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Abstract: The development of automatic methods for early cognitive impairment (CI)
detection has a crucial role to play in helping people obtain suitable treatment and care.
Video-based analysis offers a promising, low-cost alternative to resource-intensive clini-
cal assessments. This paper investigates visual features (eye blink rate (EBR), head turn
rate (HTR), and head movement statistical features (HMSFs)) for distinguishing between
neurodegenerative disorders (NDs), mild cognitive impairment (MCI), functional mem-
ory disorders (FMDs), and healthy controls (HCs). Following prior work, we improve
the multiple thresholds (MTs) approach specifically for EBR calculation to enhance per-
formance and robustness, while the HTR and HMSFs are extracted using methods from
previous work. The EBR, HTR, and HMSFs are evaluated using an in-the-wild video
dataset captured in challenging environments. This method leverages clinically validated
cues and automatically extracts features to enable classification. Experiments show that
the proposed approach achieves competitive performance in distinguishing between ND,
MCI, FMD, and HCs on in-the-wild datasets, with results comparable to audiovisual-based
methods conducted in a lab-controlled environment. The findings highlight the potential of
visual-based approaches to complement existing diagnostic tools and provide an efficient
home-based monitoring system. This work advances the field by addressing traditional
limitations and offering a scalable, cost-effective solution for early detection.

Keywords: eye blink rate; functional memory disorder; head turn rate; in-the-wild data;
mild cognitive impairment; clinical data analysis

1. Introduction

Dementia represents a significant and growing socio-economic challenge worldwide.
It is a progressive neurological disorder that impairs memory, cognitive functions, social
communication, and the ability to perform daily activities [1]. As global populations
continue to age, the prevalence of dementia is rising, placing increasing strain on healthcare
systems, caregivers, and society. Early detection and accurate diagnosis are essential
for managing symptoms, planning care, and exploring potential treatments. Currently,
over 50 million people are living with dementia, and this number is projected to rise to
152 million by 2050 [2].

Clinically, dementia is diagnosed through a combination of cognitive assessments,
a patient’s medical history, and neuroimaging techniques such as MRI and CT scans.
Cognitive tests like the Mini-Mental State Examination (MMSE) and the Montreal Cognitive
Assessment (MoCA) help evaluate memory, attention, language, and problem-solving
abilities [3]. However, these diagnostic methods have limitations. Cognitive tests can be
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influenced by factors such as education level and language barriers, leading to potential
misdiagnosis. Neuroimaging can help identify structural brain changes, but it may not
detect early functional changes associated with dementia. Additionally, the diagnostic
process is often time-consuming, expensive, and resource-intensive, requiring specialized
neurological expertise and access to advanced medical equipment. These challenges have
led to growing interest in developing automated, cost-effective methods for detecting early
signs of dementia and related memory impairments.

Facial cues, such as eye blink rate (EBR) and head movements (HMs), have been
extensively studied as indicators of mental state and cognitive health [4]. Research has
demonstrated a strong correlation between these visual cues and the progression of cog-
nitive impairment (CI), suggesting their potential as reliable biomarkers for conditions
like dementia and mild cognitive impairment (MCI) [5,6]. Recent efforts have focused on
developing automated systems that leverage visual features to detect early signs of demen-
tia [7,8]. A key advantage of facial cue analysis is its language-independent nature. Many
individuals with cognitive impairment, particularly those who have migrated and learned
a second language, tend to revert to their mother tongue as their condition progresses [9].
This can pose challenges for language-based diagnostic tests, which rely heavily on verbal
responses. Utilizing visual-based assessments, clinicians can overcome these limitations,
ensuring more accurate and accessible dementia diagnoses across diverse linguistic and
cultural populations.

Previous research for dementia detection has primarily relied on data collected in con-
trolled lab settings, where participants are recorded under optimal conditions (e.g., good
lighting, fixed camera position, no background noise, fixed distance from the camera, no
movements for the participants) [7,8,10]. While these studies have achieved high accuracy
by combining language, speech, and visual features, their reliance on controlled environ-
ments limits the applicability of their work in real-world scenarios. The authors of [11] used
semi-in-the-wild data, where recordings were conducted during online interviews between
the patients and the doctors. However, their work is based on selected videos with good
lighting and no noisy background, where the patient appears very clear to the camera.

This study uses in-the-wild data and explores the discriminative potential of eye blink
rate (EBR) and head movements (HMs) for identifying CI. The data include video recordings
of individuals with neurodegenerative disorders (NDs), mild cognitive impairment (MCI),
functional memory disorders (FMDs), and healthy controls (HCs). In this study, NDs refer
to progressive neurological diseases that may lead to significant cognitive decline, such
as Alzheimer’s disease or frontotemporal dementia. Many forms of dementia (D) arise
as clinical manifestations of NDs; thus, ND cases in this work include individuals who
meet diagnostic criteria for dementia. MCI is treated as a separate group—it reflects a
level of cognitive decline greater than expected for age but not severe enough to impair
daily functioning or qualify as dementia. FMD refers to memory problems unrelated to
neurodegenerative causes, often linked to psychological or functional causes (e.g., anxiety,
stress). In this paper, “in-the-wild” refers to scenarios where participants are free to move
naturally, with varying distances from the camera, poor lighting conditions, low video
resolution, and noisy backgrounds (e.g., other people appearing in the frame). These
real-world conditions present significant challenges for detecting and tracking facial cues,
which rely heavily on accurate facial landmark detection.

The contributions of this paper are the following:

• We present a new in-the-wild dataset for dementia detection, capturing real-world
variability in recording conditions and participant behavior. This dataset provides a
valuable resource for evaluating automated dementia detection approaches in uncon-
strained environments.
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• We validate key facial cues for dementia detection under in-the-wild settings, demon-
strating their effectiveness for both screening and severity assessment. This work
addresses the limitations of traditional methods that rely on controlled environments
and subjective evaluations, contributing to the development of an accessible, non-
invasive, and automated screening tool. Additionally, we show that a visual-only
approach achieves competitive accuracy compared to multimodal methods, highlight-
ing its potential as a scalable and cost-effective diagnostic solution.

• We improve on the multiple thresholds (MTs) approach for EBR calculation [12],
enhancing its robustness for real-world applications. Results confirm EBR as a reliable
cognitive impairment indicator even in in-the-wild settings.

• We investigate the role of HM features in video-based dementia detection, leveraging
a larger in-the-wild dataset than that used in previous work [12], which we present in
this paper. HM features enhance classification performance over EBR alone, and their
fusion further improves results, highlighting their combined effectiveness.

The remaining sections of this paper are structured as follows. Section 2 provides
an overview of related work. Section 3 offers a detailed description of the dataset used,
including its characteristics, the pipeline of the proposed approach, and how challenges
associated with the data are addressed. Section 4 details the experiments conducted and
presents the results. Finally, Section 5 provides a discussion of the findings and presents
the conclusions.

2. Related Work

Non-verbal behaviors, such as eye and head movements, are essential components
of human communication, providing insights into emotions, personality, and mental
state [4,13]. Eye blink rate (EBR), in particular, has been widely studied for its connection to
cognitive functioning. Spontaneous EBR varies with cognitive activities, increasing during
tasks like speaking, memorizing, or emotional expression, and decreasing during visual
tracking or reading [14–17]. These changes are linked to brain activity and are influenced
by factors such as aging, environmental conditions, and cognitive health [18,19]. Clinically,
EBR has shown promise as a biomarker for cognitive conditions, including dementia and
mild cognitive impairment (MCI). For instance, studies have found that individuals with
MCI exhibit a higher EBR than individuals without MCI, and further increases may signal
progression to dementia [5,20]. Similarly, reduced EBR has been observed in Parkinson’s
disease, which can also lead to cognitive decline [21]. In addition to EBR, head movements
have been investigated as potential indicators of cognitive impairment. Several studies
have shown that people with MCI or dementia tend to exhibit an increase in head turns,
which may reflect changes in attention or spatial awareness [6,22]. These findings highlight
the potential of EBR and head movements as non-verbal cues for the early detection and
monitoring of cognitive disorders.

