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Abstract

This paper provides a non-cooperative bargaining approach to analyze games with coali-

tional externalities. Four well-studied solution concepts for partition function form games

are implemented: the externality-free value (Pham Do and Norde (2007), de Clippel and

Serrano (2008)), the expected stand-alone value and the consensus value (Ju (2007)) and

the extended Shapley value (McQuillin (2009)). We generalize the bidding mechanism

introduced in Pérez-Castrillo and Wettstein (2001) to partition function form games. Us-

ing these generalizations provides a coherent and structured framework to study strategic

aspects of different normative approaches.
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1 Introduction

Economic environments featuring coalitional externalities have been effectively modeled by

the game theoretic framework of partition function form games proposed by Thrall and

Lucas (1963). This model has been highly useful in studying relevant economic problems

such as international trade (e.g., Aghion, Antràs and Helpman (2007)) and environmental

agreements (see Chander and Tulkens (1997) and Athanasoglou (2022)). Yet the value

theory of this class of games is still under development, despite a rising literature in recent

years, of which Kóczy (2018) offers a comprehensive overview.

From the normative point of view, values for such games are studied by, among others,

Myerson (1977), Bolger (1989), Feldman (1994), Maskin (2003), Albizuri, Arin and Rubio

(2005), Macho-Stadler, Pérez-Castrillo and Wettstein (2007, 2010, 2018), Pham Do and

Norde (2007), Ju (2007), de Clippel and Serrano (2008) and McQuillin (2009). Due to

the more complicated structure of partition function form games compared to standard

transferable utility (TU) games, providing a non-cooperative foundation1 for values in these

environments poses a formidable problem. Only few works, e.g. Maskin (2003), Macho-

Stadler, Pérez-Castrillo and Wettstein (2006) and Borm, Ju and Wettstein (2015), have

addressed this issue. Maskin (2003) and Borm, Ju and Wettstein (2015) offer alternative

perspectives to analyze the strategic aspects emerging in the analysis of partition function

form games.2 The implementation results in Macho-Stadler, Pérez-Castrillo and Wettstein

(2006) are applicable only for environments with either purely non-negative externalities or

purely non-positive externalities. Thus, providing a non-cooperative basis for axiomatically

characterized values for general partition function form games remains an open question.

We want to push further the strategic study of coalitional externalities. The current pa-

per proposes a systematic non-cooperative bargaining approach to partition function form

games, which allows for the analysis of general environments with all types of coalitional

externalities. Four axiomatically characterized solution concepts for partition function

form games will be implemented in this paper. One is the Shapley value for partition

function form games introduced by Pham Do and Norde (2007) and extensively studied

as the externality-free value by de Clippel and Serrano (2008). The second is the so-called

extended Shapley value constructed and analyzed in McQuillin (2009). Both values possess

nice axiomatic properties and are well motivated by the underlying rationale of the original

1Here we use the phrase of non-cooperative “foundations” just for convenience, as the term is commonly

adopted in the literature. We agree with Serrano (2005) that the normative properties of a solution

concept are indeed the “foundation” for it. Serrano (2005, 2021) provide an excellent survey for the work

of implementations of cooperative solutions.
2Similar perspectives appear in Bloch and van den Nouweland (2014) when studying the axiomatic

foundations of expectation formation rules.
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Shapley value (Shapley (1953)).

Two other solution concepts to be addressed are the expected stand-alone value and the

consensus value introduced by Ju (2007). The expected stand-alone value is a generalization

of the equal surplus solution in standard TU games to partition function form games, taking

into account coalitional externalities. The consensus value is in the same spirit as its TU

counterpart (Ju, Borm and Ruys (2007)) that well links and reconciles marginalism and

egalitarianism. The underlying procedure to construct the consensus value for partition

function form games as well as its axiomatic characterizations show that this value well

balances the tradeoff between coalitional effects and externality effects, making it especially

appropriate in the context of coalitional externalities.

