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Abstract

This paper considers estimation and inference for quantile partially linear varying coefficients
models, where some of the observations are missing at random. The unknown parameters are esti-
mated using two different two step procedures, one of which is based on iteration and the other is
based on profiling. Both procedures are based on inverse probability weighting, where the weights
can be estimated either parametrically or nonparametrically. The paper proposes two computa-
tionally simple resampling techniques that can be used to consistently estimate the asymptotic
distributions and the asymptotic variances of the unknown finite dimensional parameters estima-
tors. For inference, the paper proposes new test statistics for both the finite and infinite dimensional
parameters, including a test for constancy of the varying coeflicients part of the model. Monte Carlo
simulations show that the proposed estimators and test statistics have good finite sample properties.
Finally, the paper contains a real data application.
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1 Introduction

Since its introduction as a generalization of the linear regression model, parametric quantile regressions
(Basset & Koenker 1978, Koenker & Bassett 1978) have been widely used in economics, finance,
and statistics - see Koenker (2005) for a review of applications. Compared to linear regressions,
quantile regressions provide a more complete characterization of the conditional distribution of the
responses given a set of covariates, being at the same time more robust to the presence of possible
outliers. Despite these appealing features, parametric quantile regressions can be limited due to the
potential risk of misspecification and lack of flexibility. For these reasons, various nonparametric and
semiparametric extensions to quantile regression models have been considered in the literature; here
we mention a number of contributions (among many others) that are most related to the results
of this paper. Chauduri (1991) considered local polynomial estimation of a nonparametric quantile
regression model and obtained a (pointwise) Bahadur expansion for the resulting estimator; Chauduri,
Doksum & Samarov (1997) built upon the results of Chauduri (1991) and considered an average quantile
regression model; Yu & Jones (1998) considered (a possibly double kernel based) local linear estimation
of a nonparametric quantile regression; Kim (2007) and Cai & Xu (2008) considered quantile varying
coefficients models; Kong, Linton & Xia (2010) and Guerre & Sabbah (2012) extended the results
of Chauduri (1991) to obtain Bahadur expansions of their proposed local polynomial estimators of a
nonparametric quantile regression model that are uniform in the conditioning variables and also in
the bandwidth, respectively. Lee (2003) considered efficient estimation of a quantile partially linear
regression model; Kai, Li & Zou (2011), Wang, Zhu & Zhou (2009) and Cai & Xiao (2012) proposed a
two step estimation procedure for a quantile partially linear varying coefficients model, and Sherwood
(2016) proposed a one step estimation procedure for a partially linear additive quantile regression
model with missing covariates.

With the exception of Sherwood (2016), all of the above results assume that the observations are
always observable. However, in many situations of empirical relevance some of the observations in the
sample are missing; for example, in a survey of empirical research in top economics journals, Abrevaya
& Donald (2017) found that missing data occurs in 40% of the publications, and, depending on the
missing mechanism, simply ignoring this fact may result in inconsistent and/ or inefficient estimators
with possibly great loss of information. The missing mechanism considered in this paper is missing
at random (MAR henceforth) (Rubin 1976), which specifies that the probability of missing - often
called selection probability- depends on variables that are always observed. MAR has been widely
applied in a number of econometric and statistical models, including program evaluation (Imbens
2004), non-classical measurement error (Robins, Hseih & Newey 1995, Chen, Hong & Tamer 2005),
missing covariates (Robins, Rotnitzky & Zhao 1994) and attrition in panel data (Robins, Rotnisky &
Zhao 1995); see Little & Rubin (2002) for other applications of MAR.

In this paper, we provide a unifying framework for estimating and testing quantile partially lin-
ear varying coefficients (QPLVC henceforth) models with MAR observations. As mentioned by Kai
et al. (2011) and others, compared to the fully nonparametric approach of Chauduri (1991) and Guerre
& Sabbah (2012), and the quantile varying coefficients models of Kim (2007) and Cai & Xu (2008),



the QPLVC specification avoids the curse of dimensionality and allows partial information about the
linearity of some of the components to be incorporated while retaining the flexibility offered by the
nonparametric part of the model. An important feature of this paper is the fact that the MAR observa-
tions are allowed to be in both the responses and some of the covariates, or in the responses only, or in
the covariates only, making the results of this paper very general and applicable to most situations with
missing data problems. To deal with MAR observations we use the inverse probability weighting (IPW
henceforth) method (Horvitz & Thompson 1952), which has been used in many semiparametric models
with MAR observations, including semiparametric regressions (Wang, Hardle & Linton 2004, Bianco,
Boente, Gonzales-Mantiega & Perez-Gonzales 2010) and semiparametric treatment effects (Hirano, Im-
bens & Ridder 2003), among many others. IPW has been used previously in the context of quantile
models with missing data: Firpo (2007) considered efficient estimation of quantile treatment effects,
Chen, Wan & Zhou (2015) considered efficient estimation of parametric quantile models with MAR
observations, whereas Wang, Tian & Tang (2022) considered estimation of nonparametric quantile
models with MAR observations. None of these contributions considered the class of semiparametric
quantile regression models considered in this paper. In fact, to the best of our knowledge, this is the
first paper that considers IPW-based estimation (and inference) for QPLVC models with the general
MAR assumption considered.

We propose two different estimation procedures for the unknown parameters: the first one is based
on a two step iterative M-type estimation (often called backfitting), in which the first step is used to
estimate locally all the unknown parameters using the local linear estimator of Fan & Gijbels (1996),
while the second step is used to re-estimate the finite dimensional unknown parameters, and then
iterate between the two steps until convergence. This procedure is similar to the one proposed by Kai
et al. (2011) and Cai & Xiao (2012), although neither of these authors considered missing data, and
the latter used a different estimation method for the second step estimation. The second procedure is
based on a profiled two step Z-type estimation, in which the unknown infinite dimensional parameter is
indexed by the finite dimensional parameter, and estimation of the latter is not iterative. Each methods
have their own merits: the one based on iteration is simpler to compute but requires undersmoothing
and is computationally more intensive. The one based on profiling is not computationally intensive
but requires the computation of the derivative of the unknown infinite dimensional parameter, which is
difficult given the nonsmoothness of the model. In order to simplify the computation of the proposed
estimators, we use the MM algorithm (Hunter & Lange 2000), which replaces the nonsmooth objective
function used in the quantile estimation with a certain smooth majorizing function that can be easily
minimized by standard iterative methods - see Section 6 for more details. We note that if the unknown
infinite dimensional parameters are of direct interest, as for example in 4.4), an additional step can be
added, in which the infinite dimensional parameters are re-estimated locally, see Remark 1 in Section
2 below.

For inference, we consider Wald statistics that can be used to test local and global linear hypotheses
on, respectively, the infinite and finite dimensional unknown parameters; we also propose a ”distance”
statistic that can be used to test general hypotheses on the infinite dimensional parameters, including

the important one of constancy over its whole support. The proposed distance statistic is in the same



spirit as the one proposed by Fan, Zhang & Zhang (2001) for varying coefficients models, and, as we
are aware of, has not been proposed for QPLVC models, even without missing variables.

We now discuss in some detail the novel contributions this paper makes to the literature on quantile
semiparametric models with missing data:
First, profile estimation for the finite dimensional parameter in QPLVC models is new (even without
missing observations). We note that without missing data, a simple modification of the proposed profile

estimator achieves the semiparametric efficiency bound, which, in the context of this paper is given by

r(1 = 7)(El(fx (0)°XE?) = BIE (£ x (02X1 X7 |1 X3) B(fyx (0 X5 X3) ™ E(£1x (0 XoXT | X3)).
(1.1)
We also note that its asymptotic distribution is different from that of corresponding iterative two step
estimator because of the presence of missing observations. This result is consistent with that of Hu,
Wang & Carroll (2004), who showed that once you move away from the i.i.d. assumption, backfit-
ting and profile estimation in semiparametric models results in estimators with different asymptotic
variances.

Second, we consider two different estimators for the probabilities of missing appearing in the IPW,
one based on a parametric specification and one based on a nonparametric one. The former has
the advantage of being computationally simpler and not depending on the dimension of the missing
variables vector, whereas the latter has the advantage of being robust to possible misspecification of
the probability of missing mechanism, but it may suffer from the curse of dimensionality. We show that
the asymptotic variance of the infinite dimensional parameters estimator is the same, regardless of the
choice of the probability of missing estimator, as long as the additional ”"undersmoothing” condition
A2(ii) is satisfied, see the discussion after the assumptions in Section 3.1 and Remark 2 for more details.
On the other hand, choosing a parametric or nonparametric estimator for the probabilities of missing
has bearings for the asymptotic variance (and hence efficiency) of the finite dimensional parameters
estimator, which are very different, see Remarks 3 and 4 for a discussion.

Third, in order to derive the asymptotic distribution of the unknown infinite dimensional parameters
estimator, we obtain a Bahadur expansion that is uniform in the conditioning variable regardless as
to which estimator is used for the probabilities of missing. The expansion is based on the quadratic
approximation lemma of Fan & Gijbels (1996), which avoids stochastic equicontinuity arguments often
used in the literature, see the proof of Theorem 1 for more details. For the unknown finite dimensional
parameters estimator, we show that using a nonparametric estimator for the probability of missing
results in an asymptotic variance that corresponds to that obtained by using the so-called augmented
IPW estimating equations originally proposed by Robins et al. (1994), see also Chen et al. (2015), to
increase the efficiency of the estimator. On the other hand stochastic equicontinuity arguments are
needed to derive the asymptotic distribution of the profile estimator, see the proof of Theorem 5 for
more details.

Fourth, we propose a computationally simple resampling method for the estimation of the unknown
finite dimensional parameters that is well suited for both estimators with MAR observations, as it

preserves the missing structure of the observations in the original sample. The method is based on



the so-called multiplier bootstrap (see for example Van der Vaart & Wellner (1996) and Kosorov
(2008)) and consists of randomly perturbing the objective functions by a sequence of independent
and identically distributed random variables independent of the original sample of observations, and
re-estimate the unknown parameters. Bose & Chatterjee (2003), Chen et al. (2015), and Cheng &
Huang (2010) showed the consistency of such resampling method for parametric quantile regression
and general semiparametric M estimators, respectively. We show the consistency of the proposed
multiplier bootstrap, and how it can be used to consistently estimate the asymptotic variances of the
proposed estimators., which is a topic often ignored in the multiplier bootstrap literature.

Fifth, we consider inference for both the unknown finite and infinite dimensional parameters. For the
former, we propose a Wald statistic for a set of linear restrictions that, under a standard undersmoothing
condition, is shown to be asymptotically Chi-squared distributed under the null hypothesis and a
sequence of Pitman-type alternatives, as well as consistent under fixed alternative hypotheses. For
the latter, we propose a Wald statistic for local linear hypotheses (that is hypotheses evaluated at a
single point in the support of the random variate associated to the infinite dimensional parameter)
that are asymptotically Chi-squared distributed under the null hypothesis and a sequence of Pitman-
type alternatives, as well as consistent under fixed alternative hypotheses. We also consider global
hypotheses (that is hypotheses evaluated over the whole support of the random variate associated
to the infinite dimensional parameter) and show that a distance statistic based on the IPW-quantile
objective function is asymptotically normal when appropriately standardized. The proposed distance
statistic can be interpreted as a generalized likelihood ratio as in Fan et al. (2001), however, as opposed
to Fan et al. (2001), the so-called Wilks’ phenomenon, that is the proposed statistic is asymptotically
independent of nuisance parameters and (nearly) Chi-squared distributed, does not hold because of the
IPW. On the other hand, without MAR observations the Wilks’ phenomenon still holds, see Proposition
10 and the simulation results in Section 6 for more details.

Finally, we use a Monte Carlo study and an empirical application to illustrate the finite sample
properties and the applicability of the proposed estimators and test statistics.

The rest of the paper is structured as follows: next section introduces the model and the estimators.
Sections 2 and 4 introduce the estimators and test statistics, whereas sections 3 and 5 contain the main
asymptotic results; Section 6 first describes some details on the MM algorithm used to compute the
proposed estimators, and then reports the results of the Monte Carlo study, whereas Section 7 contains
the empirical application. Finally, Section 8 contains some concluding remarks. All proofs are contained

in a Supplemental Appendix, which also contains some additional simulations’ results.
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The following notation is used throughout the paper: indicates transpose, a prime and

double prime ” ” 7 denote first and second derivatives of the unknown vector of real valued functions

®2 T

Oo-(+) with respect to the argument -; finally for any vector v, v¥% = vv*.

2 The model and the estimators

Consider the QPLVC model
Y = X{ Bor + XT 0o, (X3) +¢, (2.1)



where [y is a k dimensional vector of unknown parameters, 6y (+) is a p dimensional vector of unknown
real valued functions and the unobservable error e satisfies the 7th conditional quantile restriction
g- (e|X) =0 for X = [XT, X7, Xg]T. Model (2.1) assumes that for a chosen 7th conditional quantile
gr, X1 and X are the key covariates while allowing for possible nonlinear interactions between X and
X3 such that a different level of X3 is associated to a different quantile regression, and it is this feature
that makes (2.1) very flexible and useful in practice.

Let ([Y Xﬂ,X;,Xgi]T> j_

corresponding sample containing all the always observed data. For example, if some of the (Y,

denote an (incomplete) random sample, and let (Z;);_, denote the

responses and some of the (Xi;);; and (Xy;);—, covariates (could be either of them or both) are
n

missing, then (Zm-)?:1 = ([Xg;,Xg,i]T , where X,; are the always observed covariates; if some of

the observations in all of the ([Xﬂ, X%;]T>n ) covariates are missing, then (Zoi)?zl = ([YZ, Xgi]T)é .
1= 1=
T
Xs]

missing responses only can be easily accommodated by changing the selection probability defined in

In what follows, we assume that Z,; = [X ) , noting that the cases of missing covariates only or

ot?
(2.2) and the related expressions in Sections 3 and 5 below, accordingly. Let 6¥ and 6% denote the
binary indicators for the missing responses and covariates, where a 0 indicates a missing observation,
and, for 6 = 6Y 6%m, let

Pr(6 =1Y,X)=Pr(6 =1|Z,) :=7m(Z,) >0 a.s., (2.2)

denote the selection probability, which specifies that the probability of missing depends only on the
always observed variables.
We first describe the two step iterative estimation procedure, which can be interpreted as an IPW-M

estimation process. Let

n
Iy
Q (67'7 0r, 77) = :
: 277
be the IPW objective function, where p (-) = - (7 — I (- < 0)) denotes the check function.

Let 7T (Z,;) denote an estimator for 7y (Z,;) and let

pr (Vi — XEp. — XL6, (X3)) (2.3)

(907- (Xg) ~ 907- (333) + 967_ (3:3) (Xg - SU3) =ar+ b-,- (Xg - 563) (2.4)

denote the local linear approximation of 6y, (X3) in a neighbourhood of z3.
The two step iterative estimation procedure for the unknown parameters By, and 6y, (-) is based

on the following two steps:
Step 1 Estimate [y, and 6y, (+) locally using (2.4), that is

(BL, a4, 0L) = arg min Qn (Br,ar + by (Xs; — 23) ,7) K, (X31 — 23) (2.5)

ar,07,07

where K, () = K (-/h) is a kernel function and h := h(n) is the bandwidth.

Step 2 Estimate [y, using
B\T = arg min @, (/BT, @T,%) . (2.6)
BrE€B
0!

where A. = @l obtained in Step 1.



Then iterate between the two steps until convergence of ET.

Remark 1 Note that to further improve the efficiency of the estimators @' and /b\lT obtained in Step 1,

an additional third step local estimation can be added, which consists of re-estimating 6o, (+) using
(fr.br) = arg min Qu (Br,ar +br (Xai — 3) . %) Ki (Xai —3).

where BT 1s defined in Step 2.

For the profile estimation procedure we follow the same approach as that used by Wong & Severini

(1991) and Severini & Wong (1992), which is based on the notion of least favourable curve 6z (z3),

which, in the context of this paper, is defined as the minimizer of
Elp,(Y; — XT38- — X31)| X3i = 3] (2.7)

satisfying
0

an

As with the two step estimator we consider the local linear approximation 0o, (Xs;) ~ ar + b, (X3; — x3)

Elp;(Y; — X{;8- — Xam)| X5 = 23] =0.

|1=0, (u

so that for a fixed (3, the least favourable curve minimises Q. (8;, ar + by (Xs; — x3), 7 ) Kp(X3; — 3).
Using HABT =: a, and 8557 /0BT =: b, the profile estimator BP is defined as

B2 = axg min || Mo (B, 05,005, /057 . 7)1, (2.8)
where
1 < 6 005, (X3;) ’ / T T
My (Br,03,,00, /0B, ) = Z 77 (Xy; + TopT Xoi)pr(Yi — Xq,;8r — X3,0p. (X3i)),
i=1 " T

that is the subgradient of Q,(8;,60s.,m) with p. (-) =7 —1(- <0).

We conclude this section by discussing the form of 7 (Z,;), which depends on whether we assume a
parametric or a nonparametric specification for 7y (Z,). For the former, we assume that my (Z,) =
7 (Zy, ) is a parametric model (such as a probit or logit model) where & € A C R! is an unknown

parameter. For the latter, the estimator takes the form

Y1 0Ly (Zoi — 2)
Z?:l Lb (Zoi - Z) ’

where Ly, (-) = L (-/b) is a product kernel function with another bandwidth b := b (n).

7 (2) =

(2.9)

3 Asymptotic results for estimation

3.1 Two step iterative estimation

Let Fx (-), fex (+) and fx, (-) denote the conditional distribution and density of ¢, and the marginal
density of X3, respectively. Assume that:



Al (i) Fyx=;(0) = 7 and f,x—, (0) are continuous and positive for all z € X = X} x Xy x A3, (ii)
the marginal density fx, () of X3 is continuous and positive at = x3, (iii) X;, X7 and X3 have
bounded supports X1, Xs and X3, (iv) the parameter space B is a compact set.

A2 (i) The kernel functions K (-) and L (-) are symmetric with bounded support, with bandwidths
satisfying, respectively, nh — oo and nb1™(%e) — oo, (ii) h = o (bdim(z")) and nhb* — 0.

A3 (i) 07 (z) is continuous at x = w3, (ii) the matrix 3 (z3) defined in (10.4) in the Supplemental

Appendix is nonsingular for all x3 € Xj3.

FEither

A4 (i) infz, ez, m(Zy, ) > 0 for all a € A, (ii) there exists a ap € A such that 7 (Z,, ap) = 7o (Z),
(iii) Esupyeq |07 (Zo, @) /8a|® < oo for some § > 2, (iv) the maximum likelihood estimator &

has the following stochastic expansion:
n'/2 (@ — ag) = I (o)~ 1/22 (Zoi, ) +0p (1),

where E [s(Z,,a0)] =0, E |8?log 7 (Z,, ) / (804)®2} = —1 (ap) and
nM2 (& — ag) 3 N (o, I (ao)_l) .

Or
A5 (i) infz, ez, 7o (Z,) > 0, (ii) mo (Z,) is twice continuously differentiable with bounded derivatives.

The above regularity conditions are fairly standard: A1(i) is standard in the quantile regression
literature, see for example Koenker (2005). A1(ii)-A3 are commonly used in nonparametric estimation,
see for example Chauduri (1991); A2(ii) can be interpreted as an undersmoothing type condition,
where the degree of undersmoothing depends on the dimension of the observable covariates Z, and
the selected bandwidth b; for example, if b = n~'/> and dim (Z,) = 1, then h = n~ Y4 would satisfy
it. More generally, for h oc n=% and b o« n=¢ A2(ii) requires a > cdim (Z,). Finally A4 and A5 are
commonly used in the MAR literature, see for example Robins et al. (1994). Note that A4(i) and A5(i)
can be indirectly verified by examining the distribution of the estimated selected probabilities.

The following theorem gives the asymptotic distribution of the estimators Bl and 0 (3) = al
obtained in Step 1; let k; = [#/K (t)dt and v; = [t/ K2 (t)dt for j = 0,1

Theorem 1 Under assumptions A1-A5

.
| P =Bl SN (05 ) B ) B ) ).

where

T
Ba) =", (23) 51 ) B {@fdx (0 [ g ] X3 = mg} 0, ()

8



®2
Y1 (23) = [xs (23) £ fex (0) [ ? ] | X5 =3 ¢,

2

T(1—=7)vg

Yir (23) = fx5 (€3) B 0 (Zo)

©2
X1
| X3 = a3
Xo

The following theorem gives the asymptotic distribution of the estimator é\T (+) suggested in Remark
1.

