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Abstract

Theoretical and numerical analyses of the behavior of magnetohydrodynamic (MHD) waves in solar atmospheric
structures have a vital role in understanding the plasma dynamics of the Sun. Magneto-helioseismology is
indebted to the insight gained from simple magnetic slab structures accompanied by varying conditions within the
slab and its environment. This paper builds on the existing literature on these structures by presenting an
analytical approach to deriving the dispersion relation for MHD wave propagation in a nonparallel case.
Analogous to the parallel case, a plethora of modes emerges that can be classified into quasi-kink or quasi-
sausage, body or surface, as well as fast or slow waves. The slab itself can be viewed as thin or wide similarly to
previous works, however due to the nonparallel condition it can also be categorised as short or long in the
direction of the tilt of the wavevector. This is the analog of the thin or wide slab classification in the parallel
direction, expanding our established knowledge regarding propagating MHD waves in magnetic slabs. The
variance of the wavenumber along the nonparallel dimension brings to light a number of intriguing features, such
as modes changing character with variation of the angle of the wavevector while the propagation speed remains
the same. Further new information is provided by the newly derived classification limits, u±, which act as a form
of generalised Alfvén and sound speeds in the dispersion relation.

Unified Astronomy Thesaurus concepts: Solar atmosphere (1477); Solar magnetic fields (1503); Helioseismology
(709); Solar physics (1476); Magnetohydrodynamics (1964); Solar coronal waves (1995); Quiet solar corona
(1992); Quiet solar chromosphere (1986); Solar oscillations (1515)

Materials only available in the online version of record: animations

1. Introduction

The dynamic activity of our Sun owes its nature to the
ubiquitous existence of magnetic fields throughout its atmos-
phere. The magnetic structuring present at different scales
allows for a variety of magnetohydrodynamic (MHD) waves to
propagate. At the same time, dynamic solar events have
been unanimously recognized as a means of driving perturba-
tions in magnetically dominated regions like the corona
(D. Banerjee et al. 2007; J. A. McLaughlin et al. 2011;
I. Arregui et al. 2012; M. Mathioudakis et al. 2013; R. Komm
et al. 2015). This establishes the importance of rigorously
studying wave propagation in magnetic structures as a means
of plasma diagnostics.

On top of this, studying the different interactions of MHD
waves can grant insight into the mechanisms for coronal heating
such as phase mixing (J. Heyvaerts & E. R. Priest 1983) and
resonant absorption (M. Goossens et al. 2011).

The structure of a magnetic waveguide can be studied
through leveraging the tools of solar magneto-seismology
(SMS; see the reviews by V. M. Nakariakov & E. Verwichte
2005; J. Andries et al. 2009; M. S. Ruderman & R. Erdélyi
2009; I. De Moortel & V. M. Nakariakov 2012; R. Erdélyi &
N. K. Zsámberger 2024). SMS methods combine theoretical

investigations with observational results for MHD wave
propagation. These two directions of study are used to
compare calculated and measured values for the properties
of the waves in order to carry out a meticulous analysis of the
MHD waveguide environment (R. J. Morton et al. 2012). This
allows certain properties of solar waveguides which would be
difficult to measure directly (such as the coronal magnetic field
strength) to be estimated indirectly through SMS methods
(V. M. Nakariakov & L. Ofman 2001; R. Erdélyi & Y. Taroyan
2008; M. Allcock et al. 2019).
At its core, SMS and space-weather physics start with the

investigation of relatively simple magnetic structures, then
extend the model for a solar framework by capturing further
details of the fundamental physical processes present in solar
atmospheric waveguides. By using this step-by-step approach
it is possible to build on past results, expand in new directions,
and leverage these new results to build a deeper understanding
of solar waveguides.
In the earlier stages of investigating linear MHD waves,

studies focused on a single interface (B. Roberts 1981a).
Then the magnetic and density stratification of the single
interface was developed further by considering an isolated
slab, where a second interface secluded a plasma region
permeated by a straight magnetic field between the two
boundary layers, isolating it from the nonmagnetic external
regions (B. Roberts 1981b). The magnetic, density, and flow
properties of the plasma in the three distinct regions became
gradually more complex, from an isolated symmetric magnetic

The Astrophysical Journal, 988:38 (16pp), 2025 July 20 https://doi.org/10.3847/1538-4357/addc69
© 2025. The Author(s). Published by the American Astronomical Society.

aaaaaaa

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0009-0000-9782-0651
https://orcid.org/0000-0002-2822-129X
https://orcid.org/0000-0001-8530-5855
https://orcid.org/0000-0003-3439-4127
mailto:robertus@sheffield.ac.uk
http://astrothesaurus.org/uat/1477
http://astrothesaurus.org/uat/1503
http://astrothesaurus.org/uat/709
http://astrothesaurus.org/uat/709
http://astrothesaurus.org/uat/1476
http://astrothesaurus.org/uat/1964
http://astrothesaurus.org/uat/1995
http://astrothesaurus.org/uat/1992
http://astrothesaurus.org/uat/1992
http://astrothesaurus.org/uat/1986
http://astrothesaurus.org/uat/1515
https://doi.org/10.3847/1538-4357/addc69
https://doi.org/10.3847/1538-4357/addc69
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/addc69&domain=pdf&date_stamp=2025-07-11
https://creativecommons.org/licenses/by/4.0/


slab to having a uniform magnetic field externally
(P. M. Edwin & B. Roberts 1982), or maintaining the isolated
magnetic slab but adding a density differential—an asymmetry
—to the two external regions (M. Allcock & R. Erdélyi
2017, 2018). The asymmetry was then extended to the
magnetic properties of the outside regions, i.e., having two
different magnetic fields to the left and right of the slab
(N. K. Zsámberger et al. 2018; N. K. Zsámberger & R. Erdélyi
2020).

The investigation of the Cartesian geometry of planar
interfaces was continued by adding multiple interfaces,
resulting in a complex waveguide model composed of plane-
parallel regions with different atmospheric properties, where
either only a single region maintained its magnetic structure
(D. Shukhobodskaia & R. Erdélyi 2018) or a magnetic
differential was added on top of the density stratification to
all regions (M. Allcock et al. 2019). Another frequently
utilized approach is one that considers the presence of bulk
background flows in the plasma, with jet structures formed
by velocity fields (V. M. Nakariakov & B. Roberts 1995;
M. Barbulescu & R. Erdélyi 2018; N. K. Zsámberger
et al. 2022).

Simultaneously, a number of modeling studies adopted
cylindrical geometries over Cartesian ones, with significant impact
on the development and application of SMS (H. Rosenberg
1970; Y. Uchida 1970; V. V. Zajtsev & A. V. Stepanov 1975;
B. Roberts et al. 1984; M. Goossens et al. 2002). The analysis
of cylindrical structures seems natural in a solar context as
atmospheric magnetic flux-tube oscillations have been widely
observed (M. J. Aschwanden et al. 1999; V. M. Nakariakov
et al. 1999, 2024; V. M. Nakariakov & E. Verwichte 2005;
D. Banerjee et al. 2007, 2021; T. Wang 2011; I. De Moortel &
V. M. Nakariakov 2012; B. Roberts 2024), while Cartesian
configurations have provided insight into more elongated complex
magnetic structures, such as prominences (P. S. Joarder &
B. Roberts 1992a, 1992b, 1993; I. Arregui & J. L. Ballester
2011).

The present analysis aims to expand on the aforementioned
studies of MHD wave propagation in asymmetric Cartesian
waveguides in another direction, in a configuration where the
propagation is allowed to be nonparallel or oblique with
respect to the magnetic field. Specifically, we study an isolated

magnetic slab with an asymmetry of atmospheric properties
(density, pressure, temperature), both compared to the inside
of the slab and between the left and right environmental
regions. As Figure 1 illustrates, this structuring appears along
the x-direction, while the system remains infinite in the
perpendicular horizontal y-direction and the vertical z-direc-
tion. This slab geometry is now examined under the additional
condition of nonparallel wave propagation, i.e., k = (ky, kz). In
previous asymmetric Cartesian waveguide studies, propagation
was considered purely parallel to the magnetic field and
perpendicular to the lateral stratification. This new approach of
considering an oblique wavevector can in the future be applied
to all past Cartesian-based studies in order to further explore
the kind of complex magnetic features investigated by the
purely parallel studies. By allowing the propagation to be
oblique, initially with asymmetric isolated magnetic slabs,
further insights into slab-like solar waveguides are expected.
However, this initial investigation can also eventually open the
door for extended studies of multiple slabs with nonparallel
propagation, all with different magnetic and atmospheric
stratification.
In Section 2 of the present paper, first the derivation of the

dispersion relation is covered by retaining the nonparallel
wavevector component ky in the governing equation. Next,
analytical solutions of interest—incompressible or low-beta
plasma, thin and wide, short and long slab approximations—
are derived for all different modes in Section 3. Lastly,
numerical solutions are presented for different values of the
now nonzero ky-component in Section 4, before a summary of
the most important results is given. We also include
Appendices to provide an extended comparison of the
numerical solutions with the analytical approximations we
derived for different modes.