As interest in automated methods for early dementia detection grows, researchers
have investigated visual hand-crafted features (HCFs) to enhance diagnostic accu-
racy [7,8,10,12,23–25]. However, research on dementia detection using visual cues remains
limited, with only a few studies exploring features such as smile expressions [7,10], facial
action units, and eye gaze patterns [8]. Advanced techniques, including neural networks
(NNs), have also been employed to enhance the accuracy of dementia detection [11,26].
While previous work has predominantly relied on data recorded in controlled laboratory
environments, our study utilizes in-the-wild data, which better reflect real-world variability
and challenges. Only a few techniques, such as HCFs and NNs, have been explored for
dementia detection in previous studies [7,8,10,12,23–25]. In this work, we focus on HCFs
(specifically EBR and HM) as they are based on clinically validated cues and do not require
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large amounts of training data, unlike NNs. These features are automatically extracted
to evaluate the system’s performance in distinguishing between NDs, MCI, FMD, and
HCs. This approach aims to provide a more accessible and objective tool for early diagno-
sis, addressing the limitations of traditional methods that rely on controlled settings and
subjective assessments.

3. Methodology

This section describes the methodology used in this study. It begins with details
about the dataset, including the collection process and its characteristics. Next, the data
pre-processing steps required to prepare the dataset for feature extraction are explained.
This is followed by an overview of the extraction process for the facial features (EBR, HTR,
and HMSFs). The subsequent step involves feature fusion, where the extracted features are
combined to improve classification results. Finally, the evaluation and analysis methods
used to assess the effectiveness of these facial features in distinguishing between different
CI conditions and HCs are discussed.

3.1. Data

The data used in this work were provided by the Hallamshire Hospital Memory
Clinic in Sheffield, UK. The dataset includes video and audio recordings of 52 participants,
including different types of CI—mild cognitive impairment (MCI), neurodegenerative
disorder (ND), functional memory disorder (FMD)—and healthy controls (HCs). The
videos were recorded using a laptop camera or a smartphone to capture each participant’s
face and the accompanying person. Participants were asked memory-probing questions
by an intelligent virtual agent (IVA). The questions consisted of open questions, closed
questions, and compound questions to assess participants’ long and short-term memory.
Ethical approval for collecting and using these data was given by the National Research
Ethics Service (NRES) Committee South West-Central Bristol (Rec number 16/LO/0737) in
May 2016 [27]. These data are not publicly available and cannot be shared due to privacy
and confidentiality restrictions involving participants’ sensitive personal information. For
full details of the data, see [27–29].

The collected data consist of two parts, IVA18 and IVA34, collected at different times.
The IVA18 data have been used in a previous study [12], whereas the combined datasets
were used in this study. The following subsections give further details about the datasets.

3.1.1. IVA18 Data

These data include a total of 18 participants who were recorded in 2016, split equally
into 6 with ND, 6 with MCI, and 6 with FMD. All participants are in the age range of 43
to 78. The duration of the videos in total is 208 min (mean = 11.56 min). The participants
were told that they could bring someone with them and, as a result, 6 of the 18 participants
brought an accompanying person with them (4 ND, 1 MCI, and 1 FMD). Therefore, some
videos contain four people: the participant, the accompanying person, the neurologist, and
the person who operates the laptop (see Figure 1). Although the participants were not
given any specific instructions as to where to look, the talking head on the screen will have
been the most salient point to look at.

When these data were recorded, it was not intended for video processing purposes,
with the intended focus being the audio. Thus, the data contain a high level of noise
due to the lack of restrictions on the participants and the environment with respect to the
webcam position. We refer to these data as in-the-wild data. They include conditions such
as a semi-dark or dark and noisy background (e.g., various objects behind the participant
and televisions with animation). Participants could act as they would in their natural
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environment, such as moving about freely. Participants could continually change the
orientation of their faces, rotate their bodies, and move closer to and further away from
the camera. Participants wearing glasses occasionally had their eyes obscured by the
frames or by reflections from the laptop screen. Also, other people could appear with a
participant and move around too. Another aspect was the recording speed for the videos.
The majority of the IVA18 data recordings were recorded at 30fps. However, five recordings
were recorded at 24 fps, producing a different resolution recording. All these complications
cause issues for automatic methods that extract visual information from the data.

Figure 1. A screen-shot that presents the IVA when it is in use [29].

3.1.2. IVA34 Data

These data were collected in two different environments, a clinic and at home. People
at home used laptops and smartphones to carry out the recording. There are 34 videos
(19 female and 15 male) representing four groups: 5 participants with ND, 4 with MCI, 2
with FMD, and 23 HCs. The total duration of the videos is 538.59 min (mean = 9.79 min,
SD = 5.54 min). Originally, more participants were recorded, but eight were excluded as
face detection was difficult due to the following problems: room too dark; interruptions
from the participant’s partner; a participant’s eyes not being visible to the camera; two
participants wearing masks; the extreme angle of a participant from the smartphone camera;
a participant continually looking and talking to the right at the person who was operating
the laptop.

As with the IVA18 data, in the clinic recordings participants, were told that they could
bring someone with them. A total of 4 out of the 13 female participants recorded in a clinic
brought a caregiver or partner with them (3 ND and 1 MCI). Consequently, some videos
contain four people, as mentioned in the previous section. In contrast, only 2 out of the
20 participants who made a home recording had a caregiver/partner with them during the
session (1 MCI and 1 HC).

The use of home environments for recording created many challenges. a participant
could choose which room to sit in (e.g., office, living room, bedroom), the distance and
the angle from the camera, whether the lights of the room were on or off, and whether
to participate in the session during the day or at night time. Rooms chosen could have
noisy backgrounds (including furniture such as an office table, or pictures of people, and
various objects). In addition, different devices could be used for the recording, e.g., laptops
and smartphones. Laptops could be set at any angle with respect to a participant, and
the participant could turn their face away from the camera at any time or move out of
camera leaving only part of their face visible. Where a smartphone was used, the angle
of the camera to the viewer could be continually changing. Smartphone recordings also
meant participants generally held the phone and its camera closer to their face and at a
lower angle than laptop users, making their head orientation different and their eyes look
partially closed. In all cases, people wearing glasses, which was common for the age range
captured, also caused challenges.

Although clinic recordings and home recordings share several challenges, the chal-
lenge of people appearing with the participant in the camera view is more common in clinic
recordings than in home recordings. In the clinic recordings, at least two people appear on
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camera, as previously mentioned. Taking all of this into account, such data pose a challenge
for video-based processing.

In contrast to the IVA18 data, the IVA34 data include very few participants with health
conditions. This makes them less suitable for use in experiments to distinguish between
participants with ND, MCI, FMD, and HCs. Therefore, we combined the IVA34 data with
the IVA18data, which resulted in a larger more balanced dataset with 52 participants, which
is referred to as IVA52 in the rest of this work. Previous research using the IVA52 dataset
primarily focused on speech processing [29]. This study is the first to analyze the video
recordings from this dataset for cognitive impairment detection.