Theorem 2 Under the same assumptions of Theorem 1
h2katly, (3)

(nh)'/? (@ (x3) = bor (23) = —

) i) N <0, 23 (.Tg)_l Egﬂ (.Cvg) 23 (.733)_1) ,
where
N3 (23) = fxy (23) E [foyx (0) X5?| X3 = 23] ,

Sin (3) = s (23) B [mxgwxg _ xg} |

Remark 2 Theorem 1 shows that the asymptotic variance of the IPW local estimator depends on the
unknown selection probabilities and is larger than the corresponding one without missing observations,
see for example Kai et al. (2011) and Wang et al. (2009) for a comparison. The asymptotic variance
does not depend on the type of estimator used to estimate the selection probabilities my (Z,), because
of the faster convergence rate of the parametric estimator 7 (Zo, @) and A2(ii), which implies that
the estimation effect coming from the nonparametric estimation of mo (Z,) is asymptotically negligible.
Theorem 2 shows that the additional estimator suggested in Remark 1 has the same asymptotic bias
as that of the quantile varying coefficient model considered for example by Cai € Xu (2008). The
explanation of this result is that B\T converges at a faster rate than that of the estimator of the unknown
infinite dimensional parameters, which effectively makes the QPLVC model a quantile varying coefficient
model, meaning that the argument of the check function p;(.) in (2.3) can be replaced by say Y; —
X0, (Xs3;), with Y; = Y; — XT3,

Next we obtain the asymptotic distribution of the estimator (2.6) defined in Step 2. We first consider

the case of parametric estimation of the selection probabilities, so that the estimator for 5,¢ is defined

as
"T: i n 7757'7/\ ZoiaA>'
B argﬂrilé%Q (5 7 (Zoi, @)
Let
X1
¢ (Xi) = E [fx (0) X1X7 | X3 = X3, SO (X3:) " | Xoi |,
Op

where S = [Opy, I, Opp) is a selection matrix with O,y a p x k matrix of zeroes, I, the identity matrix
of order p, Op, a p x p matrix of zeroes, 0, a p x 1 vector of zeroes, and ¥ (X3;) is defined in (10.4) in

the Supplemental Appendix. Assume that



A6 E (fE‘X (0) X1®2) := Y9 is nonsingular.

Theorem 3 Under assumptions A1-A4, A6 and Esup,c4 ||(0m0 (Z, ) /0a) /70 (Zo,a)|* < oo, for
nh* =0
nt/2 (Br — Bor ) 5 N (0,555,557 ),

where
X e X)) ek ()] L[ = 9 (X)) P (2) Omo (Zo)
Bop = B 70 (Zo, @) E [ 70 (Z,, ) daT
L1 (X = e (X)) P () Omo (Zo, )] T
G [ 70 (Zo, ) daT ] '

In the case of nonparametric estimation of the selection probabilities, the estimator for 8y, is defined

as

~

T = i n Tvé\TvA Zoi>7
B arggg@ (5 7 (Zoi)
where 7 (Z,;) is defined in (2.9).
Theorem 4 Under assumptions A1-A3, A5 and A6 for nh* — 0 and nb* — 0
~ d _ _
w2 (Br = Bor ) 4 N (0,55 T 25 )

where

o b 5 (00 et @) 12]7).

70 (Zo)

Remark 3 Note that for h oc n=® and b oc n=¢ the undersmoothing condition nh* — 0 requires a > 1/4,
which implies max {1/4,cdim (Z,)} < a < 1, which in turn implies that for a second order kernel (like
the one used in this paper) the undersmoothing condition nb* — 0 is satisfied for dim(Z,) < 4,
which represents a limitation (the well known curse of dimensionality) of the proposed nonparametric
estimation of m (Z,). Alternatively, one could use a higher order kernel, say of order r > 2, which
would imply dim (Z,) < 2r for the resulting undersmoothing condition nb*" — 0 to be satisfied. However
higher order kernels might result in negative estimates of the selection probabilities, which is clearly
something undesirable.

Remark 4 It is important to note that the asymptotic variance Yoy, corresponds to the asymptotic

variance of the augmented IPW estimating equation
0= 23 () (o) - (31)
- n — 7_‘_0 (ZO,L) 17 90 K2 pfr 52 .
i — 0 (Zoi)
70 (Zoi)

which can be used to obtain a more efficient estimator for Bro, see for example Robins et al. (1994) for

E (X1 — ¢ (Xi)) o (€0) | Zoi] },

the case of MAR covariates. Thus, the proposed estimation method results in more efficient estimators

without having to estimate the additional conditional expectation in (3.1).

10



3.2 Profile estimation

For some o > 1, let C§;(Rx) denote the space of continuous functions Ry — R with Holder norm
bounded by a finite M. Assume that:

A1’ (i) A1(i)-(iv) hold; (ii) ©p = {#s,,005. /08T € C$;(X3)}, (iii) ng® — 0 and nh8g=* — 0, (iv)
OB (X1 + (000, /0BT Xo)pl (Y — XT B, — XT05,)/0BL exists, is continuous at 3, and has full

column rank,

A6’ (i) E(fx(0)(X1 + (005.(X3)/0B1)T X5)®?) := %4 is nonsingular, (i) E||0%0s,(z3)/0BL 08| <
oo uniformly in x3 € X3 for j =1,..., k,

and note that A1’(iii) is satisfied for h oc n=1/5 and g oc n=1/7. Let
PP (Xi) = [B(X2 X3 | X3 = Xa1) ' E(XoX{ | X3 = X3)]" Xos
Theorem 5 Under A1°, A2-Aj, A6’ and Esup,c 4 ||(870 (Z,a) /0a) |70 (Zo, )||* < o0
n2(B2 = Bor) 5 N (0,554,571,

where

(X1 — " (X)) P ()"

SNu, = F
p 70 (Zo, )

(X1 — P (X)) p- () Omo (Z,)
—E [ 70 (Zo, @) OaT ] "
X1 = ¢ (X)) 0, (£) 9o (Zo, a>]T
0 (Zoa a) 8aT .

I () ' E [(
Under A1°, A2-A3, A5 and A6’
nl/2 (B2 = Bor) 5 N (0,57 SanpT7 ),

where

(X1 — " (X)) oy ()%

Suny = E
anp 70 (Z)

l—m (ZO) D / 2
- F <7T0(20)E (X1 =P (X)) . (e)) |Zo]® > .

Remark 5 As mentioned in the Introduction the profile estimator does not require undersmoothing,
however we still need the same type of undersmoothing condition in A5 for the nonparametric estimation
of the selection probabilities, although a wider range of bandwidths can be used. Note that the asymptotic
variances have the same structure as that of those given in Theorems 3 and 4, but they are different

because of the profiling estimation. We also note that B\f can be used in Theorem 2.

3.3 Resampling

The asymptotic variances of the estimators of Theorems 3, 4 and 5 are rather complicated to estimate,
so in this section we suggest a resampling technique that is based on the multiplier bootstrap and has

been previously used in quantile regressions by Jin, Ying & Wei (2001), Zhou (2006) and Xie, Wan &
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Zhou (2015) among others. We generate B random samples {&;};; from the random variable £ with
E (&) =1and Var(¢) =1 and compute

B = axgmin Qg (6-.0,.7)

where

Qe (801, 7) = 3 =g5sr (Vi = X8 = 330 (X))
i=1 o

for the two step iterative estimator ,/6’\7. For the profile estimator Ef we compute
~ ) o T
B = arg min || Men(5r, 05, 005, /05 )],

where

~ o~ a1l = 0
Mﬁn(ﬂTveﬁrﬂaeﬂf/aﬁz) = 24152 :

with

-1 T
n

L Oi 4 2 1 &
(X)) = Py > = Xoi Hy(X3; — Xsi) g >

5.
%%X%XEHQ(XM—X&) Xoi,
g " J#i

1
]/L%i‘ x,(0) is a nonparametric (conditional) density estimator, & is the QPLVC residual and Hy(-) is
another kernel with bandwidth g.
n
Theorem 6 Under the same assumptions of Theorems 3-/, conditionally on ([YZ, 5i,XZT]T) .
1=

nl/2 (B;* . BT) 4N (0,950,551

where X9 and Yo, with x corresponding to either ¥o, or Xoy,,, are given in Theorems 3-4.

Feux, (0) = fupx (0)] =

Under the assumptions of Theorem 5 and the additional assumption (i) supx, ¢y

op (1), conditionally on ([Yi,éi,XiT]T)

n
i=1

nl/2 (Bf* - Bf) 4N (0,57'S057Y)
where Y4, with * is either ¥4y or Xun, given in Theorem 5.

Theorem 6 shows that the proposed resampling technique consistently estimate the distributions
of the estimators proposed in Sections 3.1 and 3.2. However, it is not sufficient to obtain consistent

asymptotic variance estimators. To do so we need the following additional assumptions:
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2+e€
AT () B ||[XTX3)" |7 < oo, (10) B s (Z,00)P* < oo, (i) infez |mo (2)/* > 0, (iv) E|8 =m0 (2)*** <

0o and (v) E|€]*1¢ < oo for some € > 0.

Let

oy

Se 1 Z ) 5 \®? grb) _ gpye2,
V= B;(m B) Z L

b:

denote the resampled variances, where B\:( and BT ) denote the estimators from the b — th sample.

Corollary 7 Under the assumptions of Theorem 6 and A7, conditionally on ([Y;,éi,XiT]T>n
i=1

(TR Ve Y0 Ve Tl Yyt 30 sy

Corollary 7 is important because it can be used to obtain confidence intervals for 3, using the
normal approximation and test statistical hypotheses on 3, using the x? approximation and the delta
method.

4 Some tests of statistical hypotheses

The results of Section 3 can be used to test statistical hypotheses about both the finite and infinite
dimensional parameters §; and 6, (-). First, Theorem 2 can be used to construct a Wald statistic
to test local hypotheses about 6 (-), that is hypotheses that are valid at a given point z% € A5. To
investigate the asymptotic properties of such statistic, we consider the following local hypothesis with
a Pitman drift

Hy @ RO7 (23) = 7 (23) + Yar (73), (4.1)

where R is an [ X p (I < p) matrix of constants, r, (z%) is an [-dimensional vector of known constants

and v, (+) is a bounded continuous function that may depend on n. Let
* n * * T S \—1 | *) W s\—1 pT -1 n * *
Wi (3) = nh (RO (23) = v (@3)) " (RS (25) " San (25) S (03) 7 BT) (RO (23) — 7, (a5)
denote the local Wald statistic, where
0 «
S5 (a3) = fx, (23) " Z Zm)fe”X (0) X572 K (X3 — x3) , (4.2)

~ " (]_ — 'T) Vo " 52 "
Har (75) = fo3 (x3) ) 7z ,)2X§?2Kh (X3 —x3)
=1 o1

and 7 (-) is either the parametric or the nonparametric estimator of 7 (-) described in Section 2.

Second, Theorem 2 can be used to test the global hypothesis
Ho': 0 () = 00r (), (4.3)

where 6, (+) is a p-dimensional vector of known functions, where we use the term global to emphasize

the fact that (4.3) is over the entire support X3 and not just over a given value xj as in (4.1). Note
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that (4.3) includes the important hypothesis of constancy of the varying coefficients 6, (-), where 6o (-)
is assumed to be a possibly unknown constant function 6§, see Proposition 12 below for more details.

To test for (4.3) we use the following distance statistic

M:

007‘

Sor (Y XT3, — xTo,_; (Xgi))— (4.4)
z:l

0

3

pr (Y - X5 — X[0or (Xa2))

=)
N

i)

1

.
Il

where 6,_; (+) is the leave-one-out version of the estimator considered in Theorem 2 (see (10.21) in the
Appendix for a definition), and note that the test statistic (4.4) is in the same spirit as that of the
generalized likelihood ratio proposed by Fan et al. (2001) for linear varying coefficients models.

Finally, we consider inference for the finite dimensional parameter (5,; let
Hy : RB: =1+ + Yar, (45)

where R is an [ x k (I < k) matrix of constants and ~,, is a bounded continuous function that may

depend on n. Let

- T/ o ia atmr) L ~
W =n (R <ﬁT _ rT>> (Rz— S0.55 R ) R (57 _ rT> (4.6)
WP = n(R(B — ;)" (RS 'S4, 5 RT) TP R(BY — rr)
denote the Wald statistics for (4.5), where ig, ig*, 24 and §4* are estimators of the matrices of

Theorems 3, 4 and 5 such as their sample analogues or those obtained using the resampling technique

proposed in Section 3.3.

5 Asymptotic results for the statistical hypotheses tests

The following proposition establishes the asymptotic distribution of the local Wald statistic W; (x7%)
under (4.1) as well as its consistency, under some mild high level assumptions, which can however be
verified by standard assumptions on the uniform convergence of kernel estimators', see for example
Masry (1996).

Proposition 8 Under the assumptions of Theorem 2, if rank (R) =1, supx,cy anIXi (0) = fox (0)] =
0p (1), SUDP,, e, F(xs) — f (z3)] = 0p (1), supgez |7 (Zi) — w0 (Z;)| = 0, (1) and nh* — 0, then under

(4.1) (i) for (nh)!/? yur (€3) = 7 (23) > 0 (for some |y, (3)]| < o0)

Wy (23) 3 X2 (k,1),

For the parametric estimator of 7(Z;) = 7 (Z;, @), its uniform consistency follows by assuming that
Esup,c, |07 (Z, ) /0a|’ < oo for § > 2, as in Assumption A4(iii).
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where x? (k,1) is a noncentral Chi-squared distribution with | degrees of freedom and noncentrality

parameter
-1
b= fxa (@3) 9 (23)" (R (@)™ Sar (@) D (@3) 7 RT) 3y (a5) 5

(ii) for (nh)1/2 Vrn (23) — 00,
W (%) B 0.

The following theorem establishes the asymptotic distribution of the distance statistic (4.4); let

_tr T(1—7)
ST [m (Zo) [, (X3)

_ 1 ¢ di T 1 "
Tir = /2 ; 0 (Zoi)XQipT (€i) Oo7 (X3i) K2,

Y (X3) ™ X§@2] Ko,  dn =n'?h% (T, — Tsyr) — nhTy,

Ty =~ (£, 006 (X0)" X520, (X0)] [ [ #0492 K (K (¢4 5)as,

1 = 51‘ T " 2 2
Tor = 30173 22 7 (2] X% (9 6 (Xa0) [ [ er ot K@K @5 das,

2 T(1—17) _ 2
on = n' (E <7To (Zo) fxs (Xs)212 ()™ XSZ)Q) /(2Kh (6) = Ko x K ()" dt) ‘

Theorem 9 Under the assumptions of Theorem 2 and if h — 0 and nh*? — oo, then

L (D2 (B0r) — pt — dr) 5 N (0,1).

s
Furthermore, if 0o, (-) is linear or nh* — 0, then

i (Dﬁ (607') - /’LF) i N (07 1) .

T

Theorem 9 shows that the distance statistic D (fy;), when appropriately scaled and centred, is
asymptotically standard normal. As noted in the Introduction, as opposed to the generalized likelihood
ratio statistic proposed by Fan et al. (2001), the Wilks’ phenomenon does not hold for D, (6y,),
because of the IPW estimation, see for example Bravo (2020). On the other hand, without the MAR
observations, the Wilks’ phenomenon still holds, as next proposition shows. Note that in this case, as
in Fan et al. (2001), we use the full estimator 0. (-) and not its leave-one version 0._; (+), hence the

appearance of the constant K (0) in Proposition 10. Let

D (007) = ZPT (}/z - X%;BT - Xg;@' (X31)> -
=1

n
> or (Yo = XEB; = X560r (X)) -
i=1

Proposition 10 Under the assumptions of Theorem 9, if 0o, (+) is linear or nh* — 0 and there are no
MAR observations, then

ricD (00r) % 2 (riepe)
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where

er( //( Kh*QKh()>2dtand

K2

:E|X3\T(1—7) (K(O)—?)

To compute the terms in the statistic D (6p,), we need consistent estimators of pir, dr and or; let

1 « T(1—7) - 1 w2
Mz o2nh Z (Zoz) };XS (X?n) 23 (XSZ) X2i K2,
T 1 - 5Z Y
Tz = nl/2 Z 7 (Zo) QZpT (&) 07 (X3i) k2,
1 o[~ N
T, = 8 4 [fe?ﬂxi (0) 05, (X30)" X202 (X / / 2 (t+ )2 K (t) K (t + s) dtds,
Tyz = Zn: 0i Tl (8) 0" (X3;) 2 (t+s)> K (t) K (t + s) dtds (1 + 0, (1))
37 2n1/2 pot %(Zm) 21 T \&1 i ) 7

2= 2ur (3 "D 8, (x,, X®2> Ky (1) — Kp, + K (£)2d
ERETRAP (%(Zoi)fxg(xg,-) 3 (Xas) Xy /(2 n(t) — Kp + Kp, (1) dt |

where, as in Proposition 8 7 (-), is either a parametric or nonparametric estimator of m (-), sz ()
is a standard kernel estimator for the unknown density of X3, 33 (-) and ]éﬂ x, (+) are as defined in
(4.2), & is the QPLVC residual and 87 (-) is an estimator for the second derivative of the unknown
parameter 6 (-), which can be computed, for example, using a local quadratic estimator. The following

proposition is in the same spirit as Proposition 8 in terms of its regularity conditions.

Proposition 11 Assume that supy .z |T (Zoi) — 70 (Zoi)| = 0p (1), SUPx,, e xs

s (X3i) = fxy (X30)| =
0p (1), SUPx,; e xs /0\6/7 (X3i) — 0 (X5:)| = 0p (1), supx,cx J%\Xi (0) = Fepx (0)) = 0p (1); then

and )
— (Ds (B0r) — iz — &) S N (0,1).
Oz
Theorem 9 and Proposition 11 can be used to test the empirically relevant hypothesis of constancy

of the varying coefficients Hy : 0y, (-) = 0%, where 0¢ can be a specific value, say 6<, or is unknown, in
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which case it can be the parametric quantile estimator @; let

n 6Z R R
D= (09) =3 =y (Vi = Xy = X560 (X)) - (5.1)
i—1 o1
n 5Z R
>z (V- XT5e - xder).
i—1 o1

denote the resulting distance statistic.

Proposition 12 Under the same assumptions of Theorem 9

1
= (D= (69) — iz) 5 N (0,1)..

To investigate the power properties of the statistic D (6y;), we focus on the case where 6y, is linear
(or assume that h = o (nil/ 4) so that the term d, can be ignored asymptotically). We consider local

hypotheses of the form
Hy : Onr (1) = Oor (1) + ynr (4) (5.2)

where 7,7 () is a bounded function with bounded first and second derivatives, and note that v, (-) =
v (4)/ (nh)l/2 corresponds to the standard Pitman drift. Let

= 5 B (fox (0) ur (Xa) X§23r (Xs)) -

4
BB [ O ()" X520 ()] [ [0 K O K (045) deds
0-3/71' = 072r +nk (Tﬂ_(ol(;g)XQT’YnT (X3)®2 X2>

Theorem 13 Under the same assumption of Theorem 9 and (5.2), if nhE (’YnT (X3)T X%, (X3)> =
2
O(1) and E <’yn7 (X3)" X$2 70 (X3) of (5)2> =0 ((nh)_3/2>, then

Ai (D% (Bor) — 1z — Jn) 4N (0,1),

Ovz
where 0.z and da, are the sample analogues of o~r and dy,.

Finally, the following proposition establishes the asymptotic distributions of the Wald statistics W

and WP given in (4.6) under (4.5) as well as their consistency.

Proposition 14 Under the assumptions of Theorems 3 and 4, if rank (R) = I, Sy — EQH = op (1),

Hflg* — Yo.|| = 0, (1) and nh* — 0, then under (4.5) (i) for n'/ %~ — v > 0 (for some ||| < o0)

W %32 (k1)
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where x? (k,1) is a noncentral C’hi—squared dz'stm'butz’on with 1 degrees of freedom and noncentrality

parameter k = v (RZQ_IEQ*EQ_IRT) Yri (i) for 'y, — oo,
W .

Under the assumptions of Theorem 5, if rank(R) =1, ||S4 — S4|| = op(1), |S4s — Sae|| = op(1), then
under (4.5) (i) for n' 2y, — 47 > 0 (for some ||v,|| < o0)

WP 2 oo,

where x? (k,1) is a noncentral Chi-squared dz’stm’bution with [ degrees of freedom and noncentrality

parameter k = L (REEEMZZlRT) - Yri (i) for n'/ 2., — oo,

WP L oo,

6 Simulation study

We first discuss some computational aspects of the proposed estimators and describe how to use the
MM algorithm to estimate the unknown parameters. We begin with the two step iterative estimator;
let e;x) = Yi — XﬂﬁT(k) — X%;GT(k) (X3) denote the kth iterate in finding the minimum of the objective

function and let

g2

1
o (&il€; =—-|——+4r—-2)g;+¢c

7'( il Z(k)) 4ler ‘Q’(k)‘ ( )i + Cr)
denote the so-called surrogate function, where the constant c) is such that ¢ (E(k)\a(k)) is equal to
Pr (5(k)) and 0 < € < 1 is a tuning parameter to be selected. Then, since ¢ (€i|€i(k)) > pr (g;) for all
€i, the unknown parameters can be estimated by minimising both the local and the global majorising

objective functions

n
Z 61’61(16 ) Kh XS'L - $3
z:l z:l

3

ilEiw)) -

where &, = Y; —XﬂﬁT —X%;@ (X3;). Asin Hunter & Lange (2000), we use the Gauss-Newton algorithm

with direction
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where X (x3) is an n x (k + 2p) matrix containing the k, p and p covariates X{;, X1, and X7, (X3; — x3)
(i=1,..,n),

~ . 01 1
W (0,7 (), ey, K) = diag | = K (X31 —x3), ...,
(570209 K) Q{W(Zol)€+51(k) n (X1 = a3)
On 1

T
Kp (X n ’
T (Zon) €+ En(k) n (Xs xg):|

d(6,7(),e K) = [%(2101) <1 —9r - 51€> Kp (X31 — z3) ...,

n <1—27— £n >K(X —:c)]T

with W (6,7 (-) () and d (6,7 (-) &) defined similarly.
The implementation of the MM algorithm for the two step iterative estimator involves the following
steps:

T
(K CLOT bOT]

o art b or B2 and set en|lne| = 4, with

1. Set k£ = 0, choose either the initial values [
§ =105,

2. Define either [ﬂ’f“T,a’j“T,b’j“T]T =[BT, akT bET

YT YT

17+ A (22) /25 or BE = BE + Agy /2%,

3. Iterate until either H [Bf“T,af_“T,bﬁﬂT]T — [BET, a1 ka]TH <6 or ||gEH — gE|| < 0.

T YT 2T

For the profile estimator we solve directly the first order conditions

5 0 (ElEm)
= 1
25z o " 61)

for B;,, where & = Y; — XL8, — X205 (X3;).

