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Abstract

Background Fungal diseases are among the most significant threats to global crop production, often leading to sub-
stantial yield losses. Early detection of crop infection by fungus is the very first step to deploying a timely and effec-
tive treatment. Early and reliable detection is thus key to improving yields, sustainability, and achieving food security.
Conventional diagnostic methods are however often destructive, slow, or requiring visible symptoms which appear
late in the infection process. To overcome these challenges, we propose using optical coherence tomography (OCT)
as an innovative imaging tool to provide cross-sectional and three-dimensional images of the plant internal micro-

structure non-invasively, in vivo, and in real-time.

Results We demonstrate the use of low-cost OCT to monitoring wheat (cultivar AxC 169) when infected by Septo-
ria tritici. We show that OCT analysis can effectively detect signs of infection before any external symptoms appear.
Although OCT cannot directly visualize fungal hyphae, OCT reveals apparent morphological changes of the meso-
phyll where the fungal filaments are expected to develop. This study thus focuses on monitoring and correlat-

ing changes within the mesophyll structural organisation with the state of infection. It results in distinct statistical
difference between intact and infected wheat plants two days only after infection. We then demonstrate the use
of machine learning (ML) for high throughput segmentation of OCT scans, providing a foundation for future auto-

mated fungus-detection analysis.

Conclusions This work highlights the potential of OCT, combined with ML tools, to enable rapid, non-invasive,
and early diagnosis of crop fungal infections, opening new avenues for precision agriculture and sustainable disease

management.

Keywords Optical coherence tomography, Wheat, Septoria, Machine learning

Introduction

Wheat is cultivated in about 122 countries, with China,
India, and the USA being major producers [1-3]. In the
UK, wheat constitutes 58% of crops grown and yields
approximately 15 million tons annually [4-6]. Its rich

*Correspondence:

Adrien Alexis Paul Chauvet

a.chauvet@sheffield.ac.uk

! School of Mathematic and Physical Sciences, University of Sheffield,
Sheffield S3 7HF, UK

2 School of Electrical and Electronic Engineering, The University

of Sheffield, 3 Solly Street, Sheffield ST 4DE, UK

B BMC

nutritional content makes it a key source of protein, car-
bohydrates, and fibers, forming the basis of foods like
bread, pastries, and pasta [2, 7-10]. Wheat is, however,
susceptible to various diseases amongst which the most
potent are the wheat blast, Fusarium Head Blight, and
Zymoseptoria tritici [11-14]. The latter especially is a
devastating fungus which can cause up to 40% yield loss
in wheat crops [15]. Septoria is thus a major concern for
agriculture in the UK and Europe. Furthermore, this fun-
gus propagates rapidly under favorable humid conditions,
which is specifically relevant to the UK and continental
Europe. Global efforts to help farmers anticipate Septoria
outbreaks are being actively developed. These measures
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focus on both prophylactic and curative strategies. For
example, the Agriculture and Horticulture Development
Board (AHDB) [16] and UK Crop Science [17], which
conducts thorough research on Septoria, already pro-
vides with clear guidelines on how to prevent and how to
treat Septoria outbreak. Such outbreaks are commonly
controlled using fungicides [14]. However, the key to suc-
cessful fungicide treatment is the timeliness of the treat-
ment. Delaying the treatments until external symptoms
are visible can significantly decrease their efficacy [18].
Yield recovery may be limited to 10-30% compared to
preventative treatment, which can save up to 70-90% of
potential yield [19-21]. With respect to preventive treat-
ments, it has been shown that triazole-based products,
for example, are sustainable and effective when applied
before infection. But the overuse of such prophylactic
strategies nevertheless results in a decline in treatments
efficacy from 60 to 90% [20]. It is then critical to detect
and treat the infection as early as possible so as to limit
the overuse of fungicides while preserving crop yields
[22].

The fungus of concern in this study is formerly known
as Mycosphaerella graminicola also known as Zymosep-
toria tritici is the pathogen causing Septoria tritici blotch
(STB), and results in yellow necrotic spots on the leaves
[23]. STB life cycle is expected to last about three to four
weeks in open-air fields [24, 25]; When infection occurs,
spores develop into hyphae which enter through the
leaves stomata and proliferate within the mesophyll as
depicted in Fig. 1.

