
The Solution of Ordinary Differential Equations
using Genetic Programming with Constant

Tuning

Peter Rockett

School of Electrical and Electronic Engineering, University of Sheffield, Mappin
Street, Sheffield S1 3JD, UK
p.rockett@sheffield.ac.uk

Abstract. In this paper we report the solution of a benchmark set of
ordinary differential equations (ODEs) using genetic programming (GP)
within a collocation framework using tuning of the embedded tree con-
stants. We report statistical comparison with a baseline GP approach
without constant tuning that indicates that parameter tuning produces
statistically superior results. We obtain highly accurate solutions for al-
most all the benchmark ODEs, but identify a hitherto unreported issue
with GP finding trivial solutions. The characteristics of the individual
ODEs appear to dictate whether or not solution is problematic.

Keywords: genetic programming, ordinary differential equations, col-
location method

1 Introduction

Differential equations (DEs), both ordinary differential equations (ODEs) in one
variable and partial differential equations (PDEs) in multiple variables, are cen-
tral to much of science, engineering and other fields. Unfortunately, many DEs
of practical interest have no known solution in terms of elementary functions
so numerical approaches via either finite differences or finite elements has been
extensively studied. Numerical methods, however, only provide a single solution
instance for a given set of initial conditions and at a finite, pre-determined set of
mesh points. Other methods aimed at finding analytical, approximate solutions
have thus received attention.

Following the seminal work on solving DEs using genetic programming (GP)
by Tsoulos and Lagaris [12], the basic DE problem can be described by:

g(x, y, y(1), y(2), . . . y(n)) = 0 x ∈ [a, b] (1)

subject to hj(x, y, y
(1), y(2), . . . y(n−1))|x=tj = 0 ∀j ∈ [1, p] (2)

where y(i) is the i-th order derivative of the unknown solution y with respect
to variable x. Eqn (1) is subject to the p constraints described in (2) where

2 Peter Rockett

tj ∈ [a, b], and the set of hj functions comprise the problem-specific initial or
boundary values. In this initial report, and without loss of generality, we limit
our attention to ordinary, 1st- and 2nd-order differential equations (ODEs). The
task is to approximate y sufficiently accurately.

The method of collocation posits a possible ansatz solution ϕ and minimizes
a functional of the form:

min
θ

Nc∑
i=1

ϕ(θ)2i (3)

where Nc is the number of collocation points (or knots) in the domain over
which the equation is being solved. Classically, easily-differentiable ansatz func-
tions, such as polynomials, have been used and (3) minimized subject to the
initial/boundary conditions in (2).

Recently, there has been much interest in the machine learning literature
in solving DEs using deep neural networks (DNNs) as ansatz solutions due to
their flexibility and representational power. DNNs, however, have the significant
disadvantages of requiring large computing power, especially in training. For this,
and other reasons, solving DEs using much more compact genetic programming
(GP) models is of great interest.

Previous work on DEs using genetic programming (GP) has been fairly lim-
ited. The seminal work of Tsoulos and Lagaris [12] minimized a loss functional:

L =

Nc∑
k=1

g2(xk) + λP (4)

where P is the sum of the squares of the p constraint violations specified in (2),
and λ is a user-selected non-negative weight; the xk’s are a set of Nc equally-
spaced collocation points xk ∈ [a, b]. We have followed [12] and used λ-values
of unity in this work since there appears no principled way of optimizing the λ
other than grid search. Seaton et al. [11] have used a similar approach to [12]
but using Cartesian GP.

Lobão et al. [6] have also approximated the solutions to DEs by minimizing
a fitness functional comprising the sum of the maximum absolute error (MAE)
between the given DE and the corresponding DE formed using AD from a candi-
date solution, plus the magnitudes of the deviations from the initial conditions;
the MAE was evaluated on a pre-determined grid of, typically 50, points. Their
formulation of the fitness function is thus similar to [12].

In this paper, we explore the research question of whether tuning the constant
values in the GP trees during evolution of solutions to a range of benchmark
ordinary differential equations (ODEs) that have been studied before in the
literature. Previous work on symbolic regression problems [9] showed that tuning
produces statistically significantly better results as well as smaller trees. Unlike
previous contributions to the GP solution of ODEs, here we also report statistical
comparisons of GP with and without constant tuning; GP without tuning is the
baseline method previously employed by Tsoulos and Lagaris [12] and others.