Given an initial value 8%, the computation of the estimator can be carried out with few iterations
(typically one or two) until ||B2* T — BEF|| < § with 6 = 107,

Next, we discuss how to choose the bandwidths b, h and g. For the profile estimator we use standard
cross-validation for b and h, whereas we use g = s(Xs;)n~'/7 with s(X3;) the sample standard deviation
of X3;. For the two step iterative estimator we still use cross-validation for b, but because of the assumed
undersmoothing, the choice of h is more delicate because of the nonparametric nature of the estimation
in Step 1, for which, as noted by El Gouch & van Keilegom (2009), the problem of optimally choosing
the bandwidth is still an open one. However, given the plug-in nature of the estimation in Step 2, as
long as the selected bandwidth does not result in a large bias for the infinite dimensional parameter
estimator, the finite dimensional parameter estimator should not be very sensitive to the bandwidth
choice, see Bickel & Kwon (2002) for a thorough discussion on this important point. In this paper,

we propose a two-fold method, which consists of computing for a random subset of the sample - the
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training set - Sy with 0 <t <1

[5 tT _tT b_tT] (h) = arg min Z = §7- 5z|5z(kz ) Ky (X3 — x3),

B b(h) = argmlnz = (Mt|8 (]i)> ,

where £, = Y; — X.p-t — ngé;t (X3;) and then using the remaining part of the sample Sj_; - the

validation set- to select h as
T . i ~t ~
h = arg min- E = (zsi (h) ’51'(1{) (h)) ) (6.2)

In the simulations, 80% of the sample is used as the training set and the remaining 20% is used as the
validation set.
We consider the following QPLVC model

T .
Vi = X{;Bor + X3; [cos (mX3:) , X5 +eir i=1,..,n, (6.3)

where Bo; = [Bior, Boor]” = [1,1/4]", X1 = [1, X1]", Xiui is N (0,0.2), Xo; = [Xo1s, Xoni]” is
a bivariate normal with unit variance and correlation coefficient p = 0.1, X3; is U (0,2) and the
unobservable (zero 7 quantile) error term ¢;; generated independently from the X; covariates as either
a standard normal or a t distribution with 5 degrees of freedom (¢(5)) or a (centred) Chi-squared

distribution with 4 degrees of freedom (x?(4) — 4); the selection probabilities (2.2) are specified as

either
70 (Zo;) = exp (a10 + a20X21i + a30X3i) ’ (6.4)
1+ exp (10 + a20X21i + a30X3;)
or
Y; X3,
70 (Zoi) = exp (oo + aY; + 30 X335) (6.5)

1+ exp (a10 + a20Y; + a30X3i)’
corresponding, respectively, to the cases where some of the responses Y; and of the covariates Xiy;
and Xg9; are MAR (6.4), and some of the covariates in Xi1; and Xy; are MAR (6.5) with oy =
[0, 20, ago]T chosen so that the average percentage of missing at the 7 quantile are approximately
10% and 40%.

In the simulations, we use the Epanechnikov kernel for K (), L(-), and H(-) with bandwidth
h = n~2%h with h defined in (6.2) for K (-) for the two step iterative estimator. We consider three

quantiles 7 = [0.25,0.5,0.7 5]T, two sample sizes: n = 100 and n = 400 and six different estimators for

o~ ~ ~  ~ 7T

[B1or, BQOT]T, namely the complete case [ﬁlm, 5276} [ﬂm, 274 and the IPW based [,Blfp, Bgfp] ,
~ ~ T [~ A T - ~ T

[Blmp,ﬁgmp} , [ﬂfw,ﬁgmp} and [Bfmp,ﬁgmp} estimators. Tables la-3c report the absolute bias

(bias), standard error (se), average length (length) and coverage (cov) of nominal 95% confidence

intervals for the six proposed estimators based on 1000 replications, with standard errors calculated

using the resampling technique of Section 3.3 with the number of replications B set to 500 and the

random variables &; generated from an Exponential distribution with mean 1.

Tables 1a-3c approximately here
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The first two rows of each tables report the finite sample properties of the estimators [ﬁh, 527] and

[A{’T, B\ST]T for the case without missing observations, and are used as benchmark for the missing ob-
servations cases. We note that across the three different quantiles and distributions of the unobservable
errors the finite sample biases are statistically insignificant, the standard errors and average lengths of
the confidence intervals are decreasing by a factor of two as the sample size is increased fourfold, as
implied by the asymptotic theory developed in the previous section, whereas the confidence intervals
are characterized by some undercoverage, which is however diminishing as the sample size increases.
With missing observations, a number of clear patterns emerge: first, as the percentage of MAR, observa-
tions increases the bias of the complete estimators increases (albeit it is still statistically insignificant),
whereas that of the IPW estimators is comparable to that of the estimators without missing obser-
vations for both sample sizes. The profile estimator seems to have slightly better standard errors,
average lengths and coverage of the confidence intervals. Second, as expected, the standard errors of
the IPW estimators are typically larger than those based on the complete case, and this is reflected
in the average length of the corresponding confidence intervals, which are slightly longer than those
based on the complete case. Third, the coverage of the confidence intervals for the complete case show
considerable undercoverage compared to those based on the IPW estimators.

Figure 1 shows the nonparametric quantiles estimates at 7 = [0.25, 0.5, O.75]T of the two unknown
infinite dimensional parameters for the case of no missing observations and two different distributions
of the unobservable errors g;,. Figure 2 shows the nonparametric quantile estimates with 40% missing
observations under the (6.5) MAR mechanism and IPW based on the nonparametric estimator (2.9)
for the selection probabilities. Figure 2 clearly shows that despite the missing observations the IPW

based estimates fit well the original unknown infinite dimensional parameters.
Figures 1-2 approximately here

In the remaining part of this section we only consider the MAR mechanism (6.5), as the results
based on (6.4) are similar or slightly better, especially for the IPW based estimators. We first consider
the finite sample properties of the distance statistic (4.4). Tables 4a-4b and Figure 3 report the finite
sample size and power of (4.4) for the hypothesis

Hy, : 017 (X3) = (14 7)cos (mX3); oy (X3) = (14 7) X3 (6.6)

for v = [-1,-0.9,...,0.9, 1] with v = 0 corresponding to the null hypothesis. The results are based on
1000 replications with the same bandwidth as that chosen in the previous simulation. The tables show
that with 10% MAR observations the finite sample sizes of the D (6y.) statistic based on the complete
case and TPW based estimators are broadly comparable, whereas with 40% MAR observations the
D (6p;) statistic based on the complete case estimator is characterized by a considerably bigger size
distortion compared to that based on both the IPW estimators. Figure 3 clearly shows that the size
adjusted finite sample power of the statistic D, (6p,) based on the IPW estimators is higher compared

to the one based on the complete estimator.

Tables 4a-4b approx. here
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Figure 3 approx. here

Figure 4 demonstrates the Wilks’ phenomenon for the scaled statistic D (6y;) defined in Proposition
(10). The figure is based on a kernel estimate of the distribution of the statistic based on 1000
simulations under the null hypothesis H,, : 61, (X3) = cos(7X3) with no missing observations and
three bandwidths, namely the same one used in the previous simulations b and two alternative ones
based on 1/2 and 3/2 of b. As expected, the simulated distribution looks like a Chi-squared regardless
of the bandwidth choice.

Figure 4 approx. here

Next, we consider the finite sample properties of the statistic Dy (0¢) defined in (5.1) for the
constancy of the functional parameters. Tables 5a-5¢ show the finite sample power of D (6$) for the
hypothesis

H, = 017 (X3) = ycos (1X3); Oar (X3) = 7X3

with v = [-1,-0.8,...,0,...,0.8,1] with 7 = 0 corresponding to the null hypothesis. The results are

based on 1000 replications with 40% MAR observations using the same undersmoothed bandwidth as

that used in the previous simulations, and they show that the D (6¢) statistic finite sample performance

in terms of both size and (size adjusted) power is clearly better for D (6$) based on the IPW estimators.
Finally, we consider the finite sample properties of the Wald statistics W and WP (4.6) for the

finite dimensional parameter Sor = [Bior, BgoT]T in (6.3). The null hypothesis is specified as Hy =

[B1or, BQOT]T =1, 1/4]T with the alternative hypothesis specified as the grid v = [y1,72] = [-1, 0.8, ...,0.8, 1] x

[—1,-0.8,...,0.8,1]. Tables 6a-6b report the finite sample sizes of W and WP, using 1000 replications

and the asymptotic variances iz_ 1ig*§2_ L and 21124*2‘;1 estimated by the same resampling technique

of Section 3.3 used to compute the standard errors of Tables la-3c.
Tables 6a-6b approx. here

As with Tables 4a-4b, Tables 6a-6b show that with 10% MAR observations the finite sample sizes of
the W andWP statistics based on the complete case and IPW based estimators are broadly comparable,
whereas with 40% MAR observations the W and WP statistic based on the complete case estimator
are characterized by larger size distortions compared to those based on both the IPW estimators. We
also note that WP has slightly better finite sample properties than those of the W statistic. Figure
5 shows the contour plots at the level 0.40 of the size adjusted finite sample powers of W? with 40%
MAR observations, N (0,1) unobservable errors and n = 400. Note that smaller contour plots indicate
higher finite sample power.

Figure 5 approx. here

7 Empirical application

We illustrate the applicability of the proposed estimation and inference methods by considering the
New York air quality measurements data (from May to September 1973, available in the R package

datasets which consists of 153 daily observations of mean ozone parts (per billion) (O), solar radiations
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(5), wind speed (in mph) (W) and temperature (in degrees F') (T") and contains 37 missing ozone parts
observations (missing rate of around 24%) and 7 missing solar radiations observations (missing rate
of around 4.5%). As some of the missing responses and the covariates are missing at the same time,
the overall missing rate is around 27.3%. After some preliminary data analysis, the following quantile

partial linear regression specification
ar (O‘Sv W7 T) = /817' + BQTS + B3TT + 97 (W) s (71)

is chosen; we consider the complete case Ejm, IPW parametric Ej.rp and IPW nonparametric Ej‘rnp
estimators (j = 1,2,3) for the three quantiles 7 = [0.25, 0.50, 0.75]T7 with the selection probabilities
7 (T, W), which seems plausible given the well-known results of the effects of the temperature and the
wind on the ozone level and solar radiation, estimated either with a standard logit model or a bivariate
product Epanechnikov kernel L (T, W). Tables 7a-7c report the estimates, standard errors, length of
95% confidence intervals and p-values of the three different sets of estimators, with the standard errors

calculated using the same resampling technique of Section 3.3.
Tables 7a-7c approx. here

Tables 7a-7c show that, across the three estimators, at the 0.25 quantile there is a positive relation-
ship between solar radiations and the mean ozone parts, but the same relation becomes statistically
insignificant at the higher quantiles. Temperature is also positively related with the mean ozone parts,
but as opposed to the solar radiations, the relationship is statistically significant at the three quantiles,
which confirms the widely accepted view among climate and environmental scientists that there is a
positive relationship between ozone (hence pollution) and temperature. Figure 6 shows the nonpara-
metric quantile estimates for 6, (W); interestingly, as opposed to the finite dimensional parameters
case, there is a notable difference between the complete case estimator and the IPW based ones, as
the former shows a pattern that is counter-intuitive in that the wind speed negatively affects the mean
ozone parts up to a certain speed and then the relationship becomes positive. On the other hand, both
IPW estimators show a negative relationship between the ozone level and the wind speed, which seems

to be more in line with current empirical evidence, see for example Jammalamadoka & Lund (2006).
Figure 6 approx. here

To this end, we tested the constancy of the infinite dimensional parameter 6, (W) using the statistic
(5.1) with the quantile parametric estimate as 6¢ (1W'); Table 8 reports the corresponding sample values

and corresponding p-values, which clearly supports the quantile partially linear specification 7.1.
Table 8 approx. here

To further support the chosen semiparametric specification, we compare the local goodness of fit mea-

sures R, proposed by Koenker & Machado (1999a)?, where * indicates the complete case, IPW

2The local, as it depends on the chosen quantile 7, goodness of fit RL, is defined as 1 — \7”/17”7 where V. =
> pr (Eiv), Viw = S, pr (€ix), and Eix, €+ are the residuals of the unrestricted and the restricted quantile regressions,

respectively. Here the restricted quantile regression model consists only of the intercept.
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parametric and IPW nonparametric estimators, between (7.1) and the restricted parametric model
dr (0‘57 W7 T) = ﬁlT + 627’5 + /837'T + 547'W-

Table 9 approx. here

Table 9 clearly shows that the chosen quantile semiparametric specification has a higher RL, compared

to that of the parametric one, across the three estimators and three chosen quantiles.

8 Conclusions

In this paper we propose a general method to estimate and test statistical hypotheses of the unknown
parameters in QPLVC models when some of the observations are missing at random. The proposed
estimators are based on the IPW method and can be efficiently computed using the MM algorithm. For
inference, we consider Wald statistics that can be used to test local linear hypotheses for the infinite
dimensional parameter and linear hypotheses for the finite dimensional parameter; we also consider
a distance statistic that can be used to test global hypotheses on the infinite dimensional parameter,
including the important one of constancy over the whole support of the underlying conditioning ran-
dom variate. Monte Carlo simulations show that the proposed IPW based estimators perform well
(compared to those based on the complete case) in finite samples, especially when the percentage of
MAR observations is higher, and similarly for both the Wald and distance statistics. Finally, an em-
pirical application illustrates the applicability and usefulness of the proposed estimation and inference

methods.
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9 Tables and figures

Table la e, ~ N (0,1), 7=0.25

n 100 400

bias se length cov bias se length cov
Bir 031 .183 412 .943  .021 .096 .251 .946
Bar 071 812 .888 .944  .056 .432 .459 .946
Br_ 034 .175 400 .951  .024 .086 .244 .951
By 075 .786 .864 .953  .057 .401 .415 .953

MAR (6.4) 10% MAR (6.4) 10%
Bire 088 .189 .422 893  .078 .098 .258 .902
Bore 108 .831 .898 .896  .085 .440 .486 .904
BP . 090 194 432 884  .081 .102 .255 .898
gb . 112 829 901 .890  .088 .448 .492 .900
Birp 032 193 431 940  .018 .098 .223 .942
Barp 073 829 905 942 036 .451 .493 .943
BY., 030 .192 910 945  .021 .453 .490 .947
By, 078 199 441 946 041 445 491 .946
Brrmp 033 196 435 .940  .019 .101 .231 .942
Bormp 074 834 910 941 037 .496 .496 .943
B ., 038 201 438 945 021 .099 .229 .945
By, 080 845 921 952  .041 475 481 .947

MAR (6.4) 40% MAR (6.4) 40%
Bire 112 .199 441 .880  .099 .119 .262 .890
Bore 124 895 913 .878  .109 .495 .499 .899
gP . 132 212 453 874 104 .121 .265 .884
pgb.. 136 .899 .907 .872  .112 .501 .509 .942
Birp 037 198 438 941  .023 .101 .258 .943
Byrp 076 835 814 940  .040 .483 .499 .944
BY., 041 202 441 938  .020 .099 .255 .941
A5, 081 826 .818 .938  .041 478 491 .951
Brrmp  -038 201 .441 .941  .029 .105 .260 .941
Bormp 078 841 916 .940  .041 .491 .501 .942
B ., 034 197 445 946 031 .108 .255 .943
By, 084 838 924 943 045 485 .494 .948
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Table 1a Continued

n 100 400
bias se length cov bias se length cov
MAR (6.4) 10% MAR (6.4) 10%
Bire 095 .193 423 .893  .081 .099 .251 .900
Bare 111 .873 908 .888  .093 .455 .490 .896
By 101 .199 442 899  .083 .102 .254 .897
B, 112 877 451 .890  .095 .459 .493 .899
Birp 033 .198 434 939  .020 .101 .230 .941
Barp 076 .881 .903 .941  .035 .459 .499 .944
&, 034 201 431 .942  .022 .110 .231 .942
- 081 .889 .908 .943  .038 109 .236 .941
Brrmp 037 197 438 .940  .021 .103 .233 .940
Bomp 078 836 912 941 039 468 .507 .941
B, 039 201 441 942 023 .109 .246 .943
B, 075 823 913 943 029 .456 .494 .940
MAR (6.5) 40% MAR (6.5) 40%
Bire 116 210 .456 .878  .098 .109 .268 .891
Bare 132 958 .988 .881  .105 .489 .512 .889
Br . 124 221 476 .873  .102 .116 .278 .890
B 138 .949 985 .870  .112 .492 514 .887
Birp 039 .200 .440 .940  .018 .099 .260 .942
Barp 078 842 816 .941  .038 .421 .501 .943
&, 041 197 443 938  .019 .101 .254 .946
- 081 .837 812 .937  .041 .451 .503 .944
Birmp 040 202 444 940 025 .095 .260 .944
Bormp 079 848 920 941 023 .101 .262 .943
B, 042 199 431 945 041 451 .503 .944
B, 081 845 918 943 043 444 495 947
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Table 1b e, ~ N (0,1), 7= 0.5

n 100 400

bias se length cov bias se length cov
Bir 041 163 381 .941  .033 .087 .193 .943
Bar 031 721 831 .942  .023 .402 .488 .943
By 043 154 373 .942 035 .073 .186 .952
go 032 .702 811 .944  .025 .388 .476 .955

MAR (6.4) 10% MAR (6.4) 10%
Bire 098 171 .393 .893  .077 .103 .172 .901
Bore 099 789 849 .894  .084 .532 .458 .902
gP 092 165 .388 .895  .081 .100 .174 .897
Bb . 095 771 833 .892 088 .527 .455 .903
Birp 040 174 403 942 028 .088 .219 .942
Barp 034 791 889 943 030 .362 .471 .946
BY., 041 170 835 944  .027 .090 .218 .942
By, 042 169 .936 .946  .033 .366 .213 .942
Birmp 043 179 402 942 036 .090 .213 .942
Bormp 035 789 891 941  .028 .371 .478 .942
Birmp 046 175 405 943 037 .095 .481 .941
By, 038 781 407 944 027 .369 .212 .942

MAR (6.4) 40% MAR (6.4) 40%
Bire  .121 185 .399 .881  .112 .129 .199 .894
Bore 128 805 .836 .883  .109 .596 .503 .898
gP . 125 189 .403 .884  .110 .131 .202 .893
pgb.. 130 .832 .841 .889  .112 .584 .509 .896
Birp 045 183 407 941  .030 .091 .224 .942
Barp 038 792 841 940  .028 .378 .593 .943
BY., 044 181 400 942 031 .087 .221 .942
By, 036 .799 .843 .942  .027 .375 .500 .943
Birmp 04T 184 403 942 032 .094 .219 .944
Bormp 040 801 883 942 031 .396 .496 .943
B ., 048 187 405 941 033 .090 212 .948
Y., 041 803 875 .943  .030 .399 .491 .944

30



Table 1b Continued

n 100 400
bias se length cov bias se length cov
MAR (6.4) 10% MAR (6.4) 10%
Bire 094 .176 .394 .882  .081 .116 .188 .901
Bare 105 .759 .880 .885  .091 .511 .491 .904
Br 096 172 .389 .888  .084 .119 .191 .900
B 104 761 .881 .883  .093 .516 .495 .905
Birp 036 .176 .405 .940  .031 .092 .213 .948
Barp 033 780 846 .942  .036 .361 .476 .943
&, 039 173 .408 .941  .033 .089 212 .947
. 035 .170 .405 .943  .037 .360 .473 .944
Brrnp 045 181 .402 .939  .037 .099 .216 .942
Bornp 036 .731 .890 .940  .030 .363 .484 .941
B ., 046 179 404 941 036 .096 .213 .943
B 039 177 .884 .942 029 .094 .210 .942
MAR (6.5) 40% MAR (6.5) 40%
Bire 131 .199 .398 .884  .107 .131 .193 .893
Bare 138 .810 .823 .885  .122 .592 .541 .896
Br 134 203 402 .886  .110 .136 .196 .890
B 134 813 .827 .882  .126 .590 .546 .892
Birp 041 179 410 .942  .031 .090 .218 .943
Barp 040 795 848 943  .032 .376 .481 .946
&, 042 182 408 944  .033 .087 .211 .942
e 039 .793 850 .944  .034 .370 .474 .948
Birnp 042 183 407 .940  .032 .096 .211 .943
Bornp 040 .763 .892 942  .033 .380 .485 .944
B 041 180 .410 .941  .036 .094 .209 .942
B 039 .178 .890 .942  .033 .386 .482 .943
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Table 1c e, ~ N (0,1), 7 =0.75

n 100 400

bias se length cov bias se length cov
Bir 052 .193 413 .940  .036 .093 .225 .942
Bar 068 751 798 942  .038 .381 .368 .944
Br_ 054 186 .410 .942  .037 .090 .223 .943
B 070 .744 800 .943  .039 .375 .360 .943