After colonizing the whole leaf, STB grows into fruit-
ing bodies (pycnidia), through an asexual sporulation,
to give fungal spores at the tip of hyphae (conidia) [27].
The symptoms, e.g. yellow spots that turn brown, usu-
ally appear on the leaves within two to three weeks only
after infection [28, 29]. It is the subsequent necrosis of
the leaves and the plant that causes significant yield loss
every year [30]. It is important to note that the different
stages coexist [26]. Since a single hyphae penetration
(stage 3) suffice to initiate colonisation of the mesophyll
(stage 4), it is expected that surface exploration (stage 2)
of the majority of the hyphae, which have not yet “found”
stomata to enter, progresses concomitantly with the first
colonisation event.

There exist already various techniques to help detect
and quantify STB. On the one hand, the most accurate
includes imaging techniques, such as high-resolution
microscopy [54], and molecular testing, such as poly-
merase chain reaction (PCR) [31]. However, these tech-
niques are also the most cumbersome given the necessity
to process the sample beforehand and the need to access
large-scale facilities. On the other hand, more practical
and field-applicable techniques often suffer from lower
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precision. For example, RGB Imaging [32] can be use-
ful for plant health studies but is generally insensitive to
early-stage infections [33]. In another instance, multi- or
hyperspectral imaging (HSI) is increasingly used in field
[34-36]. These techniques are non-invasive and field-
deployable, which makes them ideal for remote evalu-
ation of a crop’s health [37, 38]. These techniques rely
on the spectral changes that are either intrinsic to the
plant (e.g. via changes in fluorescence [39]) or surface
level (e.g. via changes in pigmentation [33]). However,
spectral changes are direct consequences of molecular
alteration, and thus, they occur when the plant is already
prone to severe stresses, and oftentimes, already dam-
aged [40]. However convenient and reliable, HSI thus
detects the spectral signature associated with the chlo-
rosis of wheat leaves [41]. It thus assesses the extent of
infection within an already damaged crop. The same
impediment is true when using other indices such as
temperature and humidity, since they are primarily based
of spectroscopic data [42]. Ideally, we require a technique
capable of detecting early stages of infection, before the
plant shows any external signs of stresses. To this end,
we suggest using OCT instead, to benefit from its non-
invasiveness, its real-time imaging, and potential field
applicability. OCT is commonly used in the medical field,
and more specifically in ophthalmology. However, given
the advantages of OCT, i.e. non-invasive, in-vivo, 3D ren-
dering, and real-time imaging [43], it is equally suitable
for plants [44]. Given the practicality of the technique,
OCT is increasingly used in plant imaging for various
purposes. It is for example used for straightforward non-
invasive assessment of plant’s internal structure [45] as
well as for investigation of plant’s response to biotic and
abiotic stressors [46, 47]. OCT can even be used for live
responses to stressors, with a temporal resolution rang-
ing from several days [48] down to hours [49, 50] and
even seconds [51]. Furthermore, benefitting from a sim-
ple technical layout and robust optical components, OCT
suitable to multimodal imaging [44]. Multimodal OCT
variant includes for instance, polarization-sensitive OCT
[52], spectroscopic OCT[53, 54], biospeckle or dynamic
OCT [55, 56], and inverse spectroscopic OCT [57, 58].
In each case, the acquired data is further processed to
provide an added layer of contrast, which can help differ-
entiate structural elements that would otherwise remain
indistinguishable.

We here demonstrate the suitability of standard OCT
by using a low-cost compact commercial system to
acquired cross-sectional images of leaves (~6X2 mm)
with a~10 pm resolution. This integrated system is
considered low-cost (<£10 k) [59] compared to the
better performing ones which starts at £40 k onward
[60]. And although the system only resolves the first
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Fig. 1 Confocal image stacks of infection process of Septoria tritici at different stages in wheat plants. The plants’ epidermis (grey) and chloroplasts
(red) are detected by their auto-fluorescence. The green fluorescence is an effect of cytoplasmic eGFP expression in the cells of the fungus. Scale
bars: 20 um. Figure reproduced from [26]. A Stage 1,'Surface Resting": Spores settle on the surface of leaves. B Stage 2,'Surface Exploration":

Spores form an infectious hypha to infect leaves through stomata. C Stage 3,'Stoma Penetration": Penetration of the host by the hyphae

through the stomata apertures. D Stage 4,'Mesophyll Colonization": Colonization of mesophyll by fungus, but with no visible symptoms of infection.
E Stage 5,'Fruiting Body Initiation": The hyphae grow and fills the inner space. This is a necrotrophic phase, where signs of infection on the leaf can
be seen. F Stage 6,'Fruiting Body Maturation": The substomatal cavity fills with filaments, fruiting body, and pycnidium, to initiate spore production

3-5 cell layers, this resolution is sufficient to moni-
tor internal structural differences between intact and
infected leaves. The project thus consists of examining
the internal structure of leaves through cross-sectional
OCT images. The hypothesis is to indirectly monitor
the growth of the fungus within the mesophyll, which
is expected to push apart the different cell layers. And
although the fungus filaments are too small (~2 pm in
diameter [61]) to be seen with the current OCT reso-
lution, the overall structure of the mesophyll is readily
monitored.