3.2. Data Pre-Processing

Prior to the feature extraction phase, the IVA videos were pre-processed to deal with
other people appearing with a participant in front of the camera. These people were
sometimes closer to the camera than the participant. The process was conducted by
cropping the height and width of the video frames to detect only the participant while
keeping the background noise. The cropping operation resolves only one challenge and
does not remove any other challenges to ensure the data can still be considered as in-the-
wild. The OpenFace “https://github.com/TadasBaltrusaitis/OpenFace (accessed on 1
February 2020)” toolkit was then used to extract the facial landmarks and head orientation,
which is explained in the next section.

3.3. Feature Extraction

Figure 2 illustrates the complete feature extraction pipeline, which was specifically
designed to address the challenges presented by our in-the-wild dataset. This section
focuses on extracting three key facial features: eye blink rate (EBR), head turn rate (HTR),
and head movement statistical features (HMSFs). HTR measures the frequency of the head
turns to the left or right, while HMSFs capture all head movements in any direction. These
features are critical behavioral indicators in distinguishing between different CIs and HCs
and were chosen based on prior work [5,6].

Eye aspect ratio

Facial landmarks detection
and head pose

Frame

Head Movement

 All Angles

Yaw angle

Thresholds Blinks rates

Generating multiple thresholds

.

.

. 

.

.

. 
.
.
. 

.

.

. 

Eyes landmarks

Head Movement Statistical
Features (HMSF)

Head Turn Rate (HTR)

Head Turn's Statistical Features
(HTSF)

Figure 2. Pipeline of visual feature extraction approach. The top part of the figure shows the
calculation of the EAR and then the calculation of the EBRs (EBRn) based on the different thresholds
(Tn) of the whole video. The lower part of the figure illustrates how the three head orientations are
extracted and used for two different visual features.

3.3.1. Eye Blink Rate

The calculation of the EBR is based on the eye aspect ratio (EAR) measure. Six eye
landmarks (x,y), where p1 and p4 represent the horizontal eye corners, and p2, p3, p5 and p6
represent the vertical positions of the eyelids, (as shown in Figure 3), were used to compute
the EAR according to Equation (1) [30].
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EAR =
∥p2 − p6∥+ ∥p3 − p5∥

2∥p1 − p4∥
(1)

Figure 3. Detected eye landmarks.

Both eyes’ EARs are calculated, and then the average is taken. This average EAR is
compared with a particular threshold to decide whether there is an eye closure (i.e., the
EAR value is lower than the given threshold) or not in each frame. Following [12], a state
machine (SM) is used to determine whether an observed eye closure is a genuine blink. The
length of the closure is measured in consecutive frames, ranging from 2 to 30 frames. This
range allows for variability in the blink duration, as participant tiredness increases during
the recording session, leading to longer or more varied eye closure. For example, shorter
eye closures may occur early in the session, while longer closures might be observed as the
participant becomes fatigued.

The EBR is calculated automatically using an approach based on multiple thresholds
(MTs) [12]. The MTs approach calculates the minimum and maximum EAR value over all
the participants (OAPs) to generate a range of thresholds for each video. However, the
threshold’s upper limit might be dominated by very high EAR values caused by large
HMs or turns and occluded faces (i.e., outliers). To address this, any value above the third
standard deviation (µ + (3 × σ)) is considered an outlier and is removed. After the outliers
have been removed, different step sizes (0.1, 0.01, and 0.001) are then used to produce
the resulting thresholds for the MTs approach. For example, with a minimum of 1 and a
maximum of 3, using a step size of 0.1, the thresholds would range from 1.0 to 3.0, resulting
in 21 thresholds (1.0, 1.1, 1.2, . . . , 2.9, 3.0). To account for variation in video length across
participants, we normalized all extracted features, including the EBR, based on the number
of frames in each video. This ensures comparability and mitigates potential bias due to
differing video durations.

In contrast to the previous work that calculated over all participants (MTs) [12], in this
work, the MTs approach was developed to become participant-dependent (PD). Thus, MTs-
PD calculates the thresholds based on the minimum and maximum for each participant.
This approach was chosen to address the issues related to the calculation of the EAR when
using the IVA34 dataset. Figure 4 shows the mean (blue) and the third SD (orange) of
each participant. Notably, the mean and the SD of participants in IVA18 are higher than
in IVA34, which shows that the IVA34 participants have a lower range for the EAR than
the participants in IVA18. The approach that worked for IVA18 [25] cannot achieve high
performance on the combined IVA52 data due to the variations in the recording devices and
environments and the other challenges in this dataset (see Section 3.1). Thus, the MTs-PD
approach was developed.

As stated previously, the IVA52 data include many challenges that resulted in many
extremely high values in the EAR. In addition, calculating the mean and the 3rd SD of each
participant using the EAR showed a significant difference between the IVA18 and the IVA34

datasets. As such, the use of the interquartile range (IQR), which is robust in detecting
outliers and not sensitive to high values, is considered:

IQR = Q3 − Q1 (2)
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UB = Q3 + b × IQR (3)

where Q1 and Q3 are the 25th and 75th percentiles of the data, respectively, and a b value
of 1.5 is used [31].
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Figure 4. The mean and the third standard deviation (SD) of every participant in both datasets,
IVA18 (left) and IVA34 (right).

A comparison between the UB of the IQR approach and the 3rd SD approach is shown
in Figure 5 for the individual participants in the IVA18 and IVA34 datasets.
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Figure 5. Comparison of third standard deviation (SD) and interquartile range (IQR) upper bound-
aries used to remove outliers in the eye aspect ratio (EAR) data for individual participants from
the IVA18 (left) and IVA34 (right) datasets.

3.3.2. Head Turn Rate

OpenFace was used to extract yaw angles from the videos (see Figure 6). The SciPy
(https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.findpeaks.html, 20
April 2025) package was then used to detect signal peaks, based on a parameter called
‘prominence’, following [25]. Peak prominence measures a peak’s significance based on its
intrinsic height and relative location from surrounding peaks. The prominence parameter
was set up to find peaks with yaw angle ±45◦. Each detected peak counts as a head turn.
The HTR is calculated by dividing the number of head turns by the number of frames. The
mean and standard deviation (SD) are then calculated, as well as the variance (Var) for
the following derivative features from the detected peaks: peak prominence value, height,
width, and distance between peaks. All these statistical features are used as complementary
cues with HTR and are referred to as head turn statistical features (HTSFs).
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Figure 6. An example of the calculated head angles—pitch (blue), yaw (orange), and roll (yellow)—for
six participants with functional memory disorder (FMD), mild cognitive impairment (MCI), and
neurodegenerative disorder(ND) (who both came with a partner).

3.3.3. Head Movement

The pitch, yaw, and roll of the head in the videos are used to calculate a range
of statistical features (as used in previous work [25,32]). Again, data outliers must be
addressed, for example, those caused by extreme HM that are difficult to deal with using
OpenFace, as shown in Figure 6 with P14 (MCI) and P13 (ND). The outliers are detected
and removed when the value of the pitch, yaw, or roll angle is ±90◦. Then, a linear
interpolation process is used to fill in the gaps where outliers occur. Once the interpolation
is realized, velocity and acceleration are computed for each angle for each frame. Then, the
following statistical features (SFs) for each angle, velocity, and acceleration are calculated
and normalized: mean, SD, Var, range, maximum (Max), and minimum (Min). This results
in 54 features (6 × 9 features), referred to as HMSFs.

3.4. Fusion

Performance is measured using each feature individually and when fused. The features
are fused by concatenating all of them. This study investigates whether feature fusion
improves classification performance compared to using a single feature and whether it
provides more useful information for small datasets such as the one used in this study.