2. Derivation of the Dispersion Relation

2.1. Basic Structure

In the current section, the geometric and physical properties
of the investigated model are described in detail, and the
linearized ideal MHD equations along with appropriate
boundary conditions at the interfaces are used to obtain the
dispersion relation describing oblique MHD wave propagation

−x0
x0 x

z

y

k⃗ = (ky, kz)

p1, ρ1, T1

B0

p0, ρ0, T0

p2, ρ2, T2

Figure 1. Illustration of a magnetic slab in an asymmetric nonmagnetic environment.

2

The Astrophysical Journal, 988:38 (16pp), 2025 July 20 Tsiapalis et al.



in the model. For clarity, the following indices are used
throughout:

=

<

>

=
<

>
i

x x

x x

x x

j
x x

x x

1, if

0, if

2, if

,
1, if

2, if .

0

0

0

0

0

These are utilized if an equation or parameter requires
substituting quantities describing both the slab and the external
regions (index i), or only the two environmental regions
(index j).

Figure 1 shows the equilibrium structure of the magnetic
slab model investigated. The width of the slab is 2x0, enclosed
between the two black lines, and there is a uniform magnetic
field B0 inside the structure, visualized with the straight blue
arrows. Outside the slab, a nonmagnetic uniform plasma, with
asymmetry in terms of gas pressure p, density ρ, and
temperature T at its sides, is considered. The asymmetry
between the three regions is also portrayed visually by the use
of different shades for each in Figure 1. Effects of gravity are
omitted for the sake of simplicity, despite its natural
correlation with the density stratification of the solar atmos-
phere. This omission can be excused when the gravity scale
height is large compared to the wavelength, thickness, and
length of the slab (due to the nonparallel propagation), such as
in the present study.

=B
zB x x, if

0, otherwise

0 0

and

=

<

>

p

p x x

p x x

p x x

,

, , if

, , if

, , if

.

1 1 0

0 0 0

2 2 0

The Alfvén speed is zero outside the slab, i.e.,
vA1 = vA2 = 0, as there is no magnetic field there. Also, the
total pressure in these external regions can be characterized
solely by the gas pressure pi. Within the slab, though, the
magnetic pressure, which is generated by the Lorentz force of
magnitude / µB 20

2 , with μ being the magnetic permeability,
needs to be accounted for. The total pressure should be
continuous everywhere and the ratio of specific heats, γ, is
assumed to be constant throughout. Combining this informa-
tion the following relation can be written:

( )
µ

= + =p p
B

p
2

. 1
1 0

0

2

2

Expressing this condition using the densities and characteristic
speeds describing each region, Equation (1) can be rewritten as

( )= + =c c v c
1

2
. 2A1 1

2

0 0

2

0

2

2 2

2

Here, /=c pi i i
2 is the sound speed in each region, while

/ µ=v BA

2

0

2

0
is the Alfvén speed inside the slab. Note that

k = (ky, kz) is taken to be oblique or nonparallel relative to
the magnetic field. This is the main focus of the paper as
explained earlier, and will be the reason for the new results
derived below. Finally, the ideal MHD equations govern the
interactions of the magnetic field and the plasma within the

slab:

( ) ( )= × ×

B
v B

t

, 3

( )+ =v
t

0, 4

( )=

d

dt

p
0, 5

( ) ( )/µ= + × ×
v

B B
t

p , 6

where the variables v = (vx, vy, vz), B, p and ρ are the velocity,
magnetic field, atmospheric pressure, and density at time t,
respectively. The gas law in the form of p = kBρT/m and the
solenoidal condition in magnetic fields, i.e., ∇ · B = 0, are
also employed.

2.2. Governing Equation

At this point, linearization for small perturbations of the
MHD equations is executed. After combining the results, the
Fourier components of the system are considered, seeking
solutions in the form of

ˆ ( )

ˆ ( ) ( )

( )

( )

=

=

+ +

+ +

v v x e

p p x e

,

, 7

x y z x y z
i t k y k z

i t k y k z

, , , ,
y z

y z

where kz, ky are components of the wavenumber vector, and ω
is the angular frequency. This ansatz opens the investigation to
waves traveling with any angle in the plane defined by the
magnetic field and the dimension y perpendicular to both the
field and the stratification. Now, the disturbance of velocity
has an amplitude v̂x , which obeys the equation

( )( ( ) )

( ( ) )

ˆ

( )( ( ) ) ˆ ( )

+

=

d

dx

x k v x

m x k

dv

dx

x k v x v 0, 8

z A

y

x

z A x

2 2 2

2 2

2 2 2

where

( )
( ( ) )(( ( ) )

( ( ) ( ))( ( ) )
=

+

m x
k v x k c x

v x c x k c x

z A z

A z T

2

2 2 2 2 2 2

2 2 2 2 2

and

( )
( ) ( )

( ) ( )
=

+
c x

c x v x

c x v x
.T

A

A

2
2 2

2 2

This is our governing equation, and it is an ordinary
differential equation (ODE) valid for perturbations inside
and outside the slab. This equation is formally identical to its
counterpart derived in B. Roberts (1981b), only now the
ky-component will also be retained as being nonzero through-
out. Equation (8) has a homogeneous limit,

ˆ
( ) ˆ ( ) ( )+ =

d v

dx
m k v k v 0, 9

x
y x z A

2

2

2 2 2 2 2
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which can be used separately for each of the three regions.
Hence, for inside the slab the governing equation is

ˆ
( ) ˆ ( ( ) )

( )

+ =
d v

dx
m k v k v x x x0, for

10

x
y x z A

2

2 0
2 2 2 2 2

0

where

( )( )

( )( )
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+

m
k v k c

v c k c

z A z

A z T

0

2

2 2 2 2

0

2 2

2

0

2 2 2 2

and

=
+

c
c v
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,T

A

A

2 0
2 2

0
2 2

while the governing equation outside the slab is

ˆ
( ) ˆ ( )+ =

d v

dx
m k v 0, 11

x
j y x

2

2

2 2

where

=m k
c

.j z

j

2 2
2

2

2.3. Boundary Conditions

An important boundary condition implies that the case of
laterally propagating waves as x → ±∞ is not considered.
This means that the nonmagnetic regions are supposed to act
as "absorbers" of energy for the wave, i.e., the waves are
evanescent outside the slab. Thus, >m m, 01

2
2
2 , and v̂ 0

x

as x → ±∞.
Considering the boundary condition on the velocity in

regions 1 and 2, solutions to differential Equations (10) and
(11) governing the velocity can be written as

ˆ
{( ) }

{( ) }

( )

( ) ( )

( ) ( )

=

<

+

+ +

>

+ +

+

v

a e x x
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cosh
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, 12x

m k x x

y

y
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1 0

0 0
2 2

1
2

0 0
2 2

1
2 0

2 0

y

y

1
2 2

1
2 0

2
2 2

1
2 0

where a0, a1, a2 and b0 are all arbitrary constants. The
boundary condition carried from the previous argument applies
here too:

( )

/+ > + >

<

m k k k c

k c

0 0

, 13

j y y z j

j

2 2 2 2 2 2

2 2 2

while +m ky0

2 2 can be negative. These limitations also relate
to the ability of the respective regions to support the
propagation of surface and/or body waves.

2.4. Continuity Equations

The velocity derivative with respect to the spatial comp-
onent ˆ /dv dxx is easily derived from Equation (12):

ˆ
( )

( )

( )

µ

µ µ

µ

=

<

+

>

µ

µ

+

dv

dx

a e x x

a sh b ch x x

a e x x

, if

, if

, if

, 14
x

x x

x x

1 1 0

0 0 0 0 0 0 0

2 2 0

1 0

2 0

where

( )µ = +m k , 15i i y
2 2

and ( )µ= xsh sinh0 0 0 , ( )µ= xch cosh0 0 0 . It is important that
μi is not confused with μ, the magnetic permeability. The
distinction should be easy through context and the use of
indices. Using the linearized MHD equations from earlier, the
Fourier form in Equation (7), the magnitude of the total
pressure perturbation can be written as

ˆ ˆ ( )/=

<

>

µ

µ

µ

p dv dx

x x

x x

x x

, if ,

, if ,

, if .