Ordinary Differential Equations using Genetic Programming 3

Further, we also explore the subsidiary research question of whether a restricted
function set is able to synthesize ODE solutions. As with symbolic regression,
we find that constant tuning produces superior results although we identify an
issue with the GP collocation method generating trivial (i.e. y = 0) solutions
that, as far as we aware, has not previously been reported.

2 Methodology

2.1 Benchmark Ordinary Differential Equations

We used the set of benchmark ordinary differential equations (ODEs) in Table 1
and previously studied in [12, 11]. For what follows, we note that ODE-4, ODE-6,
ODE-7 and ODE-8 all have the possible trivial solution of y = 0 notwithstanding
the initial conditions. Like [12, 11], we have used 50 collocation points in the
present work.

Table 1: Benchmark ordinary differential equations used in this work, after [11].
The second column shows the initial conditions.

ID ODE Domain Initial conditions

ODE-1 y’ = 2x−y
x

∀x ∈ [0.1, 1] y(0.1) = 20.1

ODE-2 y′ = 1−y cos(x)
sin(x)

∀x ∈ [0.1, 1] y(0.1) = 2.1
sin(0.1)

ODE-3 y′ = −y
5

+ e
−x
5 cos(x) ∀x ∈ [0, 1] y(0) = 0

ODE-4 y′ = −y cos(x) ∀x ∈ [0.1, 1] y(0) = 1
ODE-5 y′ = x+ 2y

x
∀x ∈ [0.1, 1] y(1) = 10

ODE-6 y′ = −y2 ∀x ∈ [0, 1] y(1) = 0.5
ODE-7 y′′ = −100y ∀x ∈ [0, 1] y(0) = 0, y′(0) = 10
ODE-8 y′′ = 6y′ − 9y ∀x ∈ [0, 1] y(0) = 0, y′(0) = 2

ODE-9 y′′ = − y′

5
− y − 1

5
e−

x
5 cos(x) ∀x ∈ [0, 2] y(0) = 0, y′(0) = 1

ODE-10 y′′ = 4y′ − 4y + ex ∀x ∈ [0, 1] y(0) = 3, y′(0) = 6

2.2 Genetic Programming Environment

The evolutionary algorithm used in this work is identical to that we have em-
ployed previously [9]; the algorithm’s key parameters are shown in Table 2. We
have used a steady-state, as opposed to generational, evolutionary algorithm
since our experience is that this give superior results. The bi-objective fitness
vector comprised i) the value of the loss functional, and ii) the tree’s node count
as an approximate measure of model complexity. Parents were selected for breed-
ing by sorting the population by Pareto rank, and mapping an individual’s rank
to a scalar with a linear function such that the best-ranked individuals received
the largest value and the worst ranked received zero. Selection of the parents

4 Peter Rockett

Table 2: Evolutionary algorithm parameters used in this work

Parameter Value

Evolutionary strategy Steady-state
Population size 100
Initialization method Uniformly-random tree node counts ∈ [16 . . . 128]
Function set Unary minus, +, −, ×, Analytic Quotient (AQ) [7]
Terminal set Input variable and mutable constants
Initial mutable constants Uniformly selected ∈ {0.1, 0.2, . . . , 0.8, 0.9}
Objectives to minimize i) Loss functional and ii) Tree node count
SLSQP convergence 50 iterations or objective ≤ 10−4

Boundary/initial value tolerance 10−6

Selection Pareto ranking – see [3]
No. of children Two children produced per breeding operation
Crossover Point crossover; probability Pr = 0.9 of

selecting an internal node
Mutation Subtree mutation [8, p.16] (full trees of depth = 4)
Mutation probability 1.0
Total number of generated children 10,000

was then performed stochastically biased by these scalar values—see [3, p.32]
for full details.