MAR (6.4) 10% MAR (6.4) 10%
Bire 108 201 .444 898  .089 .110 .281 .901
Bore 101 799 .828 .899  .092 .399 .438 .900
gy 110 205 .449 .896  .090 .108 .279 .900
g . 103 .803 .832 .897  .095 .395 .436 .899
Birp 054 205 .449 942  .030 .101 .231 .944
Bory 069 803 .838 941 031 .418 431 .943
A{’Tp 056 .201 .447 943 032 .099 .229 .943
By 071 796 .835 .942  .033 .404 .429 .942
Birmp 058 197 436 .944  .028 .104 .238 .944
Bormp 056 204 467 943 030 .416 .430 .945
Afmp 068 809 .835 .944  .030 .100 .231 .943
Bgmp 057 200 .465 .942 027 421 427 944

MAR (6.4) 40% MAR (6.4) 40%
Bire 119 216 .494 883  .103 .185 .299 .889
Bore 106 812 .888 .887  .099 .508 .486 .894
gy 121 214 492 884  .100 .180 .294 .886
B 109 814 .891 .890  .102 .505 .485 .895
Birp 056 210 .420 944  .032 .115 .260 .946
Barp 071 822 848 943  .038 425 .440 .942
A{’Tp 057 205 415 .943  .034 .110 .258 .944
By 073 819 850 .945  .040 ,421 .443 .943
Birnp 057 209 .407 .943  .033 .118 .243 .944
Bormp 070 818 840 942 034 421 438 .943
Afmp 059 205 .409 .945  .035 .113 .239 .946
Egmp 072 812 835 .948  .032 .418 .440 .945
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Table 1c¢ Continued

n 100 400
bias se length cov bias se length cov
MAR (6.5) 10% MAR (6.5) 10%
. 110 .209 .542 .888  .088 .138 .284 .898
Prre 105 .803 .833 .892  .085 .501 .449 .896
%” 112 214 548 886  .091 .132 .280 .895
. 105 798 .836 .895  .085 .494 445 .893
J2re 055 .208 .418 .943  .030 .110 .238 .946
Pirp 068 .808 .836 .942  .036 .406 .439 .944
%fp 056 .210 .421 .946 031 .105 .227 .943
A 070 .203 .832 .945  .034 .102 .431 .943
é”"” 050 .210 .460 .942 029 112 241 .944
éff”” 069 .811 .836 .944  .035 .403 .433 .945
TP 051 205 454 .941 030 .109 243 .946
Barnp 065 .809 .832 .947  .034 .399 .436 .947
MAR (6.5) 40% MAR (6.5) 40%
Bire 118 228 501 .880  .102 .181 .303 .889
Bare 110 .822 .890 .885  .099 .452 .491 .895
By 121 225 497 878 110 .179 .312 .887
B 111 .819 .887 .880  .102 .447 .490 .894
Birp 058 210 .421 .943  .029 .118 .263 .941
Barp 072 818 .842 .945  .034 .429 .442 .946
Apr 060 .208 419 942  .031 .110 .256 .943
- 070 .809 .840 .943  .033 .420 .440 .945
Birmp 059 213 456 .945  .031 .113 .244 .946
Bornp 071 817 819 943 035 .407 .436 .945
Afmp 061 .210 .449 947  .030 .110 .232 .944
B, 073 815 817 942 036 401 .435 .943
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Table 2a e, ~t(5), 7 =0.25

n 100 400
bias se length cov bias se length cov
Bire 046 .173 392 942  .025 .096 .219 .947
Bare 038 819 .848 .944  .022 424 .459 .943
B 048 170 390 945  .027 .092 217 .945
B 039 810 .840 .947 024 .420 .450 .948
MAR (6.4) 10% MAR (6.4) 10%
B 075 .110 .218 .901
Pire 095 .196 .420 .900
Bore 071 499 496 .901
- 093 .835 .868 .897
P 077 105 .212 .900
! 097 .199 419 .898
- 073 496 493 .901
5 ,095 .833 .867 .896
Birp 027 107 .223 .942
~ 047 200 .412 .940
Barp 024 437 483 .943
- 040 .820 .871 .941
P 028 .103 .220 .943
Clrp 045 196 .414 .942
B 030 .430 .485 .944
5 P 046 205 415 939 T
B“”” 041 821 .870 .941 '021 '505 '476 '943
Afj"p 047 200 .413 941 ' ‘ '
P 026 .107 .205 .942
e 042 818 867 .943
BY 020 .500 .471 .943
MAR (6.4) 40% MAR (6.4) 40%
Bire 125 210 461 .882  .120 .118 .222 .900
Bare 121 .841 .883 .878  .116 .514 .439 .901
gy 128 204 458 .883  .123 .115 .224 .902
B 120 .839 .881 .879  .118 .510 .442 .900
Birp 048 210 415 941 028 .115 .208 .945
Barp 041 828 874 940 024 438 429 942
BY., 049 203 410 942  .030 .110 .205 .946
By, 043 820 403 .942 026 430 .425 .946
Bremp 047 211 421 939 023 .119 210 .945
Bomp 043 825 876 941 022 510 .434 943
B, 048 207 423 942 024 .110 .207 .946
By, 045 820 874 943 023 501 .433 .945
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Table 2a Continued

n 100 400
bias se length cov bias se length cov

MAR (6.5) 10% MAR (6.5) 10%
Bire 094 .209 .425 .891 081 .114 .220 .894
Bore 096 .836 .878 .897 075 .505 .494 .890
BP . .095 .205 .422 890 082 .110 .222 .890
Bk . 097 830 877 .894 077 500 .490 .891
Birp 046 202 428 .940 025 .105 .215 .947
Byrp ~ .043 816 .880 .941 028 425 .435 .945
BY., 048 .199 424 942 024 .103 .212 .944
By, 045 810 .883 .942 029 420 .430 .946
Bremp 045 207 428 .940 023 .110 .213 .943
Bornp 046 822 882 939 024 507 437 .943
B ., 044 201 430 .941 024 .104 .210 .944
By, 047 818 880 .942 025 501 .435 .945

MAR (6.5) 40% MAR (6.5) 40%
Bire 128 221 .458 .880 083 118 .230 .890
Bore 120 854 .888 .878 082 .508 .419 .886
BP 131 219 454 881 088 .116 .234 .888
Bb . 130 .849 884 876 085 512 .415 .883
Birp 046 218 .430 .940 029 .120 .235 .943
Byrp 048 821 .886 .942 031 443 451 .941
BY., 047 210 431 .942 030 .115 .232 .945
b, 048 818 882 .943 032,438 437 .943
Birmp 047 210 .436 .941 026 .114 232 .942
Bornp 046 828 890 940 028 .512 453 .944
B ., 045 205 433 942 ,025 112 .230 .944
By, 048 825 893 .943 030 509 .450 .943
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Table 2b e, ~t(5), 7=0.5

n 100 400
bias se length cov bias se length cov
Bir 051 .170 .391 .941  .030 .098 .183 .945
Bar 042 764 841 .943 019 .364 .368 .946
B 053 .165 .386 .946  .031 .094 .178 .946
B 044 759 837 .947 018 .360 .365 .947
MAR (6.4) 10% MAR (6.4) 10%
Bire  .105 .185 .413 .900  .078 .105 .215 .901
Bore 095 816 .882 .894  .067 .498 .418 .900
gr 110 .180 .414 .901  .079 .101 .214 .902
Bb. 099 812 880 .892  .069 .496 .415 .901
Birp 052 (196 418 942 032 .096 .219 .943
Bory 046 781 865 941 034 .396 431 .945
gv., 055 .192 414 945 033 .091 .214 .944
By 04T 775 .860 .943  .035 .380 .429 .946
Birmp 054 204 420 943 034 .099 .213 .942
Bormp 045 797 875 941 026 .386 418 .944
B ., 055 201 417 945  .033 .093 210 .944
By, 046 790 871 944 027 .380 414 .946
MAR (6.4) 40% MAR (6.4) 40%
Bire 119 222 423 883  .110 .128 .223 .84
Bore 127 875 895 .887  .118 .484 .458 .895
gr 120 .218 420 .882  .112 ,126 .222 .895
gb. 128 872 893 888  .120 482 .455 .896
Birp 055 198 421 .946  .035 .101 .219 .940
Byrp 051 793 878 .945 037 .412 461 .944
gY., 056 .195 419 945 036 .099 .215 .942
By~ .053 .790 .875 .944  .038 410 .456 .945
Bimp  -056 206 .423 944 037 .103 .220 .940
Borp 048 804 800 048 038 .421 .431 .945
B ., 058 202 419 945 038 .099 216 .942
Y., 050 .800 .887 .947  .039 .418 .427 .943
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Table 2b Continued

n 100 400
bias se length cov bias se length cov
MAR (6.5) 10% MAR (6.5) 10%
Bire 109 196 410 894  .080 .104 219 .900
Bore 099 820 878 .898  .071 .438 .431 .901
B 111 194 407 892 081 .101 .216 .901
B 101 818 876 .899 073 433 429 .902
Bir, 053 108 411 .948  .033 .099 218 .945
Bory 048 797 870 945 035 405 .438 .944
B 055 194 408 949 035 ,095 215 .946
B2 050 .93 868 .947  .036 .402 .434 945
Birp 053 203 412 946  .036 .098 .210 .945
Bornp 046 78T 880 .48  .033 408 414 946
B, ,052 200 410 945 037 .095 .206 946
Bo.. 048 784 879 .47 034 405 410 .947
MAR (6.5) 40% MAR (6.5) 40%
Bire 120 220 423 887 111 .126 225 .890
Bare 124 883 888 885  .108 .491 .435 .889
B 122 217 419 884 115 123 222 887
B 125 886 .890 .884 109 48T 433 888
By 055 204 414 946  .036 .104 .220 .941
Borp 050 799 872 944 038 .415 445 945
g, 056 .200 .410 .946  .037 .100 .215 .943
P 051 199 869 047 040 411 440 946
Birnp 055 206 416 944  .039 .106 .218 .949
Bornp 048 790 883 946 037 412 426 .48
B 054 205 417 945 038 .102 214 948
Bo.. 049 788 881 046 038 .409 420 .948
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Table 2c e, ~t(5), 7 =0.75

n 100 400
bias se length cov bias se length cov
Eﬁr 055 .202 .383 .944 034 118 .195 .943
Bar 069 .806 .812 .942 024 407 .408 .940
A’fT .056 .200 .380 .945 035 .113 .192 .945
go 068 .801 .810 .943  .025 .401 .404 .942
MAR (6.4) 10% MAR (6.4) 10%

Bire 112 211 406 892 086 .107 .208 .901
Bore 108 .828 872 .893 071 .446 421 .900
3P 113 209 403 .890 888 .103 .203 .902

11c

4 106 .825 870 .892 072 445 418 .899

2Tc

By 056 215 412 942 036 .111 211 .945
By, 073 838 878 040 028 452 431 .948

pr 057 .210 .410 .943 037 107 .209 .947
ng 074 830 .873 .942 030 .448 428 .945

Bimp .08 214 414 941  .038 .114 214 .944
Bormp 072 830 881 .941  .028 .455 .498 .947

Do 060 210 412 942 039 112 .212 .945
By., 071 825 874 943 029 450 .495 .946
MAR. (6.4) 40% MAR (6.4) 40%

Bire 122 230 410 883  .103 .119 .229 .891
Bare 116 896 .883 .884  .089 .452 .431 .889
gr. 123 225 406 .882  .104 .115 .227 .892
pgb.. 117 .890 .880 .881  .091 .447 .428 .887
Birp 059 217 416 .940  .038 .121 218 .943
Borp 076 837 889 939  .030 .455 .439 .945
BY., 060 212 413 942 040 .118 .215 .944
By, 075 .833 .885 .041  .031 452 434 .943
Bimp 050 218 420 .943 039 .123 .218 .942
Bornp 075 838 .883 .940  .033 .458 .439 .943
B ., 051 215 417 944 040 .120 216 .943

By, 074 832 880 .942 034 450 .436 .944
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Table 2¢ Continued

n 100 400
bias se length cov bias se length cov
MAR (6.5) 10% MAR (6.5) 10%
Bire 118 212 410 890  .088 .108 .204 .900
Bore 106 .829 .881 .901  .076 .447 .417 .901
B 120 210 408 .888  .089 .107 .200 .901
g 107 .824 880 .902 077 .445 .410 .902
Birp 058 .219 416 .940  .037 .112 .216 .943
Barp 074 828 869 .941  .032 .459 .436 .946
G 060 216 413 941 038 .110 .213 .944
By 075 .827 .865 .942 033 .453 431 .947
Birnp 060 216 418 .941  .040 .118 .217 .943
Bornp 073 832 873 .940  .030 .463 .436 .945
B 061 214 416 .942  .041 .114 213 .944
B rp 074 .830 .872 .943  .031 .461 .433 .946
MAR (6.5) 40% MAR (6.5) 40%
Bire 128 232 414 883 104 .120 .226 .893
Bore 119 840 891 .881  .091 .456 .436 .886
gr 130 .230 409 .885  .040 .122 .225 .942
B 116 .835 .892 .882  .032 .461 .436 .943
Birp 060 221 418 941  .041 .121 .227 .941
Barp 079 824 891 .943  .036 .467 .438 .941
G 061 217 415 942 110 .123 .230 .895
By 080 .819 .885 .945  .093 453 .435 .890
Birnp 060 220 423 945 042 .124 230 944
Barnp 076 .836 .881 .948  .033 .446 .433 .945
B 061 217 420 945 043 .124 225 .942
[ 077 830 415 946  .037 .465 .435 .943
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Table 3a e, ~ x2(4) —4, 7 = 0.25

n 100 400

bias se length cov bias se length cov
Bir 047 181 .402 .942  .029 .097 .221 .943
Bar 037 826 .841 .944  .028 .421 .464 .943
Br_ 045 175 400 .944 030 .094 218 .945
B 038 .820 .837 .945  .031 .416 .460 .946

MAR (6.4) 10% MAR (6.4) 10%
Bire 097 .199 422 900  .085 .108 .238 .902
Bore 098 .831 .898 897 094 .444 479 901
gP 098 195 .416 .901  .084 .109 .239 .900
BE . .099 .830 .899 .899  .095 .440 .476 .902
Birp 048 202 428 942 031 .107 .223 .948
Barp 041 .802 .857 941 031 450 .473 .943
BY., 049 199 425 943 033 .104 .220 .947
By 042 799 .853 .943  .032 .446 .468 .946
Birnp 047 236 430 .940  .033 .109 .236 .941
Bormp 049 810 852 941 036 .451 .476 .942
B ., 048 233 425 942 034 .105 230 .942
By, 050 .803 .850 .943  .037 445 .471 .944

MAR (6.4) 40% MAR (6.4) 40%
Bire 119 216 428 889  .108 .120 .256 .893
Bore 126 .852 889 .894  .110 .468 .496 .896
gP . 120 210 423 .891 110 .115 .252 .894
pgb.. 125 853 .888 .890  .109 .462 .493 .895
Birp 049 220 433 942 036 .122 258 .943
Barp 043 851 859 942 037 464 491 .943
BY., 050 215 430 .943 037 .117 .250 .945
By, 044 847 855 044  .038 467 .482 .945
Brep 048 223 436 942 037 .118 .262 .945
Bormp 050 866 858 944 036 .473 .499 .948
B, 04T 220 430 943 039 .115 .260 .946
By, 051 .860 .855 .946  .037 ,478 .494 .947

40



Table 3a Continued

n 100 400
bias se length cov bias se length cov
MAR (6.5) 10% MAR (6.5) 10%
Brre 099 201 .424 .894 088 .110 .240 .898
Bare 102 836 .882 .890 093 457 .483 .893
gP . 100 .196 .420 .895 090 .105 .241 .896
gb. 103 832 .879 .891 092 455 .480 .894
Birp 049 206 .430 .942 033 113 .226 .947
Borp 043 839 853 .941 032 455 .489 .944
Bv., 050 .200 .426 .943 034 109 .220 .946
b, 045 827 849 944 033 452 483 .945
Bremp 048 208 436 .941 036 .114 .228 .944
Bornp 051 840 854 942 037 453 .480 .943
B, 049 204 430 .942 037 110 .223 .945
Dy 050 839 852 .943 038 450 476 .946
MAR (6.5) 40% MAR (6.5) 40%
Bire 126 214 430 .884 110 .122 .250 .889
Bare 121 859 .890 .885 112 470 .492 893
Br . 128 211 428 .885 1111120 .246 890
Bt . 120 .855 .887 .886 111 471 493 892
Birp 051 222 438 943 032 129 .263 .944
Barp 048 860 .860 .942 036 460 .493 .945
Bv., 053 218 .433 .945 033 126 .260 .945
By, 049 853 .853 .943 037 455 490 .947
Bremp 050 218 444 941 038 126 .259 .943
Bornp 052 859 .860 .942 039 470 .504 .943
B ,, 051 214 440 .943 039 123 .255 .945
3., 053 855 .856 .944 037 471 505 .944
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Table 3b e, ~ x%(4) —4, 7= 0.5

n 100 400
bias se length cov bias se length cov
Bir 053 .182 .396 .941 031 .101 .203 .943
Bar 040 839 840 .946 026 424 478 .947
By 055 .180 .395 .945 032 .099 .198 .946
e 042 832 .834 .947 027 420 473 .948
MAR (6.4) 10% MAR (6.4) 10%
Bire  .099 .201 .443 .901 086 112 .226 .902
Bore 096 .833 .862 .899 074 441 489 .900
gr . 101 .196 .438 .903 088 .110 .223 .903
gb . .099 .830 .860 .900 075 437 486 .901
Birp 054 203 416 .941 033 .108 .232 .946
Barp 042 837 865 .942 038 444 491 .943
Bv., 055 .197 .410 .943 034 .104 .230 .945
By, 043 834 862 .943 039 .440 .485 .944
Birmp 057 205 .420 .940 033 .110 .236 .944
Borp 043 836 868 941 040 .436 .495 .942
B, 059 201 .418 .942 034 .105 .233 .945
B, 044 832 862 .943 041 432 491 .944
MAR (6.4) 40% MAR (6.4) 40%
Bire  .126 .206 .431 .883 102 .130 .254 .895
Bore 125 .840 .869 .887 106 498 499 .896
Br . 128 200 432 885 103 127 253 .893
gb. 127 843 .871 .888 107 495 495 899
Birp 056 208 433 .942 037 119 .260 .942
Borp 04T 841 870 .941 038 .469 501 .944
Bv., 057 206 .430 .944 038 .112 .257 .943
By, 046 840 .865 .946 039 464 497 .945
Birnp 059 209 426 .943 079 122 269 .943
Bormp 048 838 871 .940 043 474 503 945
B, 061 205 423 944 080 .119 .265 .945
3., 050 836 .868 .942 044 470 500 .946
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Table 3b Continued

n 100 400
bias se length cov bias se length cov
MAR (6.5) 10% MAR (6.5) 10%
Bire 103 202 416 .900  .088 .115 .223 .900
Byre 099 835 870 .892 077 .461 .482 .896
Bl 105 .200 412 901  .090 .110 .219 .902
Bb.. 101 832 .865 .893  .078 .456 .478 .898
Birp, 056 .204 420 .942 036 .116 .230 .944
Byrp 047 836 .868 .943 035 .474 .490 .946
BY., 057 200 416 .943 039 .110 .227 .946
By, 048 .832 862 ,944  .037 470 .485 .947
Bimp 059 206 .421 .941 039 .120 .237 .944
Bormp 045 838 872 042 042 486 .498 .944
B ., 060 201 418 945 040 .117 .230 .945
Dy 0AT 832 868 944 045 .484 494 .946
MAR (6.5) 40% MAR (6.5) 40%
Bire 120 205 432 892  .104 .136 .250 .891
Byre 127 839 871 .889  .103 .501 .495 .895
BP 130 203 430 .893  .105 .130 .246 .892
Bb . 128 .840 .869 .890  .101 .500 .497 .896
Birp 128 200 .427 894 038 .124 .261 .942
Byrp 057 209 435 .942 040 .489 .499 .946
B, 050 .840 872 .941  .039 .122 .257 .941
By, 059 .205 .430 .943  .041 483 .494 .947
Bimp 049 836 870 942 077 .126 .239 .945
Bymp 101 211 428 .942 044 490 .500 .944
B, 090 840 872 941 078 .124 .235 .945
By, 103 208 426 .943  .045 485 .495 .945
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Table 3c e, ~ x%(4) —4, 7 =0.75

