 .875 .943

.112 .129 .199 .894

.109 .596 .503 .898

.110 .131 .202 .893

.112 .584 .509 .896

.030 .091 .224 .942

.028 .378 .593 .943

.031 .087 .221 .942

.027 .375 .590 .943

.032 .094 .219 .944

.031 .396 .496 .943

.033 .090 .212 .948

.030 .399 .491 .944
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Table 1b Continued

n 100 400

bias se length cov bias se length cov

MAR (6.4) 10% MAR (6.4) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.094 .176 .394 .882

.105 .759 .880 .885

.096 .172 .389 .888

.104 .761 .881 .883

.036 .176 .405 .940

.033 .789 .846 .942

.039 .173 .408 .941

.035 .170 .405 .943

.045 .181 .402 .939

.036 .731 .890 .940

.046 .179 .404 .941

.039 .177 .884 .942

.081 .116 .188 .901

.091 .511 .491 .904

.084 .119 .191 .900

.093 .516 .495 .905

.031 .092 .213 .948

.036 .361 .476 .943

.033 .089 .212 .947

.037 .360 .473 .944

.037 .099 .216 .942

.030 .363 .484 .941

.036 .096 .213 .943

.029 .094 .210 .942

MAR (6.5) 40% MAR (6.5) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.131 .199 .398 .884

.138 .810 .823 .885

.134 .203 .402 .886

.134 .813 .827 .882

.041 .179 .410 .942

.040 .795 .848 .943

.042 .182 .408 .944

.039 .793 .850 .944

.042 .183 .407 .940

.040 .763 .892 .942

.041 .180 .410 .941

.039 .178 .890 .942

.107 .131 .193 .893

.122 .592 .541 .896

.110 .136 .196 .890

.126 .590 .546 .892

.031 .090 .218 .943

.032 .376 .481 .946

.033 .087 .211 .942

.034 .370 .474 .948

.032 .096 .211 .943

.033 .389 .485 .944

.036 .094 .209 .942

.033 .386 .482 .943
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Table 1c ετ ∼ N (0, 1) , τ = 0.75

n 100 400

bias se length cov bias se length cov

β̂1τ

β̂2τ

β̂p
1τ

β̂p
2τ

.052 .193 .413 .940

.068 .751 .798 .942

.054 .186 .410 .942

.070 .744 .800 .943

.036 .093 .225 .942

.038 .381 .368 .944

.037 .090 .223 .943

.039 .375 .360 .943

MAR (6.4) 10% MAR (6.4) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.108 .201 .444 .898

.101 .799 .828 .899

.110 .205 .449 .896

.103 .803 .832 .897

.054 .205 .449 .942

.069 .803 .838 .941

.056 .201 .447 .943

.071 .796 .835 .942

.058 .197 .436 .944

.056 .204 .467 .943

.068 .809 .835 .944

.057 .200 .465 .942

.089 .110 .281 .901

.092 .399 .438 .900

.090 .108 .279 .900

.095 .395 .436 .899

.030 .101 .231 .944

.031 .418 .431 .943

.032 .099 .229 .943

.033 .404 .429 .942

.028 .104 .238 .944

.030 .416 .430 .945

.030 .100 .231 .943

.027 .421 .427 .944

MAR (6.4) 40% MAR (6.4) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.119 .216 .494 .883

.106 .812 .888 .887

.121 .214 .492 .884

.109 .814 .891 .890

.056 .210 .420 .944

.071 .822 .848 .943

.057 .205 .415 .943

.073 .819 .850 .945

.057 .209 .407 .943

.070 .818 .840 .942

.059 .205 .409 .945

.072 .812 .835 .948

.103 .185 .299 .889

.099 .508 .486 .894

.100 .180 .294 .886

.102 .505 .485 .895

.032 .115 .260 .946

.038 .425 .440 .942

.034 .110 .258 .944

.040 , 421 .443 .943

.033 .118 .243 .944

.034 .421 .438 .943

.035 .113 .239 .946

.032 .418 .440 .945
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Table 1c Continued

n 100 400

bias se length cov bias se length cov

MAR (6.5) 10% MAR (6.5) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.110 .209 .542 .888

.105 .803 .833 .892

.112 .214 .548 .886

.105 .798 .836 .895

.055 .208 .418 .943

.068 .808 .836 .942

.056 .210 .421 .946

.070 .203 .832 .945

.050 .210 .460 .942

.069 .811 .836 .944

.051 .205 .454 .941

.065 .809 .832 .947

.088 .138 .284 .898

.085 .501 .449 .896

.091 .132 .280 .895

.085 .494 .445 .893

.030 .110 .238 .946

.036 .406 .439 .944

.031 .105 .227 .943

.034 .102 .431 .943

.029 .112 .241 .944

.035 .403 .433 .945

.030 .109 .243 .946

.034 .399 .436 .947

MAR (6.5) 40% MAR (6.5) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.118 .228 .501 .880

.110 .822 .890 .885

.121 .225 .497 .878

.111 .819 .887 .880

.058 .210 .421 .943

.072 .818 .842 .945

.060 .208 .419 .942

.070 .809 .840 .943

.059 .213 .456 .945

.071 .817 .819 .943

.061 .210 .449 .947

.073 .815 .817 .942

.102 .181 .303 .889

.099 .452 .491 .895

.110 .179 .312 .887

.102 .447 .490 .894

.029 .118 .263 .941

.034 .429 .442 .946

.031 .110 .256 .943

.033 .420 .440 .945

.031 .113 .244 .946

.035 .407 .436 .945

.030 .110 .232 .944

.036 .401 .435 .943
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Table 2a ετ ∼ t (5) , τ = 0.25

n 100 400

bias se length cov bias se length cov

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

.046 .173 .392 .942

.038 .819 .848 .944

.048 .170 .390 .945

.039 .810 .840 .947

.025 .096 .219 .947

.022 .424 .459 .943

.027 .092 .217 .945

.024 .420 .450 .948

MAR (6.4) 10% MAR (6.4) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.095 .196 .420 .900

.093 .835 .868 .897

.097 .199 .419 .898

, 095 .833 .867 .896

.047 .200 .412 .940

.040 .820 .871 .941

.045 .196 .414 .942

.046 .205 .415 .939

.041 .821 .870 .941

.047 .200 .413 .941

.042 .818 .867 .943

.075 .110 .218 .901

.071 .499 .496 .901

.077 .105 .212 .900

.073 .496 .493 .901

.027 .107 .223 .942

.024 .437 .483 .943

.028 .103 .220 .943

.030 .430 .485 .944

.025 .110 .209 .940

.021 .505 .476 .943

.026 .107 .205 .942

.020 .500 .471 .943

MAR (6.4) 40% MAR (6.4) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.125 .210 .461 .882

.121 .841 .883 .878

.128 .204 .458 .883

.120 .839 .881 .879

.048 .210 .415 .941

.041 .828 .874 .940

.049 .203 .410 .942

.043 .820 .403 .942

.047 .211 .421 .939

.043 .825 .876 .941

.048 .207 .423 .942

.045 .820 .874 .943

.120 .118 .222 .900

.116 .514 .439 .901

.123 .115 .224 .902

.118 .510 .442 .900

.028 .115 .208 .945

.024 .438 .429 .942

.030 .110 .205 .946

.026 .430 .425 .946

.023 .119 .210 .945

.022 .510 .434 .943

.024 .110 .207 .946

.023 .501 .433 .945
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Table 2a Continued

n 100 400

bias se length cov bias se length cov

MAR (6.5) 10% MAR (6.5) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.094 .209 .425 .891

.096 .836 .878 .897

.095 .205 .422 .890

.097 .830 .877 .894

.046 .202 .428 .940

.043 .816 .880 .941

.048 .199 .424 .942

.045 .810 .883 .942

.045 .207 .428 .940

.046 .822 .882 .939

.044 .201 .430 .941

.047 .818 .880 .942

.081 .114 .220 .894

.075 .505 .494 .890

.082 .110 .222 .890

.077 .500 .490 .891

.025 .105 .215 .947

.028 .425 .435 .945

.024 .103 .212 .944

.029 .420 .430 .946

.023 .110 .213 .943

.024 .507 .437 .943

.024 .104 .210 .944

.025 .501 .435 .945

MAR (6.5) 40% MAR (6.5) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.128 .221 .458 .880

.129 .854 .888 .878

.131 .219 .454 .881

.130 .849 .884 .876

.046 .218 .430 .940

.048 .821 .886 .942

.047 .210 .431 .942

.048 .818 .882 .943

.047 .210 .436 .941

.046 .828 .890 .940

.045 .205 .433 .942

.048 .825 .893 .943

.083 .118 .230 .890

.082 .508 .419 .886

.088 .116 .234 .888

.085 .512 .415 .883

.029 .120 .235 .943

.031 .443 .451 .941

.030 .115 .232 .945

.032 , 438 .437 .943

.026 .114 .232 .942

.028 .512 .453 .944

, 025 .112 .230 .944

.030 .509 .450 .943
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Table 2b ετ ∼ t (5) , τ = 0.5

n 100 400

bias se length cov bias se length cov

β̂1τ

β̂2τ

β̂p
1τ

β̂p
2τ

.051 .170 .391 .941

.042 .764 .841 .943

.053 .165 .386 .946

.044 .759 .837 .947

.030 .098 .183 .945

.019 .364 .368 .946

.031 .094 .178 .946

.018 .360 .365 .947

MAR (6.4) 10% MAR (6.4) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.105 .185 .413 .900

.095 .816 .882 .894

.110 .180 .414 .901

.099 .812 .880 .892

.052 .196 .418 .942

.046 .781 .865 .941

.055 .192 .414 .945

, 047 .775 .860 .943

.054 .204 .420 .943

.045 .797 .875 .941

.055 .201 .417 .945

.046 .790 .871 .944

.078 .105 .215 .901

.067 .498 .418 .900

.079 .101 .214 .902

.069 .496 .415 .901

.032 .096 .219 .943

.034 .396 .431 .945

.033 .091 .214 .944

.035 .389 .429 .946

.034 .099 .213 .942

.026 .386 .418 .944

.033 .093 .210 .944

.027 .380 .414 .946

MAR (6.4) 40% MAR (6.4) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.119 .222 .423 .883

.127 .875 .895 .887

.120 .218 .420 .882

.128 .872 .893 .888

.055 .198 .421 .946

.051 .793 .878 .945

.056 .195 .419 .945

.053 .790 .875 .944

.056 .206 .423 .944

.048 .804 .890 .948

.058 .202 .419 .945

.050 .800 .887 .947

.110 .128 .223 .894

.118 .484 .458 .895

.112 , 126 .222 .895

.120 .482 .455 .896

.035 .101 .219 .940

.037 .412 .461 .944

.036 .099 .215 .942

.038 .410 .456 .945

.037 .103 .220 .940

.038 .421 .431 .945

.038 .099 .216 .942

.039 .418 .427 .943
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Table 2b Continued

n 100 400

bias se length cov bias se length cov

MAR (6.5) 10% MAR (6.5) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.109 .196 .410 .894

.099 .820 .878 .898

.111 .194 .407 .892

.101 .818 .876 .899

.053 .198 .411 .948

.048 .797 .870 .945

.055 .194 .408 .949

.050 .793 .868 .947

.053 .203 .412 .946

.046 .787 .880 .948

, 052 .200 .410 .945

.048 .784 .879 .947

.080 .104 .219 .900

.071 .438 .431 .901

.081 .101 .216 .901

.073 .433 .429 .902

.033 .099 .218 .945

.035 .405 .438 .944

.035 , 095 .215 .946

.036 .402 .434 .945

.036 .098 .210 .945

.033 .408 .414 .946

.037 .095 .206 .946

.034 .405 .410 .947

MAR (6.5) 40% MAR (6.5) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.120 .220 .423 .887

.124 .883 .888 .885

.122 .217 .419 .884

.125 .886 .890 .884

.055 .204 .414 .946

.050 .799 .872 .944

.056 .200 .410 .946

.051 .199 .869 .947

.055 .206 .416 .944

.048 .790 .883 .946

.054 .205 .417 .945

.049 .788 .881 .946

.111 .126 .225 .890

.108 .491 .435 .889

.115 .123 .222 .887

.109 .487 .433 .888

.036 .104 .220 .941

.038 .415 .445 .945

.037 .100 .215 .943

.040 .411 .440 .946

.039 .106 .218 .949

.037 .412 .426 .948

.038 .102 .214 .948

.038 .409 .420 .948
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Table 2c ετ ∼ t (5) , τ = 0.75

n 100 400

bias se length cov bias se length cov

β̂1τ

β̂2τ

β̂p
1τ

β̂p
2τ

.055 .202 .383 .944

.069 .806 .812 .942

.056 .200 .380 .945

.068 .801 .810 .943

.034 .118 .195 .943

.024 .407 .408 .940

.035 .113 .192 .945

.025 .401 .404 .942

MAR (6.4) 10% MAR (6.4) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.112 .211 .406 .892

.108 .828 .872 .893

.113 .209 .403 .890

.106 .825 .870 .892

.056 .215 .412 .942

.073 .838 .878 .940

.057 .210 .410 .943

.074 .830 .873 .942

.058 .214 .414 .941

.072 .830 .881 .941

.060 .210 .412 .942

.071 .825 .874 .943

.086 .107 .208 .901

.071 .446 .421 .900

.888 .103 .203 .902

.072 .445 .418 .899

.036 .111 .211 .945

.028 .452 .431 .948

.037 .107 .209 .947

.030 .448 .428 .945

.038 .114 .214 .944

.028 .455 .498 .947

.039 .112 .212 .945

.029 .450 .495 .946

MAR (6.4) 40% MAR (6.4) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.122 .230 .410 .883

.116 .896 .883 .884

.123 .225 .406 .882

.117 .890 .880 .881

.059 .217 .416 .940

.076 .837 .889 .939

.060 .212 .413 .942

.075 .833 .885 .941

.050 .218 .420 .943

.075 .838 .883 .940

.051 .215 .417 .944

.074 .832 .880 .942

.103 .119 .229 .891

.089 .452 .431 .889

.104 .115 .227 .892

.091 .447 .428 .887

.038 .121 .218 .943

.030 .455 .439 .945

.040 .118 .215 .944

.031 .452 .434 .943

.039 .123 .218 .942

.033 .458 .439 .943

.040 .120 .216 .943

.034 .450 .436 .944
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Table 2c Continued

n 100 400

bias se length cov bias se length cov

MAR (6.5) 10% MAR (6.5) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.118 .212 .410 .890

.106 .829 .881 .901

.120 .210 .408 .888

.107 .824 .880 .902

.058 .219 .416 .940

.074 .828 .869 .941

.060 .216 .413 .941

.075 .827 .865 .942

.060 .216 .418 .941

.073 .832 .873 .940

.061 .214 .416 .942

.074 .830 .872 .943

.088 .108 .204 .900

.076 .447 .417 .901

.089 .107 .200 .901

.077 .445 .410 .902

.037 .112 .216 .943

.032 .459 .436 .946

.038 .110 .213 .944

.033 .453 .431 .947

.040 .118 .217 .943

.030 .463 .436 .945

.041 .114 .213 .944

.031 .461 .433 .946

MAR (6.5) 40% MAR (6.5) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.128 .232 .414 .883

.119 .840 .891 .881

.130 .230 .409 .885

.116 .835 .892 .882

.060 .221 .418 .941

.079 .824 .891 .943

.061 .217 .415 .942

.080 .819 .885 .945

.060 .220 .423 .945

.076 .836 .881 .948

.061 .217 .420 .945

.077 .830 .415 .946

.104 .120 .226 .893

.091 .456 .436 .886

.040 .122 .225 .942

.032 .461 .436 .943

.041 .121 .227 .941

.036 .467 .438 .941

.110 .123 .230 .895

.093 453 .435 .890

.042 .124 .230 944

.033 .446 .433 .945

.043 .124 .225 .942

.037 .465 .435 .943
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Table 3a ετ ∼ χ2 (4)− 4, τ = 0.25

n 100 400

bias se length cov bias se length cov

β̂1τ

β̂2τ

β̂p
1τ

β̂p
2τ

.047 .181 .402 .942

.037 .826 .841 .944

.045 .175 .400 .944

.038 .820 .837 .945

.029 .097 .221 .943

.028 .421 .464 .943

.030 .094 .218 .945

.031 .416 .460 .946

MAR (6.4) 10% MAR (6.4) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.097 .199 .422 .900

.098 .831 .898 .897

.098 .195 .416 .901

.099 .830 .899 .899

.048 .202 .428 .942

.041 .802 .857 .941

.049 .199 .425 .943

.042 .799 .853 .943

.047 .236 .430 .940

.049 .810 .852 .941

.048 .233 .425 .942

.050 .803 .850 .943

.085 .108 .238 .902

.094 .444 .479 .901

.084 .109 .239 .900

.095 .440 .476 .902

.031 .107 .223 .948

.031 .450 .473 .943

.033 .104 .220 .947

.032 .446 .468 .946

.033 .109 .236 .941

.036 .451 .476 .942

.034 .105 .230 .942

.037 .445 .471 .944

MAR (6.4) 40% MAR (6.4) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.119 .216 .428 .889