In this paper, by extending the generalized bidding approach proposed by Ju and

Wettstein (2009)3 to partition function form games, we obtain mechanisms to implement

the above four values. This approach does not use the structure of any specific value to

generate a specific mechanism tailored for it, but, through the bidding, allows players to

consider the payoffs and possible externalities. The emergence of a solution concept, not

directly related to the mechanism, serves to highlight intriguing features of the solution

concept. The consensus value, for example, emerges as equilibrium outcome when players

compete for the right to make a second (i.e., renegotiation) offer rather than arbitrarily

assigning it to a particular player. We like to note that the mechanisms introduced in this

paper yield the actual values implemented rather than implement them in expected terms.

The results of the paper not only complement those obtained in de Clippel and Serrano

(2008), Maskin (2003), Macho-Stadler, Pérez-Castrillo and Wettstein (2006) and Borm,

Ju and Wettstein (2015), but also suggest a unified approach to analyze such games.

The design of a single basic mechanism to implement several solution concepts provides

an opportunity to make direct and critical comparisons among them and highlights the

underlying different non-cooperative rationales. We further note that the approach can

serve as a toolkit for analyzing partition function form games, both from a non-cooperative

point of view (implementation) and a cooperative one (looking for new solution concepts).

The mechanisms presented in Borm, Ju and Wettstein (2015), while quite different, are

also variants of a basic strategic framework implementing a family of related values for

partition function form games.

The next section presents the environment and the values to be implemented. In section

3, we formally describe the bidding mechanisms and show that while using the same bidding

stage in all mechanisms, different protocols of renegotiation result in completely different

value concepts as equilibrium outcomes. The final section offers further discussions and

3The basic multi-bidding mechanism was introduced in Pérez-Castrillo and Wettstein (2001). Variants

and further studies of the mechanism can be found in Pérez-Castrillo and Quérou (2012) and Ju (2012).
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suggests topics for future research.

2 Partition function form games and the values

We now formally present the model of partition function form games. Let N be the set of

players. A coalition S is a subset of N . A partition p of N , a so-called coalition structure,

is a set of mutually disjoint coalitions, p = {S1, ..., Sm}, whose union is N . Let P(N)

denote the set of all partitions of N . For any coalition S ⊆ N , P(S) denotes the set of

all partitions of S. A typical element of P(S) is denoted by pS. Note that two partitions

will be considered equal if they differ only by the insertion or deletion of ∅. That is,

{{1, 2}, {3}} = {{1, 2}, {3}, ∅}. A pair (S, p) consisting of a coalition S and a partition

p ∈ P(N) to which S belongs is called an embedded coalition, and is nontrivial if S ̸= ∅.

Let E(N) denote the set of embedded coalitions, i.e.

E(N) =
{
(S, p) ∈ 2N × P(N)|S ∈ p

}
.

Similarly, E(S) denotes the set of embedded coalitions with respect to S. We denote

by (N,w) a game in partition function form (or a partition function form game) where

w : E(N) −→ R is called a partition function that assigns a real value, w(S, p), to each

embedded coalition (S, p). The value w(S, p) represents the payoff of coalition S, given

the coalition structure p forms. By convention, w(∅, p) = 0 for all p ∈ P(N). The set of

partition function form games with player set N is denoted by PGN .

For a given partition p = {S1, ..., Sm} and a partition function w, let w̄(S1, ..., Sm)

denote the m-vector (w(Si, p))
m

i=1. For any S ⊆ N we denote by [S] the partition of S

which consists of singleton coalitions only, [S] = {{j}|j ∈ S}, and by {S} the partition of

S consisting of the coalition S only.

A solution concept on PGN is a function f , which associates with each game (N,w) in

PGN a vector f(N,w) of individual payoffs in RN , i.e. f(N,w) = (fi(N,w))i∈N ∈ RN .

