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 A B S T R A C T

Interpreting the viral mechanism of SARS-CoV-2 based on the human body level is critical for developing 
more efficient interventions. Due to the limitation of data, limited models consider the viral dynamics of 
the early phase of infection. The Human Challenge Study (Killingley et al., 2022) enables us to obtain data 
from inoculation to the 14th day after infection, which provides an overview of the dynamics of SARS-CoV-2 
infection within the host. In the Human Challenge Study, each volunteer was inoculated with 10TCID50, 
approximately 55PFU, of a wild-type of virus (Killingley et al., 2022), and the data indicates that the viral 
load reduced below the detectable level within a day.

The simplified within-host models developed by Xu et al. (2023) explain the data from the Human 
Challenge Study (Killingley et al., 2022). However, they do not explain the viral decay from Day 0 to Day 1. 
Hence, in this paper, we aim to develop a new viral mechanism to explain this phenomenon. Based on the 
simplified within-host models developed by Xu et al. (2023), we consider that the virus will first go through 
an adjustment phase and then start to replicate. A new dose-response model is developed to evaluate the 
probability of infection by constructing a boundary problem. We will discuss this viral mechanism and fit the 
model to the data of the Human Challenge Study (Killingley et al., 2022) by adopting AMC-SMC (approximate 
Bayesian computation-sequential Monte Carlo). Based on the results of parameter inference, we estimate that 
the adjusted viral load is around 1% of the inoculated viral load.
1. Introduction

Since the pandemic of SARS-CoV-2, many studies have reported 
different within-host models aiming to introduce and explain different 
viral mechanisms (see e.g. Challenger et al. (2022), Goyal et al. (2020), 
Gonçalves et al. (2021), Li et al. (2022), Ghosh (2021), Sadria and 
Layton (2021), Du and Yuan (2020), Hernandez-Vargas and Velasco-
Hernandez (2020), Abuin et al. (2020), Li et al. (2020), and Wang et al. 
(2020)). Understanding different models of viral mechanisms can offer 
more insights into considering targeted and effective intervention to 
limit the spread of SARS-CoV-2 and other respiratory diseases.

The Human Challenge Study (Killingley et al., 2022), abbreviated 
hereafter to HCS, measured the detectable viral load in the upper respi-
ratory tract. In the study, 34 young male volunteers who were between 
18–29 years old and had not been previously vaccinated or infected 
were given 10TCID50 of a wild type of virus, where 10TCID50 is 
approximately 55PFU with credible interval (Killingley et al., 2022). A 
few days after the inoculation, the viral load is observed to drop below 
the detectable level, 5PFU, subsequently growing above the detectable 
level. The length of days under detectable level thus varies from mid-
turbinate to throat. The throat data shows a shorter period ranging 
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from 1 day to 3 days with a mean of 2.5 days while the mid-turbinate 
ranges between 2 days to 8 days with a mean of 3.7 days. Previous work 
developed a simplified within-host model, Xu et al. (2023), assuming 
two mechanisms for the decay of viral load, (1) by the depletion of 
susceptible cells and (2) the adaptive immune response respectively, 
both of which explain the HCS data well separately and in combination. 
However, this model does not explain the early viral decay and so does 
not use the initial dose from HCS. In this paper, we investigate a viral 
mechanism to explain the earlier low viral load measures and extend 
the models of Xu et al. (2023) to consider an adaptive immune response 
growing logistically rather than a fast switch.

As we are using data from HCS rather than seeking to model the 
onset of symptoms (or infectiousness) explicitly (i.e. modelling the in-
cubation or latent periods) we define early infection as the time before 
detectable viral load is measured. It has been reasonably suggested 
that an ‘eclipse phase’ may be added into the SIV model system to 
help explain the early decay of the viral load, in which the susceptible 
cells first become infected cells in the eclipse phase and then switch 
to productively infected cells (cf. Wang et al. (2020)). In another 
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study based on HCS data (Iyaniwura et al., 2024), infection is initiated 
when one targeted cell enters the eclipse phase as the viral load that 
triggers infection is unknown, and the authors incorporate detailed 
biological mechanisms to interpret the viral dynamics. There are many 
other studies that consider the eclipse phase (cf. Hernandez-Vargas 
and Velasco-Hernandez (2020), Beauchemin et al. (2008), Holder et al. 
(2011), Madelain et al. (2018), Williams et al. (2024) and Baccam 
et al. (2006)). This may be a biological reality but is likely on a 
timescale faster than the cadence of data collection from cases recruited 
to studies.

Moreover, as (Iyaniwura et al., 2024) points out, there may be a 
gap between the inoculation and the start of exponential growth. Wu 
et al. (2023) conducts an air–liquid interface culture of human nasal 
epithelium and notes that, despite plenty of virus initially present, 
only a very small fraction of cells were infected, nearly 3% by 24 h 
post-inoculation, but by 48 h post-infection nearly 80% of ciliated 
cells became infected. This two-step infection pattern indicates an 
initial period of viral ‘adjustment’ or ‘trapping’, followed by a surge 
of productive infection. Hence, different from the concept that viral 
growth starts immediately upon inoculation just with a delay caused by 
the eclipse phase and independent of initial dose, our core assumption 
here is that during the first few days after the exposure, there is a period 
of viral ‘adjustment’ linked to initial dose. Specifically, we assume that 
there exists a relatively short period after the inoculation, during which 
the viral load will only decay. After this period, the virus will have 
adjusted to the human body and start to replicate. There are then two 
processes that may cause an individual to not become infected upon 
exposure. Firstly the given exposed viral load may decay to extinction 
during the adjustment phase. Secondly, the residual viral load will have 
a chance of ‘fading out’ during the replication phase prior to ‘infection’. 
Therefore, we can develop a dose–response model to estimate the 
chance of infection.