Each execution of the GP program generated 10,000 offspring, and the tree
with the smallest value of loss functional taken as the best-of-run individual
regardless of tree size. We generated a set of 30 different initial populations and
ran each GP setup once for each population. We have used the same constant
tuning approach as in previous work [9]. The required derivatives were calculated
using automatic differentiation, and we used Sequential Least-Squares Quadratic
Programming (SLSQP) as the non-linear optimizer1.

Restricting the function set to: unary minus, +, −, × and the AQ operator [7]
was deliberate, and designed to address an explicit research question. The evolu-
tionary search may have been made easier by including functions such as sin and
cos, but we wish to avoid the criticism that can be leveled at [12], for example,
of embedding the exact solutions in the problem formulation. In practice, large
numbers of DEs have no known solution in terms of elementary functions so a
solution needs to be synthesized: selecting a function set to efficiently solve a set
of benchmark problems with known solutions lacks generality; the Weierstrass
approximation theorem [4], on the other hand, states that any continuous func-
tion can be uniformly approximated by a polynomial. We have thus deliberately
limited the function set to explore the ability of GP to synthesize solutions that
may not contain elementary functions.

1 We have used the implementation of SLSQP from version 2.7.1 of the NLOpt library
(https://nlopt.readthedocs.io/en/latest/).

Ordinary Differential Equations using Genetic Programming 5

2.3 ODE Problem Formulation

Rather than using automatic differentiation to formulate the ODE problem, it
is more convenient to directly generate trees that evaluate the derivative of a
tree function using an exact tree transformation method [10] based on the chain
rule of calculus, and therefore accurate to rounding error. Given a would-be
solution u(x), say, we generate an independent tree that evaluates the derivative
function ux(x), where ux is the derivative w.r.t x. If required, we generate uxx,
the second derivative w.r.t x by applying the tree differentiating transformation
to ux. Thus we can straightforwardly evaluate the g(uxx, ux, u, x) term in (4) in
order to calculate the fitness of the potential solution u.

2.4 Statistical Testing

To compare the results of the GP solution of ODEs with/without constant tun-
ing, we have adopted two statistical approaches. We have used a null hypothe-
ses test, as is near-universal in the GP literature, although here we employ a
Bayesian test procedure. The shortcomings of conventional frequentist null hy-
pothesis statistical tests (NHSTs) have been repeatedly highlighted [5]; in ad-
dition, frequentist NHSTs are commonly misinterpreted, and subject to ‘black-
and-white’ thinking [5]. Further, since NHSTs make a decision on significance
(usually at the p = 0.05 level), multiple comparison corrections to the p-value are
needed to constrain the overall error rate. As an alternative, we have employed
a Bayesian Wilcoxon signed-rank test [1] to estimate the posterior probability
density p(H|D) of the null hypothesis H given the observed data D2. As is
conventional, we have paired the results by initial population. Since we are not
making decisions about statistical significance, Bayesian analysis does not re-
quire any multiple comparison corrections. Further, unlike frequentist NHSTs,
Bayesian tests provide evidence to accept the null hypothesis rather than the
much weaker statement that the null hypothesis cannot be rejected.

Notwithstanding, the finding of statistical significance from a hypothesis test
does not necessarily imply any meaningful difference between the two groups [5].
Therefore, we have examined two effect sizes: First, a key criterion that may be
used by an analyst to select between competing methods is the upper bound
on the magnitude of the relative errors: the smaller the most extreme error,
the better. For the 30 repetitions in each group—with and without parameter
tuning—we have determined the magnitudes of the largest relative errors for
each best-of-run result, and calculated the median difference between the paired
results. To gauge effect size, we have estimated the 5%/95% confidence inter-
val (CI) on this point measure using bias-corrected and accelerated bootstrap
resampling [2]3. If the null hypothesis value of zero difference falls within the

2 For convenience, we report below the posterior probability that GP with tuning
performs better than without.

3 We have used the bootstrap implementation from SciPy version 1.15.3 (https://
docs.scipy.org).

6 Peter Rockett

CI then the two methods can be interpreted as not meaningfully different; the
converse is obviously true.

The second set of effect sizes we have examined relates to how well the initial
condition(s) of each ODE have been satisfied. We have calculated the absolute
errors on each of the initial conditions for the two groups of 30 paired repetitions,
determined their median paired differences, and again estimated the confidence
intervals by bootstrap resampling. As before, our motivation is that, all other
things being equal, an analyst would prefer methods that satisfied the initial
conditions more accurately.