16T x
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2

Here,

( )

( )

µ

µ

=

=

i k v

i

,

. 17

z A

j
j

j

0
0

2 2 2

0

Applying the continuity condition for velocity and total
pressure perturbations, respectively, on the surfaces at ±x0 in
Equations (12) and (16), the following continuity equations
emerge:

( )+ =a a ch b sh 0, 181 0 0 0 0

( )+ =a ch b sh a 0, 190 0 0 0 2

( )+ =a a sh b ch 0, 201 1 0 0 0 0 0 0

( )+ + =a sh b ch a 0, 210 0 0 0 0 0 2 2

where a0, b0, a1, a2 are arbitrary constants as stated earlier.

2.5. Dispersion Relation

Equations (18)–(21) are four equations with four unknowns,
a0, b0, a1, and a2. The following four-by-four matrix of
coefficients can be formed, for which the determinant is
required to be zero in order to have nontrivial solutions to the
system:

( )

ch sh

ch sh

sh ch

sh ch

1 0

0 1

0

0

, 22

0 0

0 0

1 0 0 0 0

0 0 0 0 2

where each row represents one of the continuity equations and
each column is the coefficient of one of the four unknowns in
that equation, in order a1, a0, b0, a2. Through a series of
algebraic transformations, we arrive at the following quadratic
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equation for ω2:

( )( )

( ) ( )

µ

µ µ

µ

µ µ

+ +

+ =

k v th ct

k v

1

2

0, 23

z A

z A
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0
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1

2

2

2 2 2
0 0

2

0

2

0

2

1 2

1 2

2 2 2 2

where / µ= =th sh ch xtanh0 0 0 0 0 and /= =ct ch sh0 0 0

µ xcoth
0 0. We note that letting ky = 0, then μi = mi, and the

dispersion relation for the case of parallel propagation, Equation
(20) in M. Allcock & R. Erdélyi (2017) for an asymmetric slab,
can be recovered.

A further similarity to this and other previous asymmetric slab
studies (M. Allcock & R. Erdélyi 2017, 2018; N. K. Zsámberger
et al. 2018, 2022; D. Shukhobodskaia & R. Erdélyi 2018;
M. Allcock et al. 2019; N. K. Zsámberger & R. Erdélyi 2020)

is that Equation (23) is a single relation that describes the
dispersion of all the eigenmodes propagating obliquely in an
asymmetric magnetic slab, which, in the general case, does not
decouple into two separate equations describing sausage- or kink-
type eigenmodes only. The eigenmodes of these asymmetric
slabs possess a mixed character (see, e.g., M. Allcock &
R. Erdélyi 2017; N. K. Zsámberger et al. 2018 for details), and
following the nomenclature of the preceding asymmetric slab
studies listed, we refer to them as quasi-sausage and quasi-kink
modes.

2.6. Nonparallel Asymmetric Eigenmodes

Now that a dispersion relation analogous to those of
previously studied asymmetric slab systems has been obtained
in the form of Equation (23), with certain further assumptions
this equation can be decoupled and the standard representation
for a dispersion relation in the isolated slab will emerge.
Assuming that the physical properties of the two regions
outside the slab are of similar scale, the following approx-
imation can be made:

µ

µ

µ

µ

µ

µ µ
+

1

2
.

0

0

1

1

0

0

2

2

0

0

1

1

2

2

Using this so-called weak asymmetry approximation,
Equation (23) can be factorized into

{ }{ } ( )µ µ+ + =x xtanh coth 0. 242
0 0

2
0 0

Finally, substituting the expressions for Λ from Equation (17)

into the factors of this expression leads to the following
decoupled dispersion relation:

( ) ( )µ µ µ µ+ =k v x2
tanh

coth
. 25z A

2 2 2 0

1

1

0

2

2 0
2

0 0

Throughout the rest of this paper, this will be the form used as
the dispersion relation of the system. This equation describes
the two types of eigenmodes separately, with the top

( )µ xtanh
0 0 line representing quasi-sausage modes, and the

bottom ( )µ xcoth
0 0 governing quasi-kink modes, both of which

are now allowed to have nonparallel propagation.
These waves can be further categorized as surface or body

modes. To implement this second type of categorization, the
allowed values of μ0 need to be examined. Consequently, an
analysis of the sign of µ

0

2 reveals the intervals of real or

complex values of μ0. Ultimately, positive µ
0

2 corresponds to

surface waves, while negative µ
0

2 means body waves. From

Equation (15), µ
0

2 can be expanded as

( )( ) ( )
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+ + + +
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0

2 2

2 2 2
0

2 2

Factorizing the numerator leads to the following, more concise
definition composed of only products of two terms both in the
numerator and the denominator:

( )( )

( )( )
( )µ =

+

+k u k u

k c c v
, 27

z T A

0

2
2 2 2 2 2 2

2 2 2
0
2 2

where = +k k kz y
2 2 2. The boundaries for classification into

body and surface modes will be determined by the new speeds
introduced in Equation (27) above, u− and u+, which are
defined as

( )( )
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= + +
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u c v A
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2
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2
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2
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Before moving on to classification, the new speeds need to be
examined for their properties, i.e., allowed values, real or
complex. Starting from the statement below, which is always
true for real numbers:

( ) ( ) ( )+ +k c v k c v 0, 29z A y A
2

0
2 2 2 2

0
2 2 2

the following inequality is constructed:

( )( ) ( )+ +k k c v k c v4 , 30z y A z A
2 2

0
2 2 2 2

0
2 2

which, due to the squares present on both sides, compares
positive real numbers. Introducing the definition of cT

2 results
in

( )( )
( )

+ +

k c

k k c v
1

4
. 31

z T

z y A

2 2

2 2

0

2 2

This means that A, whose square is defined by Equation (28),
is also real and positive. Moreover, it can be shown that
0� A� 1. Therefore, ± Ru

2 and ±u 0
2 . Having established

that ±u
2 are real and positive, now an assessment as to where

the new classification frequencies, ±k u2
2, lie in comparison to

k cz T
2 2 is needed. This is carried out by rearranging the

definition of ±u
2 from Equation (28) to express k cz T

2 2 as

( )=
+

±
±

k c k u
u

c v
1 . 32z T

A

2 2 2 2

2

0

2 2

Now, let us assume that

( )
+

>
±u

c v
1 1. 33

A

2

0

2 2
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However, this would mean that

( )
+

<
±u

c v
0, 34

A

2

0
2 2

which is invalid, as all components are nonnegative. Hence,
( )/ +±u c v1 1A

2

0

2 2 by contradiction, and therefore k cz T
2 2

±k u2
2. Now, obviously +u u

2 2, so the final ordering of
frequencies where the classification between body and surface
modes changes is

( )+k c k u k u . 35z T
2 2 2 2 2 2

The details of the classification of waves into surface and body
modes therefore can be given as follows:

1. Slow surface waves, when k cz T
2 2 2.

2. Fast surface waves, for +k u k u2 2 2 2 2.
3. Slow body waves, for k c k uz T

2 2 2 2 2.
4. Fast body waves, for +k u2

2 2.

Note that taking ky = 0 in the definition of ±u
2 results in

( )=u c vmin , A

2
0
2 2 and ( )=+u c vmax , A

2
0
2 2 , which reduces μ0 to

m0 in Equation (25) as expected.

3. Analytical Solutions

After deriving the dispersion relation and establishing the
classification of the different eigenmodes that can be guided by
this asymmetric slab system, we conducted a further analytical
and numerical study of the solutions. First, in the current
section, analytical solutions to Equation (25) are provided by
analyzing popular, practical limiting cases, i.e., the incom-
pressible, low-beta, thin-short slab, and wide/long slab
approximations. This is preceded by briefly addressing leaky
and spurious solutions, which limit the allowed values of
frequency ω to the trapped solutions. While the analytical work
was carried out in conjunction with the numerical invest-
igation, Section 3 focuses on the analytical results, with a
separate Section 4 dedicated to numerical results.

3.1. Trapped Solutions

Equation (13) shows that trapped solutions exist for
< k cj

2 2 2. For nonzero ky, the governing Equation (9)

depends on μ0, instead of m0 like in the parallel case. As a
result, kzc0 is no longer a spurious solution for the ky ≠ 0 case,
while kzcT remains one regardless of ky. In addition, kzuA is not
only a spurious solution for ky nonzero, but it is a solution to
the governing Equation (9). However, ku−, ku+ are now
spurious solutions, as they eliminate μ0 and reduce the
governing equation to one with a linear solution, i.e., no wave
propagation is permitted.

