
This is a repository copy of The pan-tropical age distribution of regenerating tropical moist 
forest.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/229160/

Version: Published Version

Article:

Bousfield, C.G. orcid.org/0000-0003-3576-9779 and Edwards, D.P. orcid.org/0000-0001-
8562-3853 (2025) The pan-tropical age distribution of regenerating tropical moist forest. 
Nature Ecology & Evolution, 9 (7). pp. 1205-1213. ISSN 2397-334X 

https://doi.org/10.1038/s41559-025-02721-8

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Nature Ecology & Evolution | Volume 9 | July 2025 | 1205–1213 1205

nature ecology & evolution

https://doi.org/10.1038/s41559-025-02721-8Article

The pan-tropical age distribution of 
regenerating tropical moist forest

 

Christopher G. Bousfield    1,2,3  & David P. Edwards    1,2

Natural forest regeneration in the tropics is a key element of restoration 

pledges. Protecting older regenerating forests that already hold substantial 

carbon and biodiversity value, while promoting natural regeneration 

in young secondary forests in regions where forests are likely to persist 

long term, is vital for effective forest restoration. Key questions therefore 

include understanding the age distribution of naturally regenerating forests 

pan-tropically and which environmental or socio-economic conditions 

predict increased longevity in regenerating forests. Here, using a time series 

of forest cover data (1990–2023) to map the age of regenerating tropical 

moist forests, we identify 51 Mha of regenerating tropical moist forest, of 

which >50% is ≤5 years old and under high deforestation pressure, whereas 

only 6% (3 Mha) is ≥20 years old and located predominantly in the tropical 

Americas. Location and forest characteristics in the surrounding landscape 

best predict the age of regenerating forests, with older forests located in 

areas with high forest integrity and extent, and low forest loss. Realizing 

the environmental and social values of naturally regenerating forests 

requires urgent financial, political and societal mechanisms to facilitate the 

long-term persistence of restoration.

Large-scale restoration of forest ecosystems has immense capacity to 

sequester globally important amounts of carbon to combat climate 

change1, create millions of hectares of habitat to safeguard biodiversity2 

and contribute towards multiple Sustainable Development Goals3. 

Many global initiatives promote the restoration of degraded ecosys-

tems, including the 2021–2030 United Nations Decade on Ecosystem 

Restoration4, Target 2 of the Global Biodiversity Framework to restore 

30% of all degraded ecosystems by 20305 and the Bonn Challenge to 

bring 350 million hectares (Mha) of degraded landscapes under restora-

tion by 20306. Such international commitments have created a critical 

opportunity to restore degraded ecosystems globally.

Forest restoration in the tropics is a key element of global res-

toration strategies, as it offers the largest benefits for both carbon 

and biodiversity at comparatively low economic cost2,7,8. Natural for-

est regeneration—naturally occurring regrowth on previously defor-

ested and degraded land, sometimes assisted by direct planting of 

native seedlings—accounts for 34% (64 Mha) of all tropical restoration 

pledges3. The remainder consists of commercial tree plantations (for 

example, for timber) or agroforestry3, yet national-level pledges are 

often ambitious, untracked and can even exceed the total area available 

for restoration in many countries9.

Naturally regenerating forests store more carbon, support more 

biodiversity and provide greater ecosystem services (that is, water 

provision and soil erosion control) than plantations10. Recovery of 

forest biomass and structure in naturally regenerating tropical forests 

is rapid, up to 100 times faster than in slower-growing regions (for 

example, boreal forest)7, with carbon stocks capable of reaching 85% 

of old-growth values in just 20 years, and 90% of old-growth values 

in 66 years on average11. Biodiversity of most plant and animal taxa 

can also recover rapidly, with up to 80% of old-growth species rich-

ness levels recovered in 20 years, and full recovery after 50 years12–15 

(though full recovery of species composition can take centuries)12. 
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comparatively large, regional studies still suggest that >50% of naturally 

regenerating forests are cleared within 20 years of establishment20. 

Similarly, in the Brazilian Atlantic, a hotspot of older regenerating 

forests, the turnover of ‘ephemeral’ regenerating forests is high, with 

a mean age of just 7.9 years21, while 70% of cleared regenerating forest 

in the Amazon are 5 years old or younger17.