.126 .852 .889 .894

.120 .210 .423 .891

.125 .853 .888 .890

.049 .220 .433 .942

.043 .851 .859 .942

.050 .215 .430 .943

.044 .847 .855 .944

.048 .223 .436 .942

.050 .866 .858 .944

.047 .220 .430 .943

.051 .860 .855 .946

.108 .120 .256 .893

.110 .468 .496 .896

.110 .115 .252 .894

.109 .462 .493 .895

.036 .122 .258 .943

.037 .464 .491 .943

.037 .117 .250 .945

.038 .467 .482 .945

.037 .118 .262 .945

.036 .473 .499 .948

.039 .115 .260 .946

.037 , 478 .494 .947
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Table 3a Continued

n 100 400

bias se length cov bias se length cov

MAR (6.5) 10% MAR (6.5) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.099 .201 .424 .894

.102 .836 .882 .890

.100 .196 .420 .895

.103 .832 .879 .891

.049 .206 .430 .942

.043 .839 .853 .941

.050 .200 .426 .943

.045 .827 .849 .944

.048 .208 .436 .941

.051 .840 .854 .942

.049 .204 .430 .942

.050 .839 .852 .943

.088 .110 .240 .898

.093 .457 .483 .893

.090 .105 .241 .896

.092 .455 .480 .894

.033 .113 .226 .947

.032 .455 .489 .944

.034 .109 .220 .946

.033 .452 .483 .945

.036 .114 .228 .944

.037 .453 .480 .943

.037 .110 .223 .945

.038 .450 .476 .946

MAR (6.5) 40% MAR (6.5) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.126 .214 .430 .884

.121 .859 .890 .885

.128 .211 .428 .885

.120 .855 .887 .886

.051 .222 .438 .943

.048 .860 .860 .942

.053 .218 .433 .945

.049 .853 .853 .943

.050 .218 .444 .941

.052 .859 .860 .942

.051 .214 .440 .943

.053 .855 .856 .944

.110 .122 .250 .889

.112 .470 .492 .893

.111 .120 .246 .890

.111 .471 .493 .892

.032 .129 .263 .944

.036 .460 .493 .945

.033 .126 .260 .945

.037 .455 .490 .947

.038 .126 .259 .943

.039 .470 .504 .943

.039 .123 .255 .945

.037 .471 .505 .944
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Table 3b ετ ∼ χ2 (4)− 4, τ = 0.5

n 100 400

bias se length cov bias se length cov

β̂1τ

β̂2τ

β̂p
1τ

β̂p
2τ

.053 .182 .396 .941

.040 .839 .840 .946

.055 .180 .395 .945

.042 .832 .834 .947

.031 .101 .203 .943

.026 .424 .478 .947

.032 .099 .198 .946

.027 .420 .473 .948

MAR (6.4) 10% MAR (6.4) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.099 .201 .443 .901

.096 .833 .862 .899

.101 .196 .438 .903

.099 .830 .860 .900

.054 .203 .416 .941

.042 .837 .865 .942

.055 .197 .410 .943

.043 .834 .862 .943

.057 .205 .420 .940

.043 .836 .868 .941

.059 .201 .418 .942

.044 .832 .862 .943

.086 .112 .226 .902

.074 .441 .489 .900

.088 .110 .223 .903

.075 .437 .486 .901

.033 .108 .232 .946

.038 .444 .491 .943

.034 .104 .230 .945

.039 .440 .485 .944

.033 .110 .236 .944

.040 .436 .495 .942

.034 .105 .233 .945

.041 .432 .491 .944

MAR (6.4) 40% MAR (6.4) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.126 .206 .431 .883

.125 .840 .869 .887

.128 .200 .432 .885

.127 .843 .871 .888

.056 .208 .433 .942

.047 .841 .870 .941

.057 .206 .430 .944

.046 .840 .865 .946

.059 .209 .426 .943

.048 .838 .871 .940

.061 .205 .423 .944

.050 .836 .868 .942

.102 .130 .254 .895

.106 .498 .499 .896

.103 .127 .253 .893

.107 .495 .495 .899

.037 .119 .260 .942

.038 .469 .501 .944

.038 .112 .257 .943

.039 .464 .497 .945

.079 .122 .269 .943

.043 .474 .503 .945

.080 .119 .265 .945

.044 .470 .500 .946
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Table 3b Continued

n 100 400

bias se length cov bias se length cov

MAR (6.5) 10% MAR (6.5) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.103 .202 .416 .900

.099 .835 .870 .892

.105 .200 .412 .901

.101 .832 .865 .893

.056 .204 .420 .942

.047 .836 .868 .943

.057 .200 .416 .943

.048 .832 .862 , 944

.059 .206 .421 .941

.045 .838 .872 .942

.060 .201 .418 .945

.047 .832 .868 .944

.088 .115 .223 .900

.077 .461 .482 .896

.090 .110 .219 .902

.078 .456 .478 .898

.036 .116 .230 .944

.035 .474 .490 .946

.039 .110 .227 .946

.037 .470 .485 .947

.039 .120 .237 .944

.042 .486 .498 .944

.040 .117 .230 .945

.045 .484 .494 .946

MAR (6.5) 40% MAR (6.5) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.129 .205 .432 .892

.127 .839 .871 .889

.130 .203 .430 .893

.128 .840 .869 .890

.128 .200 .427 .894

.057 .209 .435 .942

.050 .840 .872 .941

.059 .205 .430 .943

.049 .836 .870 .942

.101 .211 .428 .942

.090 .840 .872 .941

.103 .208 .426 .943

.104 .136 .250 .891

.103 .501 .495 .895

.105 .130 .246 .892

.101 .500 .497 .896

.038 .124 .261 .942

.040 .489 .499 .946

.039 .122 .257 .941

.041 .483 .494 .947

.077 .126 .239 .945

.044 .490 .500 .944

.078 .124 .235 .945

.045 .485 .495 .945
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Table 3c ετ ∼ χ2 (4)− 4, τ = 0.75

n 100 400

bias se length cov bias se length cov

β̂1τ

β̂2τ

β̂p
1τ

β̂p
2τ

.056 .190 .399 .942

.042 .842 .843 .944

.057 .185 .394 .944

.043 .838 .840 .945

.032 .162 .205 .946

.028 .428 .482 .947

.033 .158 .200 .947

.029 .424 .478 .948

MAR (6.4) 10% MAR (6.4) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.101 .206 .416 .895

.098 .858 .868 .899

.103 .202 .412 .896

.099 .855 .864 .900

.057 .207 .418 .941

.045 .861 .868 .942

.058 .203 .410 .943

.060 .856 .861 .944

.058 .210 .420 .942

.048 .863 .873 .941

.060 .206 .414 .947

.049 .860 .873 .943

.088 .110 .210 .900

.078 .466 .481 .901

.089 .105 .205 .903

.080 .460 .474 .902

.036 .112 .213 .943

.032 .450 .419 .945

.038 .110 .210 .944

.034 .446 .410 .946

.035 .124 .203 .942

.038 .454 .486 .943

.036 .120 .205 .944

.037 .450 .479 .945

MAR (6.4) 40% MAR (6.4) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.130 .212 .421 .891

.128 .871 .874 .894

.131 .210 .418 .889

.129 .867 .870 .895

.062 .213 .423 .942

.049 .874 .878 .943

.063 .210 .420 .943

.050 .870 .874 .944

.060 .216 .427 .941

.050 .869 .880 .941

.061 .210 .423 .943

.051 .857 .875 .942

.103 .136 .239 .896

.104 .473 .499 .901

.105 .130 .232 .893

.106 .470 .495 .902

.038 .114 .241 .943

.036 .467 .501 .945

.039 .110 .235 .945

.038 .461 .497 .946

.037 .118 .243 .943

.040 .465 .499 .942

.038 .115 .238 .945

.039 .463 .497 .948
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Table 3c Continued

n 100 400

bias se length cov bias se length cov

MAR (6.5) 10% MAR (6.5) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.102 .208 .418 .894

.102 .860 .873 .892

.103 .206 .415 .989

.104 .856 .870 .990

.059 .208 .420 .939

.048 .868 .870 .942

.060 .205 .417 .941

.049 .865 .964 .943

.061 .203 .413 .942

.057 .213 .483 .938

.050 .862 .871 .941

.058 .210 .480 .943

.090 .112 .213 .898

.081 .451 .482 .894

.091 .113 .210 .899

.082 .450 .480 .895

.038 .113 .216 .942

.034 .454 .499 .944

.036 .110 .214 .943

.036 .450 .495 .945

.036 .116 .218 .942

.040 .457 .501 .943

.037 .113 .210 .944

.042 .455 .499 .945

MAR (6.5) 40% MAR (6.5) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.129 .214 .422 .889

.125 .873 .879 .891

.130 .212 .420 .890

.126 .870 .877 .892

.060 .216 .424 .941

.050 .876 .880 .943

.061 .214 .427 .943

.052 .874 .874 .944

.061 .218 .423 .940

.051 .870 .881 .939

.062 .215 .420 .942

.053 .871 .882 938

.104 .238 .240 .894

.108 .556 .494 .893

.105 .235 .241 .895

.107 , 553 .492 .984

.040 .236 .243 .945

.038 .509 .500 .945

.041 .233 .240 .945

.042 .233 .242 .943

.039 .510 .501 .946

.043 .235 .244 .945

.038 .503 .500 .945

.043 .491 .503 .942
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Table 4a: Finite sample size of (4.4) with 10% MAR

τ 0.25 0.50 0.75

n = 100

N (0, 1)

0.066a

0.066b

0.069c

0.119a

0.113b

0.114c

0.060a

0.063b

0.064c

0.117a

0.112b

0.114c

0.064a

0.065b

0.068c

0.116a

0.113b

0.113c

χ2 (4)− 4

0.069a

0.071b

0.071c

0.121a

0.115b

0.116c

0.062a

0.063b

0.066c

0.120a

0.114b

0.115c

0.067a

0.069b

0.070c

0.120a

0.115b

0.115c

t (5)

0.065a

0.065b

0.067c

0.120a

0.114b

0.115c

0.062a

0.062b

0.064c

0.118a

0.112b

0.114c

0.066a

0.069b

0.069c

0.119a

0.112b

0.114c

n = 400

N (0, 1)

0.059a

0.060b

0.062c

0.114a

0.109b

0.111c

0.055a

0.057b

0.058c

0.112a

0.108b

0.110c

0.060a

0.062b

0.062c

0.113a

0.109b

0.110c

χ2 (4)− 4

0.061a

0.061b

0.063c

0.118a

0.111b

0.112c

0.058a

0.060b

0.061c

0.115a

0.109b

0.110c

0.062a

0.064b

0.064c

0.116a

0.110b

0.111c

t (5)

0.058a

0.060b

0.063c

0.116a

0.110b

0.111c

0.057a

0.059b

0.061c

0.116a

0.110b

0.111c

0.063a

0.065b

0.065c

0.115a

0.111b

0.112c

a complete case, b IPW parametric, c IPW nonparametric

46



Table 4b: Finite sample size of (4.4) with 40% MAR

τ 0.25 0.50 0.75

n = 100

N (0, 1)

0.071a

0.064b

0.065c

0.125a

0.113b

0.115c

0.069a

0.063b

0.064c

0.123a

0.113b

0.114c

0.069a

0.064b

0.064c

0.124a

0.113b

0.114c

χ2 (4)− 4

0.073a

0.065b

0.065c

0.127a

0.116b

0.117c

0.072a

0.064b

0.064c

0.126a

0.115b

0.115c

0.074a

0.064b

0.065c

0.126a

0.116b

0.115c

t (5)

0.074a

0.064b

0.065c

0.127a

0.115b

0.116c

0.073a

0.065b

0.065c

0.125a

0.114b

0.115c

0.073a

0.065b

0.066c

0.125a

0.114b

0.115c

n = 400

N (0, 1)

0.068a

0.060b

0.062c

0.121a

0.111b

0.113c

0.067a

0.061b

0.061c

0.119a

0.109b

0.110c

0.067a

0.062b

0.062c

0.120a

0.110b

0.111c

χ2 (4)− 4

0.069a

0.063b

0.063c

0.123a

0.111b

0.112c

0.068a

0.062b

0.062c

0.121a

0.110b

0.112c

0.068a

0.062b

0.063c

0.122a

0.112b

0.113c

t (5)

0.068a

0.063b

0.064c

0.121a

0.112b

0.113c

0.066a

0.063b

0.063c

0.120a

0.110b

0.112c

0.069a

0.064b

0.064c

0.122a

0.111b

0.112c

a complete case, b IPW parametric, c IPW nonparametric
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Table 5a Finite sample power of the statistic Dπ (θ
c
τ ) for τ = 0.25

γ N (0, 1) χ2 (4)− 4 t (5) N (0, 1) χ2 (4)− 4 t (5)

n = 100 n = 400

−1

.871a

.910b

.902c

.854a

.902b

.900c

.861a

.908b

.902c

.932a

.990b

.987c

.927a

.987b

.985c

.931a

.990b

.984c

−0.8

.655a

.734b

.710c

.643a

.723b

.709c

.650a

.731b

.711c

.712a

.801b

.790c

.719a

.795b

.789c

.713a

.792b

.790c

−0.6

.423a

.512b

.497c

.416a

.504b

.501c

.421a

.510b

.499c

.503a

.589b

.584c

.501a

.580b

.583c

.503a

.587b

.582c

−0.4

.218a

.296b

.284c

.206a

.290b

.287c

.210a

.290b

.285c

.310a

.399b

.391c

.303a

.393b

.390c

.301a

.391b

.389c

−0.2

.106a

.157b

.146c

.105a

.153b

.149c

.104a

.150b

.149c

.142a

.205b

.201c

.140a

.201b

.200c

.143a

.204b

.202c

0

.065a

.058b

.059c

.063a

.058b

.057c

.064a

.054b

.056c

.059a

.055b

.056c

.060a

.054b

.055c

.058a

.055b

.056c

0.2

.110a

.165b

.160c

.112a

.161b

.156c

.109a

.158b

.157c

.156a

.210b

.207c

.153a

.205b

.203c

.153a

.203b

.202c

0.4

.226a

.305b

.301c

.220a

.300b

.296c

.221a

.300b

.297c

.312a

.403b

.399c

.310a

.400b

.398c

.310a

.399b

.397c

0.6

.434a

.521b

.510c

.421a

.510b

.511c

.423a

.515b

.510c

.513a

.599b

.595c

.512a

.595b

.593c

.510a

.597b

.595c

0.8

.663a

.742b

.737c

.660a

.737b

.730c

.661a

.740b

.737c

.720a

.812b

.806c

.716a

.810b

.809c

.719a

.810b

.805c

1

.894a

.924b

.918c

.890a

.923b

.920c

.893a

.921b

.920c

.935a

.995b

.991c

.933a

.992b

.990c

.936a

.994b

.991c

a complete case, b IPW parametric, c IPW nonparametric
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Table 5b Finite sample power of the statistic Dπ (θ
c
τ ) for τ = 0.50

γ N (0, 1) χ2 (4)− 4 t (5) N (0, 1) χ2 (4)− 4 t (5)

n = 100 n = 400

−1

.891a

.919b

.912c

.864a

.913b

.910c

.861a

.918b

.910c

.964a

.100b

.998c

.957a

.100b

.999c

.961a

.100b

.100c

−0.8

.676a

.754b

.738c

.664a

.743b

.739c

.670a

.750b

.734c

.730a

.822b

.809c

.725a

.815b

.805c

.727a

.820b

.804c

−0.6

.435a

.521b

.513c

.432a

.519b

.513c

.431a

.520b

.510c

.512a

.596b

.590c

.507a

.590b

.587c

.509a

.594b

.589c

−0.4

.225a

.302b

.299c

.218a

.299b

.297c

.221a

.299b

.298c

.318a

.404b

.399c

.313a

.400b

.399c

.315a

.399b

.397c

−0.2

.113a

.164b

.160c

.110a

.163b

.159c

.111a

.162b

.160c

.154a

.211b

.210c

.152a

.210b

.209c

.153a

.209b

.208c

0

.063a

.056b

.056c

.061a

.057b

.056c

.062a

.055b

.055c

.054a

.054b

.055c

.056a

.055b

.054c

.056a

.055b

.055c

0.2

.118a

.169b

.167c

.117a

.167b

.166c

.118a

.168b

.167c

.160a

.218b

.216c

.158a

.215b

.216c

.159a

.216b

.214c

0.4

.234a

.317b

.312c

.232a

.318b

.312c

.231a

.316b

.315c

.321a

.415b

.414c

.318a

.413b

.413c

.319a

.412b

.412c

0.6

.451a

.534b

.531c

.446a

.531b

.530c

.450a

.532b

.529c

.523a

.602b

.599c

.522a

.599b

.600c

.521a

.600b

.599c

0.8

.679a

.753b

.751c

.676a

.755b

.754c

.675a

.754b

.752c

.731a

.824b

.826c

.732a

.821b

.822c

.730a

.821b

.824c

1

.899a

.924b

.921c

.897a

.924b

.920c

.895a

.924b

.921c

.938a

.999b

.995c

.937a

.997b

.996c

.938a

.999b

.998c

a complete case, b IPW parametric, c IPW nonparametric
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Table 5c Finite sample power of the statistic Dπ (θ
c
τ ) for τ = 0.75