While the statistical testing described above provides information on the
relative performance of the with/without constant tuning methods ‘on average’,
we also include a selection of the ‘best’ results we have obtained for a range
of benchmark ODEs. These were selected on the basis of yielding the smallest
training errors rather than the best test performance since this is more realistic
in the practical situation where the true ODE solution is unknown.

3 Results

3.1 Statistical Comparisons

The results of statistical comparisons for the first-order ODEs are summarized
in Table 3 and the second-order ODEs in Table 4.

The layouts of these two tables are similar: each contains Pr(Test error), the
probability of the differences between the paired test errors being <0. Similarly,
the second column shows Pr(Initial condition), the probability that the values
of the initial conditions achieved by GP-with-tuning are superior to those with-
out constant tuning. For the 2nd-order ODEs (Table 4), the third column shows
Pr(Initial derivative), the probability that the values of the initial derivatives are
more closely achieved by GP-with-tuning. Values of 1.0 for these three probabili-
ties indicate, with as close to certainty as can be predicted with a statistical test,
that the null hypotheses can be rejected, and that GP-with-tuning is superior.

As noted in Section 2.4, null hypothesis testing alone is insufficient so Ta-
bles 3 and 4 also show bootstrapped estimates of the confidence intervals for:
the median paired differences in test error, the median paired differences in the
initial values violations, and, for the case of the 2nd order ODEs, the median
paired differences in initial derivative value violations. For each ODE, the con-
fidence interval (CI) results are shown over three lines: the 5% percentile, the
notional value of the median, and the 95% percentile. So, for example, the CI for
the median relative error for ODE-1 is [−0.60,−0.45,−0.36]. Since this interval
does not include the value of zero, one can infer that the effect size between GP
with and without tuning is significant with the with-tuning variant performing
consistently better.

Turning for to Table 3, it appears from the CIs that GP without constant
tuning performs particularly poorly on ODE-1 and ODE-2, which is surprising
for such simple ODEs. For the other ODEs, however, the effect sizes are of the

Ordinary Differential Equations using Genetic Programming 7

order of 10−2 and taking the interval of [−10−6,+10−6] as the region-of-practical
equivalence (ROPE), almost all the results indicate a significant effect size.

Table 3: Statistical results for the first-order benchmark ODEs. The first column
shows the ODE. The second and third columns show the posterior probabilities
that the method with constant tuning has a better validation error and at-
tainment of the initial conditions, respectively. The fourth column shows the
confidence intervals for the median differences between the maximum absolute
errors. The fifth column shows the confidence intervals for the median differences
of the absolute errors to which the initial condition were satisfied.

ODE Pr Pr Median Median
(Test (Initial error initial
error) condition) difference CI value CI

ODE-1 1.0 1.0 -0.60 -5.24
-0.45 -4.21
-0.36 -3.40

ODE-2 1.0 1.0 -0.51 -5.38
-0.42 -4.17
-0.31 -3.52

ODE-3 1.0 4.2×10−4 -1.77×10−2 0.00
-1.33×10−2 1.08×10−15

-8.25×10−3 4.39×10−13

ODE-4 0.96 1.0 -1.71×10−2 -1.21×10−2

-1.00×10−2 -6.27×10−3

-3.88×10−3 -4.07×10−4

ODE-5 1.0 1.0 -9.12×10−2 -2.51×10−2

-8.33×10−2 -1.51×10−2

-6.46×10−2 -1.02×10−2

ODE-6 1.0 1.0 -0.23 -4.79×10−2

-0.17 -3.41×10−2

-0.126 -2.54×10−2

The results in Table 3 generally indicate the, often large, superiority of GP-
with-tuning although there is one notable inconsistency: the performance of GP-
without-tuning on ODE-3 where both the null hypothesis test and the CI suggest
no difference between the tuned and no-tuning variants for satisfaction of the
initial value although the test error results do show significant advantage for GP-
with-tuning. We have examined the distribution of the initial condition violations
for the without-tuning variant on ODE-3, and this reveals that all the values are
identically zero. The with-tuning variant, on the other hand, had a corresponding
distribution in the range of 0.0 to 2, 5×10−10 hence no statistical difference. We
investigated this initial condition result further by replacing value of zero shown
in Table 1 with two small values of ±10−3 and re-running the GP experiments.