Older regenerating forests are concentrated in the Americas
At a national scale, Brazil accounts for 37% (1.1 Mha) of old regener-

ating TMF (≥20 years), and combined with Indonesia (0.3 Mha) and 

Colombia (0.2 Mha), represents >50% of global old regenerating TMF 

(Fig. 2a). Of the 30 countries with the largest extent of old regenerating 

forest, 14 are tropical American, 10 Asian–Pacific and only 6 African 

(Fig. 2a). Tropical American countries also account for a higher share 

of pan-tropical older regenerating TMF area than would be expected 

based on their pan-tropical share of regenerating forest area of all ages 

(Fig. 2b), holding 63% of old regenerating TMF in just 42% of the total 

regenerating TMF area. Conversely, Africa and Asia–Pacific hold less 

old regenerating forest than would be expected given their share of 

pan-tropical regenerating forest extent (Africa is composed of 6% of old 

regenerating forest on 19% of regenerating forest; Asia–Pacific is com-

posed of 31% of old regenerating forest on 38% of regenerating forest). 

The drivers behind these continental-scale differences are unclear, but 

could be due to greater agricultural intensification25, increased shares 

of populations living in urban areas and declines of rural populations26,27 

or forest transitions as a result of greater economic growth28. Similar 

deforestation trajectories across the regions since 1990 (Fig. 1c) suggest 

that the observed variance in regenerating forest age distributions is 

not simply a legacy of the timing of past deforestation events.

Of the 50 countries with regenerating TMF in the Americas, 21 have 

more old regenerating forest than would be expected based on their 

total regenerating forest extent, with Costa Rica, Honduras (HND) and 

Brazil supporting 3.7, 2.6 and 1.8 fold more old regenerating forest than 

expected, respectively (Fig. 2b). High extents of older regenerating 

TMFs in countries, such as Costa Rica, suggests national-level policies 

focusing on forest conservation (for example, the 1996 Forest Law) may 

impact the age distribution of regenerating forest extent29. By contrast, 

only 5 of 35 African countries have more old regenerating TMF than 

expected, with many West African countries (for example, Ghana and 

Sierra Leone) skewed towards younger forests and holding ten times 

less older-regenerating forest than expected, probably owing to the 

dominance of shifting cultivation in these countries and sub-Saharan 

Africa more broadly30 (Fig. 2b). Shifting cultivation itself is an important 

land-use system that occurs over 280 Mha worldwide31, and produces 

a mosaic of habitat capable of sustaining high species richness and 

carbon stocks32, especially when compared with intensive agriculture33. 

Tropical Asia–Pacific is more mixed, with 8 of 23 countries having more 

old regenerating tropical forest than expected, including Bangladesh 

(BGD) and Papua New Guinea with 2.5 and 1.3 times more old regen-

erating forest, respectively, while other countries such as Myanmar 

and Vietnam (VNM) have only half the expected old forest (Fig. 2b). 

Myanmar, Laos (LAO) and Vietnam are the three countries with the 

greatest extent of shifting cultivation in tropical Asia–Pacific34, which 

could explain their younger regenerating forest age distributions, 

while Papua New Guinea has larger remaining areas of undisturbed 

primary forest and less historical forest loss compared with other 

regions, such as Borneo22, perhaps leading to greater prevalence of 

older regenerating forest.

Landscape forest characteristics best predict forest age
We used random forest models with 32 predictor variables (see Sup-

plementary Table 1 for more detail), spanning factors related to forest, 

environment, location and human pressure, to determine which are 

most important for predicting regenerating TMF age at a 30 m reso-

lution. Location variables, including longitude, latitude and country 

This rapid recovery of biodiversity, carbon and forest function makes 

natural regeneration of tropical forests one of the most effective and 

cost-effective forms of ecosystem restoration.