γ N (0, 1) χ2 (4)− 4 t (5) N (0, 1) χ2 (4)− 4 t (5)

n = 100 n = 400

−1

.862a

.904b

.901c

.860a

.901b

.902c

.860a

.905b

.903c

.930a

.989b

.988c

.929a

.988b

.984c

.932a

.990b

.985c

−0.8

.658a

.744b

.736c

.653a

.743b

.733c

.654a

.741b

.734c

.719a

.811b

.807c

.715a

.808b

.806c

.713a

.805b

.807c

−0.6

.431a

.510b

.502c

.425a

.508b

.505c

.428a

.511b

.507c

.513a

.592b

.594c

.511a

.589b

.587c

.510a

.589b

.586c

−0.4

.215a

.292b

.288c

.210a

.291b

.286c

.211a

.293b

.290c

.312a

.395b

.395c

.310a

.392b

.393c

.312a

.394b

.394c

−0.2

.109a

.154b

.149c

.107a

.152b

.148c

.105a

.150b

.146c

.147a

.208b

.206c

.145a

.207b

.205c

.145a

.208b

.207c

0

.063a

.055b

.056c

.061a

.054b

.055c

.062a

.053b

.055c

.057a

.054b

.055c

.059a

.053b

.054c

.058a

.053b

.054c

0.2

.113a

.170b

.168c

.111a

.168b

.166c

.110a

.168b

.167c

.160a

.214b

.217c

.159a

.210b

.212c

.157a

.208b

.210c

0.4

.232a

.303b

.300c

.228a

.301b

.299c

.227a

.302b

.298c

.312a

.401b

.398c

.311a

.402b

.397c

.313a

.403b

.398c

0.6

.439a

.529b

.528c

.421a

.510b

.511c

.423a

.515b

.510c

.513a

.599b

.595c

.512a

.595b

.593c

.510a

.597b

.595c

0.8

.663a

.742b

.737c

.660a

.737b

.730c

.661a

.740b

.737c

.720a

.812b

.806c

.716a

.810b

.809c

.719a

.810b

.805c

1

.894a

.924b

.918c

.890a

.923b

.920c

.893a

.921b

.920c

.935a

.995b

.991c

.933a

.992b

.990c

.936a

.994b

.991c

a complete case, b IPW parametric, c IPW nonparametric
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Table 6a Finite sample size for the Wald statistics (4.6) with 10% MAR

τ 0.25 0.50 0.75

n = 100

N (0, 1)

.064a

.061b

.062c

.059†a

.057†b

.057†c

.115a

.109b

.110c

.110†a

.106†b

.105†c

.063a

.060b

.061c

.058†a

.057†b

.057†c

.113a

.108b

.110c

.110†a

.105†b

.106†c

.065a

.061b

.062c

, 060†a

.055†b

.056†c

.114a

.110b

.111c

.110†a

.107†b

.107†c

χ2 (4)− 4

.066a

.063b

.063c

.056†a

.059†b

.057†c

.119a

.111b

.112c

.110†a

.107†b

.106†c

.065a

.062b

.061c

.057†a

.058†b

.059†c

.117a

.109b

.110c

.108†a

.107†b

.106†c

.067a

.062b

.064c

.057†a

.058†b

.057†c

.118a

.110b

.112c

.110†a

.108†b

.109†c

t (5)

.065a

.062b

.063c

.057†a

.058†b

.059†c

.118a

.112b

.113c

.106†a

.107†b

.106†c

.066a

.063b

.062c

.056†a

.057†b

.058†c

.116a

.110b

.111c

.109†a

.106†b

.106†c

.068a

.064b

.065c

.058†a

.059†b

.058†c

.117a

.111b

.112c

.110†a

.106†b

.107†c

n = 400

N (0, 1)

.058a

.055b

.056c

.054†a

.053†b

.053†c

.111a

.106b

.107c

.106†a

.104†b

.103†c

.057a

.054b

.055c

.054†a

.053†b

.54†c

.110a

.106b

.108c

.106†a

.104†b

.105†c

.058a

.055b

.056c

.055†a

.054†b

.0553†c

.112a

.117b

.108c

.107†a

.103†b

.109†c

χ2 (4)− 4

.060a

.057b

.057c

.056†a

.055†b

.055†c

.117a

.107b

.108c

.110†a

.104†b

.106†c

.058a

.055b

.056c

.054†a

.053†b

.053†c

.115a

.107b

.107c

.109†a

.105†b

.104†c

.059a

.056b

.057c

056†a

.053†b

.055†c

.117a

.108b

.108c

.110†a

..106†b

.104†c

t (5)

.061a

.056b

.057c

.056†a

.053†b

.055†c

.114a

.109b

.109c

.108†a

.106†b

.109†c

.058a

.056b

.056c

.054†a

.055†b

.054†c

.113a

.107b

.108c

.108†a

.106†b

.105†c

.060a

.055b

.056c

.056†a

.053†b

.052†c

.115a

.108b

.107c

.110†a

.105†b

.105†c
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Table 6b Finite sample size for the Wald statistic (4.6) with 40% MAR

τ 0.25 0.50 0.75

n = 100

N (0, 1)

.071a

.064b

.064c

.059†a

0.57†b

.060†c

.122a

.112b

.112c

.114†a

.109†b

.108†c

.070a

.062b

.063c

.065†a

.059†b

.058†c

.121a

.110b

.111c

.114†a

.105†b

.106†c

.071a

.063b

.063c

.065†a

.060†b

.059†c

.122a

.111b

.112c

.113†a

.106†b

.107†c

χ2 (4)− 4

.074a

.066b

.066c

.070†a

.061†b

.061†c

.125a

.114b

.115c

.112†a

.107†b

.110†c

.073a

.065b

.065c

.065†a

.062†b

.061†c

.124a

.113b

.113c

.117†a

.109†b

.110†c

.073a

.062b

.064c

.065†a

.057†b

.058†c

.123a

.113b

.114c

.116†a

.110†b

.109†c

t (5)

.074a

.065b

.064c

.065†a

.062†b

.060†c

.123a

.114b

.115c

.118†a

.110†b

.110†c

.072a

.063b

.062c

.065†a

0.57†b

.058†c

.124a

.114b

.114c

.114†a

.109†b

.108†c

.075a

.064b

.065c

.067†a

.059†b

.058†c

.125a

.114b

.115c

.118†a

.109†b

.108†c

n = 400

N (0, 1)

.068a

.060b

.061c

.056†a

.056†b

.056†c

.120a

.108b

.108c

.110†a

.106†b

.104†c

.067a

.059b

.059c

.060†a

.056†b

0.56†c

.119a

.108b

.109c

.110†a

.105†b

.104†c

.068a

.060b

.059c

.058†a

.055†b

.055†c

.119a

.109b

.110c

.110†a

.105†b

.106†c

χ2 (4)− 4

.070a

.061b

.060c

.060†a

.061†b

.056†c

.122a

.109b

.110c

.112†a

.106†b

.105†c

.068a

.059b

.060c

.057†a

.055†b

.055†c

.121a

.109b

.110c

.110†a

.105†b

.106†c

.069a

.060b

.061c

, 055†a

.056†b

.056†c

.121a

.109b

.109c

.112†a

.106†b

.104†c

t (5)

.071a

.060b

.061c

.055†a

.056†b

.054†c

.121a

.110b

.111c

.112†a

.106†b

.105†c

.069a

.059b

.060c

.060†a

.055†b

.0056†c

.120a

.109b

.109c

.110†a

.105†b

.104†c

.070a

.060b

.061c

.064†a

0.56†b

.056†c

.120a

.109b

.110c

.110†a

.106†b

.105†c
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Table 7a Estimates, standard errors, length

of confidence interval and p-values for τ = 0.25

β1 β2 β3

complete

β̂j

se

length

p− value

−69.928

34.811

97.950

0.047

0.062

0.029

0.047

0.047

1.435

0.400

1.044

0.000

IPW par

β̂j

se

length

p− value

−68.505

35.328

94.025

0.055

0.061

0.029

0.043

0.08

1.410

0.400

1.105

0.000

IPW nopar

β̂j

se

length

p− value

−70.861

33.902

97.50

0.038

0.048

0.028

0.04

0.091

1.481

0.380

1.122

0.000

Table 7b Estimates, standard errors, length

of confidence intervals and p-values for τ = 0.50

β1 β2 β3

complete

β̂j

se

length

p− value

−75.603

33.141

40.143

0.024

0.033

0.033

0.077

0.324

1.782

0.324

0.487

0.000

IPW par

β̂j

se

length

p− value

−74.618

34.376

38.727

0.032

0.032

0.034

0.078

0.347

1.762

0.369

0.453

0.000

IPW nonpar

β̂j

se

length

p− value

−76.822

33.606

41.121

0.024

0.038

0.033

0.081

0.261

1.758

0.352

0.441

0.000
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Table 7c Estimates, standard errors, length

of confidence intervals and p-values for τ = 0.75

β1 β2 β3

complete

β̂j

se

length

p− value

−91.565

22.671

107.832

0.001

0.039

0.033

0.141

0.239

2.116

0.298

1.086

0.000

IPW par

β̂j

se

length

p− value

−89.730

28.715

93.223

0.002

0.039

0.033

0.132

0.244

2.803

0.303

1.025

0.000

IPW nonpar

β̂j

se

length

p− value

−96.633

29.267

107.902

0.001

0.040

0.033

0.133

0.229

2.077

0.297

0.928

0.000

,

Table 8 Sample and p values of the statistic Dπ (θ
c
τ )

Complete IPW par IPW nonpar

τ = 0.25 2.43 0.007 2.12 0.017 2.10 0.017

τ = 0.50 2.51 0.006 2.18 0.014 2.17 0.015

τ = 0.75 2.46 0.007 2.15 0.016 2.14 0.015

Table 9 Comparisons of R1
τ∗

unrestricted restricted

R1
0.25c

R1
0.25p

R1
0.25np

0.423

0.441

0.432

0.321

0.323

0.322

R1
0.50c

R1
0.05p

R1
0.50np

0.487

0.496

0.494

0.397

0.403

0.402

R1
0.75c

R1
0.75p

R1
0.75np

0.542

0.559

0.551

0.445

0.452

0.450
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Figure 1: Nonparametric quantile (τ = 0.25, 0.50, 0.75)

estimates of the varying coefficients cos (πX3) and X2
3

with no missing observations, n = 100, ε ∼ N (0, 1)

(left column) and ε ∼ χ2
4 − 4 (right column)
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Figure 2: Nonparametric quantile (τ = 0.25, 0.50, 0.75)

estimates of the varying coefficients cos (πX3) and X2
3

with 40% MAR observations, n = 100 and ε ∼ N (0, 1)
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Figure 3: Size adjusted power of (4.4) for the 3 nonparametric quantile estimators

based on the complete case (solid line), the parametric IPW estimator (dash line)

and the nonparametric IPW estimator (dash dot line) for n = 100.
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Figure 4: Kernel densities of the distance statistic of Proposition 10,

dash dot line corresponds to b = b/2 and dash line corresponds to b = 3/2.
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Figure 5: Contour plots of the finite sample power of W p: The dash dot line

corresponds to the complete case estimates, the dash line corresponds to the

IPW nonparametric estimates and the continuous line corresponds to the

IPW parametric estimates.

59



5 10 15 20

20
40

60
80

Complete case

Wind

θ^  (W
in

d)

5 10 15 20

10
20

30
40

50
60

70
80

IPW parametric

Wind

θ^  (W
in

d)

5 10 15 20

20
40

60
80

IPW nonparametric

Wind
θ^  (W

in
d)

Figure 6 Nonparametric quantile (τ = 0.25, 0.50, 0.75) estimates of the wind effect

on ozone layer

10 Supplemental Appendix

10.1 Proofs

Throughout this appendix we use the following abbreviations: ”CLT”, ”CMT” and ”LNN” denote,

respectively, central limit theorem, continuous mapping theorem and (possibly uniform) law of large

numbers. We also use ”CL” and ”QAL” to denote, respectively, the convexity lemma (Pollard 1991)

and the ”quadratic approximation lemma” (Fan & Gijbels 1996). Finally, we use the following identity

(Knight 1999)

ρτ (x− y)− ρτ (x) = −y (τ − I (x < 0)) +

∫ y

0
(I (x ≤ t)− I (x ≤ 0)) dt. (10.1)

Proof of Theorem 1. Let π (Zoi) := πi,

Wi =
[
XT

1i, X
T
2i, X

T
2i (X3i − x3) /h

]T
,

ε∗i = Yi −XT
1iβ0τ −XT

2i (aτ + bτ (X3i − x3)) ,

γτ = (nh)1/2
[
(βτ − β0τ )

T , (aτ − θ0τ (x3))
T , h

(
bτ − θ′0τ (x3)

)T ]T
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and

Rn (γτ , π̂, x3) =
n∑

i=1

δi
π̂i

[
ρτ

(
ε∗i −

W T
i γτ

(nh)1/2

)
− ρτ (ε

∗
i )

]
Kh (X3i − x3)

denote the normalized local objective function Qn (βτ , aτ + bτ (X3i − x3) , π̂)Kh (X3i − x3), which can

be written as

Rn (γτ , π̂, x3) = R1n (γτ , π0, x3)−R2n (γτ , π̂, x3) ,

where

R1n (γτ , π0, x3) =
n∑

i=1

δi
π0i

[
ρτ

(
ε∗i −

W T
i γτ

(nh)1/2

)
− ρτ (ε

∗
i )

]
Kh (X3i − x3) ,

R2n (γτ , π̂, x3) =
n∑

i=1

δi (π̂i − π0i)

π̂iπ0i

[
ρτ

(
ε∗i −

W T
i γτ

(nh)1/2

)
− ρτ (ε

∗
i )

]
Kh (X3i − x3) .

By (10.1), we have

R1n (γτ , π0, x3) =
γTτ

(nh)1/2

n∑
i=1

δi
π0i

Wiρ
′
τ (ε

∗
i )Kh (X3i − x3) + S1n (γ, π0, x3) ,

where ρ′τ (·) = τ − I (· < 0), and

S1n (γτ , π0, x3) =

n∑
i=1

δi
π0i

∫ WT
i γτ

(nh)1/2

0
(I (ε∗i ≤ t)− I (ε∗i ≤ 0))Kh (X3i − x3) dt.