3.2. Incompressible Limit

In order to adhere to incompressibility, the adiabatic index,
γ, and with it the sound speed must become unbounded., i.e.,
γ, cs → ∞. As a result, the tube speed, cT, reduces to the
Alfvén speed, vA, and so mi

2 reduces to kz
2. Hence,

( )µ = + =k k ki z y
2 2

1

2 . This allows us to write Equation (25) as

( ) ( )=k v , 36z A
2 2 2 2

where

( )= + kx
1

2

tanh

coth
. 37

0

1

0

2

0

The solutions in the incompressible limit can then be
expressed as

( )=
+

k v
1

. 38z A
2 2 2

As σ� 0, therefore σ/(1 + σ) < 1. As a result, the
incompressible approximation returns sub-Alfvénic phase
speeds, which is in agreement with the findings of M. Allcock
& R. Erdélyi (2017) for the case of parallel propagation.

3.3. Low-beta Approximation

The low-plasma-β condition is the result of the magnetic
pressure dominating the gas pressure inside the slab, i.e.,
β 2μp/B2 < < 1 (where μ in this case is the magnetic
permeability and not the modified m0 used elsewhere in this
paper). This condition translates to the Alfvén speed dominat-
ing the sound speed, i.e., /c v 0A0

2 2 .
To proceed in this limit, the numerical investigation (further

described in Section 4) could be utilized, as it showed that the
frequencies of propagating waves in this approximation obey
< <k vz A

2 2 2. In this case, m kz0

2 2 and so µ k
0

2 2. This

limits the modes to surface ones as µ > 0
0

2 . However, outside

the slab, ( ) /µ = k c cj j j
2 2 2

1

2 . Additionally, with such an
ordering of the characteristic speeds, the ratios of the internal
density to the external ones shown in Equation (2) simplify to

( )=

c

v

2
. 39

j

j

A

0

2

2

The low-β condition is a good approximation of the solar
coronal environment, but future studies building on this first
approximation should ideally incorporate magnetic structures
outside the slab.
Considering the full asymmetric system, even with the

simplification process detailed above, the dispersion relation
can only be transformed into a quadratic equation in ω2.
Instead, here we continue the investigation of M. Allcock &
R. Erdélyi (2017), focusing on the solutions when the low-β
slab is surrounded by a symmetric environment, but extending
their results to the case of allowing nonparallel propagation as
well. In this case, the dispersion relation becomes only
quadratic in ω2, with solutions in the following form:

( )=

± +

k c

kx

kx

1 1
tanh

coth

tanh

coth

. 40z e

k

k

k

k

2 2 2

2
2

2
0

1

2

1

2

2
2

2
0

z

z

4

4

2

2

Neglecting the leaky solution and simplifying the remaining
components result in the following equation that describes the
obliquely propagating wave modes of this symmetric, low-β
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magnetic slab:

( )

=

× +

k c

k
kx

k

k
kx

2 coth

tanh

1
tanh

coth
1 . 41

z e

z

2

4 2

2 2

2

2
0

2

4

4

2

2
0

1

2

This pair of equations represents a quasi-sausage (top line) and
a quasi-kink (bottom line) surface mode solution to the
dispersion relation. A further study of this equation in limiting
cases as well as a numerical exploration of the solutions show
that for small values of kyx0 (see also in Section 3.4), both of
these solutions tend to the same intermediate frequency as ever
wider slabs are considered (kzx0 increases). In a thin slab (kzx0
small), the quasi-kink mode tends to a frequency of ω = 0,
while the quasi-sausage mode approaches the separation
frequency defined above (but now s1 = s2 = se due to the
symmetric sound speeds).

The behavior of the solutions in thin slabs changes as kyx0
increases, with the quasi-kink mode’s frequency increasing,
and the quasi-sausage mode’s frequency first increasing but
then decreasing when kzx0 → 0. However, when kzx0 is also
large, the change in the frequencies of both types of waves
becomes barely noticeable. Such dependencies on the
dimensionless slab width and length are further explored in
the next section for the general case (without the restriction of
the low-β condition).

3.4. Thin and Wide Slab

The limiting cases of thin/slender and wide slabs have been
explored thoroughly in inspiring papers, such as B. Roberts
(1981b). The typical methodology consists of considering the
relative size of wavelength along the z-axis, λz = 2π/kz and
the width of the slab, x0. The case when the wavelength
is much greater than the width of the slab, i.e., x0/λz =
kzx0/2π < < 1, is referred to as the thin slab. The case when
the wavelength is negligible relative to the width of the slab,
i.e., x0/λz = kzx0/2π > > 1, is referred to as the wide slab.
Once again, an extensive analysis of these cases can be found
in M. Allcock & R. Erdélyi (2017) for the asymmetric slab,
where propagation is considered purely parallel. The present
analysis is concerned with the implication of the nonzero
wavelength in the y-direction.

Before proceeding to describe the solutions in these
traditional applicable limiting cases, similar approximations
have to be defined with regard to propagation in the
y-direction, too, using the characterizations short slab for
x0/λy = kyx0/2π < < 1 and long slab for x0/λy =
kyx0/2π > > 1. These are used to identify and describe cases
where further analytical conclusions about the obliquely
propagating waves can be drawn.

3.4.1. Thin-short Slab

The thin-short slab received the most attention of the four
emerging subcases, as it allowed for a more in-depth analysis
and the most diverse results. The thin-short slab is defined
when both kzx0/2π < < 1 and kyx0/2π < < 1, i.e., the
wavelengths of propagating waves in both dimensions

perpendicular to the field are much greater than the lateral
dimension of the slab, x0.
Surface modes. First, let us discuss quasi-sausage modes in

the thin-short slab approximation, governed by the tanh

version of Equation (25). For surface modes, the simplification
( )µ µx xtanh

0 0 0 0 as kzx0, kyx0 → 0 can be made. This is
based on the proof for m0→ 0 as kzx0→ made in B. Roberts
(1981b). The dispersion relation in this case simplifies to

( ) ( )µ µ µ+ =k v x2 . 42z A
2 2 2 0

1

1

0

2

2 0

2 2
0

An inspection of numerical solutions to the dispersion relation
(Equation (25)) reveals that in a thin-short slab, slow surface
quasi-sausage modes behave like k cz T

2 2 2. The form

( )= k c 1z T
2 2 2 for some ν > 0 is assumed and substituted

into Equation (42) to obtain the following solution:

( )( )

( )( )( )

( )

=

+ +

+
k c

k u k c k u k c k x

k v c c v
1

2
,

43

z T

z T z T z

z A T A

2 2 2
2 2 2 2 2 2 2 2

0

3
1 2

2 2
0
2 2

valid for ( ) ( )+ + >k k c c c1 min ,y z T
2 2

1 2 , where

( )=

c
k c k c .j

j j
j z T

0 2 2 2 2
1

2

Similarly to the case of purely parallel propagation, this
equation describes waves that approach the frequency k cz T

2 2

from below as kzx0 → 0; however, the presence of a
ky-component also influences the exact shape of this solution
curve, as we will also show in Section 4.
A noteworthy case appears if a symmetric environment is

assumed, i.e., c1 = c2 = ce and ρ1 = ρ2 = ρe. For fast surface
quasi-sausage modes in a thin-short slab, it may be assumed
that these waves approach the now common external sound
speed: k ce

2 2 2. Under these assumptions, the following
equation is derived:

[ ( ) ] ( )= c k k k x , 44e z z
2 2 2 2 2

0
2

where

( )( )

( )( )( )
=

+

+c k u k c k u k c

k c c v c c v
.

e e z e z e

z T e A e A0

2 2 2 2 2 2 2 2 2

4 2 2 2 2

0

2 2

While for very small kzx0 values, this approximation
unfortunately does not capture the sudden decrease in phase
speed and deviation from the external sound speed and the
related separation speed that the full solutions show, from
small to intermediate kzx0 values, the approximate and exact
solution curves are both qualitatively and quantitatively very
similar (see also Figure 7 in Appendix B and its accompanying
video).
A brief description of quasi-kink surface modes also becomes

possible in a thin and short slab. In general, these modes are
governed by the coth version of Equation (25). The simplification
introduced by assuming that the slab is thin and short allows us to
make the substitution ( ) /µ µx xcoth 1

0 0 0 0, leading to the
following solution:

( )= +k v kx
1

2
. 45z A

2 2 2 0

1

0

2

0
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This type of solution shows a much clearer influence of the
oblique propagation, with a linear dependence on both
wavenumber components contained in the final kx0 term.