We first recall the Shapley value defined by Pham Do and Norde (2007) that is the

externality-free value in de Clippel and Serrano (2008). Let Π(N) be the set of all bijections

σ : {1, ..., |N |} −→ N . For a given σ ∈ Π(N) and k ∈ {1, ..., |N |}, we define the partition

pσk associated with σ and k, by pσk = {Sσ
k } ∪ [N\Sσ

k ] where Sσ
k := {σ(1), ..., σ(k)}, and

pσ0 = [N ]. So, in pσk the coalition Sσ
k has already formed, whereas all other players still form

singleton coalitions. For a game w ∈ PGN , define the marginal vector mσ(w) as the vector

in RN by mσ
σ(k)(w) = w(Sσ

k , p
σ
k) − w(Sσ

k−1, p
σ
k−1) for all σ ∈ Π(N) and k ∈ {1, ..., |N |}.

The Shapley value (Pham Do and Norde (2007)) φ(w) of the partition function form game

(N,w) is defined as the average, over the set Π(N) of all bijections, of the marginal vectors,
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i.e.

φ(w) =
1

|N |!

∑

σ∈Π(N)

mσ(w).

It is the unique value satisfying efficiency, additivity, symmetry and the null player property

as defined in Pham Do and Norde (2007).

As one can see above, by the formula of φ(w), the Shapley value value for partition

function form games basically abstracts from most of the information provided by the

whole partition function form games, as it only considers the worth of a coalition S when

other players form singleton coalitions, which is also why it is called the externality-free

value in de Clippel and Serrano (2008). As a counterpart to this, one may consider the

worth of a coalition S when the rest of the players form the complementary coalition N\S

instead of singletons, which is analogous to the core with singleton expectations versus

the core with merging expectations for partition function form games (Hafalir (2007)).

Indeed this leads to a solution concept called the extended Shapley value by McQuillin

(2009). Formally, for a game w ∈ PGN , define the marginal vector m̄σ(w) in RN by

m̄σ
σ(k)(w) = w(Sσ

k , {S
σ
k } ∪ {N\Sσ

k }) − w(Sσ
k−1, {S

σ
k−1} ∪ {N\Sσ

k−1}) for all σ ∈ Π(N) and

k ∈ {1, ..., |N |}. The extended Shapley value (McQuillin (2009)) φMQ(w) of the partition

function form game (N,w) is defined as the average, over the set Π(N) of all bijections, of

the marginal vectors m̄σ(w), i.e.

φMQ(w) =
1

|N |!

∑

σ∈Π(N)

m̄σ(w).

Ju (2007) introduces the consensus value for partition function form games by taking a

bilateral perspective and considering both coalitional effects and externality effects when

sharing the gains of cooperation. The consensus value is the unique solution that satisfies

efficiency, complete symmetry, additivity and the quasi-null player property as defined in

Ju (2007). It is shown that the consensus value for partition function form games γ equals

the average of the Shapley value (Pham Do and Norde (2007), de Clippel and Serrano

(2008)) and the expected stand-alone value. That is, γ(w) = 1
2
φ(w) + 1

2
e(w), where e(w)

denotes the expected stand-alone value of a partition function form game w and is defined

by

ei(w) =
w(N, {N})

|N |

+
∑

S⊆N\{i}:S ̸=∅

|S|!(|N | − |S| − 1)!

|N |!
w({i}, {S} ∪ [N\(S ∪ {i})] ∪ {{i}})

−
∑

j∈N\{i}

∑

S⊆N\{i,j}

|S|!(|N | − |S| − 2)!

|N |!
w({j}, [N\(S ∪ {i})] ∪ {S ∪ {i}}).
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for all i ∈ N . The expected stand-alone value takes players’ stand-alone situations as the

only input to determine their final payoffs. Hence, it purely measures the externality effects

on a player in a partition function form game, compared to the coalitional effects measured

by the Shapley value. For a better understanding of the expected stand-alone value, we

provide the following explanation. Given a player i ∈ N , she has two choices concerning

externalities, either choosing the stand-alone option and receiving the externalities from

coalitions consisting of other players or joining some coalitions so as to generate externali-

ties affecting other players standing alone. Thus, the second term in the above expression

corresponds to the first choice and can be understood as player i’s expected gain from the

externalities of all possible coalitions not containing i, where the distribution of coalitions

is such that any ordering of the players is equally likely. The last term, corresponding to

the second choice, is player i’s expected loss due to joining coalitions, which is taken to be

the other players’ gains from the externalities of coalitions containing i.