The viral load of SARS-CoV-2 has been linked to the degree of 
disease severity, infectiousness, lung damage and transmission risk 
(see e.g. Fajnzylber et al. (2020), Williamson et al. (2020) and Pu-
jadas et al. (2020)) though the HCS found limited evidence of viral 
load corresponding to more severe infection (Killingley et al., 2022). 
The magnitude of the viral load is then an important determinant to 
evaluate transmission rate, (Watanabe et al., 2010), and patients with 
higher viral load can be closely epidemiologically related (Marks et al., 
2021). The Hill function has been widely adopted to link viral load and 
transmission risk for different diseases including influenza (cf. Handel 
and Rohani (2015)) and SARS-CoV-2 (cf. Heitzman-Breen and Ciupe 
(2022), Ke et al. (2020), and Goyal et al. (2021)). The transmission risk 
is split into contagiousness and infectiousness in Goyal et al. (2021), 
which is evaluated by the Hill function with the same parameters. In Ke 
et al. (2020), the probability of infection is defined as the chance that 
at least one virion seeds infection and they assume only a proportion 
of inhaled virus could arrive in the respiratory tract of the contact. 
Based on these assumptions, an exponential form dose–response model 
with a Michealis-Menten term representing the amount of virus shed 
from the upper respiratory tract is adopted in Ke et al. (2020). For 
the dose–response model developed by Ke et al. (2021), it can be 
simplified to a Hill function to link the viral load with the infectiousness 
if the composite parameter is sufficiently small. Furthermore, Ke et al. 
(2021) indicates that the infectiousness is sub-linear with the viral 
load and suggests that the logarithm of viral load is a better surrogate 
of infectiousness when data is given by RNA copies. Moreover, Haas 
et al. (2014) introduces a series of dose–response models under the 
competing risk framework for bacterial infections, and two models, 
the exponential and approximate beta-Poisson dose–response models, 
of Haas et al. (2014) are applied in Xu et al. (2023) to consider 
the transmission risk of SARS-CoV-2. Ejima et al. (2021) estimate the 
infection establishment threshold according to each patient, however, 
it is measured by RNA copies, which is not applicable in our case.
2 
In this work, we also aim to develop an alternative derivation 
for a dose–response model. The simplified model developed in Xu 
et al. (2023) is adapted to reduce the viral dynamics to a stochastic 
differential equation (SDE) that only involves the virus state, from 
which we construct a boundary problem to evaluate the probability 
of infection. To our knowledge, the boundary problem approach has 
not been used in deriving dose–response models. Compared with our 
model that simplifies the system as one compartment, the work of Chen 
et al. (2022) developed a stochastic agent-based model that delicately 
incorporates the anatomy and physiology of respiratory tract (also 
cf. Aristotelous et al. (2022), Chen et al. (2023), Pearson et al. (2023), 
and Zhang et al. (2023), which extends the baseline model to more 
complicated physiological phenomena including viral transport, host 
immune defences, and infection kinetics in different locations such as 
alveolar, bronchial, and nasal compartments.). This stochastic model 
simulates how SARS-CoV-2 moves through and infects the respiratory 
tract prior to any immune response and predicts the outcomes after 
the inhalation of SARS-CoV-2. The nature of the agent-based model 
requires repeated simulations to obtain probability estimates, however, 
it is more flexible to further bridge with other biological details. In 
this paper, constructing a boundary problem allows us to obtain a 
closed-form solution for the probability of infection and provides direct 
parameter sensitivities including how the extinction probability de-
pends on replication rate, initial viral load, etc. However, the boundary 
problem is based on simplification that omits some fine-scale spatial 
features and treats the system as a complete compartment.

This study then involves three extensions to the model proposed 
in Xu et al. (2023): (1) We consider early infection dynamics, (2) merge 
this with the stochastic fade out properties of the system to use evidence 
of infecting dose in model calibration, and (3) we extend the model 
used in the replication phase to include a smoothly increasing adaptive 
immune response.

2. Methods

Consider a contact who inhales a certain amount of virus during an 
exposure event. Whether this contact will develop an infection depends 
on the viral dynamics during the early phase of infection. Specifically, 
we define the early phase infection as the time between the inhalation 
and the time that the virus is above the detectable level in those cases 
that develop infection. During this early phase of infection, there are 
two independent events that may happen: viral adjustment and then 
replication. During the viral adjustment phase, the inhaled dose reduces 
so that only a portion of the virus remains in the host. After some 
time the residual virus successfully enters susceptible cells and starts 
to replicate, and if the viral load reaches the threshold for infection, 
the contact will develop an infection.

2.1. Viral adjustment phase

After inhalation, we assume that the virus will decay during the 
viral adjustment phase and only a small amount of the viruses will 
achieve viral colonisation. In this case, identifying the number of virus 
that survive is important to estimate the probability of subsequent 
infection. This is conceptually similar to the rapid deposition phase ex-
pected in bacterial infections (Heppell et al., 2017) but here deposition 
is only a single component of the adjustment process.

To simulate this parsimoniously, we assume that the virus will decay 
exponentially with respect to time: 
𝐷(𝑡) = 𝐷0𝑒

−𝛼𝑡 (2.1)

for 𝑡 ∈ R+. In (2.1), parameter 𝛼 > 0 measures the viral decay rate 
during the viral adjustment phase and 𝐷0 is the initial dose the contact 
inhaled during the exposure. This model suggests that after inhalation, 
the virus will be exhaled during breathing or cleared by immune 
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response, and at 𝑡 = 𝑡∗, a certain amount of virus, 𝐷(𝑡∗) = 𝐷0𝑒−𝛼𝑡
∗ , 

realises viral colonisation at the location of the infection.
A deterministic model would always predict some residual viral load 

that would cause infection after the switch to the replication phase 
(cf. the ‘atto-fox’ phenomena Mollison, 1991). Instead, we develop 
a stochastic version where the dynamics during the viral adjustment 
phase is given by: 
𝑑𝐷𝑡 = −𝛼𝐷𝑡𝑑𝑡 +

√

𝛼𝐷𝑡𝑑𝑊𝑡 (2.2)

for 𝑡 ∈ [0, 𝑡∗] where 𝑡∗ is the time the virus takes to get adjusted to 
the human body and the diffusion term allows 𝐷𝑡 to hit 0. In this case, 
it is very important to understand the probability of clearance during 
the viral adjustment and what is the distribution of the viral load that 
successfully entered the susceptible cells. Due to the structure of (2.2), 
there is no analytical form of the probability of 𝐷𝑡 hitting 0 before 𝑡∗, as 
the PDE of the corresponding boundary problem or time-space method 
(see cf. Pedersen and Peskir (2016)) has no analytical solution. Hence, 
we will carry out simulation to evaluate the viral shedding under the 
stochastic setting in the following analysis. Instead of the stochastic 
diffusion model in (2.2) a discrete event stochastic simulation could 
be developed. This was considered, see Supplementary material, but 
the results were not very different to the diffusion-based simulation. 
Moreover, we note that a unit value of PFU is not a single viable entity 
and so fractional amounts of PFU have biological meaning.

