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METHODOLOGY

Optical coherence tomography for early 
detection of crop infection
Ghada Salem Sasi1, Stephen J. Matcher2 and Adrien Alexis Paul Chauvet1* 

Abstract 

Background Fungal diseases are among the most significant threats to global crop production, often leading to sub-
stantial yield losses. Early detection of crop infection by fungus is the very first step to deploying a timely and effec-
tive treatment. Early and reliable detection is thus key to improving yields, sustainability, and achieving food security. 
Conventional diagnostic methods are however often destructive, slow, or requiring visible symptoms which appear 
late in the infection process. To overcome these challenges, we propose using optical coherence tomography (OCT) 
as an innovative imaging tool to provide cross-sectional and three-dimensional images of the plant internal micro-
structure non-invasively, in vivo, and in real-time.

Results We demonstrate the use of low-cost OCT to monitoring wheat (cultivar AxC 169) when infected by Septo-

ria tritici. We show that OCT analysis can effectively detect signs of infection before any external symptoms appear. 
Although OCT cannot directly visualize fungal hyphae, OCT reveals apparent morphological changes of the meso-
phyll where the fungal filaments are expected to develop. This study thus focuses on monitoring and correlat-
ing changes within the mesophyll structural organisation with the state of infection. It results in distinct statistical 
difference between intact and infected wheat plants two days only after infection. We then demonstrate the use 
of machine learning (ML) for high throughput segmentation of OCT scans, providing a foundation for future auto-
mated fungus-detection analysis.

Conclusions This work highlights the potential of OCT, combined with ML tools, to enable rapid, non-invasive, 
and early diagnosis of crop fungal infections, opening new avenues for precision agriculture and sustainable disease 
management.

Keywords Optical coherence tomography, Wheat, Septoria, Machine learning

Introduction
Wheat is cultivated in about 122 countries, with China, 
India, and the USA being major producers [1–3]. In the 
UK, wheat constitutes 58% of crops grown and yields 
approximately 15 million tons annually [4–6]. Its rich 

nutritional content makes it a key source of protein, car-
bohydrates, and fibers, forming the basis of foods like 
bread, pastries, and pasta [2, 7–10]. Wheat is, however, 
susceptible to various diseases amongst which the most 
potent are the wheat blast, Fusarium Head Blight, and 
Zymoseptoria tritici [11–14]. The latter especially is a 
devastating fungus which can cause up to 40% yield loss 
in wheat crops [15]. Septoria is thus a major concern for 
agriculture in the UK and Europe. Furthermore, this fun-
gus propagates rapidly under favorable humid conditions, 
which is specifically relevant to the UK and continental 
Europe. Global efforts to help farmers anticipate Septoria 
outbreaks are being actively developed. These measures 
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focus on both prophylactic and curative strategies. For 
example, the Agriculture and Horticulture Development 
Board (AHDB) [16] and UK Crop Science [17], which 
conducts thorough research on Septoria, already pro-
vides with clear guidelines on how to prevent and how to 
treat Septoria outbreak. Such outbreaks are commonly 
controlled using fungicides [14]. However, the key to suc-
cessful fungicide treatment is the timeliness of the treat-
ment. Delaying the treatments until external symptoms 
are visible can significantly decrease their efficacy [18]. 
Yield recovery may be limited to 10–30% compared to 
preventative treatment, which can save up to 70–90% of 
potential yield [19–21]. With respect to preventive treat-
ments, it has been shown that triazole-based products, 
for example, are sustainable and effective when applied 
before infection. But the overuse of such prophylactic 
strategies nevertheless results in a decline in treatments 
efficacy from 60 to 90% [20]. It is then critical to detect 
and treat the infection as early as possible so as to limit 
the overuse of fungicides while preserving crop yields 
[22].

The fungus of concern in this study is formerly known 
as Mycosphaerella graminicola also known as Zymosep-

toria tritici is the pathogen causing Septoria tritici blotch 
(STB), and results in yellow necrotic spots on the leaves 
[23]. STB life cycle is expected to last about three to four 
weeks in open-air fields [24, 25]; When infection occurs, 
spores develop into hyphae which enter through the 
leaves stomata and proliferate within the mesophyll as 
depicted in Fig. 1.