8 Peter Rockett

These small changes in initial value now produce clear superiority of the with-
tuning GP as the Pr(Initial value) values are both 1.0; the CIs are now [−1 ×
10−3,−1×10−3,−1×10−3] and [1×10−3, 1×10−3, 1×10−3], respectively. (The
CI results here are explained by the initial value violations falling in the scale
of ∼ 10−10 for the with-tuning variant while the values for the without-tuning
variant are all ∓10−3, hence the differences are still ∓10−3 after rounding.)
We thus conclude that the apparently good performance on the initial value
satisfaction for ODE-3 shown in Table 3 is a coincidence. A small variation of
the initial value to one that cannot be (fortuitously) generated using the terminal
set alone does not appear to be learned without tuning the constants in the trees.

Turning to the 2nd-order ODE results in Table 4, the result for ODE-7 is
omitted and will be discussed in greater detail below.

Table 4: Statistical results for the second-order benchmark ODEs. The first col-
umn shows the ODE. The second and third columns show the posterior proba-
bilities that the method with constant tuning has a better validation error and
attainment of the initial conditions, respectively. The fourth column shows the
confidence intervals for the median differences between the maximum absolute
relative errors. The fifth and sixth column shows the confidence intervals for
the median differences of the absolute errors to which the initial and derivative
condition, respectively, were satisfied.

ODE Pr Pr Pr Median Median Median
(Test (Initial (Initial error initial initial
error) condition) derivative) difference CI value CI derivative CI

ODE-8 t 1.0 1.0 1.0 -1.02×103 -1.03 -1.45
-7.75×102 -0.776 -0.769
-5.36×102 -0.536 -0.487

ODE-9 1.0 0.042 1.0 -4.88×10−2 0.0 -1.85×10−2

-3.41×10−2 8.75×10−15 -9.24×10−3

-3.22×10−2 9.65×10−11 -1.74×10−3

ODE-10 1.0 1.0 1.0 -3.67×10−1 -7.20×10−1 -5.17×10−1

-3.46×10−1 -6.60×10−1 -4.51×10−1

-3.19×10−1 -5.94×10−1 -3.31×10−1

It was noted in Section 2.1 that ODE-4, ODE-6, ODE-7 and ODE-8 admit
trivial (i.e. y = 0) solutions notwithstanding the initial values. For ODE-7 and
ODE-8, both with- and without-tuning GP variants produced solutions that were
all trivial. On investigation, all the solutions being generated had the typical form
illustrated in Figure 1 where g(xk) ≈ 0 is satisfied at all the internal collocation
points, and the would-be solution matches the initial condition at the edge of the
domain. In essence, GP is finding a solution to the collocation problem rather
than the ODE. As far as we are aware, this generation of trivial solutions has
not previously been mentioned in the literature.

Ordinary Differential Equations using Genetic Programming 9

Fig. 1: Illustration of the typical trivial solution. The darker diamonds are col-
location points and the lighter diamond the initial value.

To suppress the creation of trivial solutions, we modified the loss function in
(4) to include an additional soft penalty constraint:

NC∑
k=1

(uk)
2 − T ≥ 0 (5)

to ‘encourage’ the solution away from all zero values by constraining the ‘energy’
contained in the evolved solution to be ≥ T , where T is a positive threshold.

For ODE-8, we used a value for T = 100, this being roughly half of the
test error generated by the trivial solution. The result is recorded in Table 4
as ‘ODE-8 t’ (‘t’ for thresholded). Adding this threshold term allowed both the
with-and without-tuning GP variants to produce the desired, non-trivial solu-
tions although the results in Table 4 indicate that again with-tuning is notably
superior.

Attempting to add the additional ‘energy’ term, however, to ODE-7 failed
to generate any non-trivial solution regardless of the value of threshold value
employed. We return to discussing this ODE in Section 4.