Natural forest regeneration is feasible across an estimated 215 Mha 

of deforested tropical land16, indicating widespread opportunities 

to restore natural forest ecosystems across the tropics. Restoration 

would be most effective if these initiatives ensure the longevity of the 

new forests they promote or target the protection and further recovery 

of existing older naturally regenerating forests that are in danger of 

being deforested17. But regenerating forests are frequently at risk of 

clearance. In the Amazon, for example, almost half of naturally regen-

erating forests are ≤5 years old17,18 and subject to increased clearance19, 

and the probability of persistence is strongly linked to surrounding tree 

cover and proximity to existing forests in southern Costa Rica (CRI) 

and the Brazilian Atlantic Forest20,21. However, the age distribution of 

regenerating forests, and conditions that promote their persistence 

across the tropics remains unclear.

A key question is understanding the age and spatial distribution of 

regenerating tropical forests and the environmental and social condi-

tions that support recovery. This would allow for targeted conservation 

of older regenerating forests and focused restoration efforts in areas 

that are more likely to support longer-term forest recovery. Here, we 

develop a 30 m-resolution mapped time series of the age of regener-

ating tropical moist forest (TMF) growing on previously deforested 

land using the latest version of a remotely sensed land-use change 

dataset covering the period 1990 and 202322. We use this to answer the 

following questions: (1) where are the oldest regenerating TMFs, (2) 

which regions and nations are most important for harbouring older 

regenerating forests? and (3) what socio-environmental landscape 

characteristics best predict regenerating forest age?

Results
Age distribution of regenerating forests across the tropics
We used a time series (1990–2023) of the annual extent of TMF22 

(defined as a closed forest with >90% canopy cover located in the 

humid tropics, not including tropical dry forests) to map and age regen-

erating forests across the tropics at 30 m resolution. In 2023, there 

was 51 Mha of regenerating TMF, with 21.5 Mha found in the tropical 

Americas, followed by 19.4 Mha in Asia–Pacific and 9.8 Mha in Africa 

(Fig. 1). Just five countries—Brazil (BRA, 10.6 Mha), Indonesia (IDN, 

7.2 Mha), Democratic Republic of Congo (COD, 3.3 Mha), Colombia 

(COL, 2.6 Mha) and Myanmar (MMR, 2.2 Mha)—account for over half 

(52%) of the world’s regenerating TMFs. Globally, regenerating TMF 

has a mean age of 7.6 ± 5.9 years (median age of 5 years) but demon-

strates regional variation, with mean ages of 8.4 ± 6.7, 6.0 ± 4.2 and 

7.4 ± 5.3 years (median ages 6, 5 and 5 years) in the Americas, Africa 

and Asia–Pacific, respectively.

Only 6% (3 Mha) of regenerating TMF is ≥20 years old. Of this ‘old’ 

regenerating forest, 63% (1.9 Mha) is located in the American tropics, 

31% (0.9 Mha) in the Asian-Pacific tropics and only 7% (0.2 Mha) in the 

African tropics (Fig. 1b). Hotspots of old regenerating TMF extent are 

located predominantly in the Amazon Basin, Brazilian Atlantic For-

est, Central America and Congo Basin as well as Borneo, Indo-Burma 

and southern Papua New Guinea (PNG). Many of these areas overlap 

with global biodiversity and conservation hotspots23, areas with the 

highest carbon accumulation potential in regenerating forests7, and 

restoration opportunity hotspots24, highlighting the important role 

that older regenerating TMFs could play in global conservation and 

restoration efforts.

By contrast, 52% (26.3 Mha) of regenerating TMF is 5 years old or 

younger, of which 39% (10.1 Mha), 24% (6.3 Mha) and 38% (9.9 Mha) is 

located in the Americas, Africa and Asia–Pacific, respectively (Fig. 1c; 

see Supplementary Figs. 1 and 2 for national-level distributions). As 

seen in Brazil17,21, this young forest is probably at high risk of conversion. 

In Costa Rica, where the relative extent of old regenerating forest was 

http://www.nature.com/natecolevol


Nature Ecology & Evolution | Volume 9 | July 2025 | 1205–1213 1207

Article https://doi.org/10.1038/s41559-025-02721-8

had high predictive power, indicating that older regenerating for-

ests are spatially clustered across landscapes and regions, and that 

national-level policy and cultural practices can have strong impacts 

on the age distribution of regenerating forest29 (Fig. 3). Additionally, 

elevation was the most important predictor in Africa (but less so in the 

Americas and Asia–Pacific), where forests tended to be increasingly old 

as altitude increased to ~2,000 metres above sea level (Fig. 4), probably 

owing to the lower deforestation threat at higher elevations as land 

becomes increasingly marginal for agriculture35.