After colonizing the whole leaf, STB grows into fruit-
ing bodies (pycnidia), through an asexual sporulation, 
to give fungal spores at the tip of hyphae (conidia) [27]. 
The symptoms, e.g. yellow spots that turn brown, usu-
ally appear on the leaves within two to three weeks only 
after infection [28, 29]. It is the subsequent necrosis of 
the leaves and the plant that causes significant yield loss 
every year [30]. It is important to note that the different 
stages coexist [26]. Since a single hyphae penetration 
(stage 3) suffice to initiate colonisation of the mesophyll 
(stage 4), it is expected that surface exploration (stage 2) 
of the majority of the hyphae, which have not yet “found” 
stomata to enter, progresses concomitantly with the first 
colonisation event.

There exist already various techniques to help detect 
and quantify STB. On the one hand, the most accurate 
includes imaging techniques, such as high-resolution 
microscopy [54], and molecular testing, such as poly-
merase chain reaction (PCR) [31]. However, these tech-
niques are also the most cumbersome given the necessity 
to process the sample beforehand and the need to access 
large-scale facilities. On the other hand, more practical 
and field-applicable techniques often suffer from lower 

precision. For example, RGB Imaging [32] can be use-
ful for plant health studies but is generally insensitive to 
early-stage infections [33]. In another instance, multi- or 
hyperspectral imaging (HSI) is increasingly used in field 
[34–36]. These techniques are non-invasive and field-
deployable, which makes them ideal for remote evalu-
ation of a crop’s health [37, 38]. These techniques rely 
on the spectral changes that are either intrinsic to the 
plant (e.g. via changes in fluorescence [39]) or surface 
level (e.g. via changes in pigmentation [33]). However, 
spectral changes are direct consequences of molecular 
alteration, and thus, they occur when the plant is already 
prone to severe stresses, and oftentimes, already dam-
aged [40]. However convenient and reliable, HSI thus 
detects the spectral signature associated with the chlo-
rosis of wheat leaves [41]. It thus assesses the extent of 
infection within an already damaged crop. The same 
impediment is true when using other indices such as 
temperature and humidity, since they are primarily based 
of spectroscopic data [42]. Ideally, we require a technique 
capable of detecting early stages of infection, before the 
plant shows any external signs of stresses. To this end, 
we suggest using OCT instead, to benefit from its non-
invasiveness, its real-time imaging, and potential field 
applicability. OCT is commonly used in the medical field, 
and more specifically in ophthalmology. However, given 
the advantages of OCT, i.e. non-invasive, in-vivo, 3D ren-
dering, and real-time imaging [43], it is equally suitable 
for plants [44]. Given the practicality of the technique, 
OCT is increasingly used in plant imaging for various 
purposes. It is for example used for straightforward non-
invasive assessment of plant’s internal structure [45] as 
well as for investigation of plant’s response to biotic and 
abiotic stressors [46, 47]. OCT can even be used for live 
responses to stressors, with a temporal resolution rang-
ing from several days [48] down to hours [49, 50] and 
even seconds [51]. Furthermore, benefitting from a sim-
ple technical layout and robust optical components, OCT 
suitable to multimodal imaging [44]. Multimodal OCT 
variant includes for instance, polarization-sensitive OCT 
[52], spectroscopic OCT[53, 54], biospeckle or dynamic 
OCT [55, 56], and inverse spectroscopic OCT [57, 58]. 
In each case, the acquired data is further processed to 
provide an added layer of contrast, which can help differ-
entiate structural elements that would otherwise remain 
indistinguishable.