3.5. Evaluation and Analysis

A range of classification tasks were used in this study: four-way, three-way, and
various two-way combinations. Four classifiers were used: support vector machine with
linear kernel (SVM), logistic regression (LR), k-nearest neighbor (KNN) with uniform
weight, and decision trees (DT). The combined data IVA52 include 11 participants with
ND, 10 participants with MCI, 8 participants with FMD, and 23 HC participants. The
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classifiers were trained using the Python 3.11 Scikit-learn package. The classification was
participant-independent-stratified k-fold cross-validation. Some hyper-parameter values
were optimized using a grid search, and the rest were set to their default values. For each
classifier, four metrics were computed: accuracy, recall, precision, and F-measure.

4. Experiments

In this section, we evaluate the performance of our system by analyzing individual
features, including the EBR calculation using the MTs-PD approach, head movement
features, their fusion, and feature selection.

4.1. Performance Using Eye Blink Features

The MTs-PD approach was developed to address challenges such as the small range
of EAR values and the need for a participant-dependent (PD) threshold calculation. Given
the variations in the IVA52 dataset, including extreme EAR values, we conducted two
experiments to evaluate the approach under different conditions.

Experiment 1 evaluates the impact of SD and IQR for outlier removal by varying
their factors and assessing performance on three-way (ND vs. MCI vs. FMD) and two-
way classification tasks. The two classification tasks include (1) memory problems (MPs)
versus HCs, where MP consists of ND, MCI, and FMD, and (2) dementia (ND, MCI)
versus non-dementia (FMD, HCs), referred to as D vs. Non-D. Experiment 2 applies
the best-performing SD and IQR parameters (factors) from Experiment 1 and extends
the evaluation to additional classification tasks, including four-way classification. The
following subsections provide a detailed comparison of these approaches.

4.1.1. Experiment 1: Evaluating the Impact of SD and IQR Factor Variations on
Classification Performance

In this experiment, two different threshold-scaling factors are explored for both ap-
proaches, SD and IQR. These approaches are used to determine the UB for outlier detection
within the MTs-PD approach. The factors range from 1 to 3, increasing by increments
of 0.5 (i.e., 1, 1.5, 2, 2.5, 3). First, they are investigated via three classification tasks:
a three-way problem (ND vs. MCI vs. FMD) and two two-way problems (HC vs. MP)
and (HC/FMD vs. ND/MCI). Four different classifiers were investigated, with the KNN
classifier achieving the best performance; hence, it was used in subsequent experiments
for consistency.

Table 1 presents the results of varying the factor range of the SD and IQR approaches
in the three-way classification. The results show that applying IQR to determine the upper
boundary improves system performance, unlike SD, which does not improve with factor
variation, as illustrated in the confusion matrices in Figure 7. The highest results are
obtained with the IQR when factor b equals 1.5, 2.5, and 3. The difference between the
IQR and SD results is statistically significant. Similar trends are shown in the two-way
classification task (ND/MCI vs. FMD/HCs), as shown in Table 2 and Figure 8, where the
IQR approach outperforms the SD approach, particularly at factor b = 2. However, the
difference between the SD and IQR results is not statistically significant.

In contrast, the classification task HC vs. MP shows that the SD approach gives a
better performance than IQR for all the variations. These findings are different to the results
in (ND vs. MCI vs. FMD) and (D vs. Non-D) (see Table 3 and Figure 9). From the table
and the confusion matrix, it can be seen that the SD gives the highest performance when it
equals 1.5. The difference between the results obtained using SD and IQR is considered to
be statistically significant.
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Table 1. Classification results of the three-way problem—neurodegenerative disorder (ND) vs. mild
cognitive impairment (MCI) vs. functional memory disorder(FMD)—using a range of values for
SD and IQR to find the factor with the highest performance score. These approaches are tested on
70 thresholds.

Factor Approach Accuracy Precision Recall F-Measure

1
SD (Min-UB) 44% 31% 40% 32%

IQR 49% 51% 51% 51%

1.5
SD (Min-UB) 44% 31% 40% 32%

IQR 53% 58% 53% 52%

2
SD (Min-UB) 44% 31% 40% 32%

IQR 50% 51% 48% 45%

2.5
SD (Min-UB) 44% 31% 40% 32%

IQR 53% 58% 53% 52%

3
SD (Min-UB) 44% 31% 40% 32%

IQR 53% 58% 53% 52%

❳
❳

❳
❳

❳
❳
❳

❳
❳
❳

Approach
Factor

1 1.5 2 2.5 3

SD

IQR

Figure 7. The confusion matrices for the three-way classification—neurodegenerative disorder
(ND) vs. mild cognitive impairment (MCI) vs. functional memory disorder (FMD)—using two
approaches to detect the upper boundary (UB), with a range of factors applied to 70 thresholds. In
the confusion matrix, darker colors indicate higher true predicted values, while lighter colors indicate
lower predictions (rows: true labels; columns: classified labels).

Table 2. Classification results for the two-way problem—dementia (D) vs. non-dementia (Non-D)—
using a range of values for standard deviation (SD) and interquartile range (IQR) to identify the factor
that yields the highest performance score. These approaches were evaluated across 70 thresholds or
features using k-nearest neighbor (KNN) classification with uniform weighting (D includes MCI and
ND).

Factor Approach Accuracy Precision Recall F-Measure

1
SD (Min-UB) 63% 62% 59% 58%

IQR 62% 64% 63% 63%

1.5
SD (Min-UB) 67% 66% 63% 63%

IQR 71% 72% 71% 71%

2
SD (Min-UB) 64% 64% 62% 62%

IQR 74% 74% 73% 73%

2.5
SD (Min-UB) 67% 66% 65% 65%

IQR 71% 72% 71% 71%

3
SD (Min-UB) 64% 64% 61% 61%

IQR 69% 70% 68% 69%
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❳
❳
❳
❳

❳
❳
❳

❳
❳
❳

Approach
Factor

1 1.5 2 2.5 3

SD

IQR

Figure 8. The confusion matrices for the two-way classification—dementia(D) vs. non-dementia
(Non-D)—using two approaches to detect the upper boundary (UB) with a range of factors applied to
70 features or thresholds. In the confusion matrix, darker colors indicate higher true predicted values,
while lighter colors indicate lower predictions. (rows: true labels; columns: classified labels).

Table 3. Classification results of the two-way problem—healthy controls (HC) vs. memory problems
(MP)—using a range of values for the standard deviation (SD) and interquartile range (IQR) to find
the factor with the highest performance score. These approaches are tested on 70 thresholds or
features using KNN with uniform weight (MP = includes ND, MCI, and FMD).

Factor Approach Accuracy Precision Recall F-Measure

1
SD (Min-UB) 77% 78% 77% 75%

IQR 63% 61% 61% 61%

1.5
SD (Min-UB) 81% 80% 80% 79%

IQR 65% 63% 63% 63%

2
SD (Min-UB) 78% 76% 76% 75%

IQR 69% 67% 67% 67%

2.5
SD (Min-UB) 78% 76% 76% 75%

IQR 68% 67% 67% 67%

3
SD (Min-UB) 78% 76% 76% 75%

IQR 68% 68% 67% 67%

From the results shown above, further analysis is needed by investigating the con-
fusion matrices for a specific classification task. The MP vs. HCs classification task was
chosen because it includes all groups, and there is a significant performance difference
between the IQR and SD results even when their factors are varied. Figure 9 shows that the
common misclassified labels are not from a specific dataset (i.e., IVA18 or IVA34). The incor-
rect prediction between MP and HC is due to the variation in the recording environments
and the devices used. These variations lead to high variations in the range of the EAR
calculations that could affect the detection of participants with MP from HC. Interestingly,
the HC participants are misclassified when the factor of the SD increases, while the MP
participants are correctly classified. For instance, MP participants are classified incorrectly
when the factor of the SD is a = 1, although HC participants are classified correctly.
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❳
❳

❳
❳

❳
❳
❳

❳
❳
❳
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1 1.5 2 2.5 3

SD

IQR

Figure 9. The confusion matrices for the two-way classification of healthy controls (HCs) vs. memory
problems (MPs) using two approaches to detect the upper boundary (UB) with a range of factors
applied to 70 features or thresholds. In the confusion matrix, darker colors indicate higher true
predicted values, while lighter colors indicate lower predictions (MP: includes ND, MCI, and FMD;
rows: true labels; columns: classified labels).