Forest landscape characteristics tended to be very important in 

predicting regenerating forest age, particularly in the Americas (Fig. 3; 

see Supplementary Fig. 3 for pan-tropical model). Landscapes with 

higher Forest Landscape Integrity Index (FLII) scores36, a larger extent 

of regenerating forests (especially in the Americas) and lower levels of 

forest loss tended to have older regenerating forests (Fig. 4; see Sup-

plementary Fig. 4 for partial-effects of all variables). This supports 

regional studies in Costa Rica and Brazil, which found that nearby forest 

cover was one of the most important predictors of regenerating forest 

persistence20,21, while local forest density and distance to existing for-

ests are important predictors of natural forest regeneration potential 

at the pan-tropical scale16. Older regenerating forests located in high 

forest density landscapes are also likely to be supporting elevated 

biodiversity given landscape forest extent is one of the most important 

predictors of biodiversity recovery in naturally regenerating forests37. 

Our results therefore indicate that restoration efforts focusing on 

natural regeneration should target areas with high surrounding forest 

landscape integrity to increase the chances of long-term restoration 

success.

Some environmental variables were also important in predicting 

the age of regenerating TMF, in particular temperature seasonal-

ity (Fig. 4), whereby predicted age increased as seasonality grew to 

intermediate levels before either plateauing (Americas) or dropping 

(Africa and Asia–Pacific) as seasonality became more extreme. Fac-

tors relating directly to forms of human pressure on the landscape 

(for example, deforestation drivers, agricultural suitability, crop-

land extent and protected area status) had little influence. This poor 

predictive power may be due to coarse-resolution mapping of some 

variables (for example, deforestation driver at 10 km2)30 rendering 

them unable to capture the substantial age variation within landscapes 

or because other predictors without readily available pantropical 

data (for example, land tenure security and land-use history)38 may 

have stronger influences over the longevity of regenerating forest. 

Furthermore, the high predictive power of variables, such as forest 

loss, regenerating forest extent and FLII, are indirectly reflective of 

human pressures. Natural regeneration potential is also highest in 

heavily forested landscapes16, and plays a vital role even where tree 

planting is used to initiate forest recovery39. Our results indicate that 

restoration efforts focusing on natural regeneration should target 
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Fig. 1 | Age distribution of regenerating TMF. a, The mean age of regenerating 

TMF per 30 km grid cell. b, The hotspots of total area of older (≥20 years) 

regenerating TMF within 30-km cells. Cells in the 75th percentile for total area of 

old regenerating TMF are coloured in light green and cells in the 90th percentile 

are coloured in dark green. c, The area distribution (Mha) of regenerating TMFs 

among age classes in the tropical Americas (left), Africa (middle) and Asia–Pacific 

(right). The dashed line represents the proportion of all deforestation (1990–

2023) that occurred during the corresponding time period (for example, height 

of the line at 6–10 years represents the proportion of deforestation between 1990 

and 2023 that occurred 6–10 years ago).
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areas with high surrounding forest landscape integrity to increase 

the chances of long-term restoration success.

The greatest uncertainty in our study originates in the difficulty 

of accurately distinguishing naturally regenerating forest from tree 

plantations, which have expanded across the tropics at a similar rate 

to naturally regenerating forests40. To avoid confusion with oil palm, 

we used a pan-tropical dataset of smallholder and industrial oil palm 

plantations to mask out known oil palm plantations from our dataset41. 

We compared our data on regenerating TMFs with a recent global map of 

forest management42 and found minimal overlap with areas confidently 

identified as tree plantations or agroforestry (Supplementary Note 1 and 

Supplementary Table 2). In addition, the short rotation times of tropical 

tree plantations (for example, <10 years in Eucalyptus and Acacia planta-

tions across much of the tropics)43–45 means that areas of old regenerating 

forests with detectable tree cover for ≥20 years are unlikely to have been 

misidentified tree plantations. We also compared our results with what is, 

to our knowledge, the only publicly available large dataset of regenerat-

ing forest age compiled for Brazil as part of the MapBiomas project46,47 

(Supplementary Note 2 and Supplementary Fig. 5). Despite substantially 

different definitions of regenerating forest between the two datasets, we 

found moderate agreement between the datasets (Supplementary Fig. 5) 

in both regenerating forest area (R2 = 0.49) and age (R2 = 0.37). Additional 

analyses assessing the age distribution of regenerating forests at regional 

scales also found similar age profiles for regenerating forests across the 

Brazilian Amazon48 and Amazon Biome17.