We here demonstrate the suitability of standard OCT 
by using a low-cost compact commercial system to 
acquired cross-sectional images of leaves (~ 6 × 2  mm) 
with a ~ 10  µm resolution. This integrated system is 
considered low-cost (< £10  k) [59] compared to the 
better performing ones which starts at £40  k onward 
[60]. And although the system only resolves the first 
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3–5 cell layers, this resolution is sufficient to moni-
tor internal structural differences between intact and 
infected leaves. The project thus consists of examining 
the internal structure of leaves through cross-sectional 
OCT images. The hypothesis is to indirectly monitor 
the growth of the fungus within the mesophyll, which 
is expected to push apart the different cell layers. And 
although the fungus filaments are too small (~ 2 µm in 
diameter [61]) to be seen with the current OCT reso-
lution, the overall structure of the mesophyll is readily 
monitored.

In this work, we suggest analysing differences in mes-
ophyll structure between control and infected leaves 
to provide insights about the state of infection and 
tissue integrity. In healthy control leaves, thinner and 
more uniform cell layers typically indicate intact tis-
sue structure. Conversely, in infected leaves, the moni-
tored increase in layer thickness and irregularity of the 
cell layers may suggest structural degradation, possibly 
due to the accumulation of fungal material between the 
cells [62, 63].

Fig. 1 Confocal image stacks of infection process of Septoria tritici at different stages in wheat plants. The plants’ epidermis (grey) and chloroplasts 
(red) are detected by their auto-fluorescence. The green fluorescence is an effect of cytoplasmic eGFP expression in the cells of the fungus. Scale 
bars: 20 µm. Figure reproduced from [26]. A Stage 1,"Surface Resting": Spores settle on the surface of leaves. B Stage 2,"Surface Exploration": 
Spores form an infectious hypha to infect leaves through stomata. C Stage 3,"Stoma Penetration": Penetration of the host by the hyphae 
through the stomata apertures. D Stage 4,"Mesophyll Colonization": Colonization of mesophyll by fungus, but with no visible symptoms of infection. 
E Stage 5,"Fruiting Body Initiation": The hyphae grow and fills the inner space. This is a necrotrophic phase, where signs of infection on the leaf can 
be seen. F Stage 6,"Fruiting Body Maturation": The substomatal cavity fills with filaments, fruiting body, and pycnidium, to initiate spore production
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Material and methods
The wheat for this proof-of-concept experiment 
belongs to the Avalon and Cadenza (AxC) 169 variety. 
This variety lacks a resistance gene against Septoria, 
making it more susceptible to Septoria, and ensuring 
effective pathogenesis. The seeds are grown in M3 com-
post supplemented with 0.5 g osmocote. Six plants were 
grown for this specific experimental run: three control 
plants and three plants destined to be infected. The 
plants were incubated at 20 °C, in a 14-h:10-h a light–
dark cycle, at 61% of relative humidity, and levels of car-
bon dioxide was kept at 455 ppm (i.e. 55 ppm above the 
usual ~ 400 ppm outdoors level, which enhances plant 
growth [64]), these adjustments were made as part of 
the experimental conditions set for all growth cham-
bers. The inoculation was performed when the plants 
were 21-day old.

Regarding the inoculum, Zymoseptoria tritici IPO323 
[65] was incubated during 45–60  days on potato dex-
trose broth (PDB) media composed of 24  g/L of PDB 
and 15 g/L f Agar mixed with 1000 ml of ultrapure water 
(resistivity 18 MΩ·cm, Type I). Inoculation was per-
formed via spray to mimic the natural spread of spores 
in high humidity atmosphere. The spray solution is pre-
pared by adding 10 mL of 0.01% Tween 20 in water to a 
petri dish containing black heads (pycnidia spores). The 
spores are then gently scraped off using a sterile spatula 
and poured into a Falcon tube [17, 65]. Twenty µL of the 
supernatant was placed onto a counting chamber, ensur-
ing the liquid spread evenly between the chamber and the 
cover slip. Excess liquid was removed using tissue paper. 
Spores were observed at 20X magnification using a Leica 
microscope. After allowing the spores to settle, they were 
counted, and the inoculum was adjusted accordingly, 
using sterile Tween 20 water, to achieve a concentration 
of 1 × 10⁶ spores/mL [36].