3 The bidding mechanisms and implementation

In this section, we construct bidding mechanisms that implement the above four coopera-

tive solutions for partition function form games. These mechanisms provide a convenient

benchmark to evaluate and compare these values from a non-cooperative perspective.

The basic bidding mechanism can be described informally as follows: At stage 1 the

players bid to choose a proposer. Each player bids by submitting an (n − 1)-tuple of

numbers (positive or negative), one number for each player (excluding herself). The player

for whom the net bid (the difference between the sum of bids made by the player and the

sum of bids the other players made to her, measuring the player’s willingness to become the

proposer) is the highest, is chosen as the proposer. Before moving to stage 2, the proposer

pays to each player the bid she made. As a reward to the chosen proposer for her effort

(represented by her net bid), she is granted with the right to make a scheme how to split

the total payoff w(N, {N}) among all the players at the next stage.

At stage 2 the proposer offers a vector of payments to all other players in exchange

for joining her to form the grand coalition. The offer is accepted if all the other players

agree. In case of acceptance the grand coalition indeed forms and the proposer receives

w(N, {N}) out of which she pays out the offers made. In case of rejection the proposer

“waits” while all the other players go again through a similar game that has the same

bargaining protocol with a smaller player set (N minus the rejected proposer).

What are the possible consequences following this rejection? In general, there can be

two different scenarios. One is that all the remaining players fail to reach any agreement
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among themselves again. Then, the hope of forming the grand coalition collapses and the

initial proposer will be indeed left alone. The other scenario might be that the remaining

players accept the payments made by their chosen proposer, which means that a coalition

of all players apart from the initial proposer is formed. In this case, the option of “re-

entering” the game for the initial proposer would become realistic. Since now it is a

two-party issue, given the potential benefit from cooperation, it seems quite reasonable for

both proposers to come back to the table and negotiate again. The following stages will be

associated with this renegotiation. That is, in these additional stages the first proposer (in

fact, the rejected proposer) and the proposer chosen among the remaining players (when

an agreement is reached within themselves) bid and accept further offers.

The first variant implementing the Shapley value for partition function form games

(Pham Do and Norde (2007) and de Clippel and Serrano (2008)) has the first proposer

(denoted for simplicity by a) make an offer to the proposer chosen among the remaining

players (denoted for simplicity by b). The offer is for a to form the grand coalition rather

than b. If the offer is accepted the grand coalition forms, a receives w(N, {N}) and pays

the offer, b receives the offer from a and pays all the commitments made by him, and all

the other players receive what they were promised.

The second variant implementing the expected stand-alone value has b make an offer

to a. If the offer is accepted the grand coalition forms, a receives the offer, b receives

w(N, {N}) and pays the offer to a as well as what he owes to the remaining players.

In the third variant implementing the consensus value, the right to make an offer is

endogenously determined through a bidding mechanism between a and b. If a wins, the

game proceeds as in the first variant and if b wins, the second variant goes into effect.

To implement the extended Shapley value introduced by McQuillin (2009), we need to

consider an alternative bargaining protocol, yet still in the same framework of the bidding

mechanism. One can easily appreciate the difficulty of implementing the extended Shapley

value: Given that the extended Shapley value considers the worth of a coalition S when

the rest of the players form the complementary coalition N\S, there could exist good

reasons for players to leave the existing coalition and join the “outside” players. A valid

implementation mechanism would have to provide no incentive for a proposer to make an

offer that will be rejected, but meanwhile, in case of rejection, all the rejected proposers

should indeed have the incentive to form a coalition. These two forces seem to work

against each other. Finding a mechanism to resolve this conflict and reasonably reconcile

the mutually opposite forces is the key to implementing the extended Shapley value.

