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ABSTRACT 
Deep learning has the potential to transform sewer pipe inspection by 
automating the process, which could improve efficiency and consistency. 

However, progress has been hampered by limited publicly available, well -
annotated benchmark datasets for defect classification. To address this gap, we 

present a comprehensive analysis using the publicly available Water Research 
Centre (WRc) sewer image dataset. We evaluated several deep learning 
architectures (MobileNet-v2, Inception-ResNet-v2 and ResNet-18) across key 

performance metrics such as accuracy and F1-score, with Top-1 accuracies 
ranging from 61.54% to 71.61% and Top-3 accuracies ranging from 86.88% to 

92.61%. This research contributes to a reproducible performance baseline, 
enabling rigorous comparison of different models and serves as a foundation for 
future research in developing AI-assisted inspection systems. 
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INTRODUCTION 
Routine sewer infrastructure maintenance is vital to ensure public health and 

avoid costly repairs. One critical task is the inspection of sewer pipes, 
traditionally performed through manual review of closed-circuit television 

(CCTV) footage. This process, however, is time-consuming and prone to human 
error due to fatigue, lighting variability, and complex defect appearances [1]. 
The water industry is therefore exploring automated methods for assessing pipe 

conditions to overcome these challenges [2]. Deep learning algorithms have 
attracted considerable interest for automated sewer inspection because of their 

capability to learn complex features from raw images, enabling them to process 
large and diverse datasets [3,4]. Recent studies have demonstrated the 
effectiveness of deep learning in sewer condition assessment, achieving good 

accuracy in defect classification from CCTV imagery [5,6]. 
 

Many image-based sewer defect classification systems use datasets with 
varying classes and class distributions. However, the lack of standardised 
datasets and evaluation protocols impedes progress in this field [7]. Recent 

efforts by Haurum and Moeslund [8] and the Water Research Centre (WRc) 
have begun to address this, with WRc releasing a dedicated publicly available 

sewer defect dataset for training machine learning systems [9].  
 
A public benchmark analysis of the WRc dataset for defect classification is not 

yet available. To address this gap, a deep learning analysis has been applied in 
this paper to the WRc dataset. Our initial results provide insights into the 

feasibility of automated defect classification using this dataset and highlight 
areas for future research and development.
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THE WRc DATASET 

WRc compiled the dataset from previously coded CCTV survey footage 
contributed by seven UK water utilities: United Utilities, Thames Water, South 

West Water, Dŵr Cymru, Scottish Water, Severn Trent Water and Yorkshire 
Water.  WRc used 15 water engineers and technical consultants from its 

technical consulting and catchment modelling departments to process the 
CCTV images. Their task was to complete the defect classification process and 
select optimal images for the training library.  

 
At present, the WRc dataset consists of 27,257 images under 72 unique Manual 

of Sewer Condition Classification (MSCC) defect codes [10], with varying 
numbers of samples per defect, from over 1000 (e.g. Crack Longitudinal (CL)) 
to as few as single digits (e.g. Exfiltration (EX)). Each image is also 

accompanied by metadata detailing attributes such as the sewer pipe material, 
pipe diameter and the approximate location of the defect within the frame. 

MSCC is the UK CCTV defect coding system, but can be converted to the 
European standard codes, and is similar to many other coding methods around 
the globe, as discussed in [11]. The dataset can be accessed through the 

Spring platform [12], by registering and selecting the AI and Sewer case study. 
 

BENCHMARK ANALYSIS METHODS 
DATASET PREPARATION 
A subset of the WRc dataset was created to ensure sufficient representation 

from each defect class. The 72 MSCC defect codes were first grouped into 31 
primary classes by combining related defect codes based on their primary 

category, e.g. combining Crack Circumferential (CC) with Crack Longitudinal 
(CL) into a single ‘Crack’ class - this resulted in Fig. 1. Then, primary classes 
with over 800 images were selected for incslusion to ensure sufficient 

representations per class for training a classifier. This resulted in the inclusion 
of 13 primary classes and the exclusion of 18 primary classes (Fig. 1). 

Examples of each included class are shown in Fig. 2. To produce the actual 
dataset for processing, 1000 images were sampled from each of these primary 
classes to create a balanced dataset for classification (upsampling the 

‘Defective Connection’ and ‘Deformed’ classes that had 839 and 847 images 
respectively by duplication of randomly selected images). The dataset was 

randomly split in the ratio 70:10:20 per class for training, validation and testing 
purposes. 

Figure 1. Image count in the WRc dataset per primary class. The dashed red 

line marks the threshold where classes with at least 800 images are considered.
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Figure 2. Example images of the 13 classes used for classification in this study. 

 
MODEL SELECTION AND TRAINING 
Transfer learning with the WRc data was applied to three standard deep 

learning models, pre-trained on the ImageNet database [13]: MobileNet-v2 
(small network), ResNet-18 (medium-sized network) and Inception-Resnet-v2 

(large network). The choice of the three models was based on their 
demonstrated success in various image classification tasks and their proven 
ability to generalise well when fine-tuned for specific datasets. A dropout layer 

was added just before the final fully connected layer to prevent overfitting. 
Images were also resized to scale to the input size of the pre-trained networks, 

maintaining the aspect ratio of the original image using zero padding. To ensure 
a fair comparison, the general training procedure was the same for all three 
networks. Standard data augmentation techniques were used to improve model 

generalisation and robustness, such as translation, rotation, flipping, brightness, 
blurring and noise adjustment, which were applied randomly to 50% of the 

training dataset. All models were trained for 10 epochs using the Adam 
optimiser with focal loss, starting from an initial learning rate of 0.0001 with a 
decay factor of 0.1 for every 5 epochs. Convergence was monitored using the 

validation dataset. A mini-batch size of 32 was used, along with a dropout 
probability of 0.3 and an L2 regularisation rate of 0.0001. The models were 

trained and evaluated using an NVIDIA GeForce 4070 GPU. 
 