For inoculation, the plants were taken out of the 
growth chamber and placed inside a laminar airflow. 
The inoculum was sprayed on the top sides of the second 
newest leaf (GS31, following Zadoks system [66]). After 
inoculation, plants were covered with propagator lids (to 
maintain high humidity). The plants were then watered 
and placed in a sealed propagator and placed back in the 
growth chamber for 24 h recovery [67]. Although the 
control plants were left untreated, both the inoculated 
and controlled plants were regularly sprayed with puri-
fied water, via the control system of the growth chamber, 
so as to keep a high (61%) humidity level.

Scanning electron microscope (SEM) is used for high 
resolution imagining of surface morphology[68, 69]. In 
this study, it was used specifically to verify the state of 
infection at later stages. This study made use of a Hitachi 
TM3030Plus benchtop SEM.

The OCT system used is an OQ LabScope, ver-
sion 2.0, from Lumedica using a superluminescent 
diode with central wavelength at 840  nm. The system 
generates 512 × 512-pixel images, with axial resolu-
tion of ~ 6 μm, and a lateral resolution of 15 μm. Daily 
OCT scans were collected to monitor the progression 
of the infection for a 14-day period after inoculation. 
Readings were taken from the three infected plants 
and from the three control plants. Scanning was per-
formed midway along the leaf ’s length, beside the main 
vein. Incomplete scans (i.e. in which the edge of the leaf 
appear) are dismissed for the automated analysis. A 
typical volumetric (c-scan) is shown in Fig. 2.

This study focusses on analysing the extend of the 
dark regions appearing within the mesophyll, called 
“gaps”, as shown in Fig.  2 (marked by arrows), by first 
manually processing the OCT scans using the FIJI 
image analysis software. Building upon the encouraging 
results from the manual analysis, a machine learning 
(ML) algorithm was developed in collaboration with 
Cyber Infrastructure Systems (CIS, http:// www. cisin. 
com) to automatically segment these apparent gaps 
and classify the leaves. The Python code designed for 
OCT segmentation is a PyQt5-based GUI application 
that uses OpenCV, TensorFlow, NumPy, and Pandas for 
image processing and ML-based analysis. After train-
ing, the U-Net model (unet_masking3.keras) is used for 
generating segmentation masks via MaskThread class. 
The code is provided in supplementary information 
(SI), and the software is made available for download 
following this link:

https :// drive. google. com/ drive/ folde rs/ 1DJm3 
OZHfK-P- XSRXG Mtpxg Sx51W nVNsF? usp= shari ng

In both the manual and the automated procedure, 
the analysis focuses on the thickness of these apparent 
gaps between the second and third upper layers of the 
mesophyll.

Fig. 2 3D OCT images (C-scan) of a control wheat leaf. Each spike 
above the upper epidermis represents a trichome. Only the first few 
cell layers of the mesophyll are distinguishable. The arrows point 
to the “gaps” discussed subsequently. The image has a range of 5 mm 
x 5 mm and is generated using 300 consecutive b-scans, each 
separated by ~ 0.017 mm

http://www.cisin.com
http://www.cisin.com
https://drive.google.com/drive/folders/1DJm3OZHfK-P-XSRXGMtpxgSx51WnVNsF?usp=sharing
https://drive.google.com/drive/folders/1DJm3OZHfK-P-XSRXGMtpxgSx51WnVNsF?usp=sharing
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Results
The effectiveness of the inoculation procedure is demon-
strated in Fig.  3, where filaments can be seen emerging 
from the stomatal pores of infected leaves.

It is also worth noting that healthy leaves already have 
air gaps within their mesophyll (as shown in Fig. 2) used 
to facilitate gas exchange [70]. These air gaps, which are 
expected to appear dark in OCT B-scan, are thus indis-
tinguishable with the low-density components of the 
cells (e.g. the cytoplasm). All what OCT scans shows 
are regions of high density (e.g. cell’s nucleus and vacu-
ole). The apparent gaps monitored in OCT images, 
shown in Fig. 4, thus correspond to low-density regions, 
which includes the air network, the surrounding of the 

plant cells’ nucleus and vacuole, and possibly the fungus 
hyphae. These apparent gaps are however highly hetero-
geneous and not easily distinguished given the uneven 
leaf morphology. As such it was decided to restrict the 
analysis to the thickness (or height) of the apparent gap.