By the consistency results for kernel estimators of Masry (1996)

S1n (γτ , π0, x3) = E [S1n (γτ , π0, x3)] +Op

((
log n

nh

)1/2
)

(10.2)

uniformly for x3 ∈ X3. Let ςτ (x3) = θ0τ (X3) − XT
2 (aτ + bτ (X3 − x3)); by iterated expectations

E [S1n (γ, π0, x3)] = EE [S1n (γ, π0, x3) |Xi], so using a Taylor expansion we have

E [S1n (γτ , π0, x3) |Xi] =
n∑

i=1

∫ WT
i γτ

(nh)1/2

0

(
Fεi|Xi

(ςiτ (x3) + t)− Fεi|Xi
(ςiτ (x3))

)
Kh (X3i − x3) dt =

n∑
i=1

∫ WT
i γτ

(nh)1/2

0
fεi|Xi

(ς iτ (x3)) tKh (X3i − x3) dt,

where ς iτ (x3) is the mean value between 0 and ςiτ (x3)+t. Adding and subtracting
∑n

i=1

∫ WT
i γτ

(nh)1/2

0 fεi|Xi
(0)×

tKh (X3i − x3) dt∣∣∣∣∣∣
n∑

i=1

∫ WT
i γτ

(nh)1/2

0
fεi|Xi

(ς iτ (x3)) tKh (X3i − x3) dt−
n∑

i=1

∫ WT
i γτ

(nh)1/2

0
fεi|Xi

(0) tKh (X3i − x3) dt

∣∣∣∣∣∣ ≤
sup

x3∈X3

C

2

γTτ
nh

n∑
i=1

|ς iτ (x3)|W⊗2
i γτKh (X3i − x3) = Op

(
h2
)
,
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for some C > 0, hence

E [Sn (γτ , π0, x3) |Xi] =
1

2

γTτ
nh

n∑
i=1

fεi|Xi
(0)W⊗2

i γτKh (X3i − x3) + op (1) , (10.3)

and by a standard kernel calculation

E [E [Sn (γτ , π0, x3) |X]] =
1

2
fX3 (x3) γ

T
τ Σ (x3) γτ + o (1) ,

where

Σ (x3) = E

fε|X (0)

 X⊗2
1 X1X

T
2 Okp(

X1X
T
2

)T
X⊗2

2 Opp

OT
kp Opp κ2X

⊗2
2

 |X3 = x3

 . (10.4)

Combining (10.2) and (10.3), we have that

R1n (γτ , π0, x2) =
γTτ

(nh)1/2

n∑
i=1

δi
π0i

Wiρ
′
τ (ε

∗
i )Kh (X3i − x3) +

1

2
fX3 (x3) γ

T
τ Σ (x3) γτ+

Op

((
log n

nh

)1/2

+ h2

)

uniformly in x3 ∈ X3. Note that for π̂i = πi (α̂) - that is for π0i estimated parametrically-

|R2n (γτ , π̂i, x3)| ≤ ∥α̂− α0∥

∥∥∥∥∥
n∑

i=1

δi
π2
i

∂πi (α)

∂α

[
ρτ

(
ε∗i −

W T
i γτ

(nh)1/2

)
− ρτ (ε

∗
i )

]
Kh (X3i − x3)

∥∥∥∥∥+ op (1)

= Op

(
n−1/2

)
Op

(
(nh)1/2

)
= op (1)

by A4, where α is the mean value, whereas for π0i estimated nonparametrically

|R2n (γτ , π̂i, x3)| ≤ sup
Zoi∈Z

∥π̂i − π0i∥

∥∥∥∥∥
n∑

i=1

δi
π2
i

[
ρτ

(
ε∗i −

W T
i γτ

(nh)1/2

)
− ρτ (ε

∗
i )

]
Kh (X3i − x3)

∥∥∥∥∥
= Op

((
log n

nbdim(Zo)

)1/2

+ b2

)
Op

(
(nh)1/2

)
= op (1)

by A2 and A5. Thus Rn (γτ , π̂, x3) = R1n (γτ , π0, x3) + op (1) and since R1n (γτ , π0, x3) is convex in γτ ,

by CL and QAL the minimizer γ̂τ of Rn (γτ , π̂, x3) is

γ̂τ = − (fX3 (x3) Σ (x3))
−1 1

(nh)1/2

n∑
i=1

δi
π0i

Wiρ
′
τ (ε

∗
i )Kh (X3i − x3)+ (10.5)

Op

((
log n

nh

)1/2

+ h2

)
+ op (1) ,
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which corresponds to the Bahadur expansion for the local linear estimator of θ0 (x3) that is uniform in

x3 ∈ X3. Note that

E

[
δ

π0
Wρ′τ (ε)Kh (X3 − x3)

]
= 0,

V ar

[
δ

π0
Wρ′τ (ε)Kh (X3 − x3)

]
= fX3 (x3)E

τ (1− τ)

π0

 v0X
⊗2
1 v0X1X

T
2 0

v0X2X
T
1 v0X

⊗2
2 0

0 0 v2X
⊗2
2

 |X3 = x3

 ,

+ o (1) ,

and that by iterated expectations, a Taylor expansion and the fact that ςτ (x3) = XT
2 θ

′′
0τ (x3) (X3 − x3)

2 /2+

op
(
h2
)

E

[
δ

π0
W
(
ρ′τ (ε

∗)− ρ′τ (ε)
)
Kh (X3 − x3)

]
= EE

[
W
(
Fε|X (ςτ (x3))− Fε|X (0)

)
Kh (X3 − x3) |X3

]
= −h2

2
fX3 (x3)E

fε|X (0|X)

 X1X
T
2 κ2

X⊗2
2 κ2

Opp

 |X3 = x3

 θ′′0τ (x3) + o (1) .

Furthermore, it can be showed that

V ar

[
δ

π0
Wρ′τ (ε

∗)Kh (X3 − x3)−
δ

π0
Wρ′τ (ε)Kh (X3 − x3)

]
= O

(
h2
)
,

hence the conclusion follows by CLT and CMT.

Proof of Theorem 2. By (10.1) it follows that∥∥∥∥∥
n∑

i=1

δi
π̂i

[
ρτ

(
Yi −XT

1iβ̂ −XT
2i (aτ − bτ (X3i − x3))

)
−

ρτ
(
Yi −XT

1iβ0 −XT
2i (aτ − bτ (X3i − x3))

)]
Kh (X3i − x3)

∥∥ = Op

(
h1/2

)
= op (1) ,

hence using the same arguments as those used in the proof of Theorem 1, it is possible to show that,

for W2i =
[
XT

2i, X
T
2i (X3i − x3) /h

]T
and γ2τ = (nh)1/2

[
(aτ − θ0τ (x3))

T , h (bτ − θ′0τ (x3))
T
]T

,

Rn (γ2τ , π̂, x3) =
n∑

i=1

δi
π̂i

[
ρτ

(
ε∗i −

W T
2iγ2τ

(nh)1/2

)
− ρτ (ε

∗
i )

]

can be approximated uniformly in x3 ∈ X3 as

Rn (γ2τ , π0, x2) =
γT2τ

(nh)1/2

n∑
i=1

δi
π0i

W2iρ
′
τ (ε

∗
i )Kh (X3i − x3) +

1

2
fX3 (x3) γ

T
2τdiag (1, κ2)⊗ Σ (x3) γ2τ+

op (1) ,

and the conclusion follows as in the proof of Theorem 1.
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Proof of Theorem 3. Let

ε̂∗i = Yi −XT
1iβ0τ −XT

2iθ̂τ (X3i) ,

γβτ = n1/2 (βτ − β0τ ) ,

and let

Rn (γβτ , π̂i) =

n∑
i=1

δi
π̂i

[
ρτ

(
ε̂∗i −

XT
1iγβτ

n1/2

)
− ρτ (ε̂

∗
i )

]
,

denote the normalized objective function Qn

(
βτ , θ̂τ , π̂i

)
. Similar to the proof of Theorem 1

Rn (γβτ , π̂i) =
n∑

i=1

δi
π0i

[
ρτ

(
εi −XT

2i

(
θ̂τ (X3i)− θτ0 (X3i)

)
−

XT
1iγβτ

n1/2

)
−

ρτ

(
εi −XT

2i

(
θ̂τ (X3i)− θτ0 (X3i)

))]
−

n∑
i=1

δi (π̂i − π0i)

π̂iπ0i

[
ρτ

(
εi −XT

2i

(
θ̂τ (X3i)− θτ0 (X3i)

)
−

XT
1iγβτ

n1/2

)
−

ρτ

(
εi −XT

2i

(
θ̂τ (X3i)− θτ0 (X3i)

))]
:= R1n

(
γβτ , π0i, θ̂τ

)
+R2n

(
γβτ , π̂i, θ̂τ

)
.

Again by (10.1)

R1n

(
γβτ , π0i, θ̂τ

)
=

γTβτ

n1/2

n∑
i=1

δi
π0i

X1iρ
′
τ (εi) + S1n

(
γβτ , π0i, θ̂τ

)
, (10.6)

where

S1n

(
γβτ , π0i, θ̂τ

)
=

n∑
i=1

∫ XT
2i(θ̂τ (X3i)−θτ0(X3i))+

XT
1iγβτ

n1/2

XT
2i(θ̂τ (X3i)−θτ0(X3i))

δi
π0i

(I (εi ≤ t)− I (εi ≤ 0)) dt.

Similarly to (10.3), we can show that

E
[
S1n

(
γβτ , π0i, θ̂τ

)]
=

1

2

γTβτ

n

n∑
i=1

fεi|Xi
(0)X⊗2

1i γβτ−
γTβτ

n

n∑
i=1

fεi|Xi
(0)X1iX

T
2i

(
θ̂τ (X3i)− θτ0 (X3i)

)
+o (1) ,

(10.7)

so that (10.6) can be written as

R1n

(
γβτ , π0i, θ̂τ

)
=

γTβτ

n1/2

n∑
i=1

δi
π0i

X1iρ
′
τ (εi) +

1

2

γTβτ

n

n∑
i=1

fεi|Xi
(0)X⊗2

1i γTβτ
−

γTβτ
n

n∑
i=1

fεi|Xi
(0)XT

2i

(
θ̂τ (X3i)− θτ0 (X3i)

)
+Q1n

(
γβτ , π0i, θ̂τ

)
+ op (1) ,

where ∣∣∣Q1n

(
γβτ , π0i, θ̂τ

)∣∣∣ = ∣∣∣S1n

(
γβτ , π0i, θ̂τ

)
− E

[
S1n

(
γβτ , π0i, θ̂τ

)]∣∣∣ = op (1) ,
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since

E

[
Q1n

(
γβτ , π0i, θ̂τ

)2]
≤ nES1i

(
γβτ , π0i, θ̂τ

)2
= (10.8)

nE

∫ XT
2i(θ̂τ (X3i)−θτ0(X3i))+

XT
1iγβτ

n1/2

XT
2i(θ̂τ (X3i)−θτ0(X3i))

Pr (0 ≤ |εi| ≤ max (|t| , |u|) |X) dtdu


≤ nE

[
Pr

(
0 ≤ |εi| ≤ ∥X2i∥

∥∥∥∣∣∣θ̂τ (X3i)− θτ0 (X3i)
∣∣∣∥∥∥+ ∣∣∣∣XT

1iγβτ

n1/2

∣∣∣∣ |Xi

) ∣∣∣∣∣γTβτ
X⊗2

1i γβτ

n

∣∣∣∣∣
]

= o (1)

as both
∣∣XT

1iγβτ /n
1/2
∣∣ and ∥∥∥θ̂τ (X3i)− θτ0 (X3i)

∥∥∥ are op (1). Let S = [Opk, Ip, Opp]; then by (10.5) we

have

R1n

(
γβτ , π0i, θ̂τ

)
=

γTβτ

n1/2

n∑
i=1

δi
π0i

X1iρ
′
τ (εi) +

1

2

γTβτ

n

n∑
i=1

fεi|Xi
(0)X⊗2

1i γβτ−

γTβτ

n3/2

n∑
i=1

n∑
j=1

fεi|Xi
(0)X1iX

T
2iS (fX3 (X3i) Σ (X3i))

−1×

δj
π0j

[
XT

1j , X
T
2j , 0

T
p

]T
ρ′τ (εj)Kh (X3j −X3i) +Op

(
n1/2h5/2 +

(
log n

nh2

)2
)
,

which by LLN and a standard U-statistic projection argument simplifies to

R1n

(
γβτ , π0i, θ̂τ

)
=

γTβτ

n1/2

n∑
i=1

δi
π0i

(X1i − φ (Xi)) ρ
′
τ (εi) + γTβτ

Σ2γβτ + op (1) , (10.9)

where

φ (Xi) = E
[
fε|X (0)X1X

T
2 |X3 = X3i

]
SΣ (X3i)

−1 [XT
1i, X

T
2i, 0

T
p

]T
.

For R2n

(
γβτ , π̂i, θ̂τ

)
note that

R2n

(
γβτ , π̂i, θ̂τ

)
=

n∑
i=1

δi (π̂i − π0i)

π2
0i

[
γTβτ

n1/2
X1iρ

′
τ (εi) + S3n

(
γβτ , θ̂τ

)]
+ op (1)

=
n∑

i=1

δi (π̂i − π0i)

π2
0i

{
γTβτ

n1/2
X1iρ

′
τ (εi) + E

[
S3n

(
γβτ , θ̂τ

)]}
+Q2n

(
γβτ , π̂i, θ̂τ

)
+ op (1) ,

where

S3n

(
γβτ , θ̂τ

)
=

n∑
i=1

∫ XT
2i(θ̂τ (X3i)−θτ0(X3i))+

XT
1iγβτ

n1/2

XT
2i(θ̂τ (X3i)−θτ0(X3i))

(I (εi ≤ t)− I (εi ≤ 0)) dt

and

Q2n

(
γβτ , π̂i, θ̂τ

)
=

n∑
i=1

δi (π̂i − π0i)

π2
0i


∫ XT

2i(θ̂τ (X3i)−θτ0(X3i))+
XT

1iγβτ

n1/2

XT
2i(θ̂τ (X3i)−θτ0(X3i))

(I (εi ≤ t)− I (εi ≤ 0)) dt−

(10.10)

E
[
S3n

(
γβτ , θ̂τ

)]}
.
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For the case where π̂i = π̂i (α̂), the Cauchy-Schwarz inequality, LLN and a similar argument to (10.8)

imply that

∣∣∣Q2n

(
γβτ , π̂i, θ̂τ

)∣∣∣ ≤ 2

(
∥α̂− α0∥2

n∑
i=1

sup
α∈A

∥∥∥∥ 1

πi (α)
2

∂πi (α)

∂α

∥∥∥∥2
)1/2

× (10.11)

 n∑
i=1

∣∣∣∣∣∣ δiπ0i
∫ XT

2i(θ̂τ (X3i)−θτ0(X3i))+
XT

1iγβτ

n1/2

XT
2i(θ̂τ (X3i)−θτ0(X3i))

(I (εi ≤ t)− I (εi ≤ 0)) dt− E

[
δi
π0i

S3n

(
γβτ , θ̂τ

)]∣∣∣∣∣∣
2


1/2

= Op (1) op (1) .

For the case where π̂i is estimated nonparametrically, a standard kernel calculation, (10.8) and the

Cauchy-Schwarz inequality imply that

∣∣∣Q2n

(
γβτ , π̂i, θ̂τ

)∣∣∣ ≤ 2

(
n∑

i=1

|π̂i − π0i|2

π2
0i

)1/2

× (10.12)

 n∑
i=1

∣∣∣∣∣∣ δiπ0i
∫ XT

2i(θ̂τ (X3i)−θτ0(X3i))+
XT

1iγβτ

n1/2

XT
2i(θ̂τ (X3i)−θτ0(X3i))

(I (εi ≤ t)− I (εi ≤ 0)) dt− E

[
δi
π0i

S3n

(
γβτ , θ̂τ

)]∣∣∣∣∣∣
2


1/2

= Op

(
n1/2b2

)
op (1) = op (1) .

Combining (10.7), (10.11) and (10.12) yields

R2n

(
γβτ , π̂i, θ̂τ

)
=

n∑
i=1

δi (π̂i − π0i)

π2
0i

[
γTβτ

n1/2

(
X1iρ

′
τ (εi)− φ (Xi) ρ

′
τ (εi)

)
+ γTβτ

Σ2γβτ

]
+ op (1) .

Thus, by CL and QAL, we have that γ̂βτ = Σ−1
2 ζ + op (1), where

ζ =
1

n1/2

n∑
i=1

(
δi
π0i

− δi (π̂i − π0i)

π2
0i

)
(X1i − φ (Xi)) ρ

′
τ (εi) . (10.13)

For π̂i = π̂i (α̂), a mean value expansion, A4 and LLN imply that

1

n1/2

n∑
i=1

δi (π̂i − π0i)

π2
0i

(X1i − φ (Xi)) ρ
′
τ (εi) = (10.14)

1

n

n∑
i=1

δi
π2
0i

(X1i − φ (Xi)) ρ
′
τ (εi)

(
∂πi (α)

∂αT

)
I (α0)

−1 n1/2 (α̂− α0) =

E

[
(X1 − φ (X)) ρ′τ (εi)

π0

∂π0
∂αT

]
I (α0)

−1 1

n1/2

n∑
i=1

s (Zoi, α0) + op (1)
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and the conclusion follows by CLT and CMT noting that

Cov

(
δi
π0i

(X1i − φ (Xi)) ρ
′
τ (εi)− (10.15)

E

[
(X1 − φ (X)) ρ′τ (εi)

(
∂π0/∂α

T
)

π0

]
I (α0)

−1 1

n1/2

n∑
i=1

s (Zoi, α0)

)
=

E

[
((X1 − φ (X)) ρ′τ (ε))

⊗2

π0

]
− E

[
(X1 − φ (X)) ρ′τ (ε)

π0

∂π0
∂αT

]
×

I (α0)
−1E

[
(X1 − φ (X)) ρ′τ (ε)

π0

∂π0
∂αT

]T
,

since by iterated expectations

E

{
δi
π0i

(X1i − φ (Xi)) ρ
′
τ (εi)

[
E

[
(X1 − φ (X)) ρ′τ (εi)

π0

∂π0
∂αT

]
×

I (α0)
−1 1

π0i

(
∂π0i
∂αT

)]T}
=

E

[
(X1 − φ (X)) ρ′τ (εi)

π0

∂π0
∂αT

]
I (α0)

−1E

[
(X1 − φ (X)) ρ′τ (εi)

π0

∂π0
∂αT

]T
.