Discussion
Our study identifies 3 Mha of old regenerating TMF (≥20 years) located 

predominantly across the tropical Americas, typically in regions with 

high forest integrity and low deforestation rates, that will already hold 

substantial biodiversity and carbon value11,12 and should be priority 

targets for conservation and further restoration. However, we also 

find that the majority of naturally regenerating TMF is ≤5 years old, and 

probably caught in continuous cycles of farm abandonment, regenera-

tion, deforestation and agricultural production, leaving them unable 

to accrue substantial carbon stocks or biodiversity in the long term. 

Using spatially explicit models of the carbon accumulation poten-

tial of naturally regenerating forests7, we estimate that protecting all 

26 Mha of young regenerating TMF for the next 25 years would result 

in a potential above-ground sequestration of ~3 gigatons of carbon 

(GtC) by 2050. Ensuring the protection of naturally regenerating forests 

from re-clearance through financial, political and societal mechanisms 

should thus be key a target for the global restoration agenda to ensure 

long-term provision of forest ecosystem services49.

Carbon-financing schemes through Reducing Emissions from 

Deforestation and Forest Degradation (REDD+), offer a route towards 

funding the protection of regenerating forests, potentially creating a 

financially viable alternative to re-clearance for agricultural produc-

tion50. Such schemes can also be used to promote assisted natural 

regeneration (ANR), which could enhance the recovery of carbon 

and biodiversity relative to passive regeneration49 in a cost-effective 
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Fig. 2 | National-level distribution of older regenerating TMF. a, Total area (in 

Mha) of the ten countries with the largest extent of old (≥20 years) regenerating 

TMF by region (Americas, Africa and Asia–Pacific). b, The national-level ratio 

of the proportion of all pan-tropical old regenerating TMF compared to the 

proportion of all regenerating TMF of any age. A ratio of 1 means a country has 

the same share of all old regenerating forest as it does all regenerating forest of 

any age across the tropics (for example, 10% of all old regenerating forest and 10% 

of all regenerating forest). Blue colours represent ratios >1, whereby the country 

has more old regenerating forest than would be expected based on its share of 

all regenerating forest, red colours represent ratios <1, whereby the country has 

less old regenerating forest than would be expected. MEX, México; BOL, Bolivia; 

PER, Peru; GTM, Guatemala; VEN, Venezuela; PAN, Panama; AGO, Angola; CAF, 

Central African Republic; CIV Côte d'Ivoire; ETH, Ethiopia; CMR, Cameroon; 

NGA, Nigeria; KEN, Kenya; MDG, Madagascar; COG, Republic of the Congo; MYS, 

Malaysia; THA, Thailand; IND, India; PHL, Philippines.
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manner51,52 that also generates employment opportunities across 

the cycle of activities (for example, seed collection, nursery, land 

preparation, direct carbon payments to landowners and land-holding 

communities), thus incentivising the longer-term protection of these 

forests. However, methodologies to certify natural forest regeneration 

are lacking. Requirements for ten consistent years of forested or unfor-

ested land cover before an area qualifies for REDD+ or afforestation, 

reforestation and revegetation, and the premise that regenerating for-

ests provide no additionality because they are already growing (despite 

their elevated deforestation risk19) prevents most young regenerating 

forests from qualifying for any form of carbon-financing scheme53. 

Under current regulations, regenerating forests therefore have limited 

economic value and cannot counter the often-marginal opportunity 

cost of conversion to agricultural land21,50. Unlocking this funding gap 

and prescribing economic value to regenerating forests will be vital 

for preventing ongoing future losses of ecologically valuable forest 

systems.