These apparent gaps notably increase when the plant 
is infected, while the leaves are still green and seem-
ingly healthy, as shown in the subsequent Table 1. Table 1 
shows the average thickness of the gaps present in a 
selection of 20 OCT B-scans out of each volumetric read-
ing, for both control and infected leaves, ranging from 
day 0 (i.e. right before inoculation) to day 1 (i.e. 24 h after 
inoculation) and up to day 7. Every day, one reading was 
performed per plant, on the three different controlled 
and on the three different infected plants.

Only the first 7  days are here presented, while the 
leaves do not show any visual signs of infection. Images 
of the subsequent chlorosis and necrotic stages, from day 
8 to 14, can be found in SI. When analysing the individ-
ual measurements used to compute the averages shown 
in the above table, the measured gap thicknesses reveal 
distinct trend between control and infected leaves, as 
depicted in Fig. 5. From day 2 after inoculation onward, 
infected leaves exhibit consistently larger gap thicknesses, 
exceeding 0.05  mm in average, while measurements on 
control leaves remains below or around that value. Fur-
thermore, the width of the Gaussian-fit for the infected 
leaves group is typically broader (FWHM ~ 0.2 compared 
to that of the control group (FWHM ~ 0.15). Accordingly, 
the apparent gaps in infected leaves are more heteroge-
nous than those in control leaves.

The superimposed histograms from the control and 
infected groups reveal distinct statistical differences 
in the gap size and distribution. From the average gap 

Fig. 3 SEM images showing control wheat plant (A, B), and infected 
wheat plant 12 days after inoculation by Septoria (B, C). The circled 
hyphae emerging from the stomata pores illustrate an advanced 
colonisation (stage 4) with signs of necrosis (deflated cells, stage 5)

Fig. 4 Individual OCT cross section (B-scan) of control wheat leaf (A, C) and infected wheat leaf taken 3 days after inoculation (B, D). The arrows 
in A and B indicate the gap between the second and third cell layers. Scale bars represent 1 mm. The yellow contour in C and D are examples 
of manual segmentation. Scale bar represents 1 mm.
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values, we could theoretically set a threshold value for 
the average gap’s thickness of 0.05 mm, above which the 
leaf is classified as infected. If such was the case, effective 
assessment of infection could already be made from day 1 
and affirmed from day 2 after inoculation.

To further benefit from OCT fast scanning rate and 
systematically processing large stacks of OCT images, 
a bespoke machine learning (ML)-based software for 
image segmentation was used instead of the manual 
labelling. The automated analysis is based on the same 

concept as the previous manual analysis: it aims to seg-
ment the apparent gap between the second and third 
cell layer and compute its averaged thickness. Example 
of the automated segmentation is shown in Fig. 6.

In comparison to the previous analysis, for each day 
and for each of the three OCT volumetric (C-scan) 
readings on control and infected plants, 200 images 
are selected (instead of 20 for the manual analysis) and 
analysed using the ML-based software. The computed 
average thickness of the segmented gap from each 
image is used to build the histograms shown in Fig. 7.

Table 1 Mean thickness of the gaps from day 0 (right before inoculation) to day 7 (after inoculation) of control and Septoria-infected 
wheat leaves (One reading per plant, on three different controlled and three different infected plants)

Every mean value is an average of 250 individual thickness measurements taken manually from a selection of 20 OCT B-scans out of each volumetric reading (C-scan). 

For each day, a single image of the leaf (out of the three available control and infected plants) is shown to appreciate the lack of external symptoms until day 7.