We also note the absence of a companion quasi-kink mode
to the quasi-sausage mode of Equation (45). This is because
fast quasi-kink surface modes, when they are present, show a
more complex behavior. As P. M. Edwin & B. Roberts (1982)

noted in the case of symmetric slabs, these solutions to the
dispersion relation enter the band of surface modes delineated
by the characteristic speeds of the system only at an
intermediate slab width (in the z-direction, and as kzx0
decreases, the solution curve continues in a band of body
modes). We have also recovered this behavior, however we
make further observations on this mode as we describe the
results of our numerical investigation in Section 4.
Body modes. The simplifications to describe the quasi-kink

and quasi-sausage surface modes above were made under the
assumption of μ0 > 0. This does not exhaust all possible
modes. The case of μ0 remaining bounded while kzx0, kyx0→ 0
has also to be considered. That is achievable only for μ0 < 0,
specifically for ω → kzcT as kzx0, kyx0 → 0, i.e., body waves.
For slow body modes, which approach the tube speed in thin
slabs, the form ( ( ) )= k c kx1z T

2 2 2
0

2 (with ν to be
determined) is used, as it satisfies the requirements above.
As a result, the slow quasi-sausage body modes in a thin-short
slab are given as a countably infinite set for ν = νn that behave
like

( )( )
( )

( )

= +

= …

+

+

k c
k u k c k u k c

k u u n
k x

n

1 ,

1, 2, .

46

n z T

z T z T

z

z
2 2 2

2 2 2 2 2 2 2 2

4 2 2 2 2
0

2

Similarly, the slow quasi-kink body modes in a thin-short slab
are also a countably infinite set that are slightly faster and
behave like

( )
( )( )

( )

( )

= +

= …

+

+

k c
k u k c k u k c

k u u n

k x

n

1 ,

1, 2, .

47

n z T

z T z T

z

z
2 2 2

2 2 2 2 2 2 2 2

4 2 2 2 1

2

2 0
2

3.4.2. Wide and/or Long Slab

The wide and long characterization of the slab refer to
kzx0 > > 1 and kyx0 > > 1, respectively. Therefore, unlike in
the case of the thin-short slab examined above, at least one
wavelength, either λz or λy, will be much smaller than the
lateral dimension. These are the wide-short, thin-long, and
wide-long subcases. In any of these scenarios, the same
simplification can be made, due to the fact that µ =x

0 0

( )+ > >m x k x 1y0

2

0

2 2

0

2
1

2 if m0x0 > > 1 and/or kyx0 > > 1. The
latter is self-explanatory, while the first is proven for the case
of kzx0 > > 1 in B. Roberts (1981b). The simplification that
can be made in this case is that both ( )µ xtanh 1

0 0 and
( )µ xcoth 1

0 0 when μ0x0 > > 1. This reduces the dispersion

relation to

( ) ( )µ µ µ+ =k v 2 . 48z A
2 2 2 0

1

1

0

2

2 0

2

This is formally equivalent to the single-interface problem
with modified density ratios and wavenumber. It is ky
dependent but not to a degree that induces any qualitative
change to the solution.
The body modes, however, do not have a parallel in the

single-interface problem, as they owe their existence to the
barriers and are externally evanescent. Under the wide and/or
long slab conditions there exists a solution for k u2 2 2

as μ0x0 → ∞. To show this, we substitute the ansatz
( ( ) )/= +k u kx12 2 2

0
2 into the dispersion relation to

retrieve two countably infinite solution sets, given by

( ) ( )( )

( )( )

( )

=

+

=

+

k u

n k u k c c v

k u u u kx

n

1 ,

1, 2, ...

49

n

z T A
2 2 2

2 1

2

2
2 2 2 2

0
2 2

2 2 2 2
0

2

for quasi-sausage modes and similarly,

( )( )

( )( )

( )

=
+

=

+

k u
n k u k c c v

k u u u kx

n

1 ,

1, 2, ... 50

n

z T A2 2 2
2 2 2 2 2 2

0
2 2

2 2 2 2
0
2

for quasi-kink modes.
Unlike the parallel case, the ordering of c0 and vA does not

change the solutions, since the ordering of u− and u+ is
absolute.
Using a similar approach to retrieve an approximation for

fast body modes from the decoupled dispersion relation, we
see that another two sets of countably infinite solutions exist
in the wide and/or long slab. Specifically, the ansatz

( ( ) )/= ++k u kx12 2 2
0

2 yields

( ) ( )( )

( )( )

( )

= +

+

=

+

+

+ +

k u

n k u k c c v

k u u u kx

n

1 ,

1, 2, ...

51

n

z T A
2 2 2

2 1

2

2
2 2 2 2

0
2 2

2 2 2 2
0

2

for quasi-sausage fast body modes and similarly,

( )( )

( )( )

( )

= +
+

=

+

+

+ +

k u
n k u k c c v

k u u u kx

n

1 ,

1, 2, ... 52

n

z T A2 2 2
2 2 2 2 2 2

0
2 2

2 2 2 2
0

2

for quasi-kink fast body modes. These are both solutions that
approach the higher one of the classification speeds, u+, from
above as the slab becomes wider or longer. This can coincide
with an increase in the phase speed of the solutions at identical
slab widths but longer slab lengths, as the classification speeds
themselves also depend on the slab length (as mentioned
above).
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4. Numerical Solutions

In this section, the dispersion relation is solved numerically
with greater focus given to the changes induced by the
ky-variation and by characterization of the slab into long and
short.

Consider an asymmetric magnetic slab as a base, for which
the equilibrium conditions are given in Figure 2 and explored
in Section 2. For that slab, allow the propagation to take place
nonparallel, including a ky-component in the wavevector k.
The general dispersion relation for these circumstances is
given by Equation (23). Note that the solution does not
decouple into two distinct solutions, typically referred to as
sausage for the tanh version, and kink for the coth one. Instead,
they appear coupled, similar to what was found in M. Allcock
& R. Erdélyi (2017) for the parallel slab, i.e., the subcase of
Equation (23) for ky = 0. By assumption of similar scales, the

dispersion relation was decoupled into a solution set seen in
Equation (23). Consequently, the quasi-sausage and quasi-kink
terms were introduced for the in-phase and anti-phase modes,
shortened to sausage and kink for ease of writing.
In Figures 2(a) and (b), we present numerical solutions of

Equation (23) for an asymmetric slab system with moderately
low plasma-β (0.3), embedded between two environmental
regions with different equilibria that are both warmer than the
slab itself, with the exact values of the characteristic speeds
provided in the figures themselves. Displayed are the normal-
ized phase speeds, ω/(kzvA), given by Equation (23) varied in
relation to the magnitude of the product between the vertical
component of the wavenumber and dimension of the slab, kzx0.
The ratio of specific heats had a standard value of γ = 5/3, and
the ordering of c1, c2, vA, c0, cT (listed in descending order)
was kept throughout the process of finding the solutions.

(a) Solutions in a short slab (kyx0 = 0.05)

(b) Solutions in a longer slab (kyx0 = 0.15)

Figure 2. The normalized phase speed as a function of slab width for a short (top) and a longer (bottom) slab, and areas of interest enlarged in the right-hand-side
panels of each diagram. An animation of this figure is available, where each frame shows a slab of different lengths between 0 � kyx0 � 0.4, changing with an
increment of kyx0 = 0.05 between frames.

(An animation of this figure is available in the online article.)
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The different modes, where they exist, are plotted with blue.
All typical frequencies kzc1, kzc2, kzvA, kzc0, kzcT (listed in
descending order) are illustrated in gray with only slight
differences in the texture of their line and are shown mainly for
reference and comparison, since the spotlight belongs to
kc1, kc2, ku+, ku− (again given in descending order).

For these figures, all speeds were normalized by kzvA. The
lines for kc1, kc2, ku−, and ku+ are curved as a result, instead
of horizontal. In the figures, the normalized versions for these
four frequencies are denoted as ĉ1,2 for kc1,2/kzvA and ˆ±u for
ku±/kzvA, which are depicted in green and red, respectively.
The two panels of Figure 2 show solutions in two slabs of
different lengths. Both cases show a satisfying degree of
similarity to the parallel case, with some new features introduced.
Those new observations are more obvious in Figure 2(b) where
the contribution of the ky-component is larger, but are already
seen in Figure 2(a) as well, which depicts the solutions found in a
very short slab. Further discussion on each individual case is
given below. Before that, it must be noted that as kzx0 increases,
and so k → kz, the curves for u−, u+ tend to the minimum and
maximum between c0, vA, respectively. This was shown
analytically in Section 2.6. This also affirms that a wide slab,
short or long, will be qualitatively equivalent to the parallel case,
which is in turn equivalent to the single-interface case.

To illustrate the increasing role of the contributions from
nonparallel propagation, an animated version of Figure 2 is
also available, where each step in the animation changes the
dimensionless length of the slab, kyx0, while keeping every
other parameter the same. Viewed in conjunction with
Figure 3, the increasing deviation from the parallel case can
be easily followed and understood (as will be detailed later in
Section 4.3).