The mechanism proposed below is inspired by real world practices observed in disputes

among political parties as well as business partners, where in case of the breakdown of a

political party usually a powerful member quits and forms a new party with his or her
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followers. Similarly in business, we often see that a leader of a company leaves and founds

a rival one, with his or her followers joining from the previous company.

To capture these realistic features we proceed as follows. In case of rejection the pro-

poser a becomes temporarily inactive. She is momentarily left out of negotiation to “wait”

while all the other players go again through the same procedure starting with a bidding

stage. This process continues up to the point where a proposer b’s offer is accepted by all

other active players. Now all the rejected proposers become active again. They are given

the chance to negotiate and form a coalition by themselves. Now a acts as a “big boss”

and announces a take-it-or-leave-it offer to every other rejected proposer. If a’s offer is

rejected the set of rejected proposers forms the singletons partition and the game ends. If

the take-it-or-leave-it offer is accepted unanimously, then they form a coalition such that a

will receive a payoff of this coalition minus the offers made to all other rejected proposers.

Below we formally describe the bidding mechanisms, which will explicitly explain how

these bargaining protocols deal with coalitional externalities.

Mechanism A. If there is only one player {i}, she simply receives w(i, {i}). When there

are two or more players, the mechanism is defined recursively. Given the rules of the mech-

anism for at most n− 1 players, the mechanism for N = {1, . . . , n} proceeds in five stages.

Stages 1 to 3 provide for any set of (active) players S a proposer in S, chosen via a bidding

procedure (stage 1), an offer made by the proposer to the rest of the players in S (stage 2),

and an acceptance or rejection (stage 3). If stage 3 ends with a rejection, all players in S

other than the rejected proposer proceed again through stages 1 to 3 where the set of active

players is reduced by excluding the rejected proposer. If stage 3 ends with acceptance, for

S = N the game ends; but for a coalition S smaller than N , the game moves to stage 4

and then ends with stage 5. At stage 4 the last rejected proposer makes an offer to the

accepted proposer, and at stage 5, the offer is either accepted or rejected and final payoffs

are realized.

The mechanism starts with S = N .

Stage 1: Each player i ∈ S makes s − 1 (where s = |S|) bids bij ∈ R with j ̸= i. For

each i ∈ S, define the net bid of player i by Bi =
∑

j∈S\{i} b
i
j −

∑
j∈S\{i} b

j
i . Let

is ∈ argmaxi(B
i) be the proposer, where in case of a non-unique maximizer any of

these maximal bidders is chosen as the proposer with equal probability. Once the

winner is has been chosen, player is pays every player j ∈ S\{is} her bid bisj .

Stage 2: Player is makes a vector of offers xis
j ∈ R to every player j ∈ S\{is}.
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Stage 3: The players other than is, sequentially, either accept or reject the offer. If at

least one player rejects it, then the offer is rejected. Otherwise, the offer is accepted.

If the offer is rejected, all players in S other than is proceed again through the

mechanism from stage 1 where the set of active players is S\{is}. Meanwhile, player

is waits for the negotiation outcome of S\{is}. Dependent upon whether or not

the offer made by player is−1 (denoting the proposer of S\{is}) is accepted within

S\{is}, player is will either be called for renegotiation with is−1 or be left alone. The

renegotiation will follow a process as specified below in stages 4 and 5. If being left

alone, player is will receive a stand-alone payoff.

If the offer is accepted, we have to distinguish between two cases where S = N and

S ̸= N . In the case where S = N , which means that all players agree with the

proposer on the scheme of sharing w(N, {N}), the game ENDS. Then each player

j ∈ N\{in} receives xin
j at this stage, and player in receives w(N, {N})−

∑
j ̸=in

xin
j .

Hence, the final payoff to player j ̸= in is x
in
j +binj while player in receives w(N, {N})−∑

j ̸=in
xin
j −

∑
j ̸=in

binj . In the case where S ̸= N , stages 4 and 5 are reached.