Control Infected

R1 R2 R3 R1 R2 R3

Day 0 0.055 ± 0.018 0.046 ± 0.016 0.048 ± 0.017 0.045 ± 0.015 0.0463 ± 0.015 0.049 ± 0.017

Day 1 0.044 ± 0.015 0.038 ± 0.015 0.041 ± 0.014 0.05 ± 0.014 0.0543 ± 0.009 0.05 ± 0.015

Day 2 0.039 ± 0.014 0.041 ± 0.014 0.043 ± 0.016 0.051 ± 0.019 0.068 ± 0.026 0.067 ± 0.024

Day 3 0.039 ± 0.014 0.039 ± 0.013 0.042 ± 0.014 0.067 ± 0.024 0.075 ± 0.027 0.082 ± 0.028

Day 4 0.042 ± 0.015 0.049 ± 0.015 0.046 ± 0.013 0.076 ± 0.024 0.082 ± 0.03 0.073 ± 0.024

Day 5 0.049 ± 0.02 0.049 ± 0.02 0.054 ± 0.02 0.068 ± 0.03 0.069 ± 0.03 0.083 ± 0.03

Day 6 0.05 ± 0.017 0.047 ± 0.018 0.053 ± 0.02 0.082 ± 0.04 0.063 ± 0.024 0.067 ± 0.02

Day 7 0.044 ± 0.02 0.04 ± 0.017 0.046 ± 0.02 0.073 ± 0.024 0.083 ± 0.03 0.07 ± 0.024
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The results from the ML-based image analysis appear 
more scattered compared to the previous manual analy-
sis. This scattering might be a direct consequence in the 
apparent difficulty in adequately segmenting the OCT 
images, which is in part due to the uneven leaf struc-
tures, as discussed subsequently. Although histograms 
resulting from the automated segmentation analysis are 
not as consistent compared to those generated from the 
manual analysis, a similar pattern nonetheless emerges. 
Starting from day 1 after inoculation, the apparent 
gaps in infected leaves are statistically and consistently 
larger compared to those in intact leaves. And similarly, 

the widths of the Gaussian fits in infected leaves are 
also larger compared to those in controlled leaves.

It is also important to note that the ML-based segmen-
tation software was here trained using the AxC 169 vari-
ety. The same automated procedure was used on images 
taken from another variety (AxC 157, same parentage but 
different genotype) and yielded, to a lesser extent, simi-
lar results (i.e. broader Gaussian fit and shifted Gaussian 
centre toward larger gap size for infected leaves, results 
shown in SI). One main difference between the two vari-
eties is that intact leaves from cultivars AxC157 already 
have larger apparent gaps between the second and third 

Fig. 5 Gap size distribution for manual thickness measurements from day 0 (D0) to day 7 (D7). Superimposed histograms of control (blue) 
and infected leaves (red) groups with their Gaussian fits. The histograms used a bin width of 0.01 mm.

Fig. 6 Examples of automated segmentation using OCT image analysis to classify the spacing between the second and third cell layers in a control 
wheat leaf (A) with its segmented area (B, green overlay), and an infected leaf (C) with its segmented are (D, green overlay), 2 days after inoculation. 
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cell layers (of ~ 0.06  mm). Therefore, the distinction 
between infected and control became challenging when 
considering only the average gap size, as it will be dis-
cussed subsequently.

Discussions
Our objective is to benefit from OCT ability to see 
through soft tissues to evaluate the state of infection 
over time. Although various features of the leaves were 
investigated, such as spacing between cell layers, cell 
appearances, number and length of trichomes, this study 
focuses on the former due to the absence of clear trend 
and difficulties to capture accurate data for the others. 
This study therefore solely reports on the average gap 
size within the mesophyll, with the aim of correlating the 
monitored changes with fungal growth. And while OCT 
cannot directly visualize fungal hyphae, this study reveals 
that the apparent spacing between cell layers increases 
where the fungal hyphae are expected to develop. Indeed, 
damaged tissues have a lower refractive index compared 
to healthy cells [71–73]. As a result, it is possible that the 
damaged tissues scatter less light compared to healthy 
ones and thus appear darker or dark (i.e. as a gap) on the 
OCT scans.