In this work, we suggest analysing differences in mes-
ophyll structure between control and infected leaves
to provide insights about the state of infection and
tissue integrity. In healthy control leaves, thinner and
more uniform cell layers typically indicate intact tis-
sue structure. Conversely, in infected leaves, the moni-
tored increase in layer thickness and irregularity of the
cell layers may suggest structural degradation, possibly
due to the accumulation of fungal material between the
cells [62, 63].
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Material and methods

The wheat for this proof-of-concept experiment
belongs to the Avalon and Cadenza (AxC) 169 variety.
This variety lacks a resistance gene against Septoria,
making it more susceptible to Septoria, and ensuring
effective pathogenesis. The seeds are grown in M3 com-
post supplemented with 0.5 g osmocote. Six plants were
grown for this specific experimental run: three control
plants and three plants destined to be infected. The
plants were incubated at 20 °C, in a 14-h:10-h a light—
dark cycle, at 61% of relative humidity, and levels of car-
bon dioxide was kept at 455 ppm (i.e. 55 ppm above the
usual ~400 ppm outdoors level, which enhances plant
growth [64]), these adjustments were made as part of
the experimental conditions set for all growth cham-
bers. The inoculation was performed when the plants
were 21-day old.

Regarding the inoculum, Zymoseptoria tritici IPO323
[65] was incubated during 45-60 days on potato dex-
trose broth (PDB) media composed of 24 g/L of PDB
and 15 g/L f Agar mixed with 1000 ml of ultrapure water
(resistivity 18 MQ-cm, Type I). Inoculation was per-
formed via spray to mimic the natural spread of spores
in high humidity atmosphere. The spray solution is pre-
pared by adding 10 mL of 0.01% Tween 20 in water to a
petri dish containing black heads (pycnidia spores). The
spores are then gently scraped off using a sterile spatula
and poured into a Falcon tube [17, 65]. Twenty pL of the
supernatant was placed onto a counting chamber, ensur-
ing the liquid spread evenly between the chamber and the
cover slip. Excess liquid was removed using tissue paper.
Spores were observed at 20X magnification using a Leica
microscope. After allowing the spores to settle, they were
counted, and the inoculum was adjusted accordingly,
using sterile Tween 20 water, to achieve a concentration
of 1x 10° spores/mL [36].

For inoculation, the plants were taken out of the
growth chamber and placed inside a laminar airflow.
The inoculum was sprayed on the top sides of the second
newest leaf (GS31, following Zadoks system [66]). After
inoculation, plants were covered with propagator lids (to
maintain high humidity). The plants were then watered
and placed in a sealed propagator and placed back in the
growth chamber for 24 h recovery [67]. Although the
control plants were left untreated, both the inoculated
and controlled plants were regularly sprayed with puri-
fied water, via the control system of the growth chamber,
so as to keep a high (61%) humidity level.

Scanning electron microscope (SEM) is used for high
resolution imagining of surface morphology[68, 69]. In
this study, it was used specifically to verify the state of
infection at later stages. This study made use of a Hitachi
TM3030Plus benchtop SEM.
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The OCT system used is an OQ LabScope, ver-
sion 2.0, from Lumedica using a superluminescent
diode with central wavelength at 840 nm. The system
generates 512x512-pixel images, with axial resolu-
tion of ~6 um, and a lateral resolution of 15 um. Daily
OCT scans were collected to monitor the progression
of the infection for a 14-day period after inoculation.
Readings were taken from the three infected plants
and from the three control plants. Scanning was per-
formed midway along the leaf’s length, beside the main
vein. Incomplete scans (i.e. in which the edge of the leaf
appear) are dismissed for the automated analysis. A
typical volumetric (c-scan) is shown in Fig. 2.