2.2. Viral replication phase

The simplified within-host model developed in Xu et al. (2023) 
provides a viral mechanism when viral load is above the detectable 
level, which is given by:
𝑑𝑋 = −𝛿

𝜌
𝜙
𝑋𝑉 , (2.3)

𝑑𝑉 = 𝛿(𝜌𝑋 − 1)𝑉 − 𝜇𝐻(𝑡 − 𝜏)𝑉 ,

where 𝐻(𝑡 − 𝜏) is a Heaviside function and 𝜏 is the time when the 
adaptive immunity response is activated. In (2.3), X represents the 
compartment of susceptible cells, while V represents the compartment 
of viral load. Furthermore, by the definition of Xu et al. (2023), the 
initial condition of 𝑋 and 𝑉  are 𝑋(0) = 1 and 𝑉 (0) = 𝑉0, and 𝜌
represents the threshold parameter in the model (so deterministically 
if 𝜌 > 1 the virus grows and if 𝜌 < 1 it decays) whilst 𝜙 modifies the 
removal of susceptible cells. One of the advantages of this model is that 
it parsimonious, however, it is still not possible to distinguish between 
the depletion of susceptible cells and the increasing adaptive immune 
response based on observational data like that provided by the HCS 
alone.

We can relax the assumption in (2.3) that the adaptive immune 
response is a Heaviside step function so that the immune response 
grows logistically over some timescale 𝑇  which controls the speed of 
immune response growth. We also recast the model parameters for 
future calibration. Defining 𝜌 = 1 + 𝜃∕𝜈, 𝛿 = 𝜈𝜎∕𝑇  and 𝜇 = 𝜎∕𝑇  for 
some parameters 𝜎, 𝜃 and 𝜈 means we have a model

�̇� = −
(𝜃 + 𝜈)𝜎

𝜙𝑇
𝑋𝑉 ,

�̇� = 𝜎
𝑇

(𝜃𝑋 − 𝜈(1 −𝑋) − 𝑌 )𝑉 , (2.4)

�̇� =
𝑌 (1 − 𝑌 )

𝑇
.

Note that the role of parameters 𝜎, 𝜃, and 𝜈 is to reparameterise the 
model, which has no biological meaning. The variable 𝑌  then is a non-
dimensional representation of immune response scaling from a small 
contribution at initial time 𝑡 = 0 to 1 as 𝑡 → ∞. Notice that when 
𝑋 ∼ 1 and 𝑌 ∼ 0 this system will grow exponentially in 𝑉  with rate 
𝑟 = 𝜃𝜎∕𝑇 , and when 𝑋 ∼ 1 and 𝑌 ∼ 1 it will decay exponentially 
with rate 𝑟𝐷 = (1− 𝜃)𝜎∕𝑇 . Then introducing a time 𝜏 we may solve the 
adaptive immune response directly such that 𝑌 = 𝜃(𝜃+(1−𝜃)𝑒−(𝑡−𝜏)∕𝑇 )−1
𝑡
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which means that at time 𝜏 the adaptive response has achieved 𝜃 of its 
eventual impact which also means that the parameter 𝜃 ∈ [0, 1].

We could solve this in the composite situation of both susceptible 
cell depletion and immune response increase. However, as noted in Xu 
et al. (2023) with (2.3) the contributing mechanism is unidentifiable in 
this scenario given the data provided from HCS. If we limit considera-
tion to the case where 𝑋 ∼ 1 (so assume that 𝜙 ≫ 𝑉 (𝑡) for all 𝑡) then 𝜏
is the time of peak viral load (noting that when 𝑡 = 𝜏 we have �̇� = 0). 
The parameter 𝜏 then can be considered identical to the 𝜏 that appears 
in the Heaviside function in (2.3). We can define a time 𝑡𝐿 representing 
the time at which the viral load is above some (known) detectable level 
(𝑉𝐿) for the first time, meaning that 

𝑉 (𝑡;𝑉𝐿, 𝑡𝐿, 𝜏, 𝜃, 𝜎, 𝑇 ) = 𝑉𝐿

(

(𝜃 + (1 − 𝜃)𝑒(𝜏−𝑡𝐿)∕𝑇 )𝑒𝜃(𝑡−𝑡𝐿)∕𝑇

𝜃𝑒(𝑡−𝑡𝐿)∕𝑇 + (1 − 𝜃)𝑒(𝜏−𝑡𝐿)∕𝑇

)𝜎

. (2.5)

2.3. Probability of infection and boundary problems

To find the probability of infection during this replication phase, 
we introduce stochasticity into the viral dynamics in Eq.  (2.4) to 
describe the heterogeneity of response across patients. Hence, the viral 
dynamics, 𝑉 , after the viral adjustment is defined by the following SDE 
(assuming 𝑌 = 𝑌 (𝑡∗) and 𝑋 ∼ 1): 

𝑑𝑉𝑡 =
𝜎
𝑇
(𝜃 − 𝑌 )𝑉𝑡𝑑𝑡 +

√

𝜎
𝑇
(𝜃 + 𝑌 )𝑉𝑡𝑑𝑊𝑡 (2.6)

for 𝑡 ∈ [𝑡∗,∞) and 𝑉𝑡∗ = 𝐷(𝑡∗) > 0 is the amount of virus deposited at 
time 𝑡∗. Furthermore, we set that E𝑡,𝑣(𝑉𝑡) < ∞ for any (𝑡, 𝑣) ∈ [𝑡∗,∞)×R. 
After the virus deposited at 𝑡∗ > 0, the contact will be infected if 
the viral load eventually reaches the threshold, 𝑀 > 0, for infection, 
i.e. 𝑉𝑡 = 𝑀 for some 𝑡 > 𝑡∗, or the contact will clear the virus before 
it approaches to the threshold for infection, i.e. 𝑉𝑡 = 0 for some 𝑡 > 𝑡∗. 
Whilst we set 𝑀 = 𝑉𝐿 the limit of detection we do not have to make 
this restriction but simply note that 𝑀 > 𝑉 (𝑡∗) for the rest of the 
paper to avoid regularity issue. The goal of this section is to find the 
relationship between the adjusted viral load, 𝐷(𝑡∗), and probability of 
infection 𝑃𝐼 (𝐷0) for a given dose 𝐷0. Note that 𝐷(𝑡∗) = 𝐷0𝑒−𝛼𝑡

∗  so we 
can link the probability of infection with initial dose 𝐷0. During the 
viral replication phase, there are only two events will happen, infection 
and clearance, so we can define two stopping times:
𝜅in = inf

𝑡
{𝑡 > 0|𝑉𝑡 = 𝑀}, (2.7)

𝜅ex = inf
𝑡
{𝑡 > 0|𝑉𝑡 = 0}.