4.1.2. Experiment 2: Extending Classification Evaluation Using Optimal SD and
IQR Parameters

We extend the evaluation of the approaches tested in Experiment 1 by applying them
to a range of classification tasks: four-way classification (ND vs. MCI vs. FMD vs. HC) and
several two-way classifications (ND vs. MCI, ND vs. FMD, MCI vs. FMD, ND vs. HC, MCI
vs. HC, FMD vs. HC). These tasks are investigated using both the SD and IQR approaches,
with their default factors as well as the factors that achieve the highest performance. The
four-way classification results of using both the SD and IQR approaches with their default
and optimal factors are shown in Table 4. From Table 4, it can be seen that the IQR achieves
the highest performance and that changing the factor shows no difference in the obtained
results. It is observed that the detection of participants with MP (e.g., ND vs. MCI, ND
vs. FMD, and MCI vs. FMD) is better when the IQR is used. In contrast, the performance
decreases when the SD is used, especially for FMD participants classified as HC and MCI.
This observation supports the conclusion reached in previous work that classifying FMD
participants is challenging even in the clinic [33]. On the other hand, using the SD improves
the detection of the HC group from the ND, MCI, and FMD groups. It can be seen that the
SD’s UB makes it challenging to distinguish between ND and MCI.

Table 4. Classification results of four-way classification—neurodegenerative disorder (ND) vs. mild
cognitive impairment (MCI) vs. functional memory disorder (FMD) vs. healthy controls (HCs)—
using two factors for standard deviation (SD) a = 3 as the default value and a = 1.5 as the factor with
the highest performance, and for interquartile range (IQR) b = 1.5 as the default value and b = 2 as the
factor with the highest performance. These approaches are tested on 70 thresholds (features) using
linear SVM.

Factor Approach Accuracy Precision Recall F-Measure

a, b = 1.5
SD (Min-UB) 44% 35% 43% 38%

IQR 49% 53% 49% 49%

a = 3, b = 2
SD (Min-UB) 42% 32% 41% 35%

IQR 49% 54% 49% 49%

Regarding the two-way classification, the experiment is examined from two aspects:
(1) differentiating people with MPs from each other (ND vs. MCI, ND vs. FMD, MCI
vs. FMD) and (2) distinguishing each group with MPs from HCs (ND vs. HC, MCI vs.
HC, FMD vs. HC). The results of aspect one, classifying individuals with memory-related
problems, are presented in Table 5. As mentioned above, IQR gives better results in
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classifying MP classes. The highest performance between the three classification tasks
is achieved with 72% to classify ND and MCI from each other. Using the SD causes an
incorrect classification for all of the FMD group regardless of the factor value, as presented
in Figure 10.

Table 5. Classification results of the two-way classifications—neurodegenerative disorder (ND) vs.
mild cognitive impairment (MCI), neurodegenerative disorder (ND) vs. functional memory disorder
(FMD), and mild cognitive impairment (MCI) vs. functional memory disorder (FMD)—using two
factors for standard deviation (SD), a = 3 as the default value, and a = 1.5 as the factor with highest
performance, and for interquartile range (IQR), b = 1.5 as the default value, and b = 2 as the factor
with highest performance. These approaches are tested on 70 thresholds or features using linear SVM.

Classes Approach Accuracy Precision Recall F-Measure

ND vs. MCI
SD (Min-UB) 67% 68% 67% 66%

IQR 72% 72% 72% 71%

ND vs. FMD
SD (Min-UB) 56% 29% 50% 37%

IQR 69% 68% 66% 66%

MCI vs. FMD
SD (Min-UB) 54% 28% 50% 36%

IQR 67% 70% 64% 63%

❵
❵
❵
❵
❵
❵
❵

❵
❵
❵
❵
❵

Approach
Classes

ND vs. MCI ND vs. FMD MCI vs. FMD

SD

IQR

Figure 10. The confusion matrices for the two-way classifications—neurodegenerative disorder
(ND) vs. mild cognitive impairment (MCI), neurodegenerative disorder (ND) vs. functional memory
disorder (FMD), and mild cognitive impairment (MCI) vs. functional memory disorder (FMD)—for
both the standard deviation (SD) and the interquartile range (IQR), using 70 features or thresholds. In
the confusion matrix, darker colors indicate higher true predicted values, while lighter colors indicate
lower predictions. (rows: true labels; columns: classified labels).

The second aspect of the two-way classification is testing the system performance in
classifying every class with MPs from the HC class (ND vs. HC, MCI vs. HC, and FMD
vs. HC). Table 6 shows the results of the system performance in each classification task for
both approaches and different factor numbers. It can be seen that using the SD approach
gives a much better performance than the IQR approach. In ND vs. HC, increasing the
threshold range gives better classification performance from factor a = 1.5 with an accuracy
of 69% to a = 3 with 78%. In contrast, reducing the threshold range from a = 3 to a = 1.5
enhances the performance from 78% to 89%, respectively. In FMD vs. HC, the SD approach
has the same performance when the factor changes. It can be seen in Figure 11 that the
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predictions of these classes for both approaches explain which class is classified much
better. It is observed that using the SD with a high factor (a = 3) increases the detection of
ND participants from the HC group.

In contrast, the HC participants could be detected better using IQR regardless of the
factor value. Although MCI and HC are detected significantly using the SD with a low
factor value (a = 1.5), only two participants are classified incorrectly, as seen in the confusion
matrix. Interestingly, it can be seen that none of the MCI participants are ever confused
with HC participants when the IQR approach is used.

Regarding the FMD vs. HC classification, the HC participants are much better detected
from the FMD group when the SD factor a = 1.5 or 3, and the IQR factor b = 2. The best
factor for detecting FMD from HCs is achieved using a high value for the SD factor (a = 3),
with only two FMD participants confused with the HC group. Taking all these findings into
account, SD with a high factor value could help the model in the training phase to learn by
capturing a pattern that could distinguish between these classes with MPs from the HC
group. It can be seen that using a low value for the factor results in a model that confuses
the two classes and cannot classify them from each other. In contrast, the detection of HC
from other classes such as ND and FMD is much better when the IQR is used. It captures a
smaller range than the SD, which leads to finding features from the model that identifies
the HC from other classes.

When the third quartile of the IQR approach is used to determine the UB, several
classification tasks show better performance than when the 3rd SD is used. However, there
are also several classification tasks that show better performance when the 3rd SD is used
compared to using the IQR approach. Table 7 summarizes the different classification tasks
and which UB-determining approach achieves the best performance with the significance
test p-value. The table shows that the IQR approach achieves a better performance on
most classification tasks that detect people with MPs (ND/MCI/FMD) and the four-way
classification. The difference between the SD and IQR results is considered to be statistically
significant. However, the SD approach shows a higher performance when any class of
people with MPs is classified from HCs. MCI can be distinguished from HCs better than
the ND and FMD groups.