Proof of Theorem 4. Given (10.13), for π̂i estimated nonparametrically, note that

1

n1/2

n∑
i=1

δi (π̂i − π0i)

π2
0i

(X1i − φ (Xi)) ρ
′
τ (εi) =

1

n3/2

n∑
i=1

(δi − π0i)

∑n
j=1 (δj − π0i)Lb (Zoj − Zoi)

π2
0ib

dim(Zo)f (Zoi)
(X1i − φ (Xi)) ρ

′
τ (εi)+

1

n3/2

n∑
i=1

(δj − π0i)Lb (Zoj − Zoi)

π2
0ib

dim(Zo)f (Zoi)
(X1i − φ (Xi)) ρ

′
τ (εi) =

1

n1/2

n∑
i=1

(δi − π0i)

π0i
E
[
(X1i − φ (Xi)) ρ

′
τ (εi) |Zoi

]
+ op (1) .

The conclusion follows by CLT and CMT since by iterated expectations

E

[
δi
π0i

(X1i − φ (Xi)) ρ
′
τ (εi)

(δi − π0i)

π0i
E
[
(X1i − φ (Xi)) ρ

′
τ (εi) |Zoi

]T]
=

E

[
1− π0
π0

E
[
(X1 − φ (X)) ρ′τ (ε) |Zo

]⊗2
]
.

Proof of Theorem 5. First note that

sup
x3∈X3

||hk(∂
kθ̂(x3)

∂βk
τ

− ∂kθ0(x3)

∂βk
τ

)|| = Op(h
2 +

1

(nh)1/2
) (10.16)
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for k = 0, 1, by the same arguments as those used in the proof of Theorem 1, and this rate can be

made uniform in β ∈ B by A6’(ii) and of order op(n
1/4) by choosing a suitable b. Next, by the uniform

consistency of π̂i and the boundedness of πi

Mn(βτ , θ̂βτ , ∂θ̂βτ /∂β
T
τ , π̂) = Mn(βτ , θ̂βτ , ∂θ̂βτ /∂β

T
τ , π) + op(1) ≤

1

n

n∑
i=1

Mi(βτ , θ̂βτ , ∂θ̂βτ /∂β
T
τ ),

and that for all β†
τ ∈ B, θ†βτ ∈ ΘB

||Mi(β
†
τ , θ

†
β†
τ
, ∂θ†

β†
τ
/∂βT

τ )−Mi(βτ , θβτ , ∂θβτ /∂β
T
τ )|| ≤ (10.17)

(||X1i||2 + ||X2i||2
||

∂θ†
β†
τ
(X3i)

∂β†T
τ

−
∂θ†

β†
τ
(X3i)

∂βT
τ

||2
)|ρ′τ (Yi −XT

1iβ
†
τ −XT

2iθ
†
β†
τ
(X3i))−

ρ′τ (Yi −XT
1iβτ −XT

2iθ
†
β†
τ
(X3i))|+ (||X1i||2 + ||X2i||2

(
||
∂θ†βτ

(X3i)

∂β†T
τ

−
∂θ†βτ

(X3i)

∂βT
τ

||2
)
)×

|ρ′τ (Yi −XT
1iβτ −XT

2iθ
†
βτ
(X3i))− ρ′τ (Yi −XT

1iβτ −XT
2iθ

†
βτ
(X3i)|+

(||X1i||2 + ||X2i||2
(
||
∂θ†βτ

(X3i)

∂βT
τ

−
∂θβτ (X3i)

∂βT
τ

||2
)
)×

|ρ′τ (Yi −XT
1iβτ −XT

2iθ
†
β†
τ
(X3i)− ρ′τ (Yi −XT

1iβτ −XT
2iθβτ (X3i))| :=

3∑
j=1

Pj ,

We only consider P3 as the two other terms can be dealt in the same way. For all ϵ ∈ (0, 1] by iterated

expectations and the differentiability of FY |X(·)

E sup
||θ†

β
†
τ

−θβτ ||≤ϵ

sup
||∂θ†

β
†
τ

/∂β†T
τ −∂θβτ /∂β

T
τ ||≤ϵ

P3 ≤ E(||X1i||2 + ||X2i||2ϵ2)(FY |X(XT
1iβ

†
τ +XT

2iθ
†
β†
τ
(X3i) + ϵ)−

FY |X(XT
1iβτ +XT

2iθβτ (X3i)− ϵ)) ≤ Cϵ

Notice that by (2.7)

∂E(Mi(βτ , θβτ , ∂θβτ /∂β
T
τ )

∂βT
τ

|βτ=β0τ = −E(fε|X(0)

(
X1 +

∂θ0τ (X3)

∂βT
τ

X2

)⊗2

),

hence βτ is uniquely identified. Let {βτk : k = 1, ...,K1} be an ϵ-cover for (B, ||·||) and {θτl, ∂θτl/∂βτk :

k, l = 1, ...,K2} denote an ϵ-cover for (ΘB, || · ||ΘB
). Then by (10.17) for any

Mij(βτ , θβτ , ∂θβτ /∂β
T ) = (X1ij +

(
∂θβτ (X3i)

∂βτj

)T

X2i)ρ
′
τ (Yi −XT

1iβτ −XT
2iθβτ (X3i))

j = 1, ..., k there exists k1 ∈ {1, ...,K1} and l1 ∈ {1, ...,K2} such that

|Mij(βτ , θβτ , ∂θβτ /∂β
T
τ )−Mij(βτk1 , θβτ l1 , ∂θβτ l1/∂βτk1)|
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is bounded by

sup
β†
τ , θ

†
β
†
τ

,∂θ
β
†
τ
/∂β†T

τ :||β†
τ−βτk1

||<ϵ,

||θ†βτ−θβτ l1
||ΘB

<ϵ, ||∂θ†
β
†
τ

/∂β†T
τ −∂θτl1/∂β

T
τk1

||<ϵ

|Mij(β
†
τ , θ

†
βτ
, ∂θ†

β†
τ
/∂β†T

τ )−Mij(βτk1 , θβτ l1 , ∂θβτ l1/∂β
T
τk1)| :=

bj(βτk1 , θβτ l1 , ∂θβτ l1/∂βτk1 , ϵ)

hence

Mij(βτk1 , θβτ l1 , ∂θβτ l1/∂βτk1)− bj(βτk1 , θβτ l1 , ∂θβτ l1/∂βτk1 , ϵ) ≤ Mij(βτ , θβτ , ∂θβτ /∂β
T
τ ) ≤

Mij(βτk1 , θβτ l1 , ∂θβτ l1/∂βτk1) + bj(βτk1 , θβτ l1 , ∂θβτ l1/∂βτk1 , ϵ)

and (E[bj(βτk1 , θβτ l1 , ∂θβτ l1/∂βτk1 , ϵ)]
2)1/2 ≤ Cjϵ

1/2 for all βτk1 , θτl1 , ∂θτl1/∂βτk1 and all ϵ = o(1).

Therefore

{[Mij(βτk1 , θβτ l1 , ∂θβτ l1/∂βτk1)− bj(βτk1 , θβτ l1 , ∂θβτ l1/∂ββτk1 , ϵ)

Mij(βτk1 , θβτ l1 , ∂θβτ l1/∂βk1) + bj(βτk1 , θβτ l1 , ∂θβτ l1/∂βτk1 , ϵ)] : k1 ∈ {1, ...,K1}, l1 ∈ 1, ...,K2}

forms a δ = 2Cjϵ
1/2 bracket for the function class {Qj = Mij(βτ , θβτ , ∂θβτ /∂β

T
τ ) : βτ ∈ B, θβτ , ∂θβτ /∂β

T
τ ∈

ΘB}, hence

N[](δ,Qj , || · ||L2(P )) ≤ N

(
[
δ

2Cj
]2, B, || · ||)

)
N

(
[
δ

2Cj
]2,ΘB, || · ||ΘB

)
,

where N[](·) and N(·) are, respectively, the bracketing and covering numbers (see Van der Vaart & Well-

ner (1996) for a definition). Since N
(
[ δ
2Cj

]2, B, || · ||)
)
= O(exp(C1jδ

1/s1) and N
(
[ δ
2Cj

]2,ΘB, || · ||∞
)
=

O(exp(C2jδ
1/s2)) for ΘB = Cα

M (X3), the bracketing integral
∫∞
0 (log(N[](δ,Qj , || · ||L2(P )))

1/2dδ is finite,

hence by the L2 boundedness of the brackets bj(βτk1 , θβτ l1 , ∂θβτ l1/∂βτk1 , ϵ) imply that for all ϵn = o(1)

sup
||βτ−β0τ ||≤ϵn, ||θβτ−θ0τ ||≤ϵn
||∂θβτ /∂βT

τ −∂θ0τ/∂βT
τ ||≤ϵn

||Mn(βτ , θβτ , ∂θβτ /∂β
T
τ )−M(βτ , θβτ , ∂θβτ /∂β

T
τ )− (10.18)

Mn(β0τ , θ0τ , ∂θ0τ/∂β
T
τ )|| = op(n

−1/2)

We now establish the n1/2 consistency of β̂p
τ . Let ϵn = o(1) such that Pr(||β̂p

τ −β0τ || ≥ ϵn, ||θ̂βτ −θ0τ || ≥
ϵn, ||∂θ̂βτ /∂β

T
τ − ∂θ0τ/∂β

T
τ || ≥ ϵn) → 1, hence it is enough to consider the restricted parameter spaces

Bϵ,ΘBϵ . By A6’(iv) and the triangle inequality there exists a C > 0 such that ||β̂p
τ − β0τ || is bounded

by

||M(β̂p
τ , θ0τ , ∂θ0τ/∂β

T
τ , π)−M(β̂p

τ , θ̂βτ , ∂θ̂βτ /∂β
T
τ , π)||+ (10.19)

||M(β̂p
τ , θ̂βτ , ∂θ̂βτ , /∂β

T
τ , π)−Mn(β̂

p
τ , θ̂βτ , ∂θ̂βτ /∂β

T
τ , πi)+

Mn(β0τ , θ0τ , ∂θ0τ/∂β
T
τ , πi)||+ ||Mn(β̂

p
τ , θ̂βτ , ∂θ̂βτ /∂β

T
τ , πi)||+Op(n

−1/2),
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where the Op(n
−1/2) term comes from the asymptotic normality of Mn(β0τ , θ0τ , ∂θ0τ/∂β

T
τ , πi) shown

at (10.20) below. Since Pr(β̂p
τ , θ̂βτ , ∂θ̂βτ /∂β

T
τ ∈ Bϵ ×ΘBϵ) → 1, the smoothness of M(·) in βτ , θβτ and

∂θβτ /∂β
T
τ implies that the first term in (10.19) is bounded by

C(||θ̂βτ − θ0τ ||2ΘB
+ ||

∂θ̂βτ

∂βT
τ

− ∂θ0τ
∂βT

τ

||2ΘB
)+

||E(fY |X(XT
1iβ̂τ +XT

2iθ0τ (X3i)− fε|X(0))(X1i +
∂θ0τ (X3i)

∂βT
τ

)⊗2||||β̂p
τ − β0τ || =

op(n
−1/2) + op(1)||β̂p

τ − β0τ ||,

By (10.18) the second term in (10.19) is bounded by

op(1)(
1

n1/2
+ ||Mn(β̂

p
τ , θ̂βτ , ∂θ̂βτ /∂β

T
τ , πi)||+ ||Mn(β̂

p
τ , θ0τ , ∂θ0τ/∂β

T
τ , πi)||(1 + op(1) +Op(n

−1/2)).

Since M(β0τ , θ0τ , ∂θ0τ/∂β
T
τ , π) = 0, it follows from the above that

||Mn(βτ , θ̂βτ , ∂θ̂βτ /∂β
T
τ , πi)||(1− op(1)) ≤ op(1)||M(βτ , θ0τ , ∂θ0τ/∂β

T
τ )−

M(β0τ , θ0τ , ∂θ0τ/∂β
T
τ )||+Op(n

−1/2),

where all the op(1) and Op(n
−1/2) terms hold uniformly for βτ ∈ Bϵ, hence

||β̂p
τ − β0τ ||C ≤ ||M(β̂p

τ , θ0τ , ∂θ0τ/∂β
T
τ )|| ≤ Op(n

−1/2).

Let

Γn(βτ , π) =
1

n

n∑
i=1

δi
πi
ρ′τ (Yi −XT

1iβτ −XT
2iθ0τ (X3i))(X

′
1iβτ +

(
∂θ0τ (X3i)

∂βT
τ

)T

X2i) + Σ4(βτ − β0τ );

by the n1/2 consistency of β̂p
τ and (10.16)

||Mn(β̂
p
τ , θ̂βtau, ∂θ̂βτ /∂β

T
τ , π̂i)− Γn(β̂τ , π̂i)|| ≤ ||M(β̂p

τ , θ̂βtau, ∂θ̂βτ /∂β
T
τ )−M(β̂p

τ , θ0τ , ∂θ0τ/∂β
T
τ )||+

||M(β̂p
τ , θ0τ , ∂θ0τ/∂β

T
τ )− Σ4(β̂

p
τ − β0τ )||+ ||Mn(β̂

p
τ , θ̂βtau, ∂θ̂βτ /∂β

T
τ )−M(β̂p

τ , θ̂βtau, ∂θ̂βτ /∂β
T
τ )−

Mn(βτ , θ0τ , ∂θ0τ/∂β
T
τ )|| = op(n

1/2).

Similarly,

||Mn(β
p
τ , θ̂βτ , ∂θ̂βτ /∂β

T
τ , π̂i)− Γn(βτ , π̂i)|| = op(n

1/2),

where

n1/2(β
p
τ − β0τ ) = −Σ4

1

n1/2

n∑
i=1

(
δi
πi

− δi(π̂i − πi)

π2
i

)
(ρ′τ (εi)(X1i +

(
∂θ0τ
∂βT

τ

)T

X2i), (10.20)

where β
p
τ is the minimiser of Γn(βτ , π̂i). The asymptotic normality of (10.20) follows by the same

arguments used in the proof of Theorem 3. Next we show that n1/2(β̂p
τ − β

p
τ ) = op(1). Since β̂p

τ almost

70



minimizes ||Γn(βτ , π̂i)|| and β
p
τ is the minimizer of ||Γn(βτ , π̂i)||, we have ||Γn(β̂

p
τ , π̂i)|| = ||Γn(βτ , π̂i)||+

op(n
−1/2), so squaring both sides and using a simple expansion

||Γn(β̂τ , π̂i)||2 = ||Γn(βτ , π̂i)||2 + ||Σ4(β̂
p
τ − β

p
τ )||2 + op(n

−1)

which implies ||Σ4(β̂
p
τ − β

p
τ )|| = op(n

−1) and by A6’(i) ||β̂p
τ − β

p
τ )|| = op(n

−1/2). The conclusion follows,

since it can be easily seen that

∂θ0τ (X3i)

∂βτ
= −E(fε|X(0)X2X

T
2 |X3 = X3i)

−1E(fε|X(0)X2X
T
1 |X3 = X3i).

Proof of Theorem 6. By the same arguments used in the proof of Theorem 3 we have that, condi-

tionally on
(
Yi, δi, X

T
i

)n
i=1

Rξn (γβτ , π̂i) =
n∑

i=1

δiξi
π0i

[
ρτ

(
ε̂∗i −

XT
1iγβτ

n1/2

)
− ρτ (ε̂

∗
i )

]
−

n∑
i=1

δiξi (π̂i − π0i)

π̂ξiπ0i

[
ρτ

(
ε̂∗i −

XT
1iγβτ

n1/2

)
− ρτ (ε̂

∗
i )

]
:= Rξ1n (γβτ , π0) +Rξ2n (γβτ , π̂ξ) .

Using the same arguments as those used in the proof of Theorem 3, we have by CL and QAL that

γ̂ξβτ = Σ−1
2 ζξ, where

ζξ =
1

n1/2

n∑
i=1

ξi

(
δi
π0i

− δi (π̂i − π0i)

π2
0i

)
(X1i − φ (Xi)) ρ

′
τ (εi) .