This study focusses on analysing the extend of the
dark regions appearing within the mesophyll, called
“gaps’, as shown in Fig. 2 (marked by arrows), by first
manually processing the OCT scans using the FIJI
image analysis software. Building upon the encouraging
results from the manual analysis, a machine learning
(ML) algorithm was developed in collaboration with
Cyber Infrastructure Systems (CIS, http://www.cisin.
com) to automatically segment these apparent gaps
and classify the leaves. The Python code designed for
OCT segmentation is a PyQt5-based GUI application
that uses OpenCYV, TensorFlow, NumPy, and Pandas for
image processing and ML-based analysis. After train-
ing, the U-Net model (unet_masking3.keras) is used for
generating segmentation masks via MaskThread class.
The code is provided in supplementary information
(SI), and the software is made available for download
following this link:

https://drive.google.com/drive/folders/1DJm3
OZHfK-P-XSRXGMtpxgSx51WnVNsF?usp=sharing

In both the manual and the automated procedure,
the analysis focuses on the thickness of these apparent
gaps between the second and third upper layers of the
mesophyll.

<4 Irichomes
Upper epidermis

N - »
o Fav

‘.

sophyll

' f.“_u)/‘ ’\me“ <

Fig. 2 3D OCT images (C-scan) of a control wheat leaf. Each spike
above the upper epidermis represents a trichome. Only the first few
cell layers of the mesophyll are distinguishable. The arrows point

to the “gaps”discussed subsequently. The image has a range of 5mm
x 5mm and is generated using 300 consecutive b-scans, each
separated by ~0.017 mm
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Results

The effectiveness of the inoculation procedure is demon-
strated in Fig. 3, where filaments can be seen emerging
from the stomatal pores of infected leaves.

It is also worth noting that healthy leaves already have
air gaps within their mesophyll (as shown in Fig. 2) used
to facilitate gas exchange [70]. These air gaps, which are
expected to appear dark in OCT B-scan, are thus indis-
tinguishable with the low-density components of the
cells (e.g. the cytoplasm). All what OCT scans shows
are regions of high density (e.g. cell’s nucleus and vacu-
ole). The apparent gaps monitored in OCT images,
shown in Fig. 4, thus correspond to low-density regions,
which includes the air network, the surrounding of the

= - zoc’r’p’m~
Fig. 3 SEM images showing control wheat plant (A, B), and infected
wheat plant 12 days after inoculation by Septoria (B, C). The circled
hyphae emerging from the stomata pores illustrate an advanced
colonisation (stage 4) with signs of necrosis (deflated cells, stage 5)
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plant cells’ nucleus and vacuole, and possibly the fungus
hyphae. These apparent gaps are however highly hetero-
geneous and not easily distinguished given the uneven
leaf morphology. As such it was decided to restrict the
analysis to the thickness (or height) of the apparent gap.

These apparent gaps notably increase when the plant
is infected, while the leaves are still green and seem-
ingly healthy, as shown in the subsequent Table 1. Table 1
shows the average thickness of the gaps present in a
selection of 20 OCT B-scans out of each volumetric read-
ing, for both control and infected leaves, ranging from
day O (i.e. right before inoculation) to day 1 (i.e. 24 h after
inoculation) and up to day 7. Every day, one reading was
performed per plant, on the three different controlled
and on the three different infected plants.

Only the first 7 days are here presented, while the
leaves do not show any visual signs of infection. Images
of the subsequent chlorosis and necrotic stages, from day
8 to 14, can be found in SI. When analysing the individ-
ual measurements used to compute the averages shown
in the above table, the measured gap thicknesses reveal
distinct trend between control and infected leaves, as
depicted in Fig. 5. From day 2 after inoculation onward,
infected leaves exhibit consistently larger gap thicknesses,
exceeding 0.05 mm in average, while measurements on
control leaves remains below or around that value. Fur-
thermore, the width of the Gaussian-fit for the infected
leaves group is typically broader (FWHM ~ 0.2 compared
to that of the control group (FWHM ~ 0.15). Accordingly,
the apparent gaps in infected leaves are more heteroge-
nous than those in control leaves.