HIGHER-LEVEL DATA GROUPING 

We investigated grouping visually similar classes that led to frequent 
confusions, with groups defined as: 1. Crack plus Fracture, 2. Connection plus 

Defective Connection, and 3. Broken plus Deformed plus Hole. This grouping 
was done to simplify the classification task, based on expert opinion and a 
review of defect characteristics. These 3 higher-level groupings were combined 

with the remaining 6 original classes in Fig. 1, giving 9 classes in total. The 
effect of grouping the data was analysed in two ways: one via post-processing 

the model predictions into the defined groups and one via training a ResNet-18 
model directly on the grouped data (ResNet-18-Grouped). Each grouped class 
was randomly sampled to contain 1000 images, split as before in the ratio of  

70:10:20 for training, validation and testing. 
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RESULTS AND DISCUSSION 
Among the models evaluated, MobileNet-v2 achieved the lowest accuracy 
(61.54%), while Inception-ResNet-v2 achieved the highest (66.92%). ResNet-18 

achieved the best trade-off in accuracy (64.73%) and prediction time (0.006s to 
process an image) (Table 1). F1-scores followed a similar profile to accuracy 

(Table 1). All models showed strong Top-3 accuracy (i.e. when the true class is 
among the top three predictions), with ResNet-18 obtaining 88.08% (Table 1). 
The trained models are shared online at GitHub [14]. 

 
Certain classes showed low per-class accuracies due to visually similar 

characteristics that caused confusion, such as Crack vs. Fracture (Fig. 3(a)), 
Connection vs. Defective Connection (Fig. 3(b)), and Broken, Hole, and 
Deformed (Fig. 3(c)) - also see the ResNet-18 confusion matrix in Fig. 4. Some 

images contained more than one feature, making multi-class classification 
challenging as the model attempted to predict a single best category. Therefore, 

confidence was spread across relevant classes. For example, Fig. 3(d) shows 
an image labelled Displaced Joint, but the presence of structures resembling 
roots raised the Roots class confidence. In addition, some noisy images were 

difficult to classify reliably, e.g., Fig. 3(e), where the model failed to identify the 
defect as Roots. These examples demonstrate some of the challenges in 

working with this dataset in sewer image classification. 
 
Grouping visually similar classes improved the accuracy, reducing confusion 

(Table 1 and Fig. 5). We grouped classes in two ways: one via post-processing 
the baseline ResNet-18 predictions, which achieved an accuracy of 73.77%, 

and the other by directly training on grouped classes (ResNet-18-Grouped), 
which led to a slightly lower accuracy of 71.61% (see Figs. 5(a) and 5(b)).  
 

Table 1. Classification results on the test dataset 

Architecture 

Number 

of 

params. 

Pred. 

time 

(s) 

Acc. 

(%) 

Top-3 

Acc. 

(%) 

Grouped 

Acc. (%) 

Macro 

Prec. 

(%) 

Macro 

Recall 

(%) 

Macro 

F1-score 

(%) 

MobileNet-v2 2.21M 0.018 61.54 86.88 72.00 61.99 61.54 61.70 

ResNet-18 11.17M 0.006 64.73 88.08 73.77 64.90 64.73 64.69 

Inception- 

ResNet-v2 
54.28M 0.097 66.92 90.42 76.88 67.25 66.92 67.02 

ResNet-18 -

Grouped 
11.17M 0.006 71.61 92.61 71.61 71.54 71.61 71.48 

 

 
           (a)                     (b)                     (c)                     (d)                     (e) 

Figure 3. Examples of Top-3 classification predictions using ResNet-18. 
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Figure 4. Confusion matrix using ResNet-18 on the test dataset. 

 

 
                                              (a)                                                       (b) 

Figure 5. Confusion matrices for grouped classes on the test dataset: (a) 
Grouping applied to the baseline ResNet-18 predictions in post-processing; (b) 

ResNet-18 trained on grouped labels (ResNet-18-Grouped). 
 
CONCLUSIONS 
This benchmark analysis has characterised the effectiveness of the WRc sewer 
defect dataset for training deep learning systems for automated sewer 

inspection. Among the models tested, ResNet-18 provided a good balance of 
accuracy and speed, achieving 64.73% accuracy with a fast prediction time of 

just 0.006 seconds. Additionally, all models showed strong Top-3 accuracy 
(92.61% with ResNet-18-Grouped), indicating that even when the top prediction 
is incorrect, the true class is often among the top three, which is promising for 

real-world applications where a shortlist of probable defects is sufficient. 
Grouping the classes with similar characteristics further increased the accuracy 

to 73.77% on ResNet-18 and 71.61% on ResNet-18-Grouped, thereby 
removing the need to distinguish between categories with frequent confusion. 
The proposed approach with ensemble properties has the potential for 

automated analysis of pipe networks. Future work will focus on detecting 
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multiple defects in single-label images, especially with low resolution, noise and 
obscure fine details. 
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