For π̂i estimated parametrically it follows that

n1/2
(
β̂∗
τ − β̂τ

)
= Σ−1

2

1

n1/2

n∑
i=1

(ξi − 1)
{
(X1i − φ (Xi)) ρ

′
τ (εi)−

E

[
(X1 − φ (X)) ρ′τ (ε)

π0

∂π0
∂αT

]
I (α0)

−1 1

n1/2

n∑
i=1

s (Zoi, α0)

}
+ op (1) ,

since
∥∥Σ∗−1

2 − Σ−1
2

∥∥ = op (1) by LLN and CMT, where Σ∗
2 = E∗ [ξifεi|Xi

(0)X⊗2
1i

]
and E∗ denote

expectation conditional on
([

Yi, δi, X
T
i

]T)n
i=1

, whereas for π̂i estimated nonparametrically it follows

that

n1/2
(
β̂∗
τ − β̂τ

)
= Σ−1

2

1

n1/2

n∑
i=1

(ξi − 1)
{
(X1i − φ (Xi)) ρ

′
τ (εi)−

1

n1/2

n∑
i=1

(δi − π0i)

π0i
E
[
(X1i − φ (Xi)) ρ

′
τ (εi) |Zoi

]}
+ op (1) ,

and the first conclusion follows by CMT and Lemma 2.9.5 of Van der Vaart & Wellner (1996). For the

profile estimator, first note that by (i), the uniform consistency of π̂i, the cr and triangle inequalities
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and LLN show that

||Σ̂4 − Σ4|| ≤ sup
Xi∈X

|f̂ε̂|Xi
(0)− fεi|Xi

(0)| 1
n

n∑
i=1

δi
π̂i
(||X1i||2 + sup

X3i∈X3

||∂θ̂τ (X3i)

∂βT
τ

− ∂θ0τ (X3i)

∂βT
τ

||2||X2i||2)+

|| 1
n

n∑
i=1

δi
π̂i
(X1i +

(
∂θ0τ (X3i

∂βT
τ

)T

X2i))
⊗2 − Σ4|| = op(1),

hence by CMT ||Σ̂−1
4 − Σ−1

4 || = op(1). By the uniform consistency of kernel estimators ||φ̂p(Xi) −
φ(Xi)|| = op(1), hence

n1/2(β̂p∗
τ − β̂p

τ ) = Σ−1
4

1

n1/2

n∑
i=1

ξi

(
δi
π0i

− δi (π̂i − π0i)

π2
0i

)
(X1i − φp (Xi)) ρ

′
τ (εi) .

and the rest of the proof follows by the same arguments as those used above.

Proof of Corollary 7. Let E∗ denote expectation conditional on
([

Yi, δi, X
T
i

]T)n
i=1

and let q = 2+ ϵ.

Given Theorem 6, it is sufficient to show that E∗
(
nq/2

∥∥∥β̂∗
τ − β̂τ

∥∥∥q) = Op (1) and E∗
(
nq/2

∥∥∥β̂p∗
τ − β̂p

τ

∥∥∥q) =

Op (1) For π̂i estimated parametrically, the c r inequality implies that

E∗
(∥∥∥β̂∗

τ − β̂τ

∥∥∥q) ≤ 2q−1

(
E∗

∥∥∥∥∥Σ∗−1
2

1

n

n∑
i=1

(ξi − 1) (X1i − φ (Xi)) ρ
′
τ (εi)

∥∥∥∥∥
q

+

E∗

∥∥∥∥∥Σ∗−1
2 E∗

[
(X1 − φ (X)) ρ′τ (ε)

π0

∂π0
∂αT

]
I∗ (α0)

−1 1

n

n∑
i=1

s (Zoi, α0)

∥∥∥∥∥
q)

:= V1 + V2.

For V1 note that by Jensen, Holder and the c r inequalities

V1 ≤
∥∥Σ∗−1

2

∥∥q ∣∣∣∣∣∣
(
E∗ 1

n

n∑
i=1

|(ξi − 1)|q
∥∥(X1i − φ (Xi)) ρ

′
τ (εi)

∥∥q)2/q
∣∣∣∣∣∣
q/2

≤ C
∥∥Σ∗−1

2

∥∥q ∣∣∣∣∣∣
(
1

n

n∑
i=1

∥X1i∥q +
1

n

n∑
i=1

∥φ (Xi)∥q
)2/q

O

(
1

n

)∣∣∣∣∣∣
q/2

= Op

(
1

nq/2

)

by A7 and LLN. A similar argument can be used to show that V2 = Op

(
n−q/2

)
, hence E∗

(
nq/2

∥∥∥β̂∗
τ − β̂τ

∥∥∥q) =

Op (1). For π̂i estimated nonparametrically, again by the c r inequality

E∗
(∥∥∥β̂∗

τ − β̂τ

∥∥∥q) ≤ 2q−1

(
E∗

∥∥∥∥∥Σ∗−1
2

1

n

n∑
i=1

(ξi − 1) (X1i − φ (Xi)) ρ
′
τ (εi)

∥∥∥∥∥
q

+

E∗

∥∥∥∥∥Σ∗−1
2

1

n

n∑
i=1

(ξi − 1)
(δi − π0i)

π0i
E∗ [(X1i − φ (Xi)) ρ

′
τ (εi) |Zoi

]∥∥∥∥∥
q)

= V1 + V3.
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Note that by Jensen and Holder inequalities

V3 ≤ C
∥∥Σ∗−1∗

2

[
(X1i − φ (Xi)) ρ

′
τ (εi) |Zoi

]∥∥q ∣∣∣∣∣∣
(
1

n

n∑
i=1

|(δi − π0i)|q
)2/q

O

(
1

n

)∣∣∣∣∣∣
q/2

= Op

(
1

nq/2

)
,

hence E∗
(
nq/2

∥∥∥β̂∗
τ − β̂τ

∥∥∥q) = Op (1) by A7 and LLN. Similar arguments can be used to show that

E∗(nq/2||β̂p∗
τ − β̂p

τ ||q) = Op(1).

Proof of Proposition 8. The uniform consistency assumptions and the triangle inequality show that∥∥∥Σ̂3 (x
∗
3)− Σ3 (x

∗
3)
∥∥∥ ≤ sup

x∗
3∈X3

∣∣∣f̂X3 (x
∗
3)− fX3 (x

∗
3)
∣∣∣ ∥∥∥∥∥ 1

nh

n∑
i=1

δi
π̂ (Zoi)

f̂ε̂i|Xi
(0)X⊗2

2i Kh (X3i − x∗3)

∥∥∥∥∥+
sup

x∗
3∈X3

|fX3 (x
∗
3)|

[
sup
Xi∈X

∣∣∣f̂ε̂i|Xi
(0)− fεi|Xi

(0)
∣∣∣ ∥∥∥∥∥ 1

nh

n∑
i=1

δi
π̂ (Zoi)

X⊗2
2i Kh (X3i − x∗3)

∥∥∥∥∥+
sup

Zoi∈Z
|π̂ (Zoi)− π0 (Zoi)|

∥∥∥∥∥ 1

nh

n∑
i=1

δi
π̂ (Zoi)π0 (Zoi)

X⊗2
2i Kh (X3i − x∗3)

∥∥∥∥∥+∥∥∥∥∥ 1

nh

n∑
i=1

fε|X (0|Xi)X
⊗2
2i Kh (X3i − x∗3)− E

[
fε|X (0)X⊗2

2 |X3 = x∗3
]∥∥∥∥∥+ op (1) =

op (1)Op (1) +Op (1) op (1) = op (1) .

Similarly, we have that
∥∥∥Σ̂3π̂ (x

∗
3)− Σ3π (x

∗
3)
∥∥∥ = op (1). Under (4.1), the same arguments as those used

in Theorem 2 and CMT show that

(nh)1/2R
(
θ̂τ (x

∗
3)− θ0τ (x

∗
3)
)

d→ N
(
γτ (x

∗
3) , RΣ3 (x

∗
3)

−1Σ3π (x
∗
3) Σ3 (x

∗
3)

−1RT
)

hence the first conclusion follows by standard results on quadratic forms in non zero mean normal

random vectors. The consistency of Wl (x
∗
3) under the assumption that (nh)1/2 γτn (x

∗
3) → ∞ is a

direct consequence of the previous conclusion.

Proof of Theorem 9. The proof relies on similar arguments used by Fan et al. (2001), and consists

of showing that Dπ (θ0τ ) can be approximated by a U-statistic, which, after being appropriately stan-

dardised, converges to a standard normal variate. Note that the same arguments of Theorem 2 imply

that

Dπ̂ (θ0τ ) =
n∑

i=1

δi
πi
ρτ

(
Yi −XT

1iβ0τ −XT
2iθ̂τ−i (X3i)

)
−

n∑
i=1

δi
πi
ρτ
(
Yi −XT

1iβ0τ −XT
3iθ0τ (X3i)

)
+

n∑
i=1

δi (π̂i − π0i)

π̂iπ0i

(
ρτ

(
Yi −XT

1iβ0τ −XT
3iθ̂τ−i (X3i)

)
− ρτ

(
Yi −XT

1iβ0τ −XT
3iθ0τ (X3i)

))
+ op (1) :=

D1π +D2π + op (1) ,

where

θ̂τ−i (X3i)− θ0τ (X3i) = (fX3 (X3i) Σ3 (X3i))
−1 1

nh

n∑
j ̸=i

δj
π0j

X2jρ
′
τ

(
ε∗j
)
Kh (X3j −X3i) + op

(
(nh)−1/2

)
.

(10.21)
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By (10.1)

D1π = −
n∑

i=1

δi
πi
XT

2i

(
θ̂τ−i (X3i)− θ0τ (X3i)

)
ρ′τ (εi)+

n∑
i=1

δi
π0i

∫ XT
2i(θ̂τ−i(X3i)−θ0τ (X3i))

0
(I (εi ≤ t)− I (εi ≤ 0)) dt := D11π +D12π.

Using (10.21)

D11π = −
n∑

i=1

δi
π0i

XT
2iρ

′
τ (εi) (fX3 (X3i) Σ3 (X3i))

−1 1

nh

n∑
j ̸=i

δj
π0j

X2jρ
′
τ

(
ε∗j
)
Kh (X3j −X3i) =

−
n∑

i=1

δi
π0i

XT
2iρ

′
τ (εi) (fX3 (X3i) Σ3 (X3i))

−1 1

nh

n∑
j ̸=i

δj
π0j

X2jρ
′
τ (εj)Kh (X3j −X3i)−

n∑
i=1

δi
π0i

XT
2iρ

′
τ (εi) (fX3 (X3i) Σ3 (X3i))

−1 1

nh

n∑
j ̸=i

δj
π0j

X2j

(
ρ′τ
(
ε∗j
)
− ρ′τ (εj)

)
Kh (X3j −X3i) :=

D111π +D112π

and

D112π = −
n∑

i=1

δi
π0i

XT
2iρ

′
τ (εi) (fX3 (X3i) Σ3 (X3i))

−1 1

nh

n∑
j ̸=i

E

[
δj
π0j

X2j

(
ρ′τ
(
ε∗j
)
− ρ′τ (εj)

)
Kh (X3j −X3i)

]
−

n∑
i=1

δi
π0i

XT
2iρ

′
τ (εi) (fX3 (X3i) Σ3 (X3i))

−1 1

nh

n∑
j ̸=i

{
δj
π0j

X2j

(
ρ′τ
(
ε∗j
)
− ρ′τ (εj)

)
Kh (X3j −X3i)−

E

[
δj
π0j

X2j

(
ρ′τ
(
ε∗j
)
− ρ′τ (εj)

)
Kh (X3j −X3i)

]}
:= D1121π +D1122π.

By the results of Theorem 2 and a standard kernel calculation we have that

D1121π =
h2

2

n∑
i=1

δi
π0i

XT
2iρ

′
τ (εi) θ

′′
0τ (X3i)κ2 (1 + op (1)) , (10.22)

E (D1122π)
2 = O (h) ,

so that

D112π = n1/2h2
n∑

i=1

δi
π0i

XT
2iρ

′
τ (εi) θ

′′
0τ (X3i)κ2 (1 + op (1)) /n

1/2 := n1/2h2T1π = Op

(
n1/2h2

)
.

Next, by iterated expectations

E (D12π) =

n∑
i=1

E

∫ XT
2i(θ̂τ−i(X3i)−θ0τ (X3i))

0

(
Fεi|Xi

(t)− Fεi|Xi
(0)
)
dt =

1

2

n∑
i=1

E

[
f
εi|Xi

(0)
(
θ̂τ−i (X3i)− θ0τ (X3i)

)T
X⊗2

2i

(
θ̂τ−i (X3i)− θ0τ (X3i)

)]
,
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and

E (D12π − E (D12π))
2 ≤ nE (D12i)

2 ≤

nE

(
Pr
(
εi

(
0 ≤ |εi| ≤ ∥X2∥

∥∥∥θ̂τ−i (X3i)− θ0τ (X3i)
∥∥∥ |Xi

))
∥X2i∥2

∥∥∥θ̂τ−i (X3i)− θ0τ (X3i)
∥∥∥2) = o (1/h)

hence D12π = E (D12π) + op
(
h−1/2

)
. By (10.21)

E (D12π) =
1

2

n∑
i=1

E

f
εi|Xi

(0)
n∑

j ̸=i

1

nh

δj
π0j

XT
2jρ

′
τ (εj) (fX3 (X3i) Σ12 (X3i))

−1X⊗2
2i ×

n∑
k ̸=i

1

nh

δk
π0k

(fX3 (X3i) Σ3 (X3i))
−1X2kρ

′
τ (εk)Kh (X3j −X3i)Kh (X3k −X3i)

+

1

2

n∑
i=1

E

f
εi|Xi

(0)

n∑
j ̸=i

1

nh

δj
π0j

XT
2j

(
ρ′τ
(
ε∗j
)
− ρ′τ (εj)

)
(fX3 (X3i) Σ3 (X3i))

−1X⊗2
2i ×

n∑
k ̸=i

1

nh

δk
π0k

(fX3 (X3i) Σ3 (X3i))
−1X2k

(
ρ′τ (ε

∗
k)− ρ′τ (εk)

)
Kh (X3j −X3i)Kh (X3k −X3i)

+

n∑
i=1

E

f
εi|Xi

(0)
n∑

j ̸=i

1

nh

δj
π0j

XT
2jρ

′
τ (εj) (fX3 (X3i) Σ3 (X3i))

−1X⊗2
2i ×

n∑
k ̸=i

1

nh

δk
π0k

(fX3 (X3i) Σ3 (X3i))
−1X2k

(
ρ′τ (ε

∗
k)− ρ′τ (εk)

)
Kh (X3j −X3i)Kh (X3k −X3i)

 :=

D121π +D122π +D123π.

For D122π and D123π, similar to (10.22), we have that

D122π =− nh4

8
E
[
f
ε|X (0) θ′′0τ (X3)

T X⊗2
2 θ′′0τ (X3)

] ∫ ∫
t2 (t+ s)2K (t)K (t+ s) dtds+ op (1)

:= −nh4T2π = Op

(
nh4

)
,

D123π = −n1/2h2

2

n∑
i=1

δi
π0i

XT
2iρ

′
τ (εi) θ

′′
0τ (X3i)

∫ ∫
t2 (t+ s)2K (t)K (t+ s) dtds (1 + op (1)) /n

1/2

:= −n1/2h2T3π.
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For D121π,

D121π =
1

2 (nh)2

n∑
j ̸=i

(
δj
π0j

)2

E

[
XT

2jρ
′
τ (εj)

2 (fX3 (X3i) Σ3 (X3i))
−1

n∑
i=1

f
εi|Xi

(0)X⊗2
2i ×

(fX3 (X3i) Σ3 (X3i))
−1X2jK

2
h (X3j −X3i)

]
+

1

2 (nh)2

n∑
j ̸=k
j,k ̸=i

E

[
δj
π0j

XT
2jρ

′
τ (εj) (fX3 (X3i) Σ3 (X3i))

−1
n∑

i=1

f
εi|Xi

(0)X⊗2
2i ×

δk
π0k

(fX3 (X3i) Σ3 (X3i))
−1X2kρ

′
τ (εk)Kh (X3j −X3i)Kh (X3k −X3i)

]
:= D1211π +D1212π.

Note that D1211π can be re-written as

D1211π =
1

2 (nh)2

n∑
j ̸=i

n∑
i=1

(
δj
π0j

)2

XT
2jρ

′
τ (εj)

2
∫ [

(fX3 (X3i) Σ3 (X3i))
−1Σ3 (X3i)×

(fX3 (X3i) Σ3 (X3i))
−1X2jK

2
h (X3j −X3i)

]
fX3 (X3i) dX3i,

and that

V ar (D1211π) ≤
n3

n4h2

∫ ∫
trE

[(
τ (1− τ)

π0j
(fX3 (X3i) Σ3 (X3i))

−1X⊗2
2j |X3j

)
×

K2
h (X3j −X3i)

]2
f2
X3

(X3j) dX3idX3j = O

(
1

nh2

)
,

hence D1211π = E (D1211π)+op
(
h−1/2

)
, and by iterated expectations and a standard kernel calculation

we have that

E (D1211π) =
1

2h2

∫ ∫
tr

(
E

[(
δj
π0j

)2

ρ′τ (εj)
2 (fX3 (X3i) Σ3 (X3i))

−1X⊗2
2j ×

|X3i, X3j ]K
2
h (X3j −X3i)

)
fX3 (X3i) fX3 (X3j) dX3idX3j

)
=

1

2h2

∫ ∫
tr
[
(fX3 (X3i) Σ3 (X3i))

−1 (fX3 (X3i) Σ3 (X3i)) (fX3 (X3i) Σ3 (X3i))
−1×

E

[
τ (1− τ)

π0j
X⊗2

2j |X3j

]
K2

h (X3j −X3i) fX3 (X3j) dX3idX3j =

1

2h

∫ ∫
tr

(
E

[
τ (1− τ)

π0j
(fX3 (X3i) Σ3 (X3i))

−1X⊗2
2j |X3j = X3i + th

]
K2 (t) dtdX3i

)
=

1

2h

∫
tr

(
E

[
τ (1− τ)

π0
Σ3 (X3)

−1X⊗2
2 |X3

]
κ2dX3 (1 +O (h))

)
=

tr

2h
E

[
τ (1− τ)

π0fX3 (X3)
Σ3 (X3)

−1X⊗2
2

]
κ2 (1 + o (1)) .
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For D1212π since K (·) is symmetric we have by a standard U statistic argument

D1212π =
2

nh2

∑
i<j

δi
π0i

XT
2iρ

′
τ (εi) (fX3 (X3i) Σ3 (X3i))

−1 h

∫
fX3 (X3i) Σ12 (X3i)×

Kh (t)K

(
X3i −X3j

h
+ t

)
dt

δj
π0j

XT
2jρ

′
τ (εj) (1 +O (h)) =

2

nh

∑
i<j

δi
π0i

XT
2iρ

′
τ (εi) (fX3 (X3i) Σ3 (X3i))

−1Kh ∗Kh (X3i −X3j)
δj
π0j

XT
2jρ

′
τ (εj) + op (1) .