3.2 Best Approximation Results

In this section we show a selection the best solutions obtained for a range of
ODEs. We reiterate that we have selected the ‘best’ results on the basis on the
smallest training error obtained, not the best test error. We also show plots of
relative error since these are more useful for an analyst.

Figure 2a for ODE-1 appears surprising at first glance although from exam-
ining the ordinate scale and noting that the calculations have been performed
with double-precision arithmetic, it is clear that the solution has been found
to within rounding error. This is interesting since the GP function set used
cannot represent the solution to this ODE exactly; clearly the approximation
is very good. The best solution to ODE-6—not shown—also exhibits rounding

10 Peter Rockett

 0

 5×10-17

 1×10-16

 1.5×10-16

 2×10-16

 2.5×10-16

 3×10-16

 3.5×10-16

 4×10-16

 4.5×10-16

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
la

ti
v
e
 e

rr
o
r

x

(a) ODE-1

-1×10-8

-8×10-9

-6×10-9

-4×10-9

-2×10-9

 0

 2×10-9

 4×10-9

 6×10-9

 8×10-9

 1×10-8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
la

ti
v
e
 e

rr
o
r

x

(b) ODE-4

Fig. 2: Relative error performance of the best generated solutions to (a) ODE-1
and (b) ODE-4.

-2.4×10-10

-2.2×10-10

-2×10-10

-1.8×10-10

-1.6×10-10

-1.4×10-10

-1.2×10-10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
la

ti
v
e
 e

rr
o
r

x

(a) ODE-9

-1.8×10-8

-1.6×10-8

-1.4×10-8

-1.2×10-8

-1×10-8

-8×10-9

-6×10-9

-4×10-9

-2×10-9

 0

 2×10-9

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
la

ti
v
e
 e

rr
o
r

x

(b) ODE-10

Fig. 3: Relative error performance of the best generated solutions to (a) ODE-9
and (b) ODE-10.

error ‘noise’ although the other ‘best’ solutions typically exhibit the oscillatory
behavior shown in Figures 2b and 3, and common in function approximation.
In fact, the only ‘best’ performance that fell outside the 10−6 region of prob-
able equivalence criterion was for ODE-2 where the relative error ranged over
[−1×10−5, 2×10−5]. Nonetheless, these appear to be highly accurate solutions.

4 Discussion and Future Work

The principal issue arising from this work is the difficulty in generating a satis-
factory solution for ODE-7. It should be noted that this ODE was successfully
solved in [12, 11] although both these authors included the sin function in their
function sets—the analytical solution is y = sin(x). We therefore conjecture that
both these papers reported simple solutions that included only the sin function.
As we have noted in Section 2.2, pre-configuring the GP function set to match
all possible solutions to a set of benchmark problems lacks generality.

More generally, ODE-4, ODE-6, ODE-7 and ODE-8 all admit trivial solutions
although ODE-4 and ODE-6 yielded the desired solution without any modifi-
cation. ODE-8 required the addition of a minimum ‘energy’ threshold term to

Ordinary Differential Equations using Genetic Programming 11

the soft penalty to steer the solution away from trivial solutions. However, this
approach did not work for ODE-7. We therefore infer that the desired solutions
to these ODEs have some ‘basin of attraction’. For ODE-4/ODE-6, the basin
is easy to ‘fall into’. For ODE-8 it can be located given a minor stimulus, but
for ODE-7 locating the basin appears challenging. Rather than imposing a soft
(i.e. optional) constraint on the minimum energy contained in the solution, the
obvious approach is to impose a hard constraint on the evolutionary process.

As a supplementary experiment, we have included the energy constraint for
ODE-7 not in the soft penalty term in (4) but as a so-called ‘death penalty’ in
the evolutionary optimization whereby if a solution fails to meet the constraint
it is allocated the maximum fitness and thus very likely to be rapidly eliminated
from the population. The death penalty is simple to implement, widely used in
evolutionary computation (EC), but has the major disadvantage that if none of
the members of the initial population meet the constraint(s), the EC degenerates
to inefficient random search. We observed that when we tried the death penalty,
almost all of the initial populations were infeasible and therefore search perfor-
mance was likely to be poor. Nonetheless, the death penalty did produce some
partially successful results, the relative errors for which are shown in Figure 4
where the error values around zero are on the scale of 10−5 but the function
has a number of overly-complex ‘spike’ features. We conjecture that, given more
efficient learning, the EC would remove these ‘spikes’ since a multiobjective GP
acts to prefer simpler solutions given the same training error. Clearly an area
for future research is to facilitate better imposition of hard constraints than the
death penalty method. A corollary of Figure 4 is that given more efficient search
to remove the ‘spike’ features and an appropriate steer into the desired basin
of attraction with the imposition of a hard constraint, the limited function set
employed in this work does seem able to synthesize arbitrary ODE solutions.