Stage 4: The rejected proposer preceding is, who is denoted by is+1, makes an offer x̃
is+1

is

in R, to player is. (The offer is to let is+1 form the coalition S ∪ {is+1}.)

Stage 5: Player is accepts or rejects the offer and the game ENDS.

The payoffs to all the players in S\{is} are the same independent of whether there

was a rejection or an acceptance at stage 5. That is, every player j ∈ S\{is} receives

xis
j and the overall payoff to the player is derived by adding to it all the bids received,

which were made by all previously rejected proposers. Hence, the final payoff to

player j ∈ S\{is} is xis
j +

∑n

t=s b
it
j .

The payoffs to all other players (i.e., is, is+1, ..., in) depend on whether or not there

was an acceptance at stage 5.

If the offer is accepted then at this stage player is receives x̃
is+1

is
minus the bids and

offer he made to the players in S\{is}, while player is+1 receives w(S ∪ {is+1}, {S ∪

{is+1}}∪[N\(S∪{is+1})])−x̃
is+1

is
. The overall payoffs to these two players are given by

adding to these amounts the sum of bids received and made in all the preceding stages,

respectively. Hence, the final payoff to player is is x̃
is+1

is
−
∑

j∈S\{is}
bisj −

∑
j∈S\{is}

xis
j +∑n

t=s+1 b
it
is
, and the final payoff to player is+1 is w(S ∪{is+1}, {S ∪{is+1}}∪ [N\(S ∪

{is+1})])−x̃
is+1

is
−
∑

j∈S b
is+1

j +
∑n

t=s+2 b
it
is+1

. Moreover, all proposers before is+1 receive

their stand-alone payoffs in addition to all the payments received and paid out in the

bidding stages they participated in. Hence the final payoff to player im for m > s+1

is w({im}, {S ∪ {is+1}} ∪ [N\(S ∪ {is+1})])−
∑

l∈N\(∪n

k=m
ik)

biml +
∑n

t=m+1 b
it
im
.
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If the offer at stage 5 is rejected then at this stage player is receives w(S, {S}∪[N\S])

minus the bids and the offers she made to the players in S, while player is+1 receives

his stand-alone payoff w({is+1}, {S}∪ [N\S]). The overall payoff to these two players

are given by adding to these amounts the sum of bids received and made in all the

preceding stages, respectively. Hence, the final payoff to player is is w(S, {S} ∪

[N\S])−
∑

j∈S\{is}
bisj −

∑
j∈S\{is}

xis
j +

∑n

t=s+1 b
it
is
, and the final payoff to player is+1

is w({is+1}, {S}∪ [N\S])−
∑

j∈S b
is+1

j +
∑n

t=s+2 b
it
is+1

. Moreover, all proposers before

is+1 receive their stand-alone payoffs in addition to all the payments received and

paid out in the bidding stages they participated in. Hence the final payoff to player

im for m > s+ 1 is w({im}, {S} ∪ [N\S])−
∑

l∈N\(∪n

k=m
ik)

biml +
∑n

t=m+1 b
it
im
.

We note that in the case the mechanism reaches the situation where the set of active players

consists of one player only, i.e. |S| = 1, the corresponding stages 1 to 3 are redundant and

this single player is considered as the proposer for herself whose offer is accepted immedi-

ately and the game moves to stages 4 and 5 where she will renegotiate with the previously

rejected proposer i2.

The following theorem shows that for any partition function form game (N,w) satisfying

zero-monotonicity4 , i.e.,

w(S, {S} ∪ pN\S) > w(S\{i}, {S\{i}}∪N\(S\{i})) + w({i}, {i} ∪ pN\{i})

for all S ⊆ N and i ∈ S and all pN\S ∈ P(N\S), all pN\(S\{i}) ∈ P(N\(S\{i})) and

all pN\{i} ∈ P(N\{i}), the subgame perfect equilibrium (SPE) outcomes of Mechanism

A coincide with the payoff vector φ(N,w) as prescribed by the Shapley value defined by

Pham Do and Norde (2007) and de Clippel and Serrano (2008).