Finding the probability of infection is equivalent to calculating the 
probability of P(𝜅in < 𝜅ex). To estimate this probability, we first need 
to obtain the expectation 𝐸𝑉∗ (𝑉𝜅 ) as 𝐸𝑉∗ (𝑉𝜅 ) = 𝑀P(𝜅in < 𝜅ex)+0P(𝜅in >
𝜅ex) = 𝑀P(𝜅in < 𝜅ex), where 𝜅 = min{𝜅𝑖𝑛, 𝜅𝑒𝑥}.

For SDE (2.6), we see that the drift term satisfies (𝜎(𝜃 − 𝑌 )𝑉 ∕𝑇 )2 =
(𝜃 − 𝑌 )2(𝜎𝑉 )2∕𝑇 2 ≤ 𝐾(1 + |𝑉 |

2), and the diffusion term satisfies 
√

(𝜃 + 𝑌 )𝜎𝑉 ∕𝑇 ≤ 𝐾(1 + |𝑉 |) for some constant 𝐾 > 0 (remember that 
𝑌 < 𝜃 for 𝑡 < 𝜏 so this condition will hold for times prior to the 
peak viral load). Based on the continuity and strict positivity of (𝜃 −
𝑌 )2𝑉 2, the SDE (2.6) has an unique strong solution with strong markov 
property (cf. Stroock–Varadhan Theorem on Chapter V of Rogers and 
Williams (2000)). Define a value function 𝐹 (𝑣) = 𝐸𝑣(𝑉𝜅 ), we can form 
the following boundary problem with infinite time horizon (cf. chapter 
3 of Peskir and Shiryaev (2006)), which is given by:
̂𝑣𝐹 = 0 (2.8)
𝐹 (𝑀) = 𝑀

𝐹 (0) = 0

in which ̂𝑣 is the infinitestimal generator and 𝐹 (𝑀) = 𝑀 and 𝐹 (0) = 0
describe the corresponding boundary conditions. Solving Eq. (2.8) will 
give 𝐸𝑣(𝑉𝜅 ), hence, recalling L𝑣𝐹 = 0, one has: 

(𝜃 − 𝑌 )𝑣𝐹 ′(𝑣) + 1 ((𝜃 + 𝑌 )𝑣)𝐹 ′′(𝑣) = 0 (2.9)

2
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Table 1
Summary of key parameters used in within-host model and dose–response model of SARS-CoV-2 infection.
 Parameter Meaning/Role  
 𝐷0 (PFU) Initial inhaled viral dose  
 𝛼 Viral decay rate during the adjustment phase  
 𝑡∗ (d) Duration of the adjustment phase (i.e. time until virus starts replicating)  
 𝐷(𝑡∗) (PFU) Adjusted viral load entering susceptible cells after adjustment phase  
 𝜙 Modifies the removal rate of susceptible cells  
 𝛿 Viral clearance rate  
 𝜌 Threshold parameter for viral replication (i.e. virus grows if 𝜌 > 1, decays if 𝜌 < 1) 
 𝜇 Adaptive immune clearance rate  
 𝜏 (d) Time at which the adaptive immune response becomes active  
 𝜃 Internal reparameterisation variable with no direct biological meaning  
 𝜈 Internal reparameterisation variable with no direct biological meaning  
 𝜎 Internal reparameterisation variable with no direct biological meaning  
 𝑇  (d) Timescale over which immune response grows logistically  
 𝑡𝐿 (d) Time when viral load first exceeds the detectable limit (i.e. 5 PFU/mL)  
 𝛩 Derived parameter that determines infection probability in dose–response model  
(noting the factor 𝜎∕𝑇  drops out). Note that 𝑌 ∼ 𝑌 (𝑡∗) = 𝜃(𝜃 + (1 −
𝜃)𝑒(𝜏−𝑡∗)∕𝑇 )−1. Solving Eq. (2.9) gives: 

𝐹 (𝑣) =
𝑀(1 − 𝑒−2𝛩𝑣)
1 − 𝑒−2𝛩𝑀

, (2.10)

where: 

𝛩 =
(𝜃 − 𝑌 (𝑡∗))
(𝜃 + 𝑌 (𝑡∗))

=
(1 − 𝜃)(𝑒(𝜏−𝑡∗)∕𝑇 − 1)
1 + 𝜃 + (1 − 𝜃)𝑒(𝜏−𝑡∗)∕𝑇

. (2.11)

Since we have known that 𝐸𝑣(𝑉𝜅 ) = 𝑀P(𝜅in < 𝜅ex), the probability 
of infection during the replication phase can be easily obtained: 

𝑃𝐼 (𝑉∗) =
(1 − 𝑒−2𝛩𝑉 (𝑡∗))
1 − 𝑒−2𝛩𝑀

, (2.12)

where 𝑉 (𝑡∗) is the amount of residual virus following the adjustment 
phase. In Eq.  (2.12), it is reasonable to assume that 𝑀 varies for differ-
ent patients and obtaining the actually value for 𝑀 can be challenging, 
which leads to unidentifiability for parameter inference. Therefore, we 
would like to investigate what happens when 𝑀 tends to infinity. 
Hence, when 𝑀 → ∞, the probability of infection is: 
𝑃𝐼 (𝑉 (𝑡∗)) = 1 − 𝑒−2𝛩𝑉 (𝑡∗). (2.13)

Note that (2.13) has the same form as the exponential dose response 
function. However, since 𝑉 (𝑡∗) = 𝐷0𝑒−𝛼𝑡

∗ , Eq. (2.13) gives: 

𝑃𝐼 (𝐷0) = 1 − 𝑒−2𝛩𝐷0𝑒−𝛼𝑡
∗
, (2.14)

which links the initial dose 𝐷0 and the probability of infection with 
parameters arising from the model calibration to HCS data, though 
given an initial dose this is still of the form of the exponential dose–
response function. In Table  1, we summarise the key parameters used 
in the within-host and dose–response models.

2.4. Parameter inference

As mentioned in the introduction, we will use the data from the HCS 
(cf. Killingley et al. (2022)). The data collected from this study involved 
throat and mid-turbinate swabs from 18 volunteers for the first 14 days 
after infection and was recorded by culture and qRNA. Since we only 
consider the potential of transmission risk in this paper, we will only 
use the culture data in the following part. First the replication phase 
model (2.5) is calibrated to the individual trajectories (with 𝑉𝐿 = 5
PFU fixed) to identify parameters 𝑡𝐿, 𝑇 , 𝜎, 𝜏 and 𝜃.