n 100 400
bias se length cov bias se length cov
Bir 056 190 .399 .942  .032 .162 .205 .946
Bar 042 842 843 .944 028 428 .482 .947
Br 057 185 .394 .944 033 158 .200 .947
e 043 838 .840 .945 029 424 478 .948
MAR (6.4) 10% MAR (6.4) 10%
Bire  .101 206 .416 .895 088 .110 .210 .900
Bore 098 .858 .868 .899 078 466 .481 .901
gr . 103 .202 412 .896 089 105 .205 .903
gb . .099 .855 .864 .900 080 460 .474 .902
Birp 057 207 418 .941 036 .112 213 .943
Barp 045 861 .868 .942 032 450 .419 .945
Br., 058 .203 .410 .943 038 110 .210 .944
By, 060 .856 .861 .944 034 446 .410 .946
Birmp 058 210 .420 .942 035 .124 203 .942
Bormp 048 863 873 .941 038 454 .486 .943
B, 060 206 .414 .947 036 .120 .205 .944
By, 049 860 .873 .043 037 450 .479 .945
MAR (6.4) 40% MAR (6.4) 40%
Bire 130 212 421 891  .103 .136 .239 .896
Bore 128 871 .874 .894 104 473 499 .901
Br 131 .210 418 .889 105 130 .232 .893
Bgb.. 120 867 .870 .895 106 470 .495 .902
Birp 062 213 423 942 038 114 241 .943
Borp 049 874 878 943 036 467 .501 .945
BY., 063 210 .420 .943 039 110 .235 .945
By, 050 .870 .874 .944 038 461 .497 .946
Birmp 060 216 .427 941 037 118 .243 .943
Borp 050 869 880 941  .040 .465 .499 .942
B, 061 210 423 .943 038 115 .238 .945
3., 051 .857 .875 .42 039 463 .497 .948
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Table 3¢ Continued

n 100 400
bias se length cov bias se length cov
MAR (6.5) 10% MAR (6.5) 10%
B\m 102 .208 418 .894 .090 .112 .213 .898
527(; 102 .860 .873 .892 .081 .451 .482 .894
gP. 103 .206 .415 .989  .091 .113 .210 .899
Agm 104 .856 .870 .990 .082 450 .480 .895
B\lTp .059 208 .420 .939 .038 113 .216 .942
§2Tp 048 .868 .870 .942 .034 454 499 .944
B, 060 205 417 .941  .036 .110 .214 .943
Bng .049 .865 .964 .943 .036 .450 .495 .945
Brrnp .061 .203 .413 .942 036 .116 .218 .942
BQTnp .057 213 .483 .938 .040 457 501 .943
& ., 050 862 871 .941  .037 .113 .210 .944
Bgmp .058 .210 .480 .943 .042 455 499 .945
MAR (6.5) 40% MAR (6.5) 40%
Bm 129 214 422 .889 104 238 .240 .894
527(; 125 .873  .879 .891 108 556 .494 .893
gP. 130 .212 420 .890  .105 .235 .241 .895
Agm 126 .870 .877 .892 107,553 492 984
B\lTp .060 .216 .424 .941 .040 .236 .243 .945
§2Tp .050 .876 .880 .943 .038 .509 .500 .945
B, 061 214 427 943 041 233 .240 .945
ng 052 .874 874 .944 042 233 242 .943
Brrnp 061 .218 .423 .940 .039 510 .501 .946
BQTnp .051 .870 .881 .939 043  .235 .244 945
Afmp 062 215 .420 .942 .038 .503 .500 .945
Bgmp 053 .871 .882 938 .043 491 .503 .942
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Table 4a: Finite sample size of (4.4) with 10% MAR

T 0.25 0.50 0.75
n =100
0.066% 0.119¢  0.060% 0.117¢ 0.064% 0.116%
N (0,1) 0.066° 0.113*  0.063® 0.112° 0.065° 0.113°
0.069¢ 0.114°¢  0.064°¢ 0.114°¢ 0.068¢ 0.113°¢
0.069% 0.121¢  0.062® 0.120°  0.067* 0.120°
2 (4)—4 0.071% 0.115° 0.063° 0.114° 0.069° 0.115°
0.071¢ 0.116°  0.066° 0.115°  0.070° 0.115¢
0.065% 0.120¢  0.062® 0.118*  0.066* 0.119%
t(5) 0.065° 0.114° 0.062° 0.112° 0.069° 0.112°
0.067¢ 0.115°  0.064° 0.114°  0.069¢ 0.114¢
n = 400
0.059% 0.114¢  0.055% 0.112°  0.060® 0.113%
N(0,1) 0.060° 0.109°  0.057° 0.108"  0.062" 0.109°
0.062¢ 0.111¢  0.058° 0.110°  0.062¢ 0.110°
0.061% 0.118*  0.058* 0.115¢ 0.062% 0.116°
2 (4)—4 0.061° 0.111° 0.060° 0.109° 0.064° 0.110°
0.063¢ 0.112°  0.061¢ 0.110° 0.064¢ 0.111°
0.058% 0.116*  0.057% 0.116*  0.063* 0.115%
t(5) 0.060° 0.110° 0.059° 0.110° 0.065° 0.111°
0.063¢ 0.111¢  0.061¢ 0.111¢  0.065¢ 0.112°

a complete case, b IPW parametric, ¢ IPW nonparametric
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Table 4b: Finite sample size of (4.4) with 40% MAR

T 0.25 0.50 0.75
n =100
0.071% 0.125¢  0.069% 0.123*  0.069% 0.124°
N (0,1) 0.064° 0.113°  0.063" 0.113®  0.064> 0.113
0.065° 0.115¢  0.064° 0.114°  0.064° 0.114°
0.073% 0.127¢  0.072% 0.126%  0.074° 0.126“
X*(4)—4 0.065° 0.116°  0.064° 0.115°  0.064" 0.116°
0.065° 0.117¢  0.064° 0.115°  0.065° 0.115°
0.074% 0.127¢  0.073% 0.125  0.073% 0.125%
t(5) 0.064® 0.115°  0.065* 0.114°  0.065° 0.114°
0.065° 0.116°  0.065¢ 0.115°  0.066° 0.115°
n = 400
0.068% 0.121¢  0.067% 0.119*  0.067* 0.120°
N (0,1) 0.060° 0.111°  0.061° 0.109°  0.062° 0.110
0.062° 0.113°  0.061° 0.110°  0.062° 0.111°
0.069* 0.123®  0.068" 0.121  0.068" 0.122°
x> (4)—4 0.063° 0111  0.062° 0.110°  0.062" 0.112°
0.063° 0.112°  0.062° 0.112°  0.063° 0.113°
0.068* 0.121¢  0.066% 0.120  0.069° 0.122¢
t(5) 0.063° 0.112°  0.063"° 0.110°  0.064> 0.111°
0.064° 0.113°  0.063° 0.112°  0.064° 0.112°

a complete case, b IPW parametric, ¢ [IPW nonparametric
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Table 5a Finite sample power of the statistic D (0%) for 7 = 0.25

gl N(O1) x*(4)-4 t(5) N(0,1) x*4)-4 t(5)

n = 100 n = 400
8719 8542 861 .932¢ 927 931
-1 .910° .902° .908° .990° .987b .990°
.902¢ .900¢ .902¢ .987¢ .985¢ .984¢
655% 6432 650%  .712% 7192 .713¢
—0.8  .734b 7230 7310 .801° 7950 7920
710¢ .709¢ 711¢ .790°¢ .789¢ .790¢
4230 4162 421 503% 501 5032
—0.6 512 .504b 5100 .589° 5800 587°
497¢ 501¢ 499¢ .584¢ .583¢ .582¢
218 .206% 210 .310% .303¢ .301¢
—0.4  .296° .290° .290° .399° .393b .391°
284¢ 287¢ 285¢ .391¢ .390¢ .389¢
1062 .105% 104e  142¢ .140% 1432
—0.2 157" 153° 1500 .205° .201° .204°
.146¢ .149¢ .149¢ .201¢ .200° .202¢
.065% .063% 064%  .059% .060% .058%
0 .058° .058° .054° .055° .054° .055°
.059¢ .057¢ .056°¢ .056° .055¢ .056¢
.110° 112¢ 109%  .156% 1532 153¢
0.2 .165° 1610 1580 .210° .205° .203°
.160¢ .156¢ 157°¢ .207°¢ .203¢ .202¢
226 220 221%  .312¢ .310% .310%
0.4 .305° .300° .300° .403° .400° .399°
.301¢ .296¢ .297¢ .399¢ .398¢ .397¢
434 4214 423% 5134 5122 5107
0.6 5210 510° 515° .599° .595° 597°
510° 511¢ 510¢ .595¢ .593¢ 595¢
.663% .660% 661% .720% 716% 7192
0.8 7420 7370 7400 8120 8100 .810°
737¢ .730¢ 737¢ .806¢ .809¢ .805¢
.894¢ .890% 893%  935¢ 933 .936%
1 .924P .923b .921b .995° .992b .994b
.918¢ .920¢ .920°¢ .991¢ .990¢ .991¢

a complete case, b IPW parametric, ¢ IPW nonparametric

48



Table 5b Finite sample power of the statistic D (65) for 7 = 0.50

gl N(O1) x*(4)-4 t(5) N(0,1) x*4)-4 t(5)

n =100 n = 400
891 864 861%  .964% 957% 961
-1 .919° .913° 918° .100° .100° .100°
.912¢ .910°¢ .910°¢ .998¢ .999¢ .100¢
676% 664 670 .730% 725% 727
—0.8  .754b 7430 7500 8220 815Y .8200
738¢ .739¢ 734¢ .809¢ .805¢ .804¢
435% 4320 431 512¢ 507% .509%
—0.6  .521° 5190 5200 .596° 5900 5940
513¢ 513¢ .510¢ .590°¢ 587¢ .589¢
2250 218 221% 318 313 .315%
—0.4  .302° .299b .299b 404° 4000 .399°
.299¢ 297¢ 298¢ .399¢ .399¢ .397¢
113 .110% 111 154 152¢ 1532
—0.2  .164° 1630 1620 2110 2100 .209°
.160¢ .159¢ .160¢° .210¢ .209¢ .208¢
.063% 061 062% .054% .056% .056%
0 .056° .057° .055° .054° .055° .055°
.056¢ .056¢ .055¢ .055¢ .054¢ .055¢
1182 117 118%  .160% 158 159¢
0.2 .169° 1670 .168° 2180 .215° .216°
167¢ .166¢ 167¢ .216¢ 216¢ 214¢
234 2324 231 321 .318¢ .319¢
0.4 3170 .318° .316° A415° 4130 4120
.312¢ 312¢ .315¢ A414¢ 413¢ A412¢
451 446% 450% 523 5220 5214
0.6 5340 5310 5320 .602° .599° .600°
531¢ .530°¢ .529¢ .599¢ .600¢ .599¢
679% 676% 675% 731 732 .730%
0.8 .753b 7550 7540 .824b 8210 8210
751¢ 754¢ .752¢ .826¢ .822¢ .824¢
.899¢ 897 895% 938 937 .938%
1 .924P .924b .924b .999b .997b .999?
921¢ .920¢ 921¢ .995¢ .996¢ .998¢

a complete case, b IPW parametric, ¢ IPW nonparametric
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Table 5c¢ Finite sample power of the statistic D (%) for 7 = 0.75

gl N(O1) x*(4)-4 t(5) N(0,1) x*4)-4 t(5)

n = 100 n = 400
.862¢ .860% .860% 930 .929¢ .9320
-1 .904° 901° .905° .089b .088P .990°
.901¢ .902¢ .903¢ .088¢ .084¢ .085¢
6582 6532 654 .719¢ 715% 7134
—0.8  .744b .743b 741° 811° .8080 .805°
.736°¢ .733¢ .734¢ .807¢ .806¢ .807¢
4319 4959 4989 5139 5119 510
—0.6 .510° 5080 5110 5920 .589P 5890
502¢ 505¢ 507¢ .594¢ 587¢ 586¢
2159 .210° 211 3129 .310° 3124
—0.4  .292° .291b .293b .395P .3920 .394b
.288¢ .286°¢ .290°¢ .395¢ .393¢ .394¢
.1092 .107@ .105% 1479 1459 145
—0.2 154t 1520 1500 .208b .207° .208°
.149¢ .148¢ .146¢ .206¢ .205¢ .207¢
.063% 061 .062% 057 .059¢ .058%
0 .055P .054° .053b .054b .053° .053°
.056¢ .055¢ .055¢ .055¢ .054¢ .054¢
113 1112 110 1602 1592 157
0.2 1700 .168b .168° .214° 2100 .208°
.168¢ .166¢ .167¢ 217¢ .212¢ .210¢
2320 .298¢ .227¢ .312¢ 311¢ 313
0.4 .303° .301° .3020 401° .4020 .403°
.300°¢ .299¢ .298¢ .398¢ .397¢ .398¢
4394 421 49230 513 512¢ 510@
0.6 5290 5100 515° .599b .595° 5970
.528¢ 511¢ .510¢ .595¢ .593¢ .595¢
6632 .660% 661° .720% 716% 7199
0.8 .742b 7370 .740° 8120 .810° .810°
737¢ .730°¢ 737¢ .806¢ .809¢ .805¢
.894¢ .890% .893¢ .935% 933 .936%
1 .924b .923b 921 .995b .9920 .994b
918¢ .920°¢ .920¢ .991¢ .990°¢ .991¢

a complete case, b IPW parametric, ¢ IPW nonparametric
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Table 6a Finite sample size for the Wald statistics (4.6) with 10% MAR

T 0.25 0.50 0.75
n =100
064 115% 063¢ 113 065%  .114¢
.061°  .109° .060° .108° .061°  .110°
062¢  .110¢ .061¢  .110¢ 062¢  .111¢
N (0,1)

059t 110t 058t 110te ,060f® 110t
05711061 05710 1051 055101071
.057t¢ 1051¢ .057t¢ 106t .056t¢ 1071
066 .119% 065 .117% 067¢ .118%

0630 1110 0620 .109° 0620 .110°
063¢ .112¢ .061¢  .110¢ 064 .112¢

2(4) -4

X () .056Ta 110te .057fe  108ta .057fa  110te
05970 10770 .058T0 1071t 05870 108T?

057t 106t .059f¢ 106t 057t .109f¢

065% .118 0662 .116% 0682 117

0620 1120 .063%  .110° 0640 1110

£5) 063¢  .113¢ 062¢ 111¢ 065¢  .112¢
.057fe 106t 05672 . 109fe 058t 110t

0580 10710 0571 106T° 05970 1067

.059f¢ 106f¢ .058T¢ 106t .058fc107fe

n = 400

0582 111 057% 110 058% 1120

.055°  .106° .054°  .106° 0550 1170

N (0.1) 056¢  .107¢ .055¢  .108¢ 056¢  .108¢
’ .054f@ 106t .054fe 106t .055fe 10710
0531010470 053110410 0541t 1037?
053¢ 103fc 54fe 105tc .0553f¢ .109f¢

060¢ 117 0587 115 059%  .117¢

0570 1070 0550 1070 056 .108°

2(4) 4 057¢  .108°¢ 056¢  .107¢ 057¢  .108¢
X .056T@ 110te .054fa  109ta 056f¢ 1107
0551010470 053t 1051 05310 1061

055 106t .053fe¢ 104fc .055T¢ 104f¢

0612 114 0587 .113¢ 060% 115

056 .109° 056 .107° 0550 .108°

£(5) 057¢  .109¢ 056¢  .108¢ 056¢  .107¢

.056Ta 108ta .054fa  108ta .056T@ 110te
.053T0 1061t .05§Tb 10670 05310 1051
.055f¢ 109t .054}0 .105t¢ .052f¢ 1051




Table 6b Finite sample size for the Wald statistic (4.6) with 40% MAR

T 0.25 0.50 0.75
n =100
071 122¢ 0707 121 071%  122¢
064> 1120 0620 .110° .063%  .111°
N (0.1) 064 .112¢ 063¢  .111¢ .063¢  .112¢
’ .059f¢ 114te 065t 11410 065t 113te
0.57t 1097 059101051 0607 1061
.060f¢ .108f¢ .058t¢ 1061 .059f¢ .107t¢
074%  125% 0730 1242 0737 1232
.066° .114° .065° 1130 0620 1130
) 066¢  .115¢ 065¢  .113¢ 064 .114¢
X°(4) —4
.070fe 11210 065t 1170 065t 116t
06101071 0620 1091 057101101
.061f¢ .110f€ .061f¢ 110t .058f¢ 109t
074% 1234 0720 1242 075%  .125%
0650 .114° 0630 .114° 064> .114°
£ (5) 064 .115° 062¢  .114¢ 065¢  .115¢
065t 118fe 065t 114te 067t 118fe
06210 110t 0.57t 1097 059701091
.060f¢ .110fc .058f¢ 108t .058f¢ 108t
n = 400
068 .120% 067¢  .119% 068 .119%
060" .108° 059 108" 060 .109°
N (0.1) 061¢  .108¢ .059¢  .109¢ .059¢  .110¢
’ 056t 110f¢ 060t .110f@ .058fe 110te
0567 1061 056 1051 05571051
.056T¢ .104tc 0.56f¢ .104fc .055¢ 106t
070 .122¢ 0687 .121° .069% .121@
.061° .109° 059 .109° .060°  .109°
() — 4 .060°  .110¢ .060¢  .110¢ .061¢  .109¢
060t 112fe  o57fe 110t ,055fe  112fe
06171061 0551051 056 1061
.056f¢ 105t .055¢ 106t .0567¢ .104f¢
071 121 069%  .120% 070%  .120¢
060 .110° 059 .109° .060°  .109°
£(5) 061 .111°¢ 060¢  .109¢ 061¢  .110¢

.055fa  112ta 060t 110te .064fe  110te
0567 106 .oggﬂ) 10570 0.56f 106
.054f¢ 105f¢ .0056f¢ .104fc .056f¢ .105f¢




Table 7a Estimates, standard errors, length

of confidence interval and p-values for 7 = 0.25

B B2 Bs
complete
B, —69.928  0.062 1.435
se 34.811 0.029 0.400
length 97.950 0.047 1.044
p — value 0.047 0.047 0.000
IPW par
B; —68.505  0.061 1.410
se 35.328 0.029 0.400
length 94.025 0.043 1.105
p — value 0.055 0.08 0.000
IPW nopar
B; ~70.861  0.048 1.481
se 33.902 0.028 0.380
length 97.50 0.04 1.122
p — value 0.038 0.091 0.000

Table 7b Estimates, standard errors, length

of confidence intervals and p-values for 7 = 0.50

B B2 B3
complete
B; ~75.603  0.033 1.782
se 33.141 0.033 0.324
length 40.143 0.077 0.487
p — value 0.024 0.324 0.000
IPW par
B; —74.618  0.032 1.762
se 34.376 0.034 0.369
length 38.727 0.078 0.453
p — value 0.032 0.347 0.000
IPW nonpar
Bj —76.822 0.038 1.758
se 33.606 0.033 0.352
length 41.121 0.081 0.441
p — value 0.024 0.261 0.000
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Table 7c Estimates, standard errors, length

of confidence intervals and p-values for 7 = 0.75

b1 B2 B3
complete
B; —91.565  0.039 2.116
se 22.671 0.033 0.298
length 107.832 0.141 1.086
p — value 0.001 0.239 0.000
IPW par
B; ~89.730  0.039 2.803
se 28.715 0.033 0.303
length 93.223 0.132 1.025
p — value 0.002 0.244 0.000
IPW nonpar
B; ~96.633  0.040 2.077
se 29.267 0.033 0.297
length 107.902 0.133 0.928
p — value 0.001 0.229 0.000

Table 8 Sample and p values of the statistic D (6%)

Complete IPW par IPW nonpar
7=025 243 0.007 2.12 0.017 2.10 0.017
7=050 251 0.006 2.18 0.014 2.17 0.015
7=0.75 246 0.007 2.15 0.016 2.14 0.015
Table 9 Comparisons of R,
unrestricted restricted

R} 55, 0.423 0.321

R§ 95, 0.441 0.323

Rjosn, ~ 0.432 0.322

R} 50. 0.487 0.397

R} 05p 0.496 0.403

Rysonp ~ 0.494 0.402

R} 75, 0.542 0.445

R} 75p 0.559 0.452

R§75,,  0.551 0.450

o4



<X T X T
e Cae
o o
o i o —
o | o |
b T T T T P T T T T
00 05 10 15 20 0.0 05 10 15 20
X3 X3
<
[ep]
N

1

-1

Figure 1: Nonparametric quantile (7 = 0.25,0.50,0.75)
estimates of the varying coefficients cos (7X3) and X2
with no missing observations, n = 100, ¢ ~ N (0,1)

(left column) and € ~ x3 — 4 (right column)
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Figure 2: Nonparametric quantile (7 = 0.25,0.50,0.75)
estimates of the varying coefficients cos (7X3) and X:)?

with 40% MAR observations, n = 100 and € ~ N (0, 1)
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Figure 3: Size adjusted power of (4.4) for the 3 nonparametric quantile estimators
based on the complete case (solid line), the parametric IPW estimator (dash line)

and the nonparametric IPW estimator (dash dot line) for n = 100.
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Density of the distance statistic, t= 0.25

0.00 0.15

Density of the distance statistic, T= 0.50
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0.00