Effective regulatory protection for regenerating forests and com-

munity engagement in restoration and protection is also key. The com-

bination of strict legislation in Brazil’s Forest Code and specific legal 

protections in the Brazilian Atlantic Forest that prevent clearance of 

regenerating forests >10 years old54 may be contributing towards the 

widespread natural regeneration occurring there55. Expanding these 

protections across the tropics through coherent and consistent legal 

frameworks56,57 could promote increased forest longevity. However, 

protections must be carefully designed to avoid perverse outcomes. 

Environmental service payments in Costa Rica economically favour 

the replacement of naturally regenerating forests with native tree 

plantations that have lower the environmental value10,37,57, while the 

2008 Amazonian beef moratorium successfully slowed primary forest 

loss in Brazil but at the expense of naturally regenerating forests, which 

suffered a 280% increase in clearance rates58. Community participation 

and engagement in reforestation projects, as well as benefits sharing, 

is also critical in achieving socio-ecological benefits of restoration 

and long-term persistence59,60. Officially recognised indigenous ter-

ritories have lower deforestation rates throughout the tropics61, while 

in the Brazilian Amazon collective property rights leads to larger, older 
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regenerating forest extents38. Engaging communities in restoration 

efforts and improving the security of land-tenure could therefore 

increase the long-term success of naturally regenerating forests in 

tropical landscapes.

Addressing the underlying societal causes of deforestation in 

regenerating forests would ensure greater longevity and provision 

of ecosystem services where natural regeneration occurs. Where 

smallholder cultivation is leading to losses of regenerating forest, 

programmes to improve yields62 and diversify income streams for local 

communities (for example, through provision of timber or non-timber 

forest products or carbon-funded ANR)63 could reduce deforestation 

pressure. At the global scale, closing yield gaps and implementing 

economically efficient land-use decisions could increase agricultural 

production by 79–148%64, while shifts away from land-intensive diets 

relying heavily on ruminant meats could reduce land requirements 

by up to 70%, opening up some of the ~3.7 billion hectares used for 

livestock production65 to long-term natural regeneration. Expansion 

of naturally regenerating forests into abandoned crop and pastureland 

through natural colonisation and ANR49 could then be strategically 

targeted to maximise the environmental and social values of natural 

regeneration2,7,16,57.

Overall, this study highlights that despite the existence of pockets 

of long-term natural regeneration in the tropics, the potential restora-

tion value of naturally regenerating tropical forests is currently not 

being realised. Alongside the protection of remaining old-growth 

forests, preventing the continued cyclical deforestation of naturally 

regenerating forests through economic investment, community 

engagement, effective regulation and societal shifts in diet will be 

crucial in realising the restoration potential of naturally regenerat-

ing forests. Only through these pathways will regenerating forests 

transition from ephemeral ecosystems20,21 into a key pillar of global 

restoration efforts.

Methods
Mapping regenerating TMF age
To create our map of tropical regenerating forest age, we used the TMF 

annual change dataset22. The TMF annual change product is a forest 

change dataset from the European Commision's Joint Research Centre 

that uses Landsat to track land cover change dynamics in humid TMFs 

(>90% canopy cover) at a resolution of 30 m between the years 1990 

and 202322. To create the map of regenerating TMF age in 2023, we first 

used the transition map and retained only pixels identified as ‘regrowth 

forest’, that is, pixels demonstrating naturally regrowing vegetation for 

3 years or more after a deforestation event that resulted in a period of 

more than 2.5 years without detectable tree cover. After masking to 

retain only regenerating TMF pixels in the year 2023, we then stacked 

each year of the annual change data (1990–2023) together. Follow-

ing a similar method to Heinrich et al.66 and Silva et al.18, and starting 

from 1990, for every consecutive year where regenerating forest was 

detected in a pixel, the forest age value of that pixel increased by 1. If a 

different land-use classification was detected on a pixel (for example, 

owing to a deforestation event), the regenerating forest age for that 

pixel was reset to 0. The age of the pixel remained 0 until the next year 

that regenerating forest was detected in the pixel, at which point the 

age counter would start again from one. This process was repeated 

cumulatively for the years 1990 through to 2023, with the final layer 

representing the age of regenerating TMF (that is, how many cumula-

tive years that regenerating forest had been detected in that pixel) in 

the year 2023. The requirement for 3 years of forest cover before des-

ignation as a ‘forest regrowth’ pixel and the earliest year of the annual 

change dataset (1990) thus give our regenerating forest age values a 

possible range of 3–34 years old.