Thus

D1π =
Uπ

2h1/2
+

1

2h
E

[
τ (1− τ)

π0fX3 (X3)
Σ3 (X3)

−1X⊗2
2

]
κ2 + n1/2h2 (T1π − T3π)− nh4T2π + op

(
h−1/2

)
,

where

Uπ =
∑

1≤i<j≤n

Uijn,

Uijn =

√
h

n
ρ′τ (εi) ρ

′
τ (εj)Uijπ

Uijπ = U1ijπ + U1jiπ + U2ijπ + U2jiπ

and

U1ijπ = 2
δi
π0i

δj
π0j

XT
2i (fX3 (X3i) Σ3 (X3i))

−1X2jKh (X3j −X3i) ,

U2ijπ =
δi
π0i

δj
π0j

XT
2i (fX3 (X3i) Σ3 (X3i))

−1X2jKh ∗Kh (X3j −X3i) .

To show the asymptotic normality of Uπ, we check conditions C(i)-C(iv) of Proposition 3.2 of de Jong

(1987), that is C(i) E (Uijn) = 0, C(ii) V ar (Uπ) converges to a finite quantity as n → ∞, C(iii)

GI =
∑

1≤i<j≤nE
(
U4
ijn

)
is of smaller order than limn→∞ V ar (Uπ), C(iv)

GII =
∑

1≤i<j<k≤n

(
E
(
U2
ijnU

2
ikn

)
+ E

(
U2
jinU

2
jkn

)
+ E

(
U2
kinU

2
kjn

))
is of smaller order than limn→∞ V ar (Uπ) and C(v)

GIII =
∑

1≤i<j<k<l≤n

(E (UijnUiknUljnUlkn) + E (UijnUilnUkjnUkln) + E (UiknUilnUjknUjln))
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is of smaller order than limn→∞ V ar (Uπ). C(i) is true by definition; to show C(ii) note that

E (U1ijπ)
2 =

4

h
tr

E

(
Σ3 (X3)

−1

π0fX3 (X3)
X⊗2

2

)2

κ2 (1 +O (h))

 ,

E (U1ijπ)
2 = E (U1ji)

2 ,

E (U2ijπ)
2 =

1

h
tr

E

(
Σ3 (X3)

−1

π0fX3 (X3)
X⊗2

2

)2 ∫
(Kh ∗Kh (t))

2 dt (1 +O (h))

 ,

E (U2ijπ)
2 = E (U2ji)

2 ,

E (U1ijπU2ijπ) =
2

h
tr

E

(
Σ3 (X3)

−1

π0fX3 (X3)
X⊗2

2

)2 ∫
(Kh ∗Kh ∗Kh (t)) dt (1 +O (h))

 ,

so that

V ar (Uπ) := σ2
π =

2

h
tr

(
E

(
τ (1− τ)

π0fX3 (X3)
Σ3 (X3)

−1X⊗2
2

)2 ∫
(2Kh (t)−Kh ∗Kh (t))

2 dt

)
+ o (1) .

To show C(iii), note that by a direct calculation

E
(
U1ijπρ

′
τ (εi) ρ

′
τ (εj)

)
= O

(
h−3

)
E
(
U2ijπρ

′
τ (εi) ρ

′
τ (εj)

)
= O

(
h−2

)
,

which implies that E
(
U4
ijn

)
= h2O

(
h−3

)
/n4 = O

(
1/n4h

)
= o (1). To show condition C(iv), note

that E
(
U2
ijnU

2
ikn

)
= O

(
E
(
U4
ijn

))
= o (1). Finally, to show C(v) note that for i ̸= j ̸= k ̸= l,

E
(
U1ijπU1jkπU1klπU1liπρ

′
τ (εi) ρ

′
τ (εj) ρ

′
τ (εk) ρ

′
τ (εl)

)
= O

(
1

h

)
,

E
(
U1ijπU1jkπU1klπU2liπρ

′
τ (εi) ρ

′
τ (εj) ρ

′
τ (εk) ρ

′
τ (εl)

)
= O

(
1

h

)
,

E
(
U1ijπU1jkπU2klπU2liπρ

′
τ (εi) ρ

′
τ (εj) ρ

′
τ (εk) ρ

′
τ (εl)

)
= O

(
1

h

)
,

E
(
U1ijπU2jkπU2klπU2liπρ

′
τ (εi) ρ

′
τ (εj) ρ

′
τ (εk) ρ

′
τ (εl)

)
= O

(
1

h

)
,

E
(
U2ijπU2jkπU2klπU2liπρ

′
τ (εi) ρ

′
τ (εj) ρ

′
τ (εk) ρ

′
τ (εl)

)
= O

(
1

h

)
,

so that E (UijnUjknUklnUlin) = h2O (1/h) /n4 = O
((
h/n4

))
= o (1) ; hence by Proposition 3.2 of

de Jong (1987) we have that Uπ
d→ N (0, V ar (Uπ)). To deal with the second term D2π, note that

|D2π| ≤ sup
i

|(π̂i − π0i)|
∣∣∣∣D1π

π0i

∣∣∣∣+ op (1) = sup
i

|(π̂i − π0i)|Op (1) + op (1) . (10.23)

For π0i estimated parametrically

sup
i

|(π̂i − π0i)| ≤ ∥α̂− α0∥ sup
α∈A

sup
i

∥∥∥∥∂πi∂α

∥∥∥∥ = Op

(
n−1/2

)
op

(
n1/δ

)
= op (1) ,
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whereas for π0i estimated nonparametrically, supZoi∈Z |(π̂i − π0i)| = op (1) by standard results on the

uniform convergence of kernel estimators. Thus

Dπ (θ0τ ) = D1π + op (1)

and the conclusion follows.

Proof of Proposition 10. First note that without MAR

θ̂τ (X3i)− θ0τ (X3i) = (fX3 (X3i) Σ3 (X3i))
−1×

1

nh

 n∑
j=i

X2jρ
′
τ

(
ε∗j
)
Kh (X3j −X3i) +

n∑
j ̸=i

X2jρ
′
τ

(
ε∗j
)
Kh (X3j −X3i)

+ op

(
(nh)−1/2

)
,

= (fX3 (X3i) Σ3 (X3i))
−1

1

nh

 n∑
j=i

X2jρ
′
τ

(
ε∗j
)
Kh (0) +

n∑
j ̸=i

X2jρ
′
τ

(
ε∗j
)
Kh (X3j −X3i)

+ op

(
(nh)−1/2

)
;

then, similar to the proof of Theorem 9

D (θ0τ ) = − 1

nh

n∑
i=1

XT
2iρ

′
τ (εi)

2 (fX3 (X3i) Σ3 (X3i))
−1X2iKh (0)−

1

nh

n∑
i=1

XT
2iρ

′
τ (εi) (fX3 (X3i) Σ3 (X3i))

−1 1

nh

n∑
j ̸=i

X2jρ
′
τ

(
ε∗j
)
Kh (X3j −X3i) + op

(
(nh)−1/2

)
= D1 +D2.

ForD1 the LLN implies that E (D1) = E (τ (1− τ) p/fX3 (X3))K (0) /h while by a standard calculation

V ar (D1) = O
(
1/nh2

)
, hence E (D1) = E (τ (1− τ) p/fX3 (X3))K (0) /h+op

(
h−1/2

)
. ForD2 the same

arguments of Theorem 9 show that

µ =
tr

2h
E

[
τ (1− τ)

fX3 (X3)
Σ3 (X3)

−1X⊗2
2

]
κ2 =

p

2h
E

(
τ (1− τ)

f (X3)

)
κ2,

σ2 =
2

h
tr

(
E

(
τ (1− τ)

fX3 (X3)
Σ3 (X3)

−1X⊗2
2

)2 ∫
(2Kh (t)−Kh ∗Kh (t))

2 dt

)

=
2p2

h
E

(
τ (1− τ)

fX3 (X3)

)2 ∫
(2Kh (t)−Kh ∗Kh (t))

2 .

The conclusion follows as in Fan et al. (2001).

Proof of Proposition 11. Note that by the triangle inequality and LLN

|µ̂π̂ − µπ| ≤
1

2h
sup
i

∣∣∣∣∣π (Zoi) fX3 (X3i)

π̂ (Zoi) f̂X3 (X3i)

∣∣∣∣∣
(∥∥∥Σ̂3 (X3i)

−1 − Σ3 (X3i)
−1
∥∥∥ 1

n

n∑
i=1

[
τ (1− τ)

π (Zoi) fX3 (X3i)
X⊗2

2

]
κ2+∥∥∥∥∥ 1n

n∑
i=1

[
τ (1− τ)

π (Zoi) fX3 (X3i)
X⊗2

2 Σ3 (X3i)
−1

]∥∥∥∥∥κ2 − µπ

)
= Op (1) (op (1)Op (1) + op (1)) ,
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where
∥∥∥Σ̂3 (X3i)

−1 − Σ3 (X3i)
−1
∥∥∥ = op (1) by the same arguments used in the proof of Proposition (8) .

For T̂1π the triangle inequality implies that∣∣∣T̂1π̂ − T1π

∣∣∣ ≤ sup
i

∣∣∣∣ π̂ (Zoi)− π (Zoi)

π̂ (Zoi)

∣∣∣∣
∥∥∥∥∥ 1

n1/2

n∑
i=1

δi
π (Zoi)

X2iρ
′
τ (ε̂i)

∥∥∥∥∥ sup
X3i∈X3

(∥∥θ′′τ (X3i)
∥∥+

+
∥∥∥θ̂′′τ (X3i)− θ′′τ (X3i)

∥∥∥)∥∥∥κ2+
sup

X3i∈X3

∥∥∥θ̂′′τ (X3i)− θ′′τ (X3i)
∥∥∥∥∥∥∥∥ 1

n1/2

n∑
i=1

δi
π (Zoi)

XT
2iρ

′
τ (ε̂i)

∥∥∥∥∥κ2+∥∥∥∥∥ 1

n1/2

n∑
i=1

δi
π (Zoi)

X2i

(
ρ′τ (ε̂i)− ρ′τ (εi)

)∥∥∥∥∥κ2 := V1π + V2π + V3π,

and V1π = op (1)Op (1) (1 + op (1)) and V2π = op (1)Op (1) by the assumptions, whereas the same

arguments of Theorem (1), the triangle inequality and CLT imply that

V3π ≤
(∥∥∥β̂τ − β0τ

∥∥∥+ sup
X3i∈X3

∥∥∥θ̂′′τ (X3i)− θ′′τ (X3i)
∥∥∥) ∣∣∣∣∣ 1

n1/2

n∑
i=1

δi
π (Zoi)

X2iρ
′
τ (εi)

∣∣∣∣∣κ2 = op (1)Op (1) .

For T̂2π̂ again by the triangle inequality∣∣∣T̂2 − T2

∣∣∣ ≤ 1

8
sup
i

∣∣∣f̂εi|Xi
(0)− f

εi|Xi
(0)
∣∣∣ ( sup

X3i∈X3

∥∥∥θ̂′′τ (X3i)− θ′′τ (X3i)
∥∥∥2 + 1

)∥∥∥∥∥ 1n
n∑

i=1

X⊗2
2i

∥∥∥∥∥×∣∣∣∣∫ ∫ t2 (t+ s)2K (t)K (t+ s) dtds

∣∣∣∣+
sup

X3i∈X3

∥∥∥θ̂′′τ (X3i)− θ′′τ (X3i)
∥∥∥2 ∣∣∣∣∣ 18n

n∑
i=1

f
εi|Xi

(0)X⊗2
2i

∣∣∣∣∣
∣∣∣∣∫ ∫ t2 (t+ s)2K (t)K (t+ s) dtds

∣∣∣∣+∣∣∣∣∣18 1

n

n∑
i=1

f
εi|Xi

(0) θ′′τ (X3i)
T X⊗2

2i θ′′τ (X3i)

∫ ∫
t2 (t+ s)2K (t)K (t+ s) dtds− T2

∣∣∣∣∣ = op (1)

by the assumptions and LLN, and similarly for T̂3π and σ̂2
π̂.

Proof of Proposition 12. We consider only the case θcτ = θ̃τ ; let ϕ̃τ−ϕ0τ =

[(
β̃τ − β0τ

)T
,
(
θ̃τ − θ0τ

)T]T
and note that

Dπ̂ (θ
c
τ ) =

n∑
i=1

δi
πi

[
ρτ

(
εi −XT

2i

(
θ̂τ−i (X3i)− θ0τ−i (X3i)

))
− ρτ (εi)

]
+

n∑
i=1

δi (π̂i − π0i)

π̂iπ0i

[
ρτ

(
εi −XT

2i

(
θ̂τ−i (X3i)− θ0τ−i (X3i)

))
− ρτ (εi)

]
−

n∑
i=1

δi
πi

[
ρτ

(
εi −XT

i

(
ϕ̃τ − ϕ0τ

))
− ρτ (εi)

]
−

n∑
i=1

δi (π̂i − π0i)

π̂iπ0i

[
ρτ

(
εi −XT

i

(
ϕ̃τ − ϕ0τ

))
− ρτ (εi)

]
= D3π +D4π +D5π +D6π.
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By the same arguments of Theorem 9 D3π = D1π + op (1) and |D4π| = op (1); for D5π (10.1), QAL and

standard results on parametric quantile regression (Koenker & Machado 1999b) imply that

D5π = n−1
n∑

i=1

δi
πi
XT

i ρ
′ (εi)

(
E
(
fε|X (0)X⊗2

))−1
n∑

i=1

δi
πi
XT

i ρ
′ (εi)

d→
k∑

j=1

λjχ
2
j (1) = Op (1) ,

where λj are the eigenvalues of the matrix E
(
τ (1− τ)X⊗2/π0

) (
E
(
fε|X (0)X⊗2

))−1
. Finally, again

by the same arguments used in Theorem 9 |D6π| = op (1), hence the conclusion follows as in Theorem

9 of Fan et al. (2001).

Proof of Theorem 13. Note that under (5.2)

Dπ̂ (θ0τ ) =
n∑

i=1

δi
πi

(
ρτ

(
Yi −XT

1iβ0τ −XT
3iθ̂τ−i (X3i)

)
− ρτ

(
Yi −XT

1iβ0τ −XT
3iθnτ (X3i)

))
−

n∑
i=1

δi
πi

(
ρτ
(
Yi −XT

1iβ0τ −XT
3iθnτ (X3i)

)
− ρτ

(
Yi −XT

1iβ0τ −XT
3iθ0τ (X3i)

))
+

n∑
i=1

δi (π̂i − π0i)

π̂iπ0i

(
ρτ

(
Yi −XT

1iβ0τ −XT
3iθ̂τ−i (X3i)

)
− ρτ

(
Yi −XT

1iβ0τ −XT
3iθnτ (X3i)

)
ρτ
(
Yi −XT

1iβ0τ −XT
3iθnτ (X3i)

)
− ρτ

(
Yi −XT

1iβ0τ −XT
3iθ0τ

))
+ op (1) :=

D7π +D8π +D9π + op (1) ,

and that θ̂τ−i (·) (centred at θnτ (·)) admits the same asymptotic representation as that given in (10.21).

For D7π, the same arguments as those used in the proof of Theorem 9 show that

D7π = Uπ − nh4

8
E
[
f
ε|X (0) γ′′nτ (X3)

T X⊗2
2 γ′′nτ (X3)

] ∫ ∫
t2 (t+ s)2K (t)K (t+ s) dtds+ op

(
h−1/2

)
.