Density of distance statistic, t= 0.75

0.20

0.00

0 5 10 15

Figure 4: Kernel densities of the distance statistic of Proposition 10,

dash dot line corresponds to b = b/2 and dash line corresponds to b = 3/2.
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Figure 5: Contour plots of the finite sample power of WP?: The dash dot line
corresponds to the complete case estimates, the dash line corresponds to the
IPW nonparametric estimates and the continuous line corresponds to the

IPW parametric estimates.
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Figure 6 Nonparametric quantile (7 = 0.25,0.50,0.75) estimates of the wind effect
on ozone layer

10 Supplemental Appendix

10.1 Proofs

Throughout this appendix we use the following abbreviations: ”"CLT”, ”CMT” and ”"LNN” denote,

respectively, central limit theorem, continuous mapping theorem and (possibly uniform) law of large
numbers. We also use ”CL” and "QAL” to denote, respectively, the convexity lemma (Pollard 1991)
and the ”quadratic approximation lemma” (Fan & Gijbels 1996). Finally, we use the following identity
(Knight 1999)

pr(x—y) —pr(x) =

Y
—y(T—I(x<O))+/O (I(z<t)—1I(z <0))dt

(10.1)
Proof of Theorem 1. Let 7 (Zy;) := m;,

Wi = (X7, X5 XT (Xai —ws) /0]
ef = Yi — XTi80r — X3, (ar + by (Xa; — 23))

7o = ()2 [ (8 — Bor) . (@ — O (23))T . (br — Oy () "]
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and

_ oy . Wiy ]
Rn(7r77r7$3):z¢[ﬂr<€¢— . >—Pr(€i)]Kh(X3i—1’3)

im1 (nh)1/2
denote the normalized local objective function @y, (8-, ar + b, (X3; — x3),7) Kp (X3; — x3), which can

be written as
R, (’YT’ 7?5 !T?)) = Ry, (’YT’ 70, I3) — Ry, (’YT’ 7?’ 1"3) s

where

S ., Wl i
Rln (’7’7'7 0, ‘r3) = E E [p'r <€i - Z)’ly/2> - Pr (gi )] Kh (X3Z - x3) )
N 7 n

=1 ( h
L6 (R — o) . Wiy .
Ray, (77777,353) = ; T’T"Oz Pr| & — (nh)1/2 — Pr (51) Ky (X?n - $3) .
By (10.1), we have
7T —~ b /
Ry (Ve T, 23) = ——= —Wipl () Kp (X33 — x3) + St (v, 70, 73)
n (V7 70, 23) (nh)lﬁgﬁm pr (€7) Kn (X3i — x3) + S1n (7, 70, 23)
where pl (1) =7—1I(-<0), and
n W;T"/T
0 [(am)i/? : x
Sin (7, ™0, 3) = Y o (I(f <t)—1 (e} <0)) Kp (X — a3) dt.
i=1 070

By the consistency results for kernel estimators of Masry (1996)

logn\ /2
Sln ('77'7 0, 1'3) =F [Sln (77') 70, 1’3)] + Op << Tlgh > ) (10.2)

uniformly for 3 € A3. Let ¢ (v3) = 0o, (X3) — XJ (ar + by (X3 — x3)); by iterated expectations
E [Sin (7, m0,23)] = EE [Sin (77, 0, x3) | X;], so using a Taylor expansion we have

n VV,LT’YT
iz
E [S1n (7m0, 73) | Xi] = Z/< U (Fex (Sir (w3) + ) — Foypx, (Sir (23))) K (Xsi — 23) dt =
i=1"0
T

n W2 vyr

(nh)1/2 -
Z/ feix; Sir (3)) tK (X3 — x3) dt,
i=170

W,L'T’YT
where G;; (23) is the mean value between 0 and ¢;; (x3)+t. Adding and subtracting » ;" ; OW”I/Q fei1x, (0) X
tK;, (Xgi — 1‘3) dt

W?'YT W;T"/T

n —_— n

n 1/2 = n 1/2
Z/( U Faix, G (w3)) tKG (X3i—$3)dt—2/( Y fe g, (0)EK, (X3 — w3) di| <
i=1"0 i=1"0

cH~L -
—_ . W®2 K (X3 — =0 h2
S0 S ;k” (23)| Wy Kpy (X3 — x3) = Oy (R?)
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for some C' > 0, hence

1
E[Sn (7, m0, 23) | Xi] = 9 :;Th Z f51|X %‘Kh (Xzi —23) +op (1), (10.3)

and by a standard kernel calculation

BB [Sn (e, 70,75 1X]] = £ fx, (23) 475 (23) - +0(1)

where
xX&2 X1 XTI Oy
S(x3) = EQ fax (0) | (X3 X2 0, |[Xs=a3,p. (10.4)
ng Opp HQX?Q

Combining (10.2) and (10.3), we have that

Rin (7, 0, 22) = 1/2 Z ) K (X3 — x3) + fX3 (23) 7S (3) 7+

1/2
0, ((logn )

uniformly in z3 € X3. Note that for m; = m; (@) - that is for my; estimated parametrically-

- o; Om; (a) * WiT’YT *
Z;Zg o [Pr <5i - ()2 — pr (e7) | Kn (X3 — x3)

i=1
=0, (n72) 0, ((00)/?) = 0, (1)
by A4, where @ is the mean value, whereas for mp; estimated nonparametrically

= 51 * WiT’YT *
Zﬂ? [/’T (51' - (nh)1/2> — pr (51)] K, (X3 — x3)

=1
logn 1/2
:O<<nbdm<z>) +02) 0y ((nh)!7?) = 0 (1)

by A2 and A5. Thus Ry, (7,7, x3) = Rin (7, ™0, x3) + 0p (1) and since Ry, (-, ™o, x3) is convex in 7.,
by CL and QAL the minimizer 7, of R, (v, 7, x3) is

|R2n (’YTyﬁiam?))’ é Ha_a(J” +0p (1)

|Ron, (Vr, Ty x3)| < sup || — mos|
Zoi€EZ

1 "5
W;WWZ pr (€7) Kn (X3 — x3) + (10.5)

logn 1/2 9
0, ( (M) 4] + 00,

Vr = — (fx, (w3) X (w3)) "
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which corresponds to the Bahadur expansion for the local linear estimator of 6y (x3) that is uniform in
r3 € X3. Note that

E| LWl (e) Ky (X5 — 23)| =0,
E |

v0X1®2 voXlXQT 0
v Xo XTI v X$? 0 Xz =3¢,
0 0 v X2

Var [5Wp; (e) Ky (X5 — xg)} ~ fy () B T
o o
+o(1),

and that by iterated expectations, a Taylor expansion and the fact that ¢, (z3) = X7 0} (x3) (X3 — 23)? /2+
op (h?)

E jow (P (%) = pl (e)) Kn (X3 — a3)| = EE [W (Fyx (sr (3)) — Frx (0)) Kp (X3 — 23) | X3]
2 X1XT ko
= =5 fxa (23) B q feix (01X) X$ky | | X3 =3 9 05, (x3) +0(1).
OPP

Furthermore, it can be showed that
1) N )
Var [WOW/J'T (e") Kn (X3 —x3) — ;OWP/T (e) Kn (X3 — 503)] =0 (h?),

hence the conclusion follows by CLT and CMT. m
Proof of Theorem 2. By (10.1) it follows that

32 e (Y= XER = XE (b (= 230 -
i=1

U
pr (Vi = XT3 — XF, (ar — by (X — 25)))] K (X5 — 2)|| = O (11/2) = 0, (1),

hence using the same arguments as those used in the proof of Theorem 1, it is possible to show that,
T T
for Wa; = [X3, X3, (X3: — 23) /h]" and 4o, = (nh)'/? [(aT — 0o (23))" b (br — 0}, (mg))T] ,

n

~ 51 * WZ; T *
R, (72%7771'3) = Z ? [Pr (Q - (nz;f/Q) — Pr (61' )]

=1

can be approximated uniformly in z3 € X3 as

I & o 1
mﬁﬁ 75 2 o Waith (€0) Ko (Xoi = 23) + 5 iy (3) 23 diag (1, 52) © 3 (w5) 72r+
=1

op (1),

Ry, (y2r, Mo, 22) =

and the conclusion follows as in the proof of Theorem 1. m
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Proof of Theorem 3. Let

= Y; — X%B0r — X210, (X3:)
’yﬁﬂ' = n1/2 (67' - BOT) 3

and let

n

R, (7[3.,-,7&') = Z ? |::07' <5i - ;1/26 > — Pr (Ei ):| )

=1

denote the normalized objective function @, (BT, 57, %,-). Similar to the proof of Theorem 1

~ — §; ) Xiis,
R, (’)/BT,TFZ‘) = Z E |:ﬂ'r (82‘ — Xg; (97 (X?n) — 00 (XBZ)) - 711/25 > -

i=1

pT(Ei—4Y£(g%CX%)—‘@ﬂ(xhﬁ))}_
i 9 (i — moi) [PT <5i - Xa (57 (Xsi) = b0 (X?’i)) - XnTJfT) -

TiT0i
i—1 11007

Pr <5i —- X7 (677 (X3:) — br0 (X%)))}
= Rin (’YﬂT,ﬂ'OZ,Q ) + Rop, (’Y[mﬁy@) .

Again by (10.1)

T n
~ Y O =N
Hin <75T’7TOZ"HT> - nf/Tg > :?;Xuplf (€i) + Sin <7&T,7ro¢,07> , (10.6)
i=1 "

where

o Z’YT
Xﬂ%@wﬁmwwﬂ-bg 5;

Sln 76777707;7@\7 = / R —_— (I (87; S t) — I(gz S O)) dt.

Similarly to (10.3), we can show that

T n
175, V3, ~
E S (75,700, 0r ) | = 52 wax (0) X5, =223 Fegx, (0) XX, (67 (Xi) = 0r0 (X)) +0 (1),
i=1 i=1

(10.7)
so that (10.6) can be written as

T n
o L%,
Rln (7,87—777-017 ) 16/2 E Xlz Pr Ez 5 fL E fgzp(Z (O) X1®7,)27§-,-_
=1

WBT mex ) Xs; ( (X3:) — 070 (X37;)> + Q1n (’YﬁT,WOi,§T> +op (1),

where

‘an ('7,87— s TT0%5 é\7')

= |1n (18, 700,8:) — B [S1n (15,700, 8:) || = 0 (1),
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since

E [an (’wﬂﬂom ar) 2] < nESy; (’YﬁT,WoZ’, @)2 = (10.8)

~ T
X (07 (Xas)~0r0 (X31))+Ai08m
nk / Pr (0 < |&i| < max ([t],|u]) |X) dtdu

Xg; (é\T(Xgi)—eq—O(Xiii))

T v®2
V5, %18 Y6+
<nE [Pr(0< el < | Xl ) (Xai) — Or0 (X3) H Ko | ) K e
nl/2 n
=o(1)
as both‘Xh’ygT/rLl/2 0. (X3;) — 00 (X3;)|| are op(1). Let S = [Op, I, Oppl; then by (10.5) we

have

~ o) .
R, (76777707,7 T) 15/2 Z Xlzpq— 51 )| X (0) X%2’Yﬁ7_

V%, _

nf/Z ZmeXi (0) X15X5:S (fxy (X3i) = (X31)) ™" X
i=1 j=1

05

2
T logn
(X5, X3;,00]7 ol (e5) Kn (X35 — Xs1) + O, <n1/2h5/2 + <nh2) ) ;

which by LLN and a standard U-statistic projection argument simplifies to
Vh = b

. ; -
Ry, (’YﬁTﬂTou 97) =i 2 i (X1i — @ (X3)) pr (1) + 7, D278, + 0p (1), (10.9)

where

_ T
¢ (Xi) = B [fx (0) X1 X7 | X3 = X3;] S5 (X3,) " [XT, X%, 07"
For Ro, (7@7,@, 57) note that

n (s ) T .
o (170 =32 (7?; ) [foz X (&) + S (75,.0-) | +0, (1)

i=1 07

S ] e s ()] ¢ o 15 <,

where .
= n Xgi(é\r(xsi)—&o(Xsi))-i-X%ng
San (78,,0-) = / " (I(e;<t)—1I(g;<0))dt
3 ( B ) ; XTI (0-(X3:)—0-0(X3:)) ( ) (& )

and

T (9. Xﬂ’yﬁf
T(07(X3:)—0-0(X3:) )+ 73

Qm(m,m,) Zn:& _Wo’ /X( T (I (gi <t)—1I(5; <0))dt—

i=1 7r01 XT (07 (Xs:)—0-0(X3:))

(10.10)
B [ (357}
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For the case where m; = 7; (@), the Cauchy-Schwarz inequality, LLN and a similar argument to (10.8)

9\ 1/2
) X (10.11)

2\ 1/2

(1<)~ 1< 0) it E | s, (35,8

imply that

1 Om(«)
mi(@) da

‘QQn (’Yﬁ-r 5> Tis 7')

i 1a€A

<2 (Ha — ag)? Zsup

T
XiiWﬂT

s, XT(0-(X30)—0r0(X3:) )+ nl/2
>l

i=1

XT(0-(X3:)—0r0(X3:))
=0p(1)0p (1).

For the case where 7; is estimated nonparametrically, a standard kernel calculation, (10.8) and the

Cauchy-Schwarz inequality imply that

<2 (Z 7 = WO" ) (10.12)
7T01

2\ 1/2

5 N
I <t =T < 0)d— B | 2 u, (5.8
05

‘QQn (’YBT 5> Ty T)

1ZWﬁT

n s X (B (Xsi)—0r0(Xsi) )+
e

i=1

X2 (07(X3:)—0r0(X3:))
-0, (n1/2b2) 0, (1) = 0, (1).

Combining (10.7), (10.11) and (10.12) yields

Ro (’Yﬁfﬂ?u @) _ Zn: J; (%;é T0;) !leg/f? (Xlip;_ (ei) — o (X;) pl (si)) + 7%722757 +0,(1).
i=1
Thus, by CL and QAL, we have that 73, = Z;lc + 0p (1), where
1/2 Z <7T02 Wgzm)) (X1i — ¢ (X3)) Py (£0) - (10.13)
For m; = 7; (@), a mean value expansion, A4 and LLN imply that
— Z -0 (X, (X0)) (1) = (10.14)

ﬂ—Oz

n Z Xh © (X4)) pr (€4) (agia(ﬁ)) I(ag)™' n!?(@ - ag) =

(Xl — (X)) p7 (1) 9mo
E [ o oaT

] I (azo)_1 # Z 5 (Zoirag) + 0, (1)
i=1
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and the conclusion follows by CLT and CMT noting that

Cov <5Z (X1i — 0 (X3)) Pl (e0) —
T0i

E (Xl — P (X))pj;o(gz) (87'('0/6QT)] I(ao)—l # n . (Z0i7a0)> _
=1
(X1 — (X)) o ()% (X1 — ¢ (X)) Pl (g) Omo
FE o - F [ o OaT] X

ot £ | 12004 amr,

since by iterated expectations

{2 (- e () (e [ [(EL 2N I ]

oo 2 ()] -

X1 — (X)) pl (&) Om _ X—X’Tai(%rT
PR TACL PR (LR AT

Proof of Theorem 4. Given (10.13), for 7; estimated nonparametrically, note that

TN W; ) (3,4~ 0 (X)) L, (=) =
5: — 105) Ly (Zi — Zoi
n3/2 Z Zj o 2 bdlm(zZ)o)fb((Zm,) ) (X1 — ¢ (X0)) pr (e0) +

— moi) L Z — Zoi
n3/2 Z 2 bodlm Zbo f (Zos) ) (X1 — @(Xz'))PIT (ei) =

I/QZ 00 5 [(Xs — (X)) () | Zot) + 03 (1)

The conclusion follows by CLT and CMT since by iterated expectations

(0; — moi)

T0i

E Lfo (X1 — ¢ (X4)) pf (e4) E (X1 — ¢ (X))l (20) | Zoi] T | =

B [F (- () 4, (912,
|

Proof of Theorem 5. First note that

1

kAJI k x
wp [P 0as) _ 9 olas) o

ps o4 ot opk

)l = 0,(h* +
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for k = 0,1, by the same arguments as those used in the proof of Theorem 1, and this rate can be
made uniform in 8 € B by A6'(ii) and of order o,(n'/*) by choosing a suitable b. Next, by the uniform

consistency of 7; and the boundedness of m;
My (Br, 05,005, /0BT . &) = My(By,05,, 00, 0BT, 7) + 0,(1) <
1 — ~
=" MilBr, 05,005 /05T,
i=1
and that for all 51 € B, OTT € 0Op

1M;(8L,0%,, 007, /OBF) — Mi(Br, 05,005, /0BT)|| < (10.17)

) , (00 (Xsi) 067 (Xs) .
(X0 17+ 1] X2l 17 [ ] Py 957 1P Dok (Y; — XTi81 — X3, ﬁT(Xzz))
90 (Xs:) (X3i)
v vTp _ xTpt ) 112 112 Br v 1 2
pr(Yi — X3;8- ZzeﬂT(XSZ))H‘(HXhH + || Xail| <H aBiT 85T |
oy (Yi — XT8, — X500, (X3:)) — o (Vi — XT8, — X500, (Xa:)|+
90} (X31) 995, (X
Xi 2 X’L 2 B‘r ,87' 37/ 2
(X1l =+ | X4l | (Il ) opT |
3
1P (Y = XT3 = X307, (Xai) = p (Vi = XT3 — X305 (Xai))| := D P,
j=1

We only consider Ps as the two other terms can be dealt in the same way. For all € € (0, 1] by iterated

expectations and the differentiability of Fyx(-)

E  sup sup Py < E(|| X1l + || Xl [?€%) (Fyx (X180 + Xg;%f (X3i) +€)—
161, 65 |I<c 1067, /0BL" 005, /0BT I|<e T

Fy x (X{;8; + X505, (X3) — €)) < Ce
Notice that by (2.7)

E(M;(B;,0s,,005. /05T ®2
( ( 827’,:[1 2 / )‘ﬁT:BOT - _E(fE|X(O) <X1 + 8BTX2> )’

hence (3, is uniquely identified. Let {5, : k = 1,..., K1} be an e-cover for (B, ||-||) and {01, 00,1/0B:
k,l=1,..., Ko} denote an e-cover for (Op,|| - H@B). Then by (10.17) for any

05, (X3)\ "
P00 ) Xl Y = X8 — XEi, (Xa0)
)

j=1,..., k there exists k1 € {1,..., K1} and [ € {1, ..., K2} such that

Mi; (B, 05,095, /08") = (X1 + <

|Mij(Br,05,,003, /0B ) — Mij(Briy, 03,1, 00,1, / 0Bk, )|
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is bounded by
sup |M3;(81.0% 00T, /0BL") — Mij(Brt 05,1, 0051, /0B, )| =
BI,Q;T’(?eBT /aﬁIT||5j’_6Tk1“<€7 "

10}, ~605.1,lless <c. 100" /08T ~08.4, /06T, <
bi(Briys08,1,,095,1,/0Brky » €)

hence

M;j(Briy» 051, 005,1, /OBrky) — bi(Brky» 0511, 0051, /OBriys €) < Mij(Br, 05,005, /0BL) <
M;;(Briy»08.1,,008,1,/0Brky) + bj(Briy» 08,11, 0081, /OBrk, , €)

and (E[bj(Brkys 0p.11,005.1, /0Briy, €)]2)/? < Cye'/? for all By, 01y, 0071,/0Brr, and all € = o(1).

Therefore

{[Mij (/BTkl ) 95711 > 80[3711/867%1) - bj (/BTkl ) HBTll > aeﬁfh/aﬁﬂ#ﬂ ) 6)
Mlj (5Tk17967l1780,37l1/aﬁk1) + bj(B’Tkla 6571176967—l1/aﬁ7—k176)] : kl S {]-7 ceey Kl}a ll S ]-a ceey K?}

forms a § = 2C;e'/2 bracket for the function class {Q; = M;;(83;,05.,005./0BL) : B, € B,0s.,005, /08T
Op}, hence

0 1 0 1
N0 Q5 les) < N (g2 Bl D) ¥ (I 0l ).
where Nj(-) and N(-) are, respectively, the bracketing and covering numbers (see Van der Vaart & Well-
ner (1996) for a definition). Since N ([QLC]_]Q, B,||- H)) = O(exp(Cy;6"/1) and N ([QLCJ_]Q, O, Hoo) =
O(exp(Cy;6'/52)) for ©p = CF,(X3), the bracketing integral o~ (log (N (6, Q;, 1] - |]L2(p)))1/2d(5 is finite,
hence by the Ly boundedness of the brackets b;(5rk,,0s,1,,008,1, /0B, , €) imply that for all €, = o(1)
sup Mo (Br. 05,095, /05T) — M(B;.,65.., 065 05T)— (10.18)
[|Br—Bor||<en, |83, —0or||<en

1005, /05T =000+ /0BT ||<en
MTL(BOT) 007’7 8907/85Z)H = Op(n_l/z)

We now establish the n'/2 consistency of 2. Let e, = o(1) such that Pr(||32— Bor|| > €n, |05, — bor|| >
€n,s \|8§5T /0BT — 000, /0BL|| > €,) — 1, hence it is enough to consider the restricted parameter spaces
B, ©p,. By A6’(iv) and the triangle inequality there exists a C' > 0 such that || BE — Bor|| is bounded
by

1M (B2, 007, D00 /0BT, ) — M (B, B5,,005, /05T, )|+ (10.19)
1M (B2, 85,., 085, /0BL, m) — My (B, 85,005, /08T, m)+
My (Bor. b0, 000 /0BT, )| + [| M (B2, 05,., 005, /0BT, mi)|] + Op(n~1/?),
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where the Op(n_l/ 2) term comes from the asymptotic normality of M, (8o, 0or, 000, /0BL, ;) shown
at (10.20) below. Since Pr(32, é\gT, 8557/85; € B. x Op.) — 1, the smoothness of M(-) in 3;, 05, and
995, /0B implies that the first term in (10.19) is bounded by

" 805, 6o,
C103. = borllb, + 11557 — 57 8s)+

- 000- (X -
My CEE B+ X (Xat) = e (0)) 0615+ 208 21132 — i ) =

op(n~) + 0p(1)[1B2 = Borll,

By (10.18) the second term in (10.19) is bounded by
0p(1) (g + M (B2, B, 085, 05T )| + 1M (B2, O, DB /05T )1+ 0y(1) + Opln™ /%)),
Since M (Bor, 0o, 000, /0BT, m) = 0, it follows from the above that
M5B, 085, /087 I (1 = 0p(1) < 0p(1)|[M (Br, o, Db /5T~
M (Bor, Oor, 000 /057 )| + Op(n~1/?),
where all the 0,(1) and O,(n~'/2) terms hold uniformly for 3, € B, hence
182 — Bor|IC < [|M (B, Bor, 0b0- /05| < Op(n™1/?).