The extracted statistical features of eye blink rate (EBR) from the IVA data can provide
valuable insights into behavioral differences between these groups. To investigate this, we
conducted a series of statistical significance tests across the ND, MCI, FMD, and HC groups,
treated as binary comparisons (ND vs. MCI, ND vs. FMD, MCI vs. FMD, ND vs. HC, MCI
vs. HC and FMD vs. HC). First, a normality test was applied to determine whether the
features followed a normal distribution. Based on the result, a parametric two-tailed t-test
was used for normally distributed features, while a non-parametric Wilcoxon test was used
for features that did not meet the normality assumption. A significance level of p = 0.05
was used for all tests.

Figure 12 shows the number of statistically significant eye blink rate (EBR) thresholds
for each group pair using the two methods: IQR and SD. Each bar represents the count of
thresholds that showed significant differences between groups of memory-related problems
(ND, MCI, and FMD) and HC. As mentioned previously, the multiple thresholds approach
was developed to be participant-dependent (PD), where a range of thresholds is calculated
based on the individual minimum and maximum EAR values for each participant. From
the chart, it can be seen that some group pairs, such as MCI vs. HC and FMD vs. HC have
higher significant thresholds than other group pairs (e.g., ND vs. MCI, ND vs. FMD, and
ND vs. HC). This indicates that the differences between these groups are more consistent
and noticeable across a wider range of EBR values, suggesting that the EBR feature is more
sensitive and reliable for distinguishing between them.
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Table 6. Classification results of the two-way classifications—neurodegenerative disorder (ND) vs.
healthy controls (HCs), mild cognitive impairment (MCI) vs. healthy controls (HCs), and functional
memory disorder (FMD) vs. healthy controls (HCs)—using two factors for standard deviation (SD),
a = 3 as the default value, and a = 1.5 as the factor with the highest performance, and for interquartile
range (IQR), b = 1.5 as the default value, and b = 2 as the factor with the highest performance.
These approaches are tested on 70 thresholds or features using linear SVM (P: precision; R: recall; F1:
f-measure).

ND vs. HC MCI vs. HC FMD vs. HC

Factor Approach Accuracy P R F1 Accuracy P R F1 Accuracy P R F1

a,b = 1.5
SD (Min-UB) 69% 70% 69% 69% 89% 89% 89% 89% 77% 78% 76% 76%

IQR 69% 67% 66% 65% 72% 83% 72% 71% 67% 65% 65% 65%

a = 3, b = 2
SD (Min-UB) 78% 81% 79% 79% 78% 80% 79% 79% 77% 76% 76% 76%

IQR 72% 71% 71% 70% 72% 83% 72% 71% 67% 65% 64% 64%

Approach (factor) ND vs. HC MCI vs. HC FMD vs. HC

SD (a=1.5)

IQR (b=1.5)

SD (a=3)

IQR (b=2)

Figure 11. The confusion matrices for the two-way classifications—neurodegenerative disorder
(ND) vs. healthy controls (HCs), mild cognitive impairment (MCI) vs. healthy controls (HCs), and
functional memory disorder (FMD) vs. healthy controls (HCs)—for both the standard deviation (SD)
and interquartile range (IQR) with their default factors and the ones with the highest performance,
using 70 features or thresholds. In the confusion matrix, darker colors indicate higher true predicted
values, while lighter colors indicate lower predictions. (rows: true labels; columns: classified labels).



Appl. Sci. 2025, 15, 6267 17 of 25

Table 7. All classification tasks and the approach to upper boundary (UB) determination that achieved
the highest performance in the t-test to show the significant difference between the highest results
obtained using the standard deviation (SD) and interquartile range (IQR) (*: statistically significant;
**: extremely statistically significant).

Classification Task Best IQR or SD? p-Value

ND vs. MCI vs. FMD vs. HC IQR 0.04 *
ND vs. MCI vs. FMD IQR 0.02 *

ND vs. MCI IQR 0.0003 **
ND vs. FMD IQR 0.02 *
MCI vs. FMD IQR 0.03 *

ND vs. HC SD 0.002 *
MCI vs. HC SD 0.01 *
FMD vs. HC SD 0.0004 **
MP vs. HC SD 0.0001 **

D vs. Non-D IQR 0.0001 **
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Figure 12. An illustration of the number of statistically significant eye blink rate (EBR) thresholds
identified using standard deviation (SD) and interquartile range (IQR) across different group pairs.

The IQR-based EBR values show statistically significant differences between groups
with different memory problems (e.g., ND vs. MCI, ND vs. FMD), but not as consistently
between memory problems and healthy controls. This suggests that IQR captures subtle,
intra-clinical group differences in EBR behavior, making it more potentially effective for
distinguishing between the ND, MCI, and FMD classes.

In contrast, SD-based EBR features demonstrate stronger statistical differences between
each memory problem group and the healthy control (HC) group (e.g., ND vs. HC, MCI vs.
HC, FMD vs. HC), with many comparisons yielding extremely significant p-values. This
supports the observation that using the SD-based method is more effective for tasks that
require distinguishing participants with memory problems from healthy controls groups.

These findings confirm and strengthen our earlier interpretation that both the IQR
and SD methods serve different yet complementary purposes in eye blink rate (EBR)
analysis. The IQR method, by capturing small variations in behavior, performs better when
distinguishing between individuals with different memory problems (ND, MCI, FMD).
In contrast, the SD method is more effective for differentiating individuals with memory
problems from healthy controls, as it reflects larger behavioral differences. This distinction
likely arises from varying data characteristics, including recording environments, EAR
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range shifts, and sample size. In summary, the IQR method is more effective for spotting
subtle differences within memory-impaired groups, while the SD method is better suited
for distinguishing individuals with memory problems from healthy controls. Future studies
should be conducted on larger datasets to further validate these findings.

4.2. Performance Using Head Turns and Movement Features

Head movement (HM) features are evaluated across various classification tasks, in-
cluding three-way (ND vs. MCI vs. FMD), four-way (ND vs. MCI vs. FMD vs. HC),
and multiple two-way classification problems: MP vs. HC, D vs. Non-D, ND vs. MCI,
ND vs. FMD, MCI vs. FMD, ND vs. HC, MCI vs. HC, and FMD vs. HC. Table 8 presents
the classification accuracy results for these tasks.

Table 8. Classification accuracy of four-way, three-way, and two-way classification tasks for the IVA52

dataset, measuring the system performance using individual features with the KNN classifier. The
number of features is indicated in parentheses.