We perform approximate Bayesian computation-sequential Monte 
Carlo (ABC-SMC) in which a multivariate normal distribution with op-
timal local covariance matrix is adopted to pursue parameter inference 
(cf. Toni et al. (2009) and Minter and Retkute (2019)). For ABC-SMC, 
we set the distance function as: 
𝑑(𝑀,𝑂)2 =

∑
(

log10𝑉 (𝑂)(𝑡) − log10𝑉 (𝑀)(𝑡)
)2 (2.15)
𝑡∈𝑇

4 
where the time points 𝑡 are those in the set 𝑇  where 𝑉 (𝑂) > 𝑉𝐿 = and 
𝑉 (𝑂) and 𝑉 (𝑀) represent the observations (from HCS) and simulated 
outputs respectively. We set 8 generations of iterations and collect 
250 particles from iterations. During each iteration, we set the values 
calculated from the cost function from smallest to largest and choose 
the value of the 1st quartile as the tolerance level for the next iteration.

In this work, the prior distributions for the replication phase param-
eters are given by:
𝑡𝐿 ∼ Uniform(𝑡 − 1, 𝑡 + 1) 𝑇 ∼ Uniform(0, 10) 𝜏 ∼ Uniform(𝑡𝐿, 14)

𝜎 ∼ Exp(0.1) 𝜃 ∼ Uniform(0, 1)

where ̃𝑡 is the last day that viral load stays undetectable after deliberate 
infection. This means the time of peak must be after or same as the 
time of earliest detection. In the supplementary material, Figures 5 and 
6 show the posterior predictions (central estimate and 95% credible 
interval) and the observed data. Furthermore, in striving for more 
intuitive results, we merge the posterior distributions of each parameter 
assuming equal weighting to each sample, which is illustrated in Fig. 
1.

However, the adjustment model has two further parameters (𝛼 and 
𝑡∗). We assume that for some 𝑡∗ < 𝑡𝐿 that 𝑉 (𝑡) = 0 for 𝑡 < 𝑡 ∗. 
We may then match this to the adjustment phase solution such that 
𝑉 (𝑡∗) = 𝐷0𝑒−𝛼𝑡

∗  so for a choice of 𝑡∗ we have 

𝛼 = 1
𝑡∗

ln
(

𝐷0
𝑉 (𝑡∗)

)

. (2.16)

Then (2.14) enables us to obtain an estimate of 𝑡∗ (given values of 𝐷0
and 𝑃𝐼 (𝐷0)) such that the following is satisfied

𝑉 (𝑡∗) = 𝑉𝐿

(

𝑒𝜃(𝑡
∗−𝑡𝐿)∕𝑇 𝜃 + (1 − 𝜃)𝑒(𝜏−𝑡𝐿)∕𝑇

𝜃𝑒(𝑡∗−𝑡𝐿)∕𝑇 + (1 − 𝜃)𝑒(𝜏−𝑡𝐿)∕𝑇

)𝜎

= −
ln(1 − 𝑃𝐼 (𝐷0))(1 + 𝜃 + (1 − 𝜃)𝑒(𝜏−𝑡∗)∕𝑇 )

2(1 − 𝜃)(𝑒(𝜏−𝑡∗)∕𝑇 − 1)
(2.17)

Note that 𝑡∗ appears a number of times in (2.17) and so we may 
solve this numerically. However, an approximate estimate can be de-
rived by making the assumption that 𝑉  is growing exponentially and 
that 𝜏 ≫ 𝑡∗ so that 

𝑡∗ = 𝑡𝐿 + 𝑇
𝜃𝜎

ln
[

−
ln(1 − 𝑃𝐼 (𝐷0))

2𝑉𝐿

]

(2.18)

The Human Challenge Study tells us 𝐷0 = 55 and that 18 out of 34 
volunteers developed an infection so 𝑃𝐼 (𝐷0) = 18∕34 = 0.53 (Killingley 
et al., 2022). The uncertainty in 𝛼 and 𝑡∗ is conditional on the posterior 
distributions elicited from data calibration.

3. Results

3.1. Model calibration

We first calibrate the model (2.5) to the HCS and the merged 
posterior distributions for each of the parameters based on throat and 
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mid-turbinate data are illustrated in Fig.  1 (and the corresponding 
posterior predictions are illustrated in Supplementary material [ Fig-
ures 5 and 6]). The red vertical lines on each panel show the 95% 
confidence interval on the merged posterior but as these are merged 
from a relatively small sample (18 volunteers) this should be treated as 
indicative only.

Note that the parameters 𝑇  and 𝜎 appear fairly uni-modal and 
smooth for both sites, though the distribution of 𝑇  is more narrow in 
the mid-turbinate than the throat. However, 𝑡𝐿 and 𝜏 (both parameters 
sensitive to the location of the viral load in time) are more disjoint, due 
to the sample size of HCS, with the mid-turbinate having a wider range 
than parameter estimates from throat data. The parameter 𝜃 appears 
bi-modal on both sites and generally with similar shape.

We can unpack these marginal summaries by looking at the poste-
rior distributions of each individual (Supplementary material Figure 7) 
but this is also seen in the bilateral correlation plots (Figs.  2 and 3). It is 
worth reflecting on the action the parameters are having in the model: 
𝑡𝐿 and 𝜏 act to locate the viral load in time, 𝑇  acts to scale the viral load 
over time (relative to 𝑡𝐿 and 𝜏), 𝜎 scales the viral load magnitude while 
𝜃 drives the shape. These plots also need a degree of care to interpret 
and are hard to briefly summarise, given that are a composite of 18 
individual fits.

In Fig.  2 the parameter estimates appear to show the strongest 
degree of overall correlation between 𝜏 and 𝑡𝐿 (larger 𝜏 suggests larger 
𝑡𝐿) but looking at the individual parameter estimates by colour block 
this is less apparent (or may be negatively correlated). Fig.  3 does 
not show the same pattern of overall correlation for 𝑡𝐿 with other 
parameters.

The stronger patterns of correlation are a correlation between 𝑇 , 
𝜏 and 𝜃 in both locations. Not only are they consistent between sites 
but they also have broadly consistent trends between individuals. The 
timescale of immune response (𝑇 ) is positively correlated with the 
exponent for viral load (𝜎) for individuals and across the whole sample 
so larger values of 𝑇  (slower immune response activation) correspond 
to larger values of 𝜎 (meaning potentially higher eventual viral concen-
tration at peak). This does not mean that people with slower immune 
responses necessarily shed more (𝜃 and 𝜏 would have some role in this 
too).