This increase in gap thickness and heterogeneity of the 
gap size is thus expected to be a direct result of the meso-
phyll colonisation by the hyphae (stage 4). As discussed 
earlier, colonisation of the mesophyll is initiated by the 
very first hyphae intrusion through a stoma (stage 3). The 
fact that we start monitoring an increase in gap thickness 

as early as 24 h after inoculation (instead of day 3, as per 
Fantozzi, E., et  al. [26]) can be a result of our choice of 
cultivar. Indeed, AxC 169 was chosen because of its 
increased vulnerability to Septoria. It is also possible 
that inoculation via spray facilitates entry of the develop-
ing hyphae through the stomata. It has been shown that 
spore germination typically occurs within 12 h after con-
tact with a leaf when humidity levels are high [30]. And 
while the presence of water droplets is not expected to 
trigger any direct reaction from the stomata, the overall 
increased humidity due to the spray implies that most 
stomata will be open [74], thus facilitating entry of the 
hyphae within the first few hours. It is important to note 
that our controls were only water sprayed, in accord-
ance with previously published works, also on wheat, 
and similarly infected by Septoria [75–78]. The spraying 
of purified water was automatically performed within the 
chamber to preserve a humidity level of 61%. It is worth 
highlighting that both control and inoculated plants are 
regularly sprayed with purified water to maintain the high 
humidity level. Furthermore, the estimated concentra-
tion of Tween in the final spore-loaded solution is about 
0.01%, which is significantly less compared to the 0.1% 
and 1% used in the previous works on wheat infected by 
Septoria in which water-sprayed controls were also used. 
While we do not expect such a low Tween concentration 
to trigger a systemic response, we do expect the coloni-
sation by Septoria to trigger such a response. Because 
the response monitored (increase in gap size) seems to 
reach a maximum by day 2, as illustrated in Fig.  5, and 

Fig. 7 Average gap size distribution in control (blue) and infected (red) wheat leaves extracted from automated segmentation, from day 0 (D0) 
to day 7 (D7) after inoculation, with superimposed Gaussian fits. The histograms use a bin width of 0.01 mm
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does not change until necrosis happens, we are confident 
that the effects measured are triggered by the pathogen 
rather than the surfactant or by the spraying procedure. 
It is, however, possible that upon the first intrusion event, 
before full colonisation takes place, the whole plant reacts 
by modifying its mesophyll structure, which might give 
rise to the increased in apparent gap thickness. If such 
is the case, this study still demonstrates that OCT can 
effectively be used to detect early signs of infection. This 
work thus demonstrated that monitoring intercellular 
spacing via OCT enables distinct classification between 
infected and intact plant from day 2 after inoculation, 
while visible signs of necrosis only appear on day 7.

In comparison to alternative non-invasive and simi-
larly field-applicable methods, OCT has the advantage 
of being sensitive to changes that precede any discol-
ouration or alteration of the plant’s spectral signature. 
Indeed, the remote monitoring of the plant’s pigmenta-
tion, fluorescence, temperature or water level often rely 
on multi- or hyperspectral data analysis [37, 38, 42]. It is 
difficult to directly compare our results with field applica-
tions of multi- and hyperspectral monitoring because the 
chosen variety is inherently more susceptible to Spetoria. 
The Septoria life cycle is consequently shorten compared 
to that in actual crops. But the fact that we can monitor 
infection-driven changes before any external signs appear 
demonstrates that detection via OCT precedes detection 
via multi- or hyperspectral techniques. As exemplified 
in Fig. 5 and 7, a distinction between infected and non-
infected is monitored at least 5 to 6 days before the plant 
displays any yellow spots (shown in Table 1, day 7).

We concede that both methods, the manual labelling 
and the ML-aided labelling, are prone to biases. On the 
one hand, for example, manual labelling tends to focus 
on areas where a gap is clearly visible, thus neglecting 
sections of the mesophyll which may display a relatively 
smaller gap within the same B-scan. On the other hand, 
the automated segmentation is challenged with uneven 
leaf surfaces. The benefit of the ML-based analysis over 
the manual labelling is evidently its systematicity and 
its ability to analysed data at high throughput. Overall, 
whether manual or ML-based, the current analysis, with 
its unique distinguishing parameter, is already promising 
in differentiating between infected and intact plants.