Classification Task Feature Accuracy Precision Recall F-Measure

ND/MCI/FMD/HC
HTR (1) 45% 46% 42% 59%

HTR + HTSF (13) 48% 50% 46% 53%
HMSF (54) 44% 45% 44% 44%

ND/MCI/FMD
HTR (1) 45% 31% 46% 37%

HTR + HTSF (13) 59% 60% 58% 58%
HMSF (54) 53% 59% 55% 53%

ND/MCI
HTR (1) 53% 51% 51% 46%

HTR + HTSF (13) 52% 52% 50% 69%
HMSF (54) 62% 62% 62% 62%

ND/FMD
HTR (1) 73% 76% 70% 71%

HTR + HTSF (13) 92% 89% 89% 89%
HMSF (54) 69% 68% 66% 66%

MCI/FMD
HTR (1) 71% 72% 73% 72%

HTR + HTSF (13) 67% 71% 69% 66%
HMSF (54) 90% 92% 88% 88%

MP/HC
HTR (1) 72% 71% 71% 71%

HTR+HTSF (13) 64% 63% 62% 62%
HMSF (54) 73% 73% 72% 72%

D/Non-D
HTR (1) 69% 66% 64% 64%

HTR + HTSF (13) 75% 72% 71% 72%
HMSF (54) 73% 70% 70% 70%

ND/HC
HTR (1) 83% 85% 84% 85%

HTR + HTSF (13) 72% 77% 73% 73%
HMSF (54) 74% 75% 74% 74%

MCI/HC
HTR (1) 74% 74% 74% 74%

HTR + HTSF (13) 69% 68% 68% 68%
HMSF (54) 69% 68% 68% 68%

FMD/HC
HTR (1) 67% 65% 64% 64%

HTR + HTSF (13) 45% 25% 44% 32%
HMSF (54) 58% 59% 58% 58%

The results indicate that HTR and its derivative features (HTR + HTSF) are informative
for classification. However, distinguishing FMD from HCs remains the most challenging
task. The highest classification accuracy is achieved using HTR + HTSF features, with
59% and 48% accuracy for the three-way and four-way classification tasks, respectively.
Additionally, this feature set achieves 92% accuracy in ND vs. FMD classification and 75%
in D vs. Non-D classification.
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Moreover, HMSFs prove useful in distinguishing groups with overlapping charac-
teristics, achieving 62% accuracy in ND vs. MCI classification and 90% in MCI vs. FMD
classification. In contrast, HTR+HTSF features excel in differentiating groups with more
distinct characteristics, such as in three-way, four-way, and two-way (ND vs. FMD and D
vs. Non-D) classifications.

Certain features perform better in specific two-way tasks. For instance, HTR + HTSF
achieves 92% accuracy in ND vs. FMD classification, while the HTR feature alone achieves
72% accuracy in MCI vs. FMD classification. When classifying individuals with memory-
related problems against HCs, HTR provides the best performance, with classification
accuracies of 83% for ND vs. HC, 74% for MCI vs. HC, and 67% for FMD vs. HC. These
findings align with previous research [6,34–36], which suggests that individuals with ND
tend to exhibit more head movement due to the presence of an accompanying person.

4.3. Performance by Feature Fusion

The results obtained from feature fusion are presented in Table 9. The IQR approach is
used for simplicity and because it provides the highest performance results in most cases.
Feature fusion generally improves performance compared to individual features. However,
for the three-way and four-way classification tasks, performance remains similar to using
individual features, showing no significant improvement.

In comparing SD and IQR as UBs, SD generally shows lower performance, particu-
larly in classification tasks that distinguish between individuals with memory problems
(ND/MCI, ND/FMD, MCI/FMD, and ND/MCI/FMD). In contrast, the IQR approach
usually provides better results when classifying individuals with memory problems from
HCs.

Table 9. Classification accuracy of four-way, three-way, and two-way classification tasks for the IVA52

dataset, measuring the system performance using the interquartile range (IQR) approach as the upper
boundary (UB) when features are fused and selected with the KNN classifier. The number of features
is indicated in parentheses.

Classification Task Feature Accuracy Precision Recall F-Measure

ND/MCI/FMD/HC
Feature fusion (137) 44% 44% 46% 44%
Feature selection (5) 32% 26% 30% 28%

ND/MCI/FMD
Feature fusion (137) 48% 47% 46% 46%
Feature selection (5) 43% 50% 45% 42%

ND/MCI
Feature fusion (137) 75% 84% 75% 74%
Feature selection (6) 63% 63% 61% 60%

ND/FMD
Feature fusion (137) 73% 73% 74% 73%

Feature selection (20) 76% 78% 78% 78%

MCI/FMD
Feature fusion (137) 65% 70% 64% 63%
Feature selection (7) 52% 49% 49% 49%

MP/HC
Feature fusion (137) 62% 61% 61% 61%

Feature selection (116) 59% 67% 57% 57%

D/Non-D
Feature fusion (137) 70% 68% 68% 68%

Feature selection (37) 62% 59% 59% 59%

ND/HC
Feature fusion (137) 85% 85% 84% 85%

Feature selection (38) 60% 65% 64% 63%

MCI/HC
Feature fusion (137) 72% 74% 74% 74%

Feature selection (38) 60% 65% 64% 63%

FMD/HC
Feature fusion (137) 79% 78% 76% 76%
Feature selection (2) 47% 47% 47% 47%
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4.4. Performance by Feature Selection

Table 9 presents the results when applying feature selection, where only the most
relevant features are retained. This generally did not improve performance for most
classification tasks, except for cases like ND/MCI. The IQR method performs better in
most classification tasks, particularly in distinguishing between memory problem classes,
including three-way, four-way, and D/Non-D classification tasks. This suggests that using
the full feature dimension is necessary to achieve better performance.

Moreover, it can be seen that conducting the classification task between two classes
that are close to each other, such as MCI/FMD, shows a decrease in the performance
because this task is also difficult for doctors to distinguish between in the hospital [33].

These findings highlight the key difference between feature fusion and feature selec-
tion. While feature fusion leverages complementary information from multiple features
to improve performance, particularly in distinguishing between distinct groups, feature
selection often reduces performance by discarding potentially useful features. This is
especially evident in tasks with overlapping classes, such as MCI vs. FMD, where removing
features can lead to a loss of crucial discriminative information. However, in specific cases
like ND vs. MCI, feature selection provides a slight improvement, suggesting that certain
features may contribute more effectively to distinguishing between particular memory
problem groups.

4.5. Comparison with Previous Work

This section compares our results with related work that used either visual or audiovi-
sual modalities, as shown in Table 10. The performance column in the table represents the
classification accuracy achieved in each study. The findings demonstrate that the perfor-
mance achieved in our work is comparable to that in prior studies that employed visual or
audiovisual features.

Prior work such as [7,8,10] used datasets recorded in lab-controlled environments.
Work that used audiovisual features with the smile as the facial feature achieved accuracies
of 84% using SVM and 93% using LR [7,10]. However, their work was limited to Japanese
people because they used a Japanese female model to extract the smile feature. Later work
employing only visual features, including facial action units, eye gaze, and lip activity,
achieved an accuracy of 82% using LR [8]. In contrast, our work is based on a dataset
recorded in the wild, as described in Section 3.1, which introduces additional challenges
such as variable lighting, background noise, and participant movement.

Another key difference is the classification tasks. Prior studies primarily focused on
detecting dementia from HCs regardless of the dementia type even though their dementia
group includes several dementia types such as Alzheimer’s disease (AD), MCI, normal
pressure hydrocephalus, and dementia with Lewy bodies (DLB) [7,8,10]. Other work
focused only on detecting MCI from HCs [11]. Our work focused on investigating different
memory-related conditions (ND, MCI, FMD) both from each other and from HCs, across a
range of classification tasks.

A recent study employed neural networks (NNs) to extract facial features, achieving
87% accuracy in distinguishing MCI from HCs [11]. However, their dataset consisted of
video-recorded, semi-structured interviews where participants were clearly visible, and
lighting conditions were optimal. In contrast, we utilized hand-crafted features (HCFs)
instead of NNs, as HCFs require less training data while still achieving comparable results
with an accuracy of 89%.

Finally, Table 10 includes results obtained using the IVA18 dataset [12,25] and the IVA52

dataset (the row labeled ‘Our’). The results show that the performance tends to decrease
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when using the IVA52 dataset, which is probably due to the increased variability and
complexity of the in-the-wild recordings.

Table 10. Classification results (%) for dementia detection compared to previous work.