The interplay between the timing of the peak 𝜏 and 𝜃 appears more 
strongly in the throat than mid-turbinate but is consistent in both (and 
correlations in general are weaker in mid-turbinate). Individuals appear 
to cluster in two groups, one with low 𝜃 and high 𝜏 and visa versa, 
with the majority of individuals in the latter. Although the individual 
scatter in Figs.  2 and 3 shows a degree of complexity to this pattern this 
may be a tentative sign the people whose viral load peaks later have 
slower growth rates. This may not sound particularly interesting as slow 
growth would suggest a later peak but this is not strongly coupled with 
the magnitude of peak virus (driven by 𝜎).

Based on the posterior distribution illustrated in Fig.  1, we can easily 
estimate the value of 𝑡∗ as well as the value of 𝑉 (𝑡∗) through Eqs. (2.18)
and (2.17) which are shown in Fig.  4. Clearly we could have chosen to 
plot the estimate for 𝛼 instead of 𝑉 (𝑡∗) but felt that 𝑉 (𝑡∗) was more 
intuitive. The majority of individuals then have an adjustment time 
between 0 and 3 days in both locations though about 3 individuals 
have longer adjustment time in mid-turbinate (about 5 or 7 days). 
This is not surprising due to the values of 𝑡𝐿 derived in the previous 
section. However, the residual viral load at this time tends to be lower 
in mid-turbinate.

Apart from the difference in adjustment period, the adjusted viral 
load in mid-turbinate and throat show differences. In the left bottom 
of Fig.  4, the kernel density estimation of 𝑉 (𝑡∗) of mid-turbinate shows 
that the actual viral load adjusted is around 0.5 to 1.6 PFU based on 
mid-turbinate data, which is a loss of 2 orders of magnitude from the 
initial dose, 55 PFU. For mid-turbinate, the adjustment rate is around 
1%–3%. In the right bottom of Fig.  4, the adjusted viral load is around 
0.5 to 2.5 PFU. This result could be indication that throat may be 
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more susceptible to SARS-CoV-2 virus and more virus can survive viral 
adjustment or may be an artefact of the dosing regime of HCS. Overall, 
Fig.  4 indicates that a very small amount of virus retained in human 
body is enough to cause an infection.

3.2. Simulation of the stochastic viral adjustment phase

Due to the difficulty of finding the analytical solution for the prob-
ability of clearance during viral adjustment phase, we will carry out 
simulation to see the viral dynamics. The idea is that we first simulate 
the SDE (2.2) for 𝑡 ∈ [0, 𝑡∗]. If 𝐷𝑡 hits 0, we consider the virus is 
cleared before virus enters susceptible cells and the patient will not 
develop an infection. Otherwise, 𝑉 (𝑡∗) > 0 gives the adjusted viral 
load at 𝑡∗. For each patient, we use the mean value of the posterior 
distribution for each parameters, 𝑡𝐿, 𝑇 , 𝜏, 𝜃 and 𝜎, from which we can 
easily calculate the value of 𝛼 and 𝑡∗ through Eqs. (2.16) and (2.18). For 
each patient, we simulate the corresponding SDE (2.2) for 30,000 times, 
from which we can receive the proportion of simulation that faded 
out during viral adjustment. Since we know that the Human Challenge 
Study indicates the overall viral clearance rate is 0.47, multiplying 0.47 
with the proportion of clearance during viral adjustment will enable us 
to know the probability of clearance during viral adjustment and viral 
replication respectively. The results of our simulation are displayed in 
Table  2 and also in supplementary material Figures 8 and 9.

In Table  2, both mid-turbinate and throat show similar fade out 
probabilities in viral adjustment with mean 0.29 and 0.26 respectively. 
This means about 60% of clearance is achieved during the adjustment 
phase. For example patient A has 32% chance of not becoming a case 
due to the adjustment phase, then they had a residual viral load at 
start of replication phase that carried a 22% chance of stochastic fade 
out (conditional on virus surviving to replication and the overall 47% 
infection rate in volunteers).

4. Discussion

In this paper, we develop explicit mechanisms to explain viral dy-
namics in the first few days of infection and evaluate the probability of 
infection by deriving the dose–response model. Furthermore, we extend 
the viral load model by considering logistic growth in adaptive immune 
response. We fully appreciate these models are coarse simplifications 
of the true biological mechanisms but they enable us to interpret the 
available data.

The work of Wu et al. (2023) comes up with the two-step mecha-
nism for Covid-19 infection. Wu et al. (2023) conducts an air–liquid 
interface culture of human nasal epithelium and notes that, despite 
plenty of virus initially present, only a very small fraction of cells were 
infected, nearly 3% by 24 h post-inoculation, but by 48 h post-infection 
nearly 80% of ciliated cells became infected. This two-step infection 
pattern suggests an initial period of viral ‘adjustment’ or ‘trapping’, 
followed by a surge of productive infection. Experiments in Wu et al. 
(2023) confirm that the mucus layer efficiently traps and delays the 
virus, and mucociliary clearance (MCC) eliminates infectious particles 
by coughing or swallowing. Furthermore, Wu et al. (2023) point out 
that the culture has a substantial kinetic delay (24–48 h), compared 
to tissue culture models, which was established as being linked to 
airway barrier function. Only after this delay can the virus breach 
the barrier and infect cells in large numbers. Our mathematical model 
does not directly incorporate the specific biological functions, however, 
there is conceptual compatibility between them. Specifically, the viral 
adjustment phase of the model can be seen as a simplified mathematical 
description and manifestation of early host-viral dynamics, including 
the interaction between the virus and the mucosal barrier, local im-
munity, etc., which is associated with the biological first step. The 
replication phase directly corresponds to the biological processes of 
viral replication and spread within cells, which is the second biological 
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Fig. 1. Posterior distribution of parameter values from the result of ABC-SMC for Model (2.5) using mid-turbinate data and throat data (Killingley et al., 2022). The vertical dash 
lines represent the 2.5th and 97.5th percentiles for each parameter.
step. Overall, we believe that this biological two-step infection mecha-
nism provides a deeper biological explanation which can complement 
and support the viral dynamic phenomena observed at the macro level 
by our mathematical model.
6 
In another modelling work based on the HSC data (Iyaniwura 
et al., 2024), authors assume that the infection is initiated once one 
target cell enters the eclipse phase, incorporating more detailed bio-
logical processes into the model to interpret the viral growth kinetics.
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Fig. 2. Scatter plots illustrating a pair plot showing the relationships among parameters from parameter inference based on mid-turbinate data (Killingley et al., 2022). The 
diagonal plots show the distribution of each parameter, while the other plots illustrate the relationships between pairs of parameters. The bold numbers indicate the correlation 
strength between parameters.
Meanwhile, Iyaniwura et al. (2024) point out that there could be a gap 
(e.g., local stochastic infection and extinction) between the inoculation 
and the start of exponential growth, which is conceptually consistent 
with our assumption of the viral adjustment phase. Furthermore, the 
initial condition has been set as when one cell enters the eclipse phase 
since the exact number of virions that initiated infection is unknown. In 
this paper, our simplified mathematical models allow us to estimate the 
viral load that actually triggered the infection. These two approaches 
are not in conflict. In fact, we address different biological questions 
and these approaches could be integrated to more fully describe early 
infection uncertainty.