We remind that our ML-based model was trained and 
tested on AxC  169. When the same model was applied 
to AxC  157, it led to more mitigated conclusions (see 
SI). Indeed, the fact that intact AxC  157 leaves already 
display gaps that are similar in size to those monitored 
in infected plants indicates that a single distinguishing 
parameter (i.e. gap thickness) might not be sufficient 
when assessing differing cultivars. To circumvent this 
limitation, it is planned to pursue such studies to include 

more parameters, such as to take into account the 
3-dimentional shape of the gaps since it is readily avail-
able from the OCT volumetric C-scans. Additionally, we 
hope to improve training model by expanding our study 
to multiple wheat varieties. Furthermore, while the plants 
in our study were grown under controlled conditions, 
we acknowledge that field environments will introduce 
additional variability, such as fluctuating temperatures, 
humidity levels, soil composition, and pathogen exposure 
that cannot be fully replicated in a growth chamber. It is 
thus necessary to study the impact of these environmen-
tal factors onto the mesophyll to further evaluate OCT’s 
field applicability. Nevertheless, the core physiological 
and structural responses observed in this work (e.g., mes-
ophyll disruption detectable by OCT as early as two days 
after infection) are expected to manifest similarly in field-
grown plants.

Conclusions
In this proof-of-concept experiment, we demonstrate 
low-cost OCT to be ideally suited to monitor minute 
structural changes within the mesophyll. OCT is here 
used to effectively detect the increased intercellular spac-
ing induced by the inoculation of pathogens. The moni-
tored changes, taken as direct indication that the leaf is 
being colonized by the pathogen, demonstrate that OCT 
can be used to detect infections even before any visible 
signs appear on the plant. Systematic analysis of several 
thousands of images acquired, over time and non-inva-
sively, is made possible by using bespoke ML-based anal-
ysis. And although the analysis currently relies on a single 
parameter (apparent gap thickness), statistical differences 
between controlled and infected leaves is established 
from day 2 after inoculation. Accordingly, OCT imaging 
holds the promise for quick and accurate identification of 
infection, even at an asymptomatic stage. The application 
of OCT coupled with ML analysis thus presents a valu-
able opportunity to effectively assess crop health. By har-
nessing and combining these cutting-edge technologies, 
this work contributes to advancing agricultural practices 
by providing with a tool that may enable timely treat-
ments, help reduce crop losses, and achieve global food 
security.

This work also highlights current limitations of using 
OCT for detection of infection. OCT cannot directly 
visualize fungal hyphae, and its penetration depth may 
be insufficient for imaging thicker plant tissues. Fur-
thermore, ML-based segmentation models require fur-
ther validation to ensure it is applicable across different 
plant species and can distinguish between the various 
biotic and abiotic stressors. Despite these challenges, 
this research highlights the promise that OCT holds, 
when combined with ML analysis, as a non-destructive, 
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real-time imaging technique to transform precision 
agriculture and promote sustainable crop disease 
management.

Future work
While the resolution of the OCT images is set by the sys-
tem optoelectronic components, the current software 
used for image segmentation can be readily improved. 
The ML based analysis software was trained specifi-
cally on a single wheat variety (AxC  169). Future work 
will expand the dataset to include multiple wheat varie-
ties and potentially correlate with other plant species to 
improve the robustness of the model. Further experimen-
tal runs are also required to disentangle the morphologi-
cal responses triggered by environmental factors such as 
variability in temperature and in humidity, as well as vari-
ability in soil and atmospheric composition. Additionally, 
to differential between multiple stressors, it may become 
required to incorporate other measurables, such as gap 
density, gap volume and overall structural heterogeneity 
of the leaf. Including multiple parameters in the analy-
sis could significantly advance the technique’s precision. 
Given these necessary improvements, the path to make 
OCT an integral item in a farmer’s toolbox is still long 
but is definitively underway.
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