For D8π, (10.1) shows that

D8π = −
n∑

i=1

δi
π0i

XT
2iγnτ (X3i) ρ

′
τ (εi) +

n∑
i=1

∫ XT
2iγnτ (X3i)

0

δi
π0i

(I (εi ≤ t)− I (εi ≤ 0)) dt =

−
n∑

i=1

δi
π0i

XT
2iγnτ (X3i) ρ

′
τ (εi) +

n

2
E
(
fε|X (0) γn (X3)

T X⊗2
2 γn (X3)

)
,

and finally, similarly to (10.23), D9π = op (1) . Thus

Dπ (θ0τ ) = Uπ −
n∑

i=1

δi
π0i

XT
2iγnτ (X3i) ρ

′
τ (εi) +

n

2
E
(
fε|X (0|X) γnτ (X3)

T X⊗2
2 γnτ (X3)

)
−nh4

8
E
[
f
ε|X (0) γ′′nτ (X3)

T X⊗2
2 γ′′nτ (X3)

] ∫ ∫
t2 (t+ s)2K (t)K (t+ s) dtds+ op

(
h−1/2

)
+ op (1) ,

and the first conclusion follows by the same arguments as those used in the proof of Theorem 9, noting

that

V ar

(
n∑

i=1

δi
π0i

XT
2iγnτ (X3i) ρ

′
τ (εi)

)
= nE

(
τ (1− τ)

π0
XT

2 γnτ (X3)
2⊗X2

)
.
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The consistency of Dπ̂ (θ0τ ) follows directly from the assumption that

nhE
(
fε|X (0) γnτ (X3)

T X⊗2
2 γnτ (X3)

)
→ ∞.

Proof of Proposition 14. The same arguments as those used in Theorem 3 and CMT show that

n1/2R
(
β̂τ − β0τ

)
d→ N

(
γτ , RΣ−1

2 Σ2∗Σ
−1
2 RT

)
hence the first conclusion follows by standard results on quadratic forms in non zero mean Normal

random vectors. The consistency of W under the assumption that n1/2γτn → ∞ is a direct consequence

of the previous conclusion.
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10.2 Additional simulations results

This section considers the additional case where only the responses are missing. The missing mechanism

is specified as

π0 (Zoi) =
exp (α10 + α20X11i + α30X21i + α40X22i + α50X3i)

1 + exp (α10 + α20X11i + α30X21i + α40X22i + α50X3i)
(10.24)

and as in the main paper the percentage of missing at the τ quantile are chosen to be at approximately

10% and 40%.

Table 8a ετ ∼ N (0, 1) , τ = 0.25

n 100 400

bias se length cov bias se length cov

MAR (10.24) 10% MAR (10.24) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.090 .181 .419 .890

.105 .843 .895 .898

.088 .190 .423 .892

.110 .869 .902 .891

.030 .189 .428 .941

.070 .825 .903 .943

.030 .192 .910 .945

.075 .190 .438 .947

.030 .193 .431 .942

.072 .830 .912 .942

.035 .200 .433 .946

.080 .840 .920 .950

.073 .094 .254 .903

.083 .438 .484 .905

.078 .100 .253 .890

.085 .440 .490 .902

.015 .095 .220 .943

.032 .448 .490 .945

.020 .450 .488 .948

.040 .440 .483 .947

.016 .099 .227 .943

.036 .495 .493 .944

.020 .095 .225 .947

.040 .473 .478 .948

MAR (10.24) 40% MAR (10.24) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.110 .190 .415 .882

.120 .890 .917 .880

.129 .210 .457 .880

.110 .869 .902 .891

.035 .201 .431 .942

.079 .838 .905 .945

.038 .196 .912 .946

.078 .830 .810 .946

.040 .205 .445 .943

.080 .846 .916 .945

.037 .205 .437 .947

.085 .843 .923 .952

.105 .124 .260 .886

.110 .481 .510 .901

.101 .120 .253 .888

.110 .475 .505 .902

.025 .095 .220 .944

.030 .445 .481 .946

.021 .448 .490 .947

.038 .438 .480 .946

.018 .097 .226 .942

.035 .493 .490 .942

.021 .093 .223 .946

.039 .470 .473 .946
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Table 8b ετ ∼ N (0, 1) , τ = 0.50

n 100 400

bias se length cov bias se length cov

MAR (10.24) 10% MAR (10.24) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂1τnp

β̂p
2τnp

.096 .170 .390 .894

.101 .787 .850 .896

.090 .164 .386 .897

.094 .778 .835 .893

.038 .170 .400 .943

.031 .790 .885 .944

.040 .168 .832 .945

.040 .164 .930 .945

.041 .175 .400 .943

.033 .785 .890 .942

.043 .173 .401 .944

.035 .779 .405 .945

.075 .100 .170 .900

.082 .530 .452 .901

.078 .102 .172 .696

.081 .515 .445 .905

.024 .080 .215 .943

.025 .350 .465 .945

.025 .086 .215 .943

.030 .363 .210 .943

.033 .087 .210 .943

.025 .368 .472 .943

.035 .096 .476 .942

.025 .365 .210 .943

MAR (10.24) 40% MAR (10.24) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.121 .185 .399 .881

.128 .805 .836 .883

.125 .189 .403 .884

.130 .832 .841 .889

.045 .183 .407 .941

.038 .792 .841 .940

.044 .181 .400 .942

.036 .799 .843 .942

.047 .184 .403 .942

.040 .801 .883 .942

.048 .187 .405 .941

.041 .803 .875 .943

.112 .129 .199 .894

.109 .596 .503 .898

.110 .131 .202 .893

.112 .584 .509 .896

.030 .091 .224 .942

.028 .378 .593 .943

.031 .087 .221 .942

.027 .375 .590 .943

.032 .094 .219 .944

.031 .396 .496 .943

.033 .090 .212 .948

.030 .399 .491 .944
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Table 8c ετ ∼ N (0, 1) , τ = 0.75

n 100 400

bias se length cov bias se length cov

MAR (10.24) 10% MAR (10.24) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.110 .209 .542 .888

.105 .803 .833 .892

.112 .214 .548 .886

.105 .798 .836 .895

.055 .208 .418 .943

.068 .808 .836 .942

.056 .210 .421 .946

.070 .203 .832 .945

.050 .210 .460 .942

.069 .811 .836 .944

.051 .205 .454 .941

.065 .809 .832 .947

.088 .138 .284 .898

.085 .501 .449 .896

.091 .132 .280 .895

.085 .494 .445 .893

.030 .110 .238 .946

.036 .406 .439 .944

.031 .105 .227 .943

.034 .102 .431 .943

.029 .112 .241 .944

.035 .403 .433 .945

.030 .109 .243 .946

.034 .399 .436 .947

MAR (10.24) 40% MAR (10.24) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.118 .228 .501 .880

.110 .822 .890 .885

.121 .225 .497 .878

.111 .819 .887 .880

.058 .210 .421 .943

.072 .818 .842 .945

.060 .208 .419 .942

.070 .809 .840 .943

.059 .213 .456 .945

.071 .817 .819 .943

.061 .210 .449 .947

.073 .815 .817 .942

.102 .181 .303 .889

.099 .452 .491 .895

.110 .179 .312 .887

.102 .447 .490 .894

.029 .118 .263 .941

.034 .429 .442 .946

.031 .110 .256 .943

.033 .420 .440 .945

.031 .113 .244 .946

.035 .407 .436 .945

.030 .110 .232 .944

.036 .401 .435 .943

.
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Table 9a ετ ∼ t (5) , τ = 0.25

n 100 400

bias se length cov bias se length cov

MAR (10.24) 10% MAR (10.24) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.094 .195 .420 .898

.092 .832 .870 .898

.092 .198 .418 .893

.095 .834 .875 .897

.043 .200 .425 .941

.040 .812 .882 .942

.045 .197 .428 .941

.043 .815 .888 .943

.042 .204 .424 .941

.044 .820 .884 .941

.045 .204 .434 .942

.044 .821 .885 .943

.084 .110 .224 .896

.077 .510 .496 .891

.080 .105 .220 .891

.075 .505 .493 .893

.024 .101 .210 .945

.026 .424 .430 .944

.022 .100 .210 .945

.026 .417 .426 .947

.020 .106 .210 .945

.021 .504 .432 .944

.022 .100 .206 .945

.023 .496 .431 .944

MAR (10.24) 40% MAR (10.24) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.125 .219 .455 .878

.124 .850 .882 .872

.129 .215 .450 .878

.127 .845 .880 .872

.043 .216 .428 .941

.044 .818 .880 .944

.043 .208 .429 .945

.045 .810 .878 .944

.043 .209 .437 .942

.045 .825 .886 .943

.043 .204 .430 .944

.044 .823 .885 .943

.080 .115 .228 .817

.079 .502 .414 .882

.084 .113 .230 .888

.083 .508 .410 .885

.026 .116 .231 .944

.027 .440 .448 .942

.028 .112 .230 .946

.030 , 434 .433 .944

.024 .110 .230 .943

.024 .508 .450 .945

, 022 .110 .227 .945

.028 .505 .444 .944
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Table 9b ετ ∼ t (5) , τ = 0.50

n 100 400

bias se length cov bias se length cov

MAR (10.24) 10% MAR (10.24) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.100 .182 .410 .901

.093 .814 .880 .895

.108 .176 .410 .902

.095 .810 .878 .890

.050 .194 .415 .943

.045 .778 .863 .942

.053 .190 .412 .946

.048 .779 .862 .944

.052 .200 .418 .942

.043 .793 .872 .943

.052 .198 .415 .946

.047 .784 .865 .946

.074 .100 .212 .902

.068 .495 .414 .901

.075 .098 .210 .903

.065 .492 .410 .902

.030 .094 .216 .945

.031 .391 .428 .946

.030 .090 .210 .947

.032 .380 .424 .947

.030 .095 .210 .945

.024 .384 .414 .945

.031 .090 .208 .946

.025 .379 .410 .947

MAR (10.24) 40% MAR (10.24) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.115 .220 .420 .885

.124 .872 .890 .885

.115 .215 .418 .880

.124 .870 .890 .889

.053 .195 .418 .945

.047 .790 .875 .947

.052 .192 .416 .948

.050 .787 .871 .947

.052 .202 .420 .945

.045 .801 .892 .947

.054 .200 .413 .946

.049 .801 .884 .948

.109 .125 .220 .896

.115 .480 .455 .898

.110 .126 .220 .897

.117 .480 .452 .898

.036 .103 .215 .941

.038 .410 .460 .943

.034 .097 .211 .943

.035 .411 .451 .946

.038 .105 .222 .941

.036 .420 .428 .946

.036 .095 .218 .944

.037 .415 .424 .944
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Table 9c ετ ∼ t (5) , τ = 0.75

n 100 400

bias se length cov bias se length cov

MAR (10.24) 10% MAR (10.24) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.110 .208 .401 .893

.105 .825 .870 .892

.110 .205 .400 .892

.103 .823 .873 .890

.054 .212 .410 .944

.070 .833 .879 .943

.058 .212 .412 .942

.072 .832 .875 .943

.055 .216 .412 .942

.074 .834 .884 .943

.062 .212 .414 .941

.070 .825 .870 .944

.087 .109 .210 .898

.070 .448 .426 .902

.088 .105 .206 .901

.074 .448 .420 .895

.034 .114 .214 .946

.029 .455 .434 .947

.039 .109 .211 .946

.031 .450 .429 .946

.039 .117 .217 .943

.030 .458 .499 .946

.037 .114 .214 .944

.031 .452 .495 .956

MAR (10.24) 40% MAR (10.24) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.120 .234 .412 .881

.118 .893 .880 .882

.125 .228 .409 .880

.119 .893 .883 .882

.060 .219 .419 .942

.079 .839 .888 .938

.062 .214 .415 .943

.077 .837 .889 .942

.053 .220 .423 .944

.076 .840 .886 .942

.053 .218 .419 .943

.075 .830 .882 .942

.105 .121 .231 .890

.091 .455 .433 .888

.107 .118 .229 .893

.092 .449 .429 .886

.039 .124 .220 .944

.032 .457 .435 .943

.041 .120 .218 .943

.033 .455 .437 .944

.040 .125 .220 .943

.034 .459 .441 .942

.042 .122 .219 .942

.036 .452 .439 .943
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Table 10a ετ ∼ χ2 (4)− 4, τ = 0.25

n 100 400

bias se length cov bias se length cov

MAR (10.24) 10% MAR (10.24) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.095 .190 .420 .902

.096 .836 .903 .899

.095 .198 .419 .903

.097 .836 .903 .902

.045 .200 .425 .944

.043 .806 .855 .943

.052 .193 .425 .946

.043 .798 .852 .947

.044 .239 .438 .945

.045 .814 .850 .943

.046 .230 .428 .945

.055 .804 .854 .945

.088 .105 .235 .904

.092 .446 .475 .902

.082 .105 .234 .903

.092 .444 .474 .905

.033 .105 .220 .946

.032 .452 .470 .945

.030 .107 .223 .944

.035 .449 .466 .945

.030 .105 .233 .943

.033 .454 .473 .943

.036 .108 .235 .944

.038 .448 .475 .945

MAR (10.24) 40% MAR (10.24) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.118 .214 .425 .888

.124 .850 .886 .892

.123 .214 .420 .890

.124 .850 .890 .892

.046 .223 .430 .943

.042 .854 .862 .944

.052 .213 .432 .944

.043 .845 .850 .942

.045 .220 .433 .943

.052 .860 .855 .942

.043 .222 .432 .944

.050 .862 .853 .945

.105 .115 .250 .890

.112 .465 .494 .894

.113 .118 .250 .897

.104 .460 .490 .898

.033 .120 .255 .944

.035 .460 .485 .945

.035 .117 .250 .945

.037 .460 .480 .946

.033 .115 .260 .944

.035 .470 .495 .945

.036 .110 .262 .944

.038 .473 .492 .946
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Table 10b ετ ∼ χ2 (4)− 4, τ = 0.5

n 100 400

bias se length cov bias se length cov

MAR (10.24) 10% MAR (10.24) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.094 .204 .447 .903

.093 .830 .859 .902

.102 .198 .441 .904

.095 .835 .864 .902

.052 .207 .419 .942

.043 .830 .868 .943

.058 .199 .413 .945

.045 .833 .860 .946

.054 .200 .424 .942

.046 .832 .865 .943

.057 .198 .414 .941

.045 .829 .860 .944

.089 .116 .230 .901

.078 .448 .491 .903

.085 .113 .227 .903

.073 .432 .482 .900

.034 .111 .230 .944

.041 .448 .494 .945

.038 .108 .234 .944

.041 .445 .489 .946

.036 .114 .239 .945

.042 .434 .493 .942

.034 .108 .236 .945

.043 .435 .493 .946

MAR (10.24) 40% MAR (10.24) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.123 .209 .435 .880

.128 .845 .872 .884

.132 .204 .436 .889

.129 .847 .874 .891

.059 .211 .438 .946

.049 .844 .874 .945

.054 .209 .434 .948

.049 .844 .869 .946

.055 .213 .431 .947

.050 .842 .875 .943

.057 .200 .419 .946

.052 .832 .871 .945

.106 .134 .259 .891

.108 .492 .496 .892 .105

.132 .257 .897

.109 .491 .499 .901

.041 .123 .264 .945

.039 .463 .504 .946

.042 .118 .261 .946

.041 .460 .495 .947

.081 .129 .272 .948

.041 .470 .507 .946

.083 .121 .269 .943

.045 .473 .503 .942
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Table 10c ετ ∼ χ2 (4)− 4, τ = 0.75

n 100 400

bias se length cov bias se length cov

MAR (10.24) 10% MAR (10.24) 10%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.103 .209 .421 .896

.095 .863 .872 .895

.106 .208 .416 .899

.097 .859 .869 .903

.059 .204 .414 .943

.048 .865 .864 .944

.061 .208 .413 .942

.058 .862 .865 .946

.055 .215 .424 .944

.052 .868 .875 .943

.061 .209 .419 .948

.046 .863 .876 .945

.085 .118 .216 .902

.081 .469 .485 .900

.086 .108 .209 .905

.084 .465 .479 .904

.039 .117 .218 .945

.030 .454 .422 .947

.036 .115 .215 .945

.038 .449 .413 .946

.036 .128 .208 .944

.035 .459 .489 .946

.039 .124 .208 .943

.038 .454 .482 .947

MAR (10.24) 40% MAR (10.24) 40%

β̂1τc

β̂2τc

β̂p
1τc

β̂p
2τc

β̂1τp

β̂2τp

β̂p
1τp

β̂p
2τp

β̂1τnp

β̂2τnp

β̂p
1τnp

β̂p
2τnp

.133 .218 .425 .895

.125 .875 .878 .897

.134 .215 .421 .885

.132 .891 .873 .899

.065 .218 .428 .944

.052 .879 .882 .947

.060 .214 .424 .945

.054 .874 .879 .946

.063 .219 .432 .942

.053 .872 .884 .944

.060 .213 .428 .946

.053 .861 .878 .943

.108 .139 .242 .894

.109 .478 .496 .900

.107 .134 .238 .899

.103 .474 .499 .903

.040 .118 .245 .942

.038 .469 .504 .946

.041 .115 .239 .947

.035 .465 .496 .945

.039 .121 .248 .942

.043 .461 .502 .940

.036 .119 .235 .948

.040 .465 .499 .947
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