Based on Figs.  2 and 4, we notice that the mid-turbinate overall 
shows a broader window for viral adjustment: the virus will achieve 
viral adjustment within three days for nearly half of the patients. 
However, there are patients show a much longer period of adjustment 
phase ranging from 0 to 8 days, which is unsurprisingly consistent 
with the longer undetectable period in some patients (cf. Figure 5 
in Appendix). Furthermore, the throat cases show a narrower length 
of adjustment phase up to 3 days. This result is consistent with the 
data measured in the work of Killingley et al. (2022), in which they 
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found that the viral load in the throat significantly before nasal swabs 
turned positive. The virological mechanism behind this phenomenon 
is complicated. The work of Sungnak et al. (2020) points out that 
the expression of genes associated with immune functions is over-
represented in nasal goblet 1 and 2 cells, and nasal ciliated 2 cells, 
which implies that nasal epithelial cells are conditioned to express 
these immune-associated genes to reduce viral susceptibility. Hence, 
one reasonable hypothesis is that the mid-turbinate is more resistant 
to SARS-CoV-2, which leads to a longer adjustment phase.

Furthermore, the estimated viral adjustment phase is centred
around 1–2 days, which is consistent with the findings in Wu et al. 
(2023). However, we notice that in a few cases the mid-turbinate 
shows a much longer viral adjustment phase, which can extend to 6–8 
days. Current research supports the hypothesis that the existence of 
an immune response and physical barrier traps the virus (cf. Sungnak 
et al. (2020), and Wu et al. (2023)) and delays the infection process. 
Also, the SARS-CoV-2 virus can remain stable for up to 21 days in 
biological fluids in controlled environment (Kwon et al., 2021). In 
another study, Becker et al. (2024) finds that mucociliary clearance 
inhibits pathogen penetration, indicating the virus remain extracellular 
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Fig. 3. Scatter plots illustrating a pair plot showing the relationships among parameters from parameter inference based on throat data (Killingley et al., 2022). The diagonal 
plots show the distribution of each parameter, while the other plots illustrate the relationships between pairs of parameters. The bold numbers indicate the correlation strength 
between parameters.
and trapped in secretions during early infection days. However, there 
is no direct in vivo evidence to measure how long SARS-CoV-2 virions 
can remain viable and infectious within airway secretions for extended 
periods even before cell entry. Another explanation for these longer 
viral adjustment phases predicted for a few patients is that it could be 
an artefact caused by the simplified modelling. Recall that the viral 
adjustment phase suggests that viral load will decay exponentially, 
however, we see that the data in Figure 5 and 6 does not show 
exponential decay. This is because we assume that the viral load decays 
so fast and drops below the detectable level before the measurement, 
which is consistent with most of the cases, except Patient E, F, and G 
in Figure 5. These three cases cause the extra long viral adjustment 
period in the mid-turbinate. Compared with the throat data of Patients 
E, F, and G, we see that the throat data of these three cases show that 
the infection was already established within 1–2 days. It is plausible 
to say that the actual viral adjustment of Patients E, F, and G in mid-
turbinate can be short and the virus remains undetectable level for extra 
long days. The current simplified model cannot capture this behaviour. 
Biological studies also support this hypothesis; early detection of SARS-
CoV-2 RNA in the throat but delayed detection in mid-turbinate swabs 
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likely reflects a transient infection mentioned in Lindeboom et al. 
(2024), a study. Trans based on HCS. Transient infection represents the 
infection is successful but limited replicative infection has taken place, 
leading to viral loads that were borderline detectable (Lindeboom et al., 
2024), which supports our hypothesis that viral adjustment happens in 
a very short period of time in these three patients but it is not possible 
to verify this with the data available.

The stochastic viral adjustment phase allows the virus to get com-
pletely cleared before it enters susceptible cells. This viral clearance can 
be caused by immune response or failure to deposit in a suitable site. As 
we have used the Human Challenge Study dose response observation 
that 47% of cases never have detectable virus, the stochastic viral 
adjustment mechanism reflects this strong chance that the virus will 
be cleared in either the viral adjustment or replication phases but 
suggests that in about 2/3rds of those that are not infected following 
exposure this is due to adjustment phase mechanisms. Of course, what 
we are calling the adjustment phase is much more complicated and may 
involve many potential bottlenecks or decay rates for which our model 
of 𝑒−𝛼𝑡∗  is a crude approximation.

However, based on Table  2, we can see that the throat shows an 
overall shorter 𝑡∗ than that of mid-turbinate, which is consistent with 
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Fig. 4. The first column: approximate posterior distributions of viral adjustment time 𝑡∗ and adjusted viral load 𝑉 (𝑡∗) based on mid-turbinate data (Killingley et al., 2022). The 
Second column: approximate posterior distributions of viral adjustment time 𝑡∗ and adjusted viral load 𝑉 (𝑡∗) based on throat data (Killingley et al., 2022). Other parameter inference 
results can be seen in Fig.  1. The vertical dash lines represent the 2.5th and 97.5th percentiles for each parameter.
what we observed in the deterministic viral adjustment case. As we 
mentioned above, the mid-turbinate has immune-associated genes that 
may reduce viral susceptibility to SARS-CoV-2 infection (see Sungnak 
et al. (2020)) so the viral adjustment phase is longer. Also, the values 
of 𝛼 of mid-turbinate have mean 3.07, and this is smaller than the 
value of 𝛼 in the throat which is 6.03. This difference in 𝛼 indicates 
that the throat may have a stronger immune response, which clears 
the virus faster, or people have a high chance to clear in their throat 
which reduces the viral load compared with say sneezing. Figures 8 and 
9 in supplementary materials illustrated the distribution of viral load 
that adjusted to the body, in which we can see that in general, both 
mid-turbinate and throat have a similar range of values. However, mid-
turbinate has a predominantly low viral load with limited variation, 
while throat has a more varied and higher range of adjusted viral load 
values, which is consistent with the previous conclusion of different 
viral dynamics in mid-turbinate and throat. It should be pointed out 
that in Figures 8 and 9, the value only means the viral load that 
enters the viral replication phase and does not mean the viral load 
can guarantee the infection, which should be distinguished from the 
deterministic case.