4.1. Very Short Slab: kyd = 0.05

While the left-hand-side panel of Figure 2(a) provides an
overview of all types of waves and their normalized phase
speeds that can propagate obliquely in an asymmetric slab
system with the equilibrium parameters listed in the figure, we
also provide enlarged versions of certain regions of this
diagram. These additional panels, on the right-hand side of

Figure 2(a), both help visually discern different modes when
they are crowded together in narrow phase-speed bands of the
main graph and serve to highlight areas of special interest. The
first one of these is the bottom-right panel of Figure 2(a),
which shows the slow surface and slow body modes in an
enhanced display, while the fast surface and fast body waves
are given attention around u+ in the top-right segment. In
further detail, in the bottom-right diagram of Figure 2(a), two
slow surface (one quasi-kink, one quasi-sausage) as well as
some of the infinite number of slow body modes are seen.
In the thin slab, the slow surface quasi-kink mode does not

tend to zero anymore, yet the slow surface quasi-sausage mode
tends to cT, as before. In the wide slab they both tend to a
different intermediate speed between 0 and cT which, for this
particular set of parameters, falls quite close to cT, and they
become nearly nondispersive.
The slow body modes are weakly affected by the

ky-component being nonzero and are most similar to the
parallel case. Most notably, the phenomenon of a mode that
starts out as a slow body wave in a thin slab but transitions into
a surface mode (in this case, the fast surface quasi-kink mode)

at a small to intermediate slab width is seen again, similarly to
the parallel case. As can be seen from Figure 2(a), along with
the consecutive frames of its accompanying animation, as well
as from the shading in Figure 3, this transition now occurs
when the normalized phase speed of the waves is larger than
the new classification boundary: ( ) ˆ/ >k v kuz A . Furthermore,
it is clear from these numerical results that the dimensionless
length of the slab strongly influences where this transition
occurs, with the increase of kyx0 pushing the transition toward
ever thinner slabs.
The rest of the slow body modes still tend to cT in a thin

slab, even in the case of oblique propagation. In a wide slab,
however, they approach u− as the new classification speed.
Although this is a physically meaningful difference from the
case of purely parallel propagation, it still only appears as a
relatively small effect of the nonparallel component, since in a
wide slab, as kz/k increases, it is also true that u− ≈ c0.
The fast surface quasi-sausage mode and the fast body

modes are also given further attention in the top-right panel of

Figure 3. The normalized phase speed of eigenmodes as a function of dimensionless slab width, where the different colors shifting from blue to green indicate the
solutions for growing values of the dimensionless slab length kyx0.
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Figure 2(a). Their behavior is notably different in the current
case of oblique propagation. Namely, in the purely parallel
case (reproduced by the first frame of the animated version of
Figure 2(a)), there seems to be a continuous transition between
the fast body mode descending down toward vA from higher
phase speeds and the fast surface mode appearing at an
intermediate slab vA, to then tend to an intermediate phase-
speed value between vA and c0 in wide slabs. This speed is
different from the one that the fast quasi-kink surface mode
tends to. In this respect, the pair of fast surface modes behave
similarly here to their slow-mode counterparts.

However, once the propagation is not purely parallel, these
two (fast surface and body) waves start showing ever greater
separation. The fast quasi-sausage surface mode seems to tend
to an intermediate speed between û and ˆ+u in the thin slab,
then it tends to u+ as the slab transitions to a moderately wide
one, but finally it tends nearly nondispersively to a different
speed in between û and ˆ+u for a wide slab. This behavior
could perhaps be explained as an avoided crossing between the
fast surface and body modes.

Outside of these interactions with fast surface modes at
intermediate slab widths, the fast body modes of all orders tend
to ˆ+u from above for a wide slab. Although for a thin slab they
become leaky solutions, this transition is also dependent on the
slab length. In the presence of a nonzero ky-component, fast
body waves with a given phase speed above ( )c cmin ,1 2 , which
would have previously been leaky, may still exist as trapped
oscillations, so long as they are slower than the new separation
limits: ( ) ( ˆ ˆ )/ <k v c cmin ,z A 1 2 . Through this effect, the fast
body modes are perhaps the ones most spectacularly
influenced by the introduction of a ky-component. Since
Figure 2(a) was prepared with a very small nonparallel
component of kyx0 = 0.05, the differences from the parallel
case on this graph are weak but already noticeable.

4.2. Short Slab: kyd = 0.15

To illustrate the increasing influence of the growing kyx0
value on the dispersion diagrams summarizing oblique wave
propagation in an asymmetric slab system, we also included a
second snapshot from the animation accompanying Figure 2(a)

in the form of Figure 2(b), where now kyx0 = 0.15. Again, the
bottom-right panel of Figure 2(b) displays an enhanced version
of the slow surface and slow body modes, along with one fast
surface mode, while the top-right panel focuses on the fast
surface and fast body modes. The differences from the purely
parallel case become more significant, and there are qualitative
as well as quantitative differences even between this step and
the shorter slab solutions depicted in Figure 2(a).

The slow body modes mostly display the same behavior as
before, in a shorter slab, however the wave that changed
character from a slow body to a fast surface wave in the very
short slab now propagates with a fast enough phase speed so
that ( ) ˆ/ >k v uz A for any value of kzx0. This is therefore a
surface mode not only in a wide slab, but also in a thin slab
already and no longer changes character at an intermediate kzx0
value. The rest of the fast surface and fast body modes behave
similarly to the case illustrated in Figure 2(a), but it is noted
that they stay further away from each other around the dividing
curve of ˆ+u . Additionally, as ky has increased compared to the
previous frame, now there is a wider phase-speed band above
the lowest external sound speed in which the fast body waves
are no longer leaky modes. However, even though their

appearance follows the steep ( ˆ ˆ )c cmin ,1 2 curve, in a thin slab
they still cannot be found as trapped oscillations. In slabs that
are already wide, the effect of lengthening the slab is smaller
on these modes, as the gradients of both curves bounding the
band of fast body modes ( ( ˆ ˆ )c cmin ,1 2 and ˆ+u ) are much
smaller at large kzx0 values.

4.3. Visualizing the ky Variation

In order to make comparisons between short and long slabs
easier and point out further practical consequences of
incorporating nonparallel propagation into slab models of the
solar atmosphere, on top of the animation accompanying
Figure 2, we also include a different approach to portraying the
propagating modes in the form of Figure 3. This new approach
includes all past features from Figure 2, but also merges the
separate frames from different values of ky into one diagram.
The difference in slab length is portrayed with a color gradient,
also indicated by a bar on the right of the figure. Specifically,
as kyx0 increases, the color of the solution curves changes from
dark blue to light blue and eventually into teal/green colors.
We only indicate the original sound speeds (c0, c1, c2), Alfvén
speed (vA), and tube speed (cT) on this figure. The new
classification ( ˆ±u ) and separation limits ( ˆ ˆc c,1 2 ) were omitted
to avoid visual confusion, as they would also keep changing
with the increasing ky-component and overlap with the plotted
solutions. They are still the relevant speeds separating body
and surface, or trapped and leaky modes, but where they fall in
each case is more easily followed in the animation attached to
Figure 2.
This visualization of the solutions provided in Figure 3

highlights further interesting consequences of allowing vary-
ing degrees of oblique propagation to take place in the
asymmetric slab system. Focusing first on the left-hand-side
panel of Figure 3 and looking at the fast body modes (with

ˆ ( ) ( ˆ ˆ )/< <+u k v c c1 min ,z A 1 2 at relatively large slab
widths, kzx0 > 1.5), an overlap can be found between the
first and second solution curves in the set of infinite body
modes as ky is changed. This overlap could occur between
quasi-kink and quasi-sausage modes of the same order, that is,
with the same number of nodes inside the slab, or between
body modes of order n and n+ 1. This phenomenon highlights
the importance of collecting detailed information about the
character of waves observed in the solar atmosphere, including
the distribution of displacement and pressure perturbation
throughout the slab system for discerning between (quasi-)
kink and (quasi-) sausage modes, and for correctly identifying
the order of a given body mode. In the lack of such spatial
information, if for example a wave with a normalized phase
speed of roughly 1.2 < ω/(kzvA) < 1.6 were detected in a
system with a dimensionless slab width of 2 < kzx0 (which
would fall somewhere in the green-blue overlap region on
Figure 3), it could be either one of the two modes propagating
in this region of the parameter space, depending on whether
there is a ky-component to its propagation or it happens in a
purely parallel manner.
In order to investigate whether a similar phenomenon can

occur when the oblique propagation of other modes is allowed,
we studied the other regions of interest further, and include
these results in the right-hand-side panels of Figure 3. First, the
bottom-right panel shows the solutions at various slab lengths
and widths which propagate with a phase speed close to the
internal tube speed. The waves with 0 < vph < cT are the slow
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surface quasi-kink and quasi-sausage mode solutions. At
smaller slab widths (up to approximately kzx0 = 1.5 in this
case), this type of quasi-sausage mode propagating with a
smaller ky-component could have a similar phase speed to a
quasi-kink mode propagating more obliquely—therefore, once
again, when it comes to observations for SMS purposes, the
collection of detailed spatial information is crucial to
distinguish between these solutions.