The superimposed histograms from the control and
infected groups reveal distinct statistical differences
in the gap size and distribution. From the average gap

D

Fig. 4 Individual OCT cross section (B-scan) of control wheat leaf (A, C) and infected wheat leaf taken 3 days after inoculation (B, D). The arrows
in A and B indicate the gap between the second and third cell layers. Scale bars represent 1 mm. The yellow contour in C and D are examples

of manual segmentation. Scale bar represents T mm.
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Table 1 Mean thickness of the gaps from day 0 (right before inoculation) to day 7 (after inoculation) of control and Septoria-infected
wheat leaves (One reading per plant, on three different controlled and three different infected plants)

Control Infected
R1 R2 R3 R1 R2 R3
Day0 0.055+0.018 ,O6i 0016 0.048+0.017 0.045+0.015 0.0463+£0.015 0.049+0.017
Day 1 0.044+0.015 0.038+0.015 0.041+0.014 0050014 0.0543£0.009 0.05+0.015
Day2 0.039+0.014 0.041£0.014 0.043+0.016 0.051+£0.019 0.068+£0.026 0.067+0.024
|
Day3 0.039+0.014 0.039+0.013 0.042+0.014 0.067+0.024 0.075+0.027  0.082+0.028
Day4 0.042+0.015 0.049+£0.015 0.046+0.013 0.076+0.024 0.082+0.03 0.073£0.024
——
Day 5 0.049+0.02 0.049+£0.02 0.054+0.02 0.068+0.03 0.069£0.03 0.083+0.03
___—
Day6 0.05+0017 0.047+0.018 0.053+0.02 0.082+0.04 0.063+0.024  0.067+0.02
- ——
Day 7 0.044+0.02 0.04+£0.017 0046+0.02 0.073£0.024 0.083£0.03 0.07+£0.024

Every mean value is an average of 250 individual thickness measurements taken manually from a selection of 20 OCT B-scans out of each volumetric reading (C-scan).
For each day, a single image of the leaf (out of the three available control and infected plants) is shown to appreciate the lack of external symptoms until day 7.

values, we could theoretically set a threshold value for
the average gap’s thickness of 0.05 mm, above which the
leaf is classified as infected. If such was the case, effective
assessment of infection could already be made from day 1
and affirmed from day 2 after inoculation.

To further benefit from OCT fast scanning rate and
systematically processing large stacks of OCT images,
a bespoke machine learning (ML)-based software for
image segmentation was used instead of the manual
labelling. The automated analysis is based on the same

concept as the previous manual analysis: it aims to seg-
ment the apparent gap between the second and third
cell layer and compute its averaged thickness. Example
of the automated segmentation is shown in Fig. 6.

In comparison to the previous analysis, for each day
and for each of the three OCT volumetric (C-scan)
readings on control and infected plants, 200 images
are selected (instead of 20 for the manual analysis) and
analysed using the ML-based software. The computed
average thickness of the segmented gap from each
image is used to build the histograms shown in Fig. 7.



Sasi et al. Plant Methods (2025) 21:92

Page 7 of 11

Control
|:| Infected

No. of counts

0 T 002 0.04 0.06
Gap size (mm)

Fig. 5 Gap size distribution for manual thickness measurements from day 0 (DO) to day 7 (D7). Superimposed histograms of control (blue)

and infected leaves (red) groups with their Gaussian fits. The histograms used a bin width of 0.01 mm.

J
0.08 0.1 0.15

Fig. 6 Examples of automated segmentation using OCT image analysis to classify the spacing between the second and third cell layers in a control
wheat leaf (A) with its segmented area (B, green overlay), and an infected leaf (C) with its segmented are (D, green overlay), 2 days after inoculation.

The results from the ML-based image analysis appear
more scattered compared to the previous manual analy-
sis. This scattering might be a direct consequence in the
apparent difficulty in adequately segmenting the OCT
images, which is in part due to the uneven leaf struc-
tures, as discussed subsequently. Although histograms
resulting from the automated segmentation analysis are
not as consistent compared to those generated from the
manual analysis, a similar pattern nonetheless emerges.
Starting from day 1 after inoculation, the apparent
gaps in infected leaves are statistically and consistently
larger compared to those in intact leaves. And similarly,

the widths of the Gaussian fits in infected leaves are
also larger compared to those in controlled leaves.