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
la

ti
v
e
 e

rr
o
r

x

Fig. 4: Typical relative errors for ODE-7 with hard constraints imposed using
the ‘death penalty’.

The other obvious area of future work is to explore the influence of varying
the numbers of collocation points. Here we have used 50 points, the same as
previous work, but it is not clear if this is too many or too few (for a given
ODE). In addition, extension to partial differential equations is straightforward.

12 Peter Rockett

5 Conclusions

In this paper we have applied constant tuning to the solution of ordinary differ-
ential equations (ODEs) using genetic programming. In general, and consistent
with previous work on symbolic regressions problems [9], tuning of the constants
during evolution generally produces statistically superior results. We have identi-
fied a particular issue with ODEs that admit of trivial solutions, and observe that
there is different behavior across different ODEs, presumably as a consequence
of the equation’s properties: some seem to require no intervention, some yield
the desired, non-trivial solution with a simple modification to the soft penalty,
whereas some appear to need the imposition of hard constraints on the form of
the solution.

References

1. Benavoli, A., Corani, G., Mangili, F., Zaffalon, M., Ruggeri, F.: A Bayesian
Wilcoxon signed-rank test based on the Dirichlet process. In: 31st International
Conference on Machine Learning. vol. 32, pp. 1026–1034 (2014)

2. Efron, B.: Better bootstrap confidence intervals. Journal of the American Statisti-
cal Association 82(397), 171–185 (1987)

3. Fonseca, C., Fleming, P.J.: Multiobjective optimization and multiple constraint
handling with evolutionary algorithms - Part I: A unified formulation. IEEE Trans-
actions on Systems, Man & Cybernetics - Part A: Systems & Humans 28(1), 26–37
(1998)

4. Jeffreys, H., Jeffreys, B.: Methods of Mathematical Physics. Cambridge University
Press, Cambridge, 3rd edn. (1999)

5. Kruschke, J.K., Liddell, T.M.: The Bayesian New Statistics: Hypothesis testing,
estimation, meta-analysis, and power analysis from a Bayesian perspective. Psy-
chonomic Bulletin & Review 25(1), 178–206 (2018)

6. Lobão, W.J.A., Dias, D.M., Pacheco, M.A.C.: Genetic programming and automatic
differentiation algorithms applied to the solution of ordinary and partial differential
equations. In: IEEE Congress on Evolutionary Computation. pp. 5286–5292 (2016)

7. Ni, J., Drieberg, R.H., Rockett, P.I.: The use of an analytic quotient operator
in genetic programming. IEEE Transactions on Evolutionary Computation 17(1),
146–152 (2013)

8. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.
Published via http://lulu.com (2008)

9. Rockett, P.: Constant optimization and feature standardization in multiobjective
genetic programming. Genetic Programming and Evolvable Machines 23(1), 37–69
(2021)

10. Rockett, P., Kaszubowski Lopes, Y., Dou, T., Hathway, E.A.: d(Tree)-by-dx: Au-
tomatic and exact differentiation of genetic programming trees. In: 14th Interna-
tional Conference on Hybrid Artificial Intelligent Systems (HAIS2019). pp. 133–144
(2019)

11. Seaton, T., Brown, G., Miller, J.F.: Analytic solutions to differential equations
under graph-based genetic programming. In: 13th European Conference on Genetic
Programming (EuroGP’10). pp. 232–243 (2010)

12. Tsoulos, I.G., Lagaris, I.E.: Solving differential equations with genetic program-
ming. Genetic Programming and Evolvable Machines 7(1), 33–54 (2006)