While the slow body modes ( ( ) ˆ/< <c k v u cT z A0 0) do
not show a similar overlaps, another interesting influence of
the angle of propagation can be observed in their case. The
phase speeds of all of the other types of modes (slow surface
and fast body modes) described so far shift in one direction
only across the whole range of investigated slab widths
examined as an increasing ky-component is introduced into
their propagation. However, the phase speeds of each order of
slow body modes increase thin slabs as ky increases, but in
wide slabs the phase speeds decrease instead. Thus, at a certain
slab width (which is different for each order of body mode),
the phase speeds of slow body modes propagating at different
angles end up being nearly identical (see the points on the
bottom-right panel of Figure 3 where the solutions plotted with
blue and green colors swap places). These areas of the
dispersion diagram are, once again, regions where collecting
exact information on the direction of propagation is extremely
important when carrying out SMS studies. Without knowing
the relative magnitudes of the ky- and kz-components of the
wavenumber vector, essentially the same phase speed could
belong to any number of slow body modes of the same order,
which then would introduce an additional source of uncertainty
in the parameters an SMS study aimed to measure (such as the
Alfvén speed or the magnetic field strength).

Finally, the top-right panel of Figure 3 focuses on the fast
surface modes ( ˆ ( ) ˆ/< < +u k v uz A ). Unlike their slow-mode
counterparts, these do not show overlap regions between the
quasi-sausage and the quasi-kink modes either. However,
while the phase speed of the quasi-sausage modes consistently
becomes smaller as ky increases across the entirety of the slab
width range examined, the phase speed of the quasi-kink
modes has a turning point—similar to the case of slow body
modes. This behavior seems to be consistent with the fact that,
at least for small slab lengths, this mode starts out in the same
phase-speed band as the slow body modes in a thin slab, and it
crosses the classification threshold (û ) to the surface mode
band only at some intermediate slab width. Consequently, the
significance of collecting appropriate information on the
direction of wave propagation that we emphasized with slow
body modes also extends to this surface mode.

5. Discussion

Presented above is a novel model of an isolated magnetic
slab, with an asymmetric environment and nonparallel wave
propagation considered. This is an expansion on the “classical”
magnetic slab models seen in the past (B. Roberts 1981b) in
two respects. Similarly to the more recent model developed by
M. Allcock & R. Erdélyi (2017), it considers an asymmetric
configuration, but, further expanding upon the asymmetric
model itself, it allows for the oblique propagation of MHD
waves in the slab. The main focus of this paper is on the
consequences of an oblique wavevector regarding the proper-
ties of the different propagating modes by deriving the

dispersion relation applicable to the system and carrying out
an analytical and numerical study of the solutions.
Before we move to the differences between the eigenmodes

of the system studied here and the symmetric slab models, we
note that the sausage and kink modes are modified by the
asymmetry of the external regions, resulting in the presence of
the quasi-sausage and quasi-kink modes. These modes were
already studied by M. Allcock & R. Erdélyi (2017) and, as the
nonparallel condition does not affect this change, they have
appeared as seen in the parallel, asymmetric model and so have
remained unchanged.
Now, a property of the system that is greatly affected by the

nonzero ky-component in our model is the boundaries of the
intervals of propagation of the dispersion relation and the
classification into surface and body modes. In the models of
parallel propagation, the three important such boundaries are
the tube, sound, and Alfvén speeds. Here, however, the role of
the latter two is taken by u− and u+, which have appeared in
conjunction with the full wavenumber vector k rather than
only the parallel component, kz.
These new speeds emerge when replacing m0, the

wavenumber-like coefficient appearing in the ODE that
governs the behavior of perturbations in the slab, with μ0,
which as a modified version of this quantity simply accounts
for the presence of the ky-component on top of the information
about the waves and the background contained in m0. As a
result, the classification of waves into body and surface modes
is now determined by the frequency limits kzcT, ku−, and ku+.
These limits have a fixed ordering, removing one concern
when considering wave propagation. On the other hand, the
latter two are ky dependent, which is perhaps one of the most
interesting results from this model of oblique propagation.
The role of the ky-component, as it appears in these

quantities contributing to the dispersion relation, implies that
for the same width of the slab and for the same scale of
frequency, modes can change from surface to body waves by
simply turning the wavenumber vector away from the
lateral axis.
Another consequence of these new velocities determining

classification is that = k cz
2 2

0

2 and = k vz A
2 2 2 are no longer

spurious solutions and are permissible frequencies, as long as
ky is nonzero. When ky is zero, then the new frequencies ku−
and ku+ reduce to ( )k c vmin ,z A0 and ( )k c vmax ,z A0 as
expected.
When it comes to numerical approximations, we are pleased

to report a satisfying match between the analytical and
numerical results. Under the respective conditions—incom-
pressible, low-β, thin or wide, short or long—the analytical
approximations derived in Section 3 show a good correspon-
dence with all approximations that were tested, with some
illustrative examples included in the Appendix.
Besides the predicted behavior studied in Section 3, the

region between fast surface and fast body modes has offered
some alluring outcomes. Specifically, a very important mode
from the parallel propagation case, which has been seen to
change character between a fast surface and a fast body wave,
is now observed to split into two separate modes. Those two,
instead of blending from one into the other, now show an
avoided crossing as a nonzero ky-component is incorporated.
This separation happens around the same slab width where the
shift in character took place in the case of parallel propagation,
and becomes only more prominent as ky increases.
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A further noteworthy finding of our study concerns the
applications of theoretical MHD wave studies like the current
one. When using slab models for the purposes of solar
magneto-seismology, as mentioned earlier, the aim is to utilize
the measured background parameters of the slab system and
the observed wave properties to draw conclusions about
“missing” background parameters with the help of the
analytical expressions derived for each model. Our results,
especially as they appear illustrated for a given set of plasma
and magnetic parameters in Figure 3, highlight the importance
of collecting not only temporal information about the waves
(frequency/period), but also spatial information (including
energy distribution, wavelength, as well as the direction of
propagation) for the purposes of mode identification, which in
turn will influence the final results obtained for the background
parameters left to determine. The effect of the propagation
angle on the speed and identification of the eigenmodes of a
slab system is applicable in the case of fast body modes which
occupy a large region of the parameter space.

Beyond the results explored in this paper, the study of
oblique propagation in slab models is also a promising area for
future research. With the inclusion and variation of the
ky-component, layered and multilayered Cartesian structures
can now develop greater variance in topology and application.
A series of recent studies analyzed the parallel propagation
problem in various asymmetric configurations, from single
slabs with different atmospheric, bulk fluid, and magnetic
properties (P. M. Edwin & B. Roberts 1982; N. K. Zsámberger
et al. 2018, 2022; D. Shukhobodskaia & R. Erdélyi 2018;
M. Allcock et al. 2019; N. K. Zsámberger & R. Erdélyi 2020).

For a more complete understanding and wider applicability
of MHD wave propagation investigated in Cartesian systems,
any of the models referenced above can be revisited to include
a nonparallel component, leading to an enhanced under-
standing of their suggested solar applications, too. These
applications can be divided into two main types: global and
local seismological studies. The category of global applica-
tions involves investigating the layers of the solar atmosphere
as asymmetric slab systems, for example looking at wave
propagation in a slice, the transition region as a slab,
surrounded by the different environmental regions of the
corona and the chromosphere from above and below. In
addition to this, a growing list of local applications has been
proposed (for a summary, see the recent review by R. Erdélyi
& N. K. Zsámberger 2024). Out of these, it would be
especially interesting to utilize our updated slab model to study
nonparallel wave propagation in prominences, light bridges, or
magnetic bright points (MBPs). These features of the solar
atmosphere can be handled as asymmetric slab systems in a
first approximation as they can have a significantly larger
extent in one spatial direction perpendicular to the magnetic
field (the z-direction in our notation), marking this as the
y-direction in our model. Each of these structures furthermore
is embedded between different, easily separated regions of the
solar atmosphere. Prominences are held up by magnetic fields
between different coronal layers. Light bridges occur between
separate umbral cores as sunspots merge or split. MBPs show
up in the dark intergranular lanes, wedged in between two
different cells of the solar granulation. Taking into considera-
tion the infinite versus finite length of slabs, studies of
propagating and standing waves can both be carried out with
small changes to the model described in the current paper. This

could also be an insightful approach to dealing with barriers
that encircle and/or separate dynamic, magnetic entities in the
solar atmosphere, such as barriers of coronal holes and
sunspots.
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Appendix A
Amplitudes