It is also important to note that the ML-based segmen-
tation software was here trained using the AxC 169 vari-
ety. The same automated procedure was used on images
taken from another variety (AxC 157, same parentage but
different genotype) and yielded, to a lesser extent, simi-
lar results (i.e. broader Gaussian fit and shifted Gaussian
centre toward larger gap size for infected leaves, results
shown in SI). One main difference between the two vari-
eties is that intact leaves from cultivars AxC157 already
have larger apparent gaps between the second and third
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Fig. 7 Average gap size distribution in control (blue) and infected (red) wheat leaves extracted from automated segmentation, from day 0 (DO)
to day 7 (D7) after inoculation, with superimposed Gaussian fits. The histograms use a bin width of 0.01 mm

cell layers (of~0.06 mm). Therefore, the distinction
between infected and control became challenging when
considering only the average gap size, as it will be dis-
cussed subsequently.

Discussions

Our objective is to benefit from OCT ability to see
through soft tissues to evaluate the state of infection
over time. Although various features of the leaves were
investigated, such as spacing between cell layers, cell
appearances, number and length of trichomes, this study
focuses on the former due to the absence of clear trend
and difficulties to capture accurate data for the others.
This study therefore solely reports on the average gap
size within the mesophyll, with the aim of correlating the
monitored changes with fungal growth. And while OCT
cannot directly visualize fungal hyphae, this study reveals
that the apparent spacing between cell layers increases
where the fungal hyphae are expected to develop. Indeed,
damaged tissues have a lower refractive index compared
to healthy cells [71-73]. As a result, it is possible that the
damaged tissues scatter less light compared to healthy
ones and thus appear darker or dark (i.e. as a gap) on the
OCT scans.

This increase in gap thickness and heterogeneity of the
gap size is thus expected to be a direct result of the meso-
phyll colonisation by the hyphae (stage 4). As discussed
earlier, colonisation of the mesophyll is initiated by the
very first hyphae intrusion through a stoma (stage 3). The
fact that we start monitoring an increase in gap thickness

as early as 24 h after inoculation (instead of day 3, as per
Fantozzi, E., et al. [26]) can be a result of our choice of
cultivar. Indeed, AxC 169 was chosen because of its
increased vulnerability to Septoria. It is also possible
that inoculation via spray facilitates entry of the develop-
ing hyphae through the stomata. It has been shown that
spore germination typically occurs within 12 h after con-
tact with a leaf when humidity levels are high [30]. And
while the presence of water droplets is not expected to
trigger any direct reaction from the stomata, the overall
increased humidity due to the spray implies that most
stomata will be open [74], thus facilitating entry of the
hyphae within the first few hours. It is important to note
that our controls were only water sprayed, in accord-
ance with previously published works, also on wheat,
and similarly infected by Septoria [75-78]. The spraying
of purified water was automatically performed within the
chamber to preserve a humidity level of 61%. It is worth
highlighting that both control and inoculated plants are
regularly sprayed with purified water to maintain the high
humidity level. Furthermore, the estimated concentra-
tion of Tween in the final spore-loaded solution is about
0.01%, which is significantly less compared to the 0.1%
and 1% used in the previous works on wheat infected by
Septoria in which water-sprayed controls were also used.
While we do not expect such a low Tween concentration
to trigger a systemic response, we do expect the coloni-
sation by Septoria to trigger such a response. Because
the response monitored (increase in gap size) seems to
reach a maximum by day 2, as illustrated in Fig. 5, and
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does not change until necrosis happens, we are confident
that the effects measured are triggered by the pathogen
rather than the surfactant or by the spraying procedure.
It is, however, possible that upon the first intrusion event,
before full colonisation takes place, the whole plant reacts
by modifying its mesophyll structure, which might give
rise to the increased in apparent gap thickness. If such
is the case, this study still demonstrates that OCT can
effectively be used to detect early signs of infection. This
work thus demonstrated that monitoring intercellular
spacing via OCT enables distinct classification between
infected and intact plant from day 2 after inoculation,
while visible signs of necrosis only appear on day 7.

In comparison to alternative non-invasive and simi-
larly field-applicable methods, OCT has the advantage
of being sensitive to changes that precede any discol-
ouration or alteration of the plant’s spectral signature.
Indeed, the remote monitoring of the plant’s pigmenta-
tion, fluorescence, temperature or water level often rely
on multi- or hyperspectral data analysis [37, 38, 42]. It is
difficult to directly compare our results with field applica-
tions of multi- and hyperspectral monitoring because the
chosen variety is inherently more susceptible to Spetoria.
The Septoria life cycle is consequently shorten compared
to that in actual crops. But the fact that we can monitor
infection-driven changes before any external signs appear
demonstrates that detection via OCT precedes detection
via multi- or hyperspectral techniques. As exemplified
in Fig. 5 and 7, a distinction between infected and non-
infected is monitored at least 5 to 6 days before the plant
displays any yellow spots (shown in Table 1, day 7).