To remove any potential oil palm plantations classified as regen-

erating forest in the dataset, we masked out all pixels mapped as oil 

palm plantations in the map produced by Descals et al.41. We also tested 

our map of regenerating forest age against the map of regenerating 

vegetation age for Brazil from the MapBiomas project46,47 (Supple-

mentary Note 2 and Supplementary Fig. 5) and the global map of forest 

management by Lesiv et al.42 (2022) (Supplementary Note 1 and Sup-

plementary Table 2).

The forest aging process was carried out in Google Earth Engine67, 

with all subsequent spatial analysis conducted in RStudio version 

4.4.468. We used the ‘terra’69 package to aggregate age maps for visu-

alisation, identify pan-tropical hotspots of older regenerating TMF 

(defined as ≥20 years old) and analyse regenerating forest extent and 

age profiles for each country on the basis of national boundaries from 

GADM70. Maps were plotted on the basis of national boundaries from 

‘rnaturalearth’71. To estimate the carbon accumulation potential of 

protecting all young (≤5 years old) naturally regenerating TMF for the 

next 25 years, we extracted carbon accumulation values from spatially 

explicit estimates of annual aboveground carbon accumulation in 

naturally regenerating forests7 and multiplied these by 25.

Identifying the best predictors of regenerating forest age
To identify the most important variables in predicting the age of regen-

erating TMF pixels, we used random forest regression models to predict 

regenerating forest age on the basis of a number of input variables. 

Random forest models employ an ensemble of decision trees for pre-

dictions, and were used since they are generally robust to interactions 

between predictors and complex nonlinear and non-monotonic rela-

tionships72. To ensure that the models were computationally tractable 

across a sensible timeframe, we took a random-stratified sample of 

points across forest ages. For each possible value of forest age between 

3 and 34 years we took a random sample of 10,000 points. For each 

point we then identified values for a suite of 32 spatially explicit pre-

dictors that could influence regenerating forest age and deforestation 

pressure, covering locational factors (see Supplementary Fig. 6 for a 

model without spatial coordinates), landscape level forest character-

istics, environmental conditions and human-related deforestation 

pressures (see the Supplementary Information for more informa-

tion). We removed any variables that were highly correlated (R > 0.9). 

This process was repeated for each tropical region (Americas, Africa 

and Asia–Pacific), and we fit a separate random forest model for each 

region.

Modelling was performed using the ‘ranger’ implementation of 

random forests73 and trained using the ‘caret’ package74. We used 75% 

of the data for model training, and held 25% back for model testing. To 

ensure that we fit the most accurate model possible, we used ‘caret’ to 

tune important model hyperparameters to identify the most effective 

model. We tested a range of values for both ‘ntree’ (100–1500) and 

‘mtry’ (3-29) under sevenfold cross validation, and selected the combi-

nation of ‘ntree’ and ‘mtry’ that delivered the highest level of accuracy 

in an acceptable timeframe for computation. The final model therefore 

used 500 trees and 18 ‘mtry’ values. We calculated R2 scores on the basis 

of the predictive accuracy of the model on the held-back test data. To 

estimate the importance of each variable in predicting regenerating 

forest age, we used the corrected impurity measure which estimates 

mean decrease in accuracy and is unbiased in terms of the number of 

categories and category frequencies75,76, and created partial depend-

ence plots for each variable using the Dalex package77.

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
The underlying TMF dataset used in this study is freely accessible and 

available via EU Science Hub at https://forobs.jrc.ec.europa.eu/TMF/

data. Additional data sources used for random forest modelling are 

also freely accessible and available for download in the links provided 

http://www.nature.com/natecolevol
https://forobs.jrc.ec.europa.eu/TMF/data
https://forobs.jrc.ec.europa.eu/TMF/data
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in the Supplementary Information. The final map of regenerating tropi-

cal moist forest age for the year 2023 is available via Zenodo at https://

doi.org/10.5281/zenodo.15120870 (ref. 78).

Code availability
The code used to generate the results are available via Zenodo at https://

doi.org/10.5281/zenodo.15120870 (ref. 78).
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