In addition to the discussion about the dispersion relation
and its solutions, we also carried out a brief investigation of
the spatial structure of the different obliquely propagating
waves. Our main conclusions on this agree with the results
presented in the studies of different slab systems where a
nonparallel component of wave propagation was also allowed,
such as A. J. Díaz et al. (2003) and I. Arregui et al. (2007).
Namely, the inclusion of a ky-component leads to steeper
exponential drop-off rates of the transverse velocity amplitude
(v̂x ) in the environment of the slab, as also shown in the case of
the illustrative example of surface modes that we included in
Figure 4.
However, we also note an additional effect related to the

asymmetry of the slab geometry studied here: the magnitude of
ky also displays additional influence over the values that the
eigenfunctions take at the slab boundaries. The velocity
amplitudes at the boundaries of the slab are already different
from each other for all asymmetric eigenmodes even without
the inclusion of a ky-component (see, e.g., M. Allcock et al.
2019; R. Erdélyi & N. K. Zsámberger 2024), but these values
are further shifted by the inclusion of an increasingly oblique
direction of propagation. While in the explored parameter
range this effect always acts to increase the asymmetry of the
amplitudes at the boundaries, this may be accomplished in
various ways. For example, in Figure 4(a), as the
ky-component grows through the plotted cases (that is, moving
from the blue to the red and finally to the green continuous
curve) for the quasi-kink modes of growing obliqueness, the
amplitudes at both boundaries are decreased by different
amounts (so that the overall relative asymmetry between them
still grows). The opposite is true for the quasi-sausage modes
plotted with dashed lines in the same figure: As ky grows (from
the blue to the green curve), the amplitudes at the two
boundaries are shifted in opposite directions, which leads to a
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more easily visible increase in the relative amplitude
difference.

The situation becomes different for the case of a slightly
wider slab, as illustrated in Figure 4(b). Here, it is the quasi-
kink modes (plotted with continuous lines) that have their
maximum amplitudes at the boundaries of the slab shifted in
different directions as ky increases. On the other hand, the
amplitudes at the boundaries for the quasi-sausage modes
(plotted with dashed lines) in this thicker slab are shifted in
opposite directions.

Appendix B
Approximations

To examine the behavior and accuracy of our analytical
solutions to the dispersion relation (gathered in Section 3),
here we illustrate them overlaid with the exact, numerically
found solutions to the dispersion relation.

The depicted frequencies are normalized by kzvA. In faded
gray, we have the normalized classification frequencies
kzc1, kzc2, kzvA, kzc0, kzcT, and in green the separation
frequencies kc1, kc2 normalized to ĉ1,2. Additionally, the
curves for the classification frequencies, ku±, are drawn in red
and are also normalized by kzvA. The modes emerging from the
full dispersion Equation (23) are seen in blue, while the
analytical solutions from the equations of Section 3 are seen in
orange. Finally, to distinguish the various analytical solutions,
we introduce a naming scheme using ω with a subscript of the
equation number the curve emerges from, e.g., the curve
labeled ω43 is a representation of the approximate solution
described by Equation (43). As different solutions can occur in
slabs with different internal plasma-β parameters, and in some
small regions of normalized phase speeds there is a wealth of
different modes to be found, we break down our comparison
into three separate figures. First, Figure 5 shows analytical and
numerical solutions in a slab characterized by β = 0.3, which
can go from thin to wide as well as short to long. Figure 6
focuses on only thin and short slabs of the same β = 0.3 case.
Finally, Figure 7 shows the solutions in thin and short slabs
with β = 0.12. A complete breakdown of the naming scheme
of the solution curves also follows:

1. ω43 slow surface quasi-sausage modes in a thin-short
slab (Figure 6).
2. ω44 fast surface quasi-sausage modes in a thin-short

slab (Figure 7).
3. ω45 slow surface quasi-kink modes in a thin-short slab

(Figure 6).
4. ω46 slow quasi-sausage body modes in a thin-short slab

(Figure 6).
5. ω47 slow quasi-kink body modes in a thin-short slab

(Figure 6).
6. ω49 slow quasi-sausage body modes in a wide and/or

long slab (Figure 5).
7. ω50 slow quasi-kink body modes in a wide and/or long

slab (Figure 5).
8. ω51 fast quasi-sausage body modes in a wide and/or

long slab (Figure 5).
9. ω52 fast quasi-kink body modes in a wide and/or long

slab (Figure 5).
Note that the figures in this appendix overall showcase

solutions in different analytical limits, therefore not all regions
in each figure show a close correspondence with the exact
solutions. For example, in Figure 5, the wide-long slab
approximation for slow body modes follows the numerical
solutions when kzx0 > 6 in our still image with kyx0 = 1. The
approximations work better for a larger range of kzx0 when the
slab becomes longer, which is shown in the steps of the
animated version of our figure. The approximations for fast
body modes in this same figure and the attached animation
however at least qualitatively follow the gradient of the
solution curves in the entire kzx0 region displayed here.
The opposite tendency is observable in Figure 6, where all

approximations, both for slow body and surface modes, show a
close correspondence with the exact solutions when kzx0 < 0.1.
This boundary shifts to even lower slab widths as kyx0
increases in the animated version of this figure. This behavior
is not unexpected, as the approximations plotted here were
derived for thin and short slabs, and they can start to break
down when either dimension of the slab is increased too much
compared to the typical wavelengths of perturbations.
Finally, in Figure 7, we illustrate a case slightly different

from the rest, with a lower plasma-β of 0.1, which allows us to
compare our approximation provided in Equation (44) to the

(a) kzx0 = 0.4 (b) kzx0 = 0.5

Figure 4. Eigenmodes for 0.36% asymmetry in densities (ρ1/ρ0 = 0.5, ρ2/ρ0 = 0.5018) for two slab widths. Increasing kyx0 in the transverse direction causes
increasing asymmetry in the eigenmode amplitudes, and it also increases the drop-off rate of the eigenmodes on both sides of the slab by 4.8% between kyx0 = 0 and
kyx0 = 0.15 for the slab width kzx0 = 0.5 (7.4% for kzx0 = 0.4). The physical parameters for the systems are c0 = 0.5, c1 = 1.47196, c2 = 1.46932, and vA0 = 1.0,
with kzx0 values indicated under the figures.
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exact fast surface quasi-sausage mode solutions. In the
animation accompanying this image, it becomes apparent that
in systems with an increasing slab length, even for thin slabs,

there is a marked difference between the approximation
scaling with the separation speed related to ĉ

e and the full
solutions, which start tending to an intermediate speed

Figure 5. A comparison of solutions to the full dispersion relation (Equation (23)) and the analytical solutions given in the limits studied in Section 3, with an
asymmetric waveguide showing the wide slab phenomena. For a complete breakdown of the naming conventions, see text in Appendix B. An animation
accompanying this figure is available, where each frame increases slab length kyx0 by 0.1 between kyx0 = 0.0 and kyx0 = 4.0 while keeping all other parameters intact.
They show the evolution of analytical approximations in comparison to the numerical solutions to the full dispersion relation in relation to the also changing
separation limit.

(An animation of this figure is available in the online article.)

Figure 6. A comparison of solutions to the full dispersion relation (Equation (23)) and the analytical solutions given in the limits studied in Section 3, with an
asymmetric waveguide showing the behavior of analytical solutions in the thin-short slab region, focusing on the slow modes. For a complete breakdown of the
naming conventions, see text in Appendix B. An animation accompanying this figure is available, where each frame increases slab length kyx0 by 0.025 between
kyx0 = 0.0 and kyx0 = 0.5 while keeping all other parameters intact. The inlet enlarges the very small range of normalized phase speeds around the internal tube speed
to show the narrow band of slow body mode solutions there.

(An animation of this figure is available in the online article.)
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between it and u−. Overall, Figures 5–7 make it clear that even
if some approximations, like the one describing the slow body
modes, start very far from the full solutions of the desired
mode in a certain range of slab length and width, for the range
where the approximations are expected to be valid the two
curves match up well. In some cases, like the fast body modes,
the agreement between the exact and the approximate solutions
remains good even in a much larger range of slab width and
length parameters than expected.
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available, where each frame increases slab length kyx0 by 0.01 between kyx0 = 0.0 and kyx0 = 0.1 while keeping all other parameters intact.

(An animation of this figure is available in the online article.)
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