We concede that both methods, the manual labelling
and the ML-aided labelling, are prone to biases. On the
one hand, for example, manual labelling tends to focus
on areas where a gap is clearly visible, thus neglecting
sections of the mesophyll which may display a relatively
smaller gap within the same B-scan. On the other hand,
the automated segmentation is challenged with uneven
leaf surfaces. The benefit of the ML-based analysis over
the manual labelling is evidently its systematicity and
its ability to analysed data at high throughput. Overall,
whether manual or ML-based, the current analysis, with
its unique distinguishing parameter, is already promising
in differentiating between infected and intact plants.

We remind that our ML-based model was trained and
tested on AxC 169. When the same model was applied
to AxC 157, it led to more mitigated conclusions (see
SI). Indeed, the fact that intact AxC 157 leaves already
display gaps that are similar in size to those monitored
in infected plants indicates that a single distinguishing
parameter (i.e. gap thickness) might not be sufficient
when assessing differing cultivars. To circumvent this
limitation, it is planned to pursue such studies to include
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more parameters, such as to take into account the
3-dimentional shape of the gaps since it is readily avail-
able from the OCT volumetric C-scans. Additionally, we
hope to improve training model by expanding our study
to multiple wheat varieties. Furthermore, while the plants
in our study were grown under controlled conditions,
we acknowledge that field environments will introduce
additional variability, such as fluctuating temperatures,
humidity levels, soil composition, and pathogen exposure
that cannot be fully replicated in a growth chamber. It is
thus necessary to study the impact of these environmen-
tal factors onto the mesophyll to further evaluate OCT’s
field applicability. Nevertheless, the core physiological
and structural responses observed in this work (e.g., mes-
ophyll disruption detectable by OCT as early as two days
after infection) are expected to manifest similarly in field-
grown plants.

Conclusions

In this proof-of-concept experiment, we demonstrate
low-cost OCT to be ideally suited to monitor minute
structural changes within the mesophyll. OCT is here
used to effectively detect the increased intercellular spac-
ing induced by the inoculation of pathogens. The moni-
tored changes, taken as direct indication that the leaf is
being colonized by the pathogen, demonstrate that OCT
can be used to detect infections even before any visible
signs appear on the plant. Systematic analysis of several
thousands of images acquired, over time and non-inva-
sively, is made possible by using bespoke ML-based anal-
ysis. And although the analysis currently relies on a single
parameter (apparent gap thickness), statistical differences
between controlled and infected leaves is established
from day 2 after inoculation. Accordingly, OCT imaging
holds the promise for quick and accurate identification of
infection, even at an asymptomatic stage. The application
of OCT coupled with ML analysis thus presents a valu-
able opportunity to effectively assess crop health. By har-
nessing and combining these cutting-edge technologies,
this work contributes to advancing agricultural practices
by providing with a tool that may enable timely treat-
ments, help reduce crop losses, and achieve global food
security.

This work also highlights current limitations of using
OCT for detection of infection. OCT cannot directly
visualize fungal hyphae, and its penetration depth may
be insufficient for imaging thicker plant tissues. Fur-
thermore, ML-based segmentation models require fur-
ther validation to ensure it is applicable across different
plant species and can distinguish between the various
biotic and abiotic stressors. Despite these challenges,
this research highlights the promise that OCT holds,
when combined with ML analysis, as a non-destructive,
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real-time imaging technique to transform precision
agriculture and promote sustainable crop disease
management.

Future work

While the resolution of the OCT images is set by the sys-
tem optoelectronic components, the current software
used for image segmentation can be readily improved.
The ML based analysis software was trained specifi-
cally on a single wheat variety (AxC 169). Future work
will expand the dataset to include multiple wheat varie-
ties and potentially correlate with other plant species to
improve the robustness of the model. Further experimen-
tal runs are also required to disentangle the morphologi-
cal responses triggered by environmental factors such as
variability in temperature and in humidity, as well as vari-
ability in soil and atmospheric composition. Additionally,
to differential between multiple stressors, it may become
required to incorporate other measurables, such as gap
density, gap volume and overall structural heterogeneity
of the leaf. Including multiple parameters in the analy-
sis could significantly advance the technique’s precision.
Given these necessary improvements, the path to make
OCT an integral item in a farmer’s toolbox is still long
but is definitively underway.
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