Let

000+ (X3;) T

= 52 / /
Ta(rm) = 1 3 20— X0~ XEur (X)) X1+ (P55 ) ) + 2, — o)

i=1 "t
by the n'/2 consistency of 32 and (10.16)
|| Mo (B2, 05,00, 005, /0BT 7i) — Tu(Bry )|l < [|M(BE, 03,00, 005, /OBL) — M (B2, 807, D00, /0BT +

M (B2, 607, 0+ /OBT) — Sa(BE — Bor)|| + || Mo (B, Bprauss 005, /OBT) — M (BP, 6,00, 085, /OB ) —
M”(BT? 907’, 8007/8ﬁ2)|| = OP(TLI/Q).

Similarly,
|| M, ( T 95778957/867 () — Tn(@ﬁz’)H = Op(nl/z)v

where

1/2(5 ~ Boy) = -3 7Tz—7Tz) (e X 9or TX. 10.20
or) = 4 1/22 (pT(El)( 1i + aﬁ; 2@), ( . )

Z

where B is the minimiser of T',(3;,7;). The asymptotic normality of (10.20) follows by the same

arguments used in the proof of Theorem 3. Next we show that n'/? (Ef BY) = 0,(1). Since AP almost
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minimizes || (B;,7;)|| and B is the minimizer of ||Ty (85, 7)||, we have ||Tn (B2, 7)|| = [|Tn (B, 73)|| +

op(n -1/ 2), so squaring both sides and using a simple expansion

10 (Br 7)I1% = |ITn (B T2 + 1124 (B2 — B2 + 0p(n ™)

which implies ||£4(82 — B2)|| = 0p(n~1) and by A6°(i) [|32 — B)|| = 0,(n~'/2). The conclusion follows,

since it can be easily seen that

000, (X3:) _

9 E(fx(0)X2X5 | X3 = X3) ' E(fox(0) X2 X{ | X3 = X3:).

Proof of Theorem 6. By the same arguments used in the proof of Theorem 3 we have that, condi-
tionally on (Y}, 0is XiT):.L:1
i—1 0 [ < nl/2 —pr (&) -

Rﬁn ’Yﬂﬂﬂ-z Z
7TOZ sk X%;'YBT sk
| & — — pPr(&;
Z %m [p <, ) e @)

= Re1y (18, m0) + Rean (V5. 7e) -

Using the same arguments as those used in the proof of Theorem 3, we have by CL and QAL that
:}/\557_ = 22_1@, where

o= o o6 (= M) OOt )

For 7; estimated parametrically it follows that

n'/? (B\: - BT) 22 1/2 Z Xlz 20.6)) p;- (€i) —

X1 — (X)) p- on a1
E[( 1 @7(TO ) Py (@aa;}](ao) 1W;S(Zoi,ao)}+0p(1),

since |23~ = 25| = 0, (1) by LLN and CMT, where 33 = E* [ f.,x, (0) X2*] and E* denote

n

expectation conditional on ([YZ, (5¢,XZ-T ]T> , whereas for 7; estimated nonparametrically it follows
i=1

that

n' (B = Br) = 55" mZ (X — 0 (X))l (1) —

1/2 Z — o) [(X1i — ¢ (X0)) o (1) |Zoi]} +op (1),

and the first conclusion follows by CMT and Lemma 2.9.5 of Van der Vaart & Wellner (1996). For the

profile estimator, first note that by (i), the uniform consistency of 7;, the ¢, and triangle inequalities
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and LLN show that

- 80, (X3i)  900,(X3:) 2
Z"Xl - Xy

3\*—‘

IZ4 = 24| < sup |fax,(0) = fouyx: (0)
X, eX

Ny 9o, (X3 \ "
123 2+ (gﬁ(f”) Xa)®? — Bl = o,(1),

i=1 "

hence by CMT Hf];l — ¥4I = 0p(1). By the uniform consistency of kernel estimators ||gP(X;) —
©(X5)|| = 0p(1), hence
. /\ T0;
n 2B - B =5 Zf (2 - 2Em)) (x4, - 2 (30) ).
T0i Toi
and the rest of the proof follows by the same arguments as those used above. m
n
Proof of Corollary 7. Let E* denote expectation conditional on <[YZ, 0is XZ»T ] T) - andlet ¢ = 2+e.
Given Theorem 6, it is sufficient to show that E* (nq/2 ’ Bj — B, q) = O, (1) and E* <nQ/2 H@’f* — B q) =

O, (1) For 7; estimated parametrically, the c_r inequality implies that

n q
* Tk q q—1 * *—11 L L . / .
e (|3 ) <2t B[z n;@ 1) (X1 — @ (X0)) 0 (24)|| +
n q
* *— * Xy — X T 0 1
2| sm [< RECOL ()a;:;] 0 S ) )
i=1
=V + V.

For Vi note that by Jensen, Holder and the c_r inequalities

. n 2/q q/2
s 1|56 - 0o - ot ol
=1

1 n 2/a 1 " 1
<cl=s (n > Xl + Z le (X ”q> 0 (n) =Op <nq/2>
i=1

by A7 and LLN. A similar argument can be used to show that Vo = O, (n*q/ 2) hence E* (nq/ 2 67

O, (1). For 7; estimated nonparametrically, again by the c_r inequality

Z;‘l% Z & —1) ME* [(Xu — 0 (Xy)) P (e4) |Zoi]

i
i=1 0i

>_

q

5 SIS (6 - 1) (X - (X)) A ()| +

=1

E*

)

=W+ Vs
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Note that by Jensen and Holder inequalities

1 n 2/q 1 a/2 1

*— 1k / q

V3 <CH2 [ Xli—(p(Xi))pT (Ez)|Zoz]H (n;’(&—ﬂ'oz”q) 0 <n> —O <nq/2>
hence E* (nq/ 2 ) = O, (1) by A7 and LLN. Similar arguments can be used to show that

E*(nqm\lﬂf*—ﬁfl\ )= 0p(1). m

Proof of Proposition 8. The uniform consistency assumptions and the triangle inequality show that

+

|85 @5 2 @) < sup |Fx, @3) = £, (@5)

I§€X3

1 ¢ i}
72% fel\X (0) X572 Kp (X3 — x3)

X§2Kh (X3; — 23)

P, 0) = Ly, O] | +

nh T

sup | fx, () [sup
$§€X3 X, ex

sup |7 (Zoi) — +

Zoi€EZ

®2 L
nh Z (ZOZ)XQi K (X3i — 23)

+op(1) =

1 - * *
= > fepx (01X0) X52Kn (Xai — 5) — B [ fo1x (0) X5%( X5 = 23]
i=1

0p (1) Op (1) + Op (1) 0, (1) = 0p (1) .

Similarly, we have that Higﬁ (x3) — Xsr (azg)H = 0p (1). Under (4.1), the same arguments as those used
in Theorem 2 and CMT show that

()2 R (87 (23) = Oor (@3)) 5 N (9 (@), R () ™" S (03) s (23) ' BT

hence the first conclusion follows by standard results on quadratic forms in non zero mean normal
random vectors. The consistency of W (z3) under the assumption that (nh)l/ 2 (25) — 00 is a
direct consequence of the previous conclusion. m

Proof of Theorem 9. The proof relies on similar arguments used by Fan et al. (2001), and consists
of showing that D, (6y;) can be approximated by a U-statistic, which, after being appropriately stan-
dardised, converges to a standard normal variate. Note that the same arguments of Theorem 2 imply
that

n 51 R n 61
D% (907) = Z ;PT (Y; - Xl,I;BOT - XQ,J;QT—i (X3z)> - Z fp’r (Y; - X%;BOT - X?EHOT (X3z)) +
i=1"" i=1""

0; (T — mo; ~
; P 0i) (Pr (Yz — X{:Bor — X3,0-—; (Xsi)) — pr (Y — XT3 Bor — X300~ (XSi))) +op(1) =
Dz + Doy + Op (1) ,
where

Or—i (X35) — Oor (X31) = (fxy (X3) B3 (X30)) ' — Y~ Xojpl (1) K (X35 — X3i) + 0p ((nh)—l/Q),
¥

(10.21)
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By (10.1)

Dy = Z X2Z (97 i (XB’L) Bor (X31)> ,Ofr (51) +
1= 1
n 7— 1 X31 GOT(X3i))
Z / (I(e; < 1) — I (5 < 0))dt = Di1x + Dion.
T0s

Using (10.21)

116

Diir = Z XzzﬂT €i) (fxs (X3:) B3 (X3i)) ™ (ZX%PT( 5) Kn (X35 — X3i) =
]

—Z XzzﬂT ei) (fxs (X31) B3 (X3i)) nhz i XzJPT £j) Kn (X3 — Xzi) —

Z XzzPT &i) (fxs (X3:) ¥3 (X3:)) nhzw Xoj (0 (£5) — 0l (g5)) Kn (X35 — X3i) :=
0j

D117 + Di1or

and

n
Dior = — Z Xzzpf ei) (Fxs (Xa1) T3 (X)) Z { L Xa; (o) () — £ (£5)) Kn (X35 — Xai) | -
j#i 07

1
Z XszT i (fX3 (X3Z) 23 XS@ ! 7h Z { X2j pq— ) p;— (5j)) Ky (ng — X3i) —

i
5; .
E [m]?@j (0 (£5) — pi (g5)) Kn (X35 — X3 ] } D11217 + D1122r-
j

By the results of Theorem 2 and a standard kernel calculation we have that

Do = Z X27, pr (€i) 057 (X3i) k2 (1 + 0, (1)), (10.22)
E (D11227r>2 =0 (h),
so that

Disar = /202 3" 2EXE g (2 05, (Xai) ko (1+ 0, (1) /!/2 2= /2023, = O, (n'/282)).

Next, by iterated expectations

21 T 7 X3’L) GOT(X?)Z))

E (Dioy) = ZE / (Fuypx, () = Fuypx, (0)) dt =

5 ZE [ 1%, (@4 (X3i) — Oor (XSi)) X352 <HT i (X3i) — bor (Xgl)):| ,
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and
E (D19x — E (D127))*> < nE (D12i)2 <

T 7 (X3Z) - 907’ (XS'L)

T—1 (X3Z) - 007‘ (X?n)

1) ) Xl

nE (Pr (=i (0 < feil < X212 2) — o(1/h)

hence Di2r = E (Di2x) + 0p (h’1/2). By (10.21)

24
=1

E (Di2r) = EZE |:fglxz 0> nlh % ng Py (85) (fxe (Xai) Sz (Xai)) ™" X577
J#i

n

Z nlh fk (Fxs (X3:) B3 (X3:)) ™" Xowpl (ex) Kn (X35 — X3i) Kp (X3, — X34)

! > E [fsle 0 16ijsz (P (£5) = Pl (£5)) (fxa (X3i) S (X)) ~H X577

Di21x + D122x + D1231.

For Digor and Diasr, similar to (10.22), we have that

h4
Disse == "B £, (0) 8, (X" X565, ()] [ [0+ 9 K O K (¢4 5)dbds 40, (1)
i= —nh*Tyr = O, (nh?),
1/2h2 n 9 1/2
Diggr = — Z XQHele (X3:) | [ (t+5)> K () K (t+s)dtds (140, (1)) /n
= —nl/QhQTgﬂ.
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For D121,

Digr = — L 3" (6>E
1217 = 5 (nh)? 2 \m,
(fxs (X3:) 23 (Xsi))_l XojKj (X35 — X3z‘)] +

nh22

J#k
Jik#i

(Fxs (X30) 23 (X3:)) " Xoppl (en) Kp (X35 — X3:) K (Xap, — XSi):| := Di9115 + D12121

Xoi0, (e5)% (fxy (Xsi) T (X)) 1Zfz|x (0) X5

X350 (25) (fxs (X30) B (X)) lzfsl\x (0) X552

Op

Tk
Note that D12115x can be re-written as

Dioiir = 2 (nh)? ZZ <7r0 ) 205 (£5)° / [(fXg (X31) T3 (X)) ™" B3 (X) x

j#i =1

(Fxs (X3i) B3 (X33)) ™ Xoj K7 (X35 — X3z‘)} Ixs (X3i) d X34,

and that
Var (Di211r) < 4h2 //trE [( ) (fxs (X30) B3 (X3)) 2@}2\ng> X

1
K,2L (ng — X?n)] f)2(3 (X3j) dX3idX3j =0 (nhz) ’

hence Di211x = E (Di211x) +0p (h_l/ 2), and by iterated expectations and a standard kernel calculation

we have that

B (Diorie) = 222//# (E

| X1, Xgj] K7 (X35 — X33)) fxy (X3i) fxy (X35) dX3,dX35) =

thg//tr |:(fX3 (X3:) 23 (X30)) " (s (X30) B3 (X31)) (Fxs (X30) B3 (X))~ x

N2
<7f]> P (e5)” (Fxy (Xai) B3 (X30))™F X577 %
0j

T(1
E [HX@QIX@] Kjy (X3j — Xa:) fxy (X35) dX5id X35 =

// ( [ o )(fX3 (X3i) X3 (ng))—ng?ﬁng =X3¢+th] K2 (1) dthgZ') _
2h tr <E [7—(1_7)23 (X3)7! X§®2‘X3] kodXs3 (1 4+ O (h))) -

0
t'rE[ r(1-7)

o | (%) (Xs)zg (X3)1X§®2} ko (14 0(1)).
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For Dj219, since K () is symmetric we have by a standard U statistic argument

Di212r = h2 Z . ngpr &) (fxy (Xs1) B3 (X)) ™! h/fX3 (X3i) 212 (X3:) X

X3 — X3, :
Ky (t) K (‘”’h?’ﬂ —i—t) dtﬂ(_s—szij/T (e5)(1+0(n) =
0j

5.
—1
nh} ijmpT er) (fxy (Xa1) B3 (X)) " Ko+ Ko <X3i—X3j>;;jX2ij; () +0p (1)

Thus
U 1 T(l — 7') -1 2 1 _
Diy = —- —F|———— %3 (X3) 7 XY 20 (Tir — Tar) — nh*Ton ( 1/2)
=515t o [Wofx3(X3) 3(X3)" X577 | ko + 020 (Thn — Tar) — nh*Tor +0p (B :
where
Ur = Z Ui]na
1<i<j<n
Vh
Uijn = ——=pr (€i) P7 (£) Uijm
Uijr = Utijn + Utjin + Usijr + Usjin
and
i 0; —1
Uiijr = Q*OTXQZ (fxs (X3:) 23 (X3:)) ™ Xoj K (X35 — X3i) s
j
(5 0; _
Usijr = e ; X735 (fxs (X3i) D3 (X33)) ™' Xoj K # K (X35 — Xai) -
j

To show the asymptotic normality of U, we check conditions C(i)-C(iv) of Proposition 3.2 of de Jong
(1987), that is C(i) E (Uijn) = 0, C(ii) Var (Ux) converges to a finite quantity as n — oo, C(iii)
Gr=31cicj<n B (U;ljn> is of smaller order than lim,_,., Var (Uy), C(iv)

G = Z ( (UZQJnU ) (UJ%WUJ]‘C”) +E (U]?mUlgjn))
1<i<j<k<n

is of smaller order than lim, o, Var (U;) and C(v)

Grir = Z (E (UijnUitnUiinUtin) + E (UijnUinUkinUskin) + E (UikenUitnUjienUjin))
1<i<j<k<i<n
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is of smaller order than lim,_,o, Var (Uz). C(i) is true by definition; to show C(ii) note that

—1 2
E (Uyijn)® = %tr (E <MX§>2> ko (1+0 (h))) ,

E (Uijx)* = E (U)?,
B Uy = 17 (E <23(X3)_1X§®2>2 / (K% K (£)*dt (110 (h))) ,
E (Uzijn)? = E (Us;)?,
E (UrijnUsin) = %tr (E <WX§®2>2/(K;L « Ky K (8)) dt (1 + O(h))) ,
so that

9 2 T(1—7) _ 2
Var (Uy) := o2 = Etr (E (77()fX3(X!3)23 (X3)~" X§§>2> /(QKh (t) — K, « K, (t))? dt) +o(1).

To show C(iii), note that by a direct calculation

E (Uwijnpy (e0) p (£5)) = O (h77)
E (Usijrply (e3) oy (£5)) = O (R72)

which implies that E (U~4~ ) = h?0 (h™3) /n* = O (1/n*h) = o(1). To show condition C(iv), note

ijn
that E (Ul?jnUl%m> -0 (E (U;;n)) — 0(1). Finally, to show C(v) note that for i # j # k # I,
/ / / / 1
E (U1ijrUrjknUriinUniin 0 (€3) 0 (€5) y (e) P (e1)) = O (h) ;
/ / / / 1
E (Ulijﬂ'UljkﬂUllerUQIiwpr (52) Pr (gj) Pr (gk) Pr (5l)) =0 <h> 5

1
E (U1ijnUsjirUskixUatinly (€5) i (£5) Py (k) Pl (€1)) = O <h> :
1
(1)

1
E (U2ijrUsjinUopinUniin 0 (€3) 0 (€5) ly (ek) P (e1)) = O <h> ,

E (UtijnUsjkr UainUniin 'y (€3) 0y (€5) 0l (k) £y (€1))

so that E (UijnUjknUkinUiin) = h*0 (1/h) /n* = O ((h/n*)) = o(1); hence by Proposition 3.2 of
de Jong (1987) we have that Uy 4N (0,Var (Uyg)). To deal with the second term Da, note that

Dlﬂ'

T0i

| Doy | < Sup|(ﬁ2 — 70i)| ‘ +op (1) :SU;pK%i —7T()Z')|Op (1)+0p (1). (10.23)
7 7
For my; estimated parametrically

sup |(7; — moi)| < ||@ — apl| sup sup
7 a€A i

-0 o o)
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whereas for mp; estimated nonparametrically, sup, .. |(T; — m0i)| = 0, (1) by standard results on the
uniform convergence of kernel estimators. Thus

D7r (007') = D17r + Op (1)
and the conclusion follows. m

Proof of Proposition 10. First note that without MAR

0, <X3Z»> — 0o (X3i) = (Fxs (X3i) B3 (X3:)) " %
1
% Z XQ]pT

) Kn (X35 — X3:) +ZXZJPT ) Kn (X3 — X3:) | +0p ((nh) 1/2>
J#i

= (fX3 (Xsi) D (X3:)) ™"
1

n
— | D Xaipl (<)) ZXWT
_j:i

JFi

) K (X35 — Xsi)| + op ((nh) 1/2)

then, similar to the proof of Theorem 9
1 _
D (bor) = = ZXSQPIT ()% (fxs (X31) T (X)) ™! Xai K (0) —

nh ZXszT El fX3 <X3l) 23 X3’L ZXQJPT

) Kh (Xsj — Xa) + 0y ((nh)~?)
J#Z

= D1 + Ds.
For D; the LLN implies that E (D) =

Var (D) = O (1/nh?), hence E (Dy) =
arguments of Theorem 9 show that

=5 |ty 08 e g (g

2 T(1—1) 1 w2 2 2
= i (E <fX3( )z 3(X3) 7 X ) /(QKh (t) — Kp, * Kj ()) dt)

2102 T(1—7) 2 9
E(fxg( )> /(QKh(t)—Kh*Kh(t))-

The conclusion follows as in Fan et al. (2001)

E(r(1—7)p/fxs (X3)) K (0)/h while by a standard calculation

E(7(1=7)p/fx, (X3)) K (0) /h+o0, (h~/2). For D; the same

.
Proof of Proposition 11. Note that by the triangle inequality and LLN
~ T (Zoi) fxs5 (X3 S T(1-7) ®2
fiz — | < 35 sup |95 (X0) 7" = 25 (X)) H* [ XE2| ot
e el < g | e (x ( )™ ) P, (X)
1< 7(1—1) 1}
X$2%5 (X5, ko — pir | = O, (1) (0, (1) O, (1) + 0, (1)),
I B R L | I R AUCAGEAURRALY
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where