Theorem 3.1 Mechanism A implements the Shapley value defined by Pham Do and Norde

(2007) (i.e., the externality-free value by de Clippel and Serrano (2008)) of a zero-monotonic

partition function form game (N,w) in SPE.

Proof

Let (N,w) be a zero-monotonic partition function form game. The proof proceeds by in-

duction on the number of players n. It is easy to see that the theorem holds for n = 1. We

4It implies that the size of a coalition is positively correlated with its worth. In games that satisfy this

condition, both a coalition and a player outside the coalition are incentivized to admit the player and join

the coalition. This type of condition is common in the literature on implementing cooperative solution

concepts, e.g., Pérez-Castrillo and Wettstein (2001), Macho-Stadler, Pérez-Castrillo and Wettstein (2006),

Vidal-Puga and Bergantiños (2003), and Vidal-Puga (2005).

9



assume that it holds for all m ≤ n− 1 and show that it is satisfied for n.

First we show that the Shapley value is an SPE outcome. We explicitly construct an SPE

that yields the Shapley value as an SPE outcome. Consider the following strategies, which

the players would follow in any game they participate in (we describe it for the whole set

of players, N , but these are also the strategies followed by any player in a subset S that is

called upon to play the game, with S replacing N):

At stage 1, each player i ∈ N , announces bij = φj(N,w)−φj(N\{i}, w|N\{i}),
5 for every

j ∈ N\{i}.

At stage 2, a proposer, player in, offers x
in
j = φj(N\{in}, w|N\{in}) to every j ∈ N\{in}.

At stage 3, any player j ∈ N\{in} accepts any offer which is greater than or equal to

φj(N\{in}, w|N\{in}) and rejects any offer strictly less than φj(N\{in}, w|N\{in}).

At stage 4, player in makes an offer x̃in
in−1

= w(N\{in}, {N\{in}} ∪ {{in}}) to the

selected proposer in−1 ∈ N\{in}.

At stage 5, player in−1, the proposer of the set of players N\{in}, accepts any offer

greater than or equal to w(N\{in}, {N\{in}} ∪ {{in}}) and rejects any offer strictly less

than it.

Clearly these strategies yield the Shapley value for any player who is not the proposer,

since the game ends at stage 3 and binj + xin
j = φj(N,w), for all j ̸= in. Moreover, given

that following the strategies the offer is accepted by all players, the proposer also obtains

her Shapley value.

Note that all net bids equal zero by the balanced contributions property for the Shapley

value (Myerson (1980)).

To show that the previous strategies constitute an SPE, note first that the strategies at

stages 2, 3, 4, and 5 are best responses: In case of rejection at stage 3 proposer in can

obtain w(N, {N}) − w(N\{in}, {N\{in}} ∪ {{in}}) in the end (it pays her to make an

offer that is accepted at stage 4, by zero-monotonicity), and all other players play the

bidding mechanism with player set N\{in} and payoff w(N\{in}, {N\{in}} ∪ {{in}}). By

the induction hypothesis, we have the Shapley value as the outcome of this game. That

is, each player j ∈ N\{in} gets φj(N\{in}, w|N\{in}). Consider now the strategies at stage

1. If player in changes the vector of her bids so that another player becomes the proposer,

this will not change her payoff, which would still equal her Shapley value. If she changes

the vector of her bids and following it she is still the proposer, it must be that her total

5Given a partition function form game (N,w) and a subset S ⊆ N , we define the subgame (S,w|S) by

assigning the worth w|S(T, pS) ≡ w(T, pS ∪ [N\S]) for all (T, pS) ∈ E(S)
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bid (
∑

j∈N\{in}
binj ) did not decline, which again means her payoff cannot improve. That

is, any deviation of the bidding strategy of player in specified at stage 1 cannot improve

the payoff of player in. Hence, no player has an incentive to change its bid, showing that

the given strategy profile is an SPE.