In this paper, we constructed a boundary problem based on the viral 
process, which leads to a dose–response model with exponential form. 
Upon our best knowledge, boundary problem has not previously been 
used to develop dose–response models and in this case returns the form 
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expected from competing risk arguments but may allow for greater 
flexibility with further research. Under the competing risk framework 
of bacteria infection, Haas et al. (2014) develops a series of models to 
investigate dose–response relationships in different cases ranging from 
theoretical experimental scenarios to complicated real-world scenarios. 
In Haas et al. (2014) (also cf. Xu et al. (2023)), they assume that the 
virus is randomly distribution in the atmosphere around the inhaler 
and expected dose will be proportional to the amount of inhaled air. 
Whilst of similar mathematical form, the competing risk derivation is 
designed for pooled data so assumes that all patients are homogeneous 
given a specific dose while Model (2.14) enables consideration of the 
heterogeneity of individuals based on each set of the viral load data.

The viral replication model proposed in this study explains the 
data as well as conventional SIV-type models or models with more 
structured models for adaptive immune response. This model has 5 
parameters, two are directly intuitive: time of detection and time of 
peak (𝑡𝐿 and 𝜏 respectively). The others (𝜃, 𝑇  and 𝜎) have an interpreta-
tion from model derivation in terms of the relative differences between 
timescales but they can also be considered as functions of the growth 
rate (i.e. 𝜃𝜎∕𝑇 ), decay rate (i.e. (1 − 𝜃)𝜎∕𝑇 ) and peak viral load, see 
Supplementary B. This means the parameters are identifiable provided 
supporting data grows and then decays.

The striking finding is that the parameter 𝜃 shows signs of bimodal-
ity in the sample of volunteers. This is a clear feature of this sample but 
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Table 2
Simulated values for viral adjustment time 𝑡∗, viral decay rate 𝛼, fade out rate in 
adjustment, and Clearance rate in viral replication based on the posterior distribution 
in Fig.  1.
 Results of simulation based on mid-turbinate data
 Patient No. 𝑡∗ 𝛼 Fade out probability 
 during adjustment  
 A 1.13 4.40 0.68  
 B 1.59 3.08 0.66  
 C 2.74 1.68 0.55  
 D 1.82 2.59 0.60  
 E 6.67 0.70 0.57  
 F 4.55 1.07 0.64  
 G 4.96 0.93 0.55  
 H 1.54 3.04 0.60  
 I 2.18 2.27 0.66  
 J 1.01 4.87 0.66  
 K 0.96 4.88 0.60  
 L 1.39 3.48 0.64  
 M 2.44 2.02 0.68  
 N 1.02 4.79 0.66  
 O 0.66 6.45 0.43  
 P 1.10 4.53 0.68  
 Q 2.59 1.84 0.62  
 R 1.78 2.62 0.57  
 Results of simulation based on throat data
 Patient No. 𝑡∗ 𝛼 Fade out probability 
 during adjustment  
 A 0.29 12.45 0.64  
 B 0.76 5.36 0.34  
 C 1.24 3.71 0.55  
 D 0.76 6.19 0.60  
 E 1.36 3.57 0.64  
 F 1.66 2.80 0.57  
 G 1.74 2.80 0.64  
 H 1.34 3.45 0.55  
 I 0.78 6.17 0.64  
 J 1.48 3.16 0.57  
 K 0.29 15.83 0.53  
 L 0.43 10.80 0.55  
 M 0.77 4.97 0.23  
 N 0.89 4.61 0.36  
 O 0.92 4.10 0.21  
 P 1.44 3.25 0.57  
 Q 1.65 2.63 0.45  
 R 0.32 12.75 0.36  

it is not clear if this is an artefact of a relatively small sample (so more 
volunteers would have produced a more unimodal posterior combined 
sample) or a genuine feature. The estimates for 𝑡𝐿 and 𝜏 appear to be 
multi-modal but as a result of the sample size of volunteers and that 
more participants might be expected to smooth these merged posteriors 
out further. However, the shape of posterior for 𝜃 appears structurally 
different particularly in mid turbinate sample.

The parameter 𝜃 is the growth rate divided by the sum of growth 
and decay rates (𝜃 = 𝑟∕(𝑟+ 𝑟𝐷)). So slow growth with fast decay would 
lead to smaller values of 𝜃, fast growth and slow decay values closer to 
1 and balanced growth and decay values close to 0.5. From Fig.  2, in 
the mid-turbinate, those samples with smaller 𝜃 appear to exhibit later 
times of peak (𝜏) as might be expected for relatively slow growth (and 
consistent values of 𝑡𝐿). However, those with faster growth than decay 
exhibit a wider range of peak and detection times. It is noteworthy 
too that those volunteers with the highest eventual viral load in mid-
turbinate (J and M) are in this cluster. This pattern is less clear in throat 
data.

In this work, we have made several necessary simplifications to cap-
ture the early infection dynamics of SARS-CoV-2. One key assumption 
treating the early viral adjustment phase as a single exponential decay, 
which is a clear simplification of a complex biological process such 
as airway mucus and mucociliary clearance, etc. (cf. Tosta (2021) for 
details of respiratory defence barriers). It is mathematically convenient, 
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however, it may not capture the true timing and impact of each bio-
logical mechanism. Another limitation is the lack of experimental data 
during the very early phase of infection (prior to detectable viral load), 
which restricts model validation in that regime. As a result, the model 
behaviours and conclusions are essentially inferred rather than directly 
confirmed, which, on one level, fills in a gap that experiments cannot 
observe due to detection thresholds. However, without empirical mea-
surements, we must rely on assumptions (e.g. an exponential clearance 
rate, clearance before replication, etc.) to describe early dynamics, and 
we cannot rigorously verify that this assumed form reflects reality. 
Overall, considering these simplifications and data limitations, the 
insights yielded by our model should be interpreted with appropriate 
caution.
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