Sy (X3,) ' — 23 (X3,)" " H = 0p (1) by the same arguments used in the proof of Proposition (8).
For T17r the triangle inequality implies that

e2) T (Zoi) — . d; 7
Tz —T1.| < X 9 X
) 17— Tix| < sup %(Zm) nl/g E 7 27 () o (/|67 (X33)|| +
é\;{ (Xgl) — (97. (ng >H /€2+
Y // i A
S 07 (Xsi) — 07 (X3i) 1/2§ Xoip (&) || wat

k2 1= Vig + Vor + Var,

nmz d %o o1 (81) = 1 (<2)

and Viy = 0,(1)Op (1) (1 4+ 0, (1)) and Vor = 0,(1) O, (1) by the assumptions, whereas the same
arguments of Theorem (1), the triangle inequality and CLT imply that

‘/37r < (’ A’r - > ‘ 172 Z XQZPT Ez)

For @; again by the triangle inequality
2
" 1)

+ sup ||6” (Xs;) — 0" (Xs;)

X3,€X3

K2 = 0p (1) Op (1)

~ 1 -
‘TQ_TQ‘ < S sup
8 ¢

1 n
o Xt

0" (X3;) — 02 (X)

(0= £ O (o

X3,€X3

=1
'//tz(t+s)2K(t)K(t—|—s)dtds -
sup |07 (X3;) — 0" (X3) Zf x, (0) X5 //t2 (t+s)* K (t) K (t + s) dtds| +
X3,€X3 ‘

mex 0)0” (X3:)" X220" (X //t2 (t+ 5)* K (t) K (t + 5) dtds — To| = 0, (1)

by the assumptions and LLN, and similarly for T\gﬂ and 3%. [

- ~ - T . 7T
Proof of Proposition 12. We consider only the case 05 = 0;; let ¢ —¢por = [(BT — ﬁ07> , (97 — 0%) ]
and note that

D (65) = Zn:fr: [pT (é‘i - X3 (@-i (X3:) — Oor—i (XSZ’))) —pr (Ei):| +

=1

Zn: (W [Pr (5Z~ - X1 (574 (X3i) — Oor—i (X31)>> —Pr (51)} -

=1

En; i [or (2= XT (6 = 60r ) ) = pr ()] —

1=

> BT (o (e KT (5o ) - e )]

=1

= D3y + Dyr + D5y + Der.
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By the same arguments of Theorem 9 D3, = D1 + 0, (1) and |Dur| = 0, (1); for D5, (10.1), QAL and
standard results on parametric quantile regression (Koenker & Machado 1999b) imply that

k

Ry
Dsr =n 1Z;Xz‘TP/ (i) (B (fE\X X®2 Z XT ' (&) iZAJXJ Op (1),
i=1 "

where \; are the eigenvalues of the matrix E (7 (1 —7) X®?/m) (E (f2x (0) X®2))_1. Finally, again
by the same arguments used in Theorem 9 |Dgr| = 0, (1), hence the conclusion follows as in Theorem
9 of Fan et al. (2001). m

Proof of Theorem 13. Note that under (5.2)

n 52 R
D (00r) = = (pr (Yo = XTifor = XE0r—i (X)) = pr (Vi = XTif0r = XEi00r (Xa2)) ) =
i=1""
> (or (Yi = X{ifor — X5i0nr (Xai)) = pr (Yi = XTiB0r — X5i0r (Xai))) +
1 7

KA
i (T — m0i)
TiT0i

(pT (Yi - X%;BOT - Xg;é\T*i (X3Z)) — Pr (Y; - X%;BOT - X?Eem— (X3z))

M-

=1
Pr (Yz - XEBOT - X?Eenﬂ' (X3z)) — Pr (Yz - le;'BOT - Xg;QOT)) +op (1) =
D77r + D87r + D97r + Op (1) )

and that 6,_; () (centred at 6, (+)) admits the same asymptotic representation as that given in (10.21).

For D7, the same arguments as those used in the proof of Theorem 9 show that

nh*

Drr =Uy — ?E [fg|x (0) vy (X3 ) X§®2’Ym 3)} //t2 (t+ 8)2 K (t) K (t+ s) dtds + op (h_1/2> .

For Dg, (10.1) shows that

21’YTLT XSZ) 6

= _Z Xzz'YnT Xsi) pr (1) + Z/ (I (ei<t)—1I(ei <0))dt =
; n
- Z;;x%;vm (Xai) o (21) + 5 B (fox (0) 9 (Xa)T X529 (Xs)
i=1"""
and finally, similarly to (10.23), Do, = 0, (1). Thus

Dr (0or) = Ur — Z?OXQI;’Y"T (X3i) py (20) + §E (fz—:|X (01X) vnr (X3)T X§®27m' (X3)>
i=1"""

h4
—%E [fE‘X (0~ (X3)" X$24! (X3) //t2 (t+5)* K (t) K (t + s) dtds + o, (h_1/2>—|—0p(1),

and the first conclusion follows by the same arguments as those used in the proof of Theorem 9, noting
that

- 03 T(l—1
Var (ZWO.Xgi’YnT (X?n) /32— (51)> =nk <(ﬂ_0)Xg'Ym' (X3)2® XQ) .
i=1"""
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The consistency of Dz (6p,) follows directly from the assumption that
nhE (f2ix (0) Ynr (Xa)" X§0r (X3) ) = o0,

Proof of Proposition 14. The same arguments as those used in Theorem 3 and CMT show that
5 d _ _
n'2R (B, = Bor ) 5 N (97, RS3'50,55 ' RT)

hence the first conclusion follows by standard results on quadratic forms in non zero mean Normal
random vectors. The consistency of W under the assumption that n'/2+,,, — oo is a direct consequence

of the previous conclusion. m
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10.2 Additional simulations results

This section considers the additional case where only the responses are missing. The missing mechanism

is specified as
exp (a10 + 20 X115 + az0Xo1; + 0 X22; + 50 X3;)

14 exp (1o + a20X11i + @z0Xo1; + o Xazi + a0 X3;)

70 (Zoi) (10.24)

and as in the main paper the percentage of missing at the 7 quantile are chosen to be at approximately
10% and 40%.

Table 8a e, ~ N (0,1), 7= 0.25

n 100 400
bias se length cov bias se length cov
MAR (10.24) 10% MAR (10.24) 10%

Bire 090 .181 .419 890  .073 .094 .254 .903
Bare 105 843 895 898  .083 .438 .484 .905
BP . .088 .190 .423 .892  .078 .100 .253 .890
gb 110 869 .902 891  .085 .440 .490 .902
Birp 030 .189 428 941 015 .095 .220 .943
Barp 070 .825 903 .943  .032 .448 490 .945
BY., 030 .192 910 945  .020 .450 .488 .948
By, 075 190 438 .947 040 440 483 .947
Birmp 030 193 431 942 016 .099 .227 .943

Barnp 072 830 912 .942 036 495 493 .944

Yo 035 200 433 946 020 .095 .225 .947
By ., 080 840 920 .950  .040 .473 478 .948
MAR (10.24) 40% MAR (10.24) 40%

Bire 110 190 415 882  .105 .124 .260 .886
Bore 120 890 917 880  .110 .481 .510 .901
P 129 210 457 .880  .101 .120 .253 .888
pgb. 110 869 .902 891 110 .475 .505 .902
Birp 035 201 431 .942  .025 .095 .220 .944

Barp 079 .838 .905 .945 030 .445 .481 .946

rp 038 .196 912 946  .021 .448 .490 .947
By 078 .830 .810 .946  .038 .438 .480 .946

Bimp  -040 205 445 943 018 .097 .226 .942
Bormp  -080 846 916 .945 035 .493 .490 .942
B ., 037 205 437 947 021 .093 .223 .946

By ., 085 .843 .923 .952  .039 .470 .473 .946
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Table 8b e, ~ N (0,1), 7 = 0.50

n 100 400
bias se length cov bias se length cov
MAR (10.24) 10% MAR (10.24) 10%
Em 096 .170 .390 .894 .075 .100 .170 .900
3270 101 787 .850 .896 .082 530 .452 .901
Afm .090 .164 .386 .897 078 .102 .172 .696
Ach 094 778 .835 .893 .081 .515 .445 .905
//B\ITp .038 .170 .400 .943 .024 .080 .215 .943
Esz .031 .790 .885 .944 .025 .350 .465 .945
Apr .040 .168 .832 .945 .025 .086 .215 .943
ng .040 .164 .930 .945 .030 .363 .210 .943
Brrnp .041 175 .400 .943 .033 .087 .210 .943
B2Tnp .033 .785 .890 .942 025 .368 .472 .943
B\l‘rnp 043 173 .401 .944 .035 .096 .476 .942
Bgmp 035 779 .405 .945 .025 .365 .210 .943
MAR (10.24) 40% MAR (10.24) 40%
B\lm 121 185 .399 881 Jd12 129 199 .894
Bzrc 128 .805 .836 .883 109 596 503 .898
Br 125 189 403 884  .110 .131 .202 .893
gb . 130 .832 .841 .889  .112 .584 .509 .896
//B\lTp 045 183 .407 .941 030 .091 .224 .942
Esz .038 .792 .841 .940 .028 .378 .593 .943
BY., 044 181 400 .942  .031 .087 .221 .942
ng 036 .799 .843 .942 027 375 .590 .943
Birnp 047 184 403 .942 032 .094 .219 .944
B2Tnp .040 .801 .883 .942 031 .396 .496 .943
B, 048 187 405 941  .033 .000 .212 .948
ﬂgmp .041 .803 .875 .943 030 .399 491 .944
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Table 8¢ e, ~ N (0,1), 7 =0.75

n 100 400
bias se length cov bias se length cov
MAR (10.24) 10% MAR (10.24) 10%
. 110 .209 .542 .888  .088 .138 .284 .898
Prre 105 .803 .833 .892  .085 .501 .449 .896
%” 112 214 548 886  .091 .132 .280 .895
. 105 798 .836 .895  .085 .494 445 .893
J2re 055 .208 .418 .943  .030 .110 .238 .946
Pirp 068 .808 .836 .942  .036 .406 .439 .944
%fp 056 .210 .421 .946 031 .105 .227 .943
A 070 .203 .832 .945  .034 .102 .431 .943
é”"” 050 .210 .460 .942 029 112 241 .944
éff”” 069 .811 .836 .944  .035 .403 .433 .945
TP 051 205 454 .941 030 .109 243 .946
Barnp 065 .809 .832 .947  .034 .399 .436 .947
MAR (10.24) 40% MAR (10.24) 40%
Bire 118 228 501 .880  .102 .181 .303 .889
Bare 110 .822 .890 .885  .099 .452 .491 .895
By 121 225 497 878 110 .179 .312 .887
B 111 .819 .887 .880  .102 .447 .490 .894
Birp 058 210 .421 .943  .029 .118 .263 .941
Barp 072 818 .842 .945  .034 .429 .442 .946
Apr 060 .208 419 942  .031 .110 .256 .943
- 070 .809 .840 .943  .033 .420 .440 .945
Birmp 059 213 456 .945  .031 .113 .244 .946
Bornp 071 817 819 943 035 .407 .436 .945
Afmp 061 .210 .449 947  .030 .110 .232 .944
B, 073 815 817 942 036 401 .435 .943
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Table 9a e, ~t(5), 7 =0.25

n 100 400
bias se length cov bias se length cov
MAR (10.24) 10% MAR (10.24) 10%
Blm 094 195 420 .898 .084 .110 .224 .896
BQTC .092 .832 .870 .898 077 510 .496 .891
A{’Tc 092 .198 418 .893 .080 .105 .220 .891
ASTC .095 .834 .875 .897 .075 505 .493 .893
B\lTp .043 .200 .425 .941 .024 101 .210 .945
3271; .040 .812 .882 .942 026 424 .430 .944
BY., 045 197 428 .941 022 .100 .210 .945
Bng .043 .815 .888 .943 026 417 426 .947
Birnp 042 .204 424 941 .020 .106 .210 .945
Banp .044 820 .884 .941 021 504 .432 .944
B, 045 204 434 942 022 .100 .206 .945
Bgmp .044 821 .885 .943 023 496 .431 .944
MAR (10.24) 40% MAR (10.24) 40%
Blm A25 0 .219 455 .878 080 .115 .228 .817
527(; 124 850 .882 .872 079 502 .414 .882
gr. 129 215 450 .878 084 .113 .230 .888
ASTC 127 845 .880 .872 .083 .508 .410 .885
B\lTp 043 .216 428 .941 026 .116 .231 .944
B2Tp .044 818 .880 .944 027 440 .448 .942
BY., 043 208 429 .945 028 112 230 .946
ng .045 810 .878 .944 030 ,434 .433 .944
Birnp 043 .209 437 .942 024 110 .230 .943
B\QTnp .045 .825 .886 .943 .024 508 .450 .945
B ., 043 204 430 .944 ,022 110 227 .945
Bgmp .044 823 .885 .943 028 505 .444 .944

86



Table 9b e, ~ ¢ (5), 7 = 0.50

n 100 400

bias se length cov bias se length cov

MAR (10.24) 10% MAR (10.24) 10%
Bire  .100 .182 .410 .901  .074 .100 .212 .902
Bare 093 814 .880 .895  .068 .495 .414 .901
gb . 108 176 .410 .902  .075 .098 .210 .903
BE 095 810 878 .890  .065 .492 .410 .902
Birp 050 .194 415 943 030 .094 .216 .945
Borp 045 778 863 942 031 .391 .428 .946
BY, 053 .190 412 946  .030 .090 .210 .947
Bhrp 048 779 862 944  .032 .380 .424 .947
Bremp 052 200 418 .942 030 .095 .210 .945
Bormp 043 793 872 943 024 .384 .414 .945
B, 052 198 415 946 031 .090 .208 .946
By ., 047 784 865 .946  .025 .379 410 .947

MAR (10.24) 40% MAR (10.24) 40%
Bire 115 220 420 .885  .109 .125 .220 .896
Bore 124 872 890 .885  .115 .480 .455 .898
gb . 115 215 418 880  .110 .126 .220 .897
B 124 870 .890 .889  .117 .480 .452 .898
Birp 053 195 418 945 036 .103 .215 .941
Borp 04T 790 875 947 038 410 .460 .943
BY., 052 192 416 948 034 .097 .211 .943
By 050 .787 .871 .947  .035 411 .451 .946
Birmp 052 202 420 945 038 .105 .222 .941
Bornp 045 801 892 947  .036 .420 .428 .946
B ., 054 200 413 946 036 .095 218 .944
By, 049 801 .884 .948  .037 415 424 .944
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Table 9c e, ~t(5), 7 =0.75

n 100 400

bias se length cov bias se length cov

MAR (10.24) 10% MAR (10.24) 10%
Bire 110 .208 .401 .893  .087 .109 .210 .898
Bare 105 825 .870 .892  .070 .448 .426 .902
gb . 110 205 .400 .892  .088 .105 .206 .901
Bk 103 823 873 .890  .074 .448 420 .895
Birp 054 212 410 944 034 114 214 .946
Bory 070 833 879 .043 020 455 434 .947
Bv., 058 212 412 942 039 .109 .211 .946
Bhrp 072 .832 .875 .943  .031 .450 .429 .946
Birmp 055 216 412 942 039 .117 .217 .943
Bormp 074 834 884 943 030 .458 .499 .946
B, 062 212 414 941 037 114 214 944
By, 070 825 870 .944  .031 .452 495 .956

MAR (10.24) 40% MAR (10.24) 40%
Bire 120 234 412 881  .105 .121 .231 .890
Bare 118 .893 .880 .882  .091 .455 .433 .888
gb . 125 228 409 .880  .107 .118 .229 .893
B 119 .893 .883 .882  .092 .449 429 886
Birp 060 219 419 942 039 .124 .220 .944
Borp 079 839 888 938  .032 .457 .435 .943
BY., 062 214 415 943 041 120 .218 .943
By., 077 837 889 .942 033 455 437 .944
Birmp 053 220 423 944 040 .125 .220 .943
Bormp 076 840 886 .942 034 .459 .441 .942
B, 053 218 419 943 042 122 219 .942
By .., 075 830 .882 .942  .036 .452 439 .943
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Table 10a e, ~ x%(4) —4, 7 =0.25

n 100 400
bias se length cov bias se length cov

MAR (10.24) 10% MAR (10.24) 10%
Bire 095 .190 .420 .902  .088 .105 .235 .904
Bore 096 .836 .903 .899  .092 .446 .475 .902
BP 095 198 419 .903  .082 .105 .234 .903
gb 097 836 .903 .902  .092 .444 474 .905
Birp 045 200 425 .944 033 .105 .220 .946
Barp 043 806 855 .943  .032 452 .470 .945
BY., 052 .193 425 946  .030 .107 .223 .944
By, 043 798 852 947  .035 .449 .466 .945
Birmp  -044 239 438 945 030 .105 .233 .943
Bormp 045 814 850 943  .033 454 473 .943
B ., 046 230 428 945 036 .108 .235 .944
By, 055 804 854 .945 038 448 AT5 .945

MAR (10.24) 40% MAR (10.24) 40%
Bire 118 214 425 888  .105 .115 .250 .890
Bore 124 850 886 892 112 .465 .494 .894
gP 123 214 420 890  .113 .118 .250 .897
Bb . 124 850 .890 .892  .104 .460 .490 .898
Birp 046 223 430 .943  .033 .120 .255 .944
By, 042 854 862 944 035 460 .485 .945
B, 052 213 432 944  .035 .117 .250 .945
b, 043 845 850 .942 037 460 .480 .946
Birmp  .045 220 433 .943  .033 .115 .260 .944
Bormp 052 860 855 .942  .035 470 .495 .945
B, 043 222 432 944 036 .110 .262 .944
By, 050 862 .853 945  .038 .473 492 .946
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Table 10b e, ~ x?(4) —4, 7 =0.5

n 100 400

bias se length cov bias se length cov

MAR (10.24) 10% MAR (10.24) 10%
Bire 094 204 447 903  .089 .116 .230 .901
Bare 093 830 .859 902  .078 .448 .491 .903
gr. 102 .198 441 904 085 .113 .227 .903
Bb . 095 .835 .864 .902  .073 .432 .482 .900
Birp, 052 207 419 942 034 .111 .230 .944
Byrp 043 830 .868 943 041 .448 .494 .945
Bv., 058 .199 .413 .945 038 .108 .234 .944
By, 045 .833 .860 .046  .041 .445 .489 .946
Bimp 054 200 424 942 036 .114 .239 .945
Bornp 046 832 865 943 042 434 493 .942
B ., 057 .108 414 .941 034 .108 .236 .945
By .., 045 829 860 944  .043 435 .493 .946

MAR (10.24) 40% MAR (10.24) 40%
Bire 123 209 435 880  .106 .134 .259 .89l
Byre 128 845 872 .884 108 .492 .496 .892.105
BP . 132 .204 436 .889 132 257 .897
pb. 129 847 874 .891 109 491 499 901
Birp 059 211 438 946 041 .123 .264  .945
Byrp 049 844 874 945 039 463 .504  .946
BY., 054 209 434 948 042 .118 261  .946
b, 049 844 860 946  .041 .460 .495  .947
Bimp 055 .213 431 947 081 .129 .272  .948
Bornp 050 842 875 943 041 470 507  .946
B ., 05T 200 419 .946  .083 .121 269  .943
By, 052 .832 871 945 045 473 .503  .942
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Table 10c e, ~ x? (4) — 4, 7 = 0.75

n 100 400
bias se length cov bias se length cov
MAR (10.24) 10% MAR (10.24) 10%
Bire 103 209 421 896  .085 .118 .216 .902
Byre 095 863 .872 895  .081 .469 .485 .900
BP . 106 .208 .416 .899  .086 .108 .209 .905
gb . .097 .859 .869 .903  .084 .465 .479 .904
Birp 059 204 414 943 039 117 218 .945
By, 048 865 .864 944 030 454 422 .47
BY., 061 208 413 .942  .036 .115 .215 .945
b,  -058 862 .865 .946  .038 .449 413 .946
Bimp 055 215 424 944 036 .128 .208 .944
Byrmp 052 868 .875 .943  .035 .459 .489 .946
B, 061 209 419 948 039 .124 .208 .943
By, 046 863 876 .945  .038 .454 482 .947
MAR (10.24) 40% MAR (10.24) 40%
Bire 133 218 425 895  .108 .139 .242 .894
Byre 125 875 878 897 109 478 .496 .900
BP . 134 215 421 .885  .107 .134 .238 .899
gb . 132 891 873 .899  .103 .474 .499 .903
Birp 065 218 428 944 040 .118 .245 .942
Byrp 052 879 882 .947  .038 .469 .504 .946
B, 060 214 424 945 041 115 .239 .947
b, 054 874 879 946  .035 .465 496 .945
Birmp 063 219 432 942 039 .121 .248 .942
Bormp 053 872 .884 944 043 461 .502 .940
B, 060 213 428 946  .036 .119 .235 .948
By, 053 861 .878 .943  .040 .465 .499 .947
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