Study Participants Data Settings Modality Classifier Performance

[10] 18 (9 with dementia) Lab-controlled Audiovisual SVM 84%

[7]
29 (14 with dementia including (NPH, AD,

DLB, MCI))
Lab-controlled Audiovisual LR 93%

[8] 24 (12 with dementia) Lab-controlled Visual LR 82%

[12] IVA18 (6 ND, 6 MCI, and 6 FMD) In-the-wild Visual SVM 89%

[25] IVA18 (6 ND, 6 MCI, and 6 FMD) In-the-wild Visual SVM 78%

[11] 32 videos (MCI and HCs) Semi-in-the-wild Visual DL 87%

Our
IVA52 (29 MP, 23 HCs) In-the-wild Visual KNN 59%

IVA52 subset (11 ND, 10 MCI, and 8 FMD) In-the-wild Visual KNN 81%
IVA52 subset (10 MCI, 9 HCs) In-the-wild Visual KNN 89%

5. Discussion

As seen in the previous section, feature fusion shows better results than feature selec-
tion. A possible explanation for this could be that every feature contributes to differentiating
groups from each other. For a better understanding of the results obtained, an analysis was
conducted using a confusion matrix.

Figure 13 shows the confusion matrices for all the classification tasks using the IQR
approach to detect the UB—IQR was chosen because it provided better results than the
SD approach for most of the classification tasks. It can be seen that ND and MCI are
misclassified as MCI and ND, respectively, in the four-way classification task due to
the overlap between these groups. Another reason is that ND participants who were
misclassified as MCI attended the session alone, whereas MCI participants who were
misclassified as ND attended with a partner/caregiver. In addition, another source of
confusion can be seen in FMD participants, who were mostly classified as MCI in the
four-way, three-way, and two-way classifications tasks. The reason behind this confusion is
due to the existing overlap between these groups, which makes it a very challenging task,
consistent with previous findings [33].

From Figure 13, it is apparent that there is a significant difference between the follow-
ing conditions when predicted using the selected HC participants who only used a laptop as
a recording device and were in environmental conditions similar to other groups: ND/HC,
MCI/HC, and FMD/HC. Even in the four-way classification task, most of the HC partici-
pants are correctly classified. On the other hand, for MP/HC groups and D/Non-D groups,
the misclassified participants are not limited to a particular class; instead, misclassification
is related to variations in the recording environments and the devices used.

These findings suggest that these possible sources of error could have been caused by
the lack of diagnostic details regarding the type of dementia that participants have. Certain
types of dementia, such as vascular dementia (VaD) and DLB, may not exhibit a head turn
cue [35], which could contribute to misclassification. Including more diagnostic information
is essential for improving error analysis and developing an automatic tool to handle
overlapping conditions, such as AD, VaD, DLB, and behavioral-variant frontotemporal
dementia (FTD).
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Figure 13. The confusion matrices for the different classification tasks using the interquartile range
(IQR) approach to detect the upper boundary (UB) with a range of factors applied to 70 features or
thresholds. Darker colors indicate higher true predicted values, while lighter colors indicate lower
predictions. (rows: true labels; columns: classified labels).

Looking more closely at the interaction between sex, age and whether a partner is
present is of interest. Refs. [6,37] suggested that ‘attending with’ is an additional cue to the
head turn due to its effect on the latter. In the IVA52 dataset, the number of participants
who came with a partner is 12 participants (7 ND, 3 MCI, 1 FMD, 1 HC). The data show
that participants who came with a partner generally show significant head turns and
movements, which is consistent with related work findings [6,38]. Moreover, they suggested
that the presence of head turn indicates CI and AD. In contrast, Ref. [35] found that the
presence of the head turn cue indicates CI whether the participant attended with a partner
or came alone. The findings of this research, while preliminary, seem to be consistent with
other research, which found that increases in EBR and head turn or movements can indicate
a higher risk of progression to AD [5,38]. It is also assumed that sex and age may play a
vital role in the HTR.

In the IVA18 data, all of the female participants came with a partner regardless of their
diagnostic class, whilst only two males from the ND class came with partners. Moreover, in
the IVA34 data, all the female participants who came with partners have health conditions,
but only two males from the MCI and HC classes came with a partner. Ref. [35] investigated
the severity and the incidence of the head turn cue on 125 patients by observing whether the
patients showed a head turn cue during a cognitive test and found that the females tended
to bring a partner. Their findings showed that women find it easier to depend on someone
else when they face difficulties, whereas men feel obligated to deal with difficulties without
help. Previous work compared men and women with CI in terms of the prevalence of
behavioral symptoms and found that ‘help seeking’ and depression are more frequent
in women [39]. However, men showed more regressive and aggressive behaviours than
women. These findings contradict those of previous work that found partner presence
to be independent of sex [36,40] but dependent on age [22]. Moreover, Ref. [40] reported
that head turn indicates a CI regardless of sex or age. However, there is no information on
whether these factors are affected by other external factors such as culture.

To fully assess the clinical applicability and generalizability of the proposed system,
future work should include validation on larger and more diverse multi-center datasets.
Moreover, benchmarking the method against state-of-the-art deep learning models—which
have shown strong potential in similar applications—will be essential for evaluating its
scalability and practical relevance in real-world clinical settings. Although deep learning
approaches typically require larger datasets, recent developments in video-based cogni-
tive assessment, using architectures such as convolutional neural networks (CNNs) and
transformers, show considerable promise and should be explored as complementary or
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alternative methods. Further work is also needed to systematically quantify how envi-
ronmental factors such as lighting variability, camera angle, or background clutter affect
classification accuracy.

While our method is designed for naturalistic “in-the-wild” settings—capturing real-
world variation in participants’ behavior and environment—this very complexity introduces
challenges that can negatively impact classification performance. The variability in lighting,
camera positioning, background stimuli, and participant compliance may introduce noise
or inconsistencies in the extracted features. This may partly explain why the classification
accuracy is more modest compared to studies using controlled lab environments.

In this context, it is worth noting that participants in our study completed tasks in
varied home environments, introducing potential differences in lighting, background, and
incidental stimuli that could influence feature extraction. We acknowledge that these factors
may limit the reliability and consistency of certain features, such as head movement or
eye behavior, under uncontrolled conditions. Future work should examine the impact
of such variability and explore strategies to control for or model these environmental
factors. Beyond technical validation, future research should also investigate how this
technology could be realistically integrated into clinical workflows, for example, as an
adjunct screening tool in memory clinics to support remote cognitive assessments.

6. Conclusions

Unlike traditional methods that rely on controlled environments and subjective assess-
ments, this work demonstrates the feasibility of an automated and accessible screening tool
for dementia detection in real-world settings. This study investigated facial cues—eye blink
rate (EBR) and head movement (HM) features—as reliable indicators of CI in in-the-wild
conditions, individually and fused.

In this work, we improve on the MTs approach for EBR calculation, enhancing its
robustness for real-world applications. Our results show that EBR remains a reliable CI
indicator in in-the-wild settings. Additionally, we investigate the role of HM features in
video-based dementia detection, using a larger dataset for the first study of its kind. This
dataset consists of ND, MCI, FMD, and HC participants. Our findings show that HM
features enhance classification performance beyond using EBR alone, and their fusion
further improves results, highlighting their combined effectiveness. In this work, we
achieved promising results using an in-the-wild dataset, comparable to results in previous
work that uses controlled datasets.

Furthermore, this study demonstrates that a visual-only approach can achieve compet-
itive accuracy compared to multimodal methods, reinforcing its potential as a scalable and
cost-effective diagnostic tool. However, a key limitation of this study is the small sample
size, which may affect the generalizability of the findings. Despite this, the results suggest
that behavioral features hold promise for future applications in home-based assessments.
With further work, including a larger dataset and additional features, such as facial expres-
sions and speech, this approach could be refined to enhance its robustness and applicability
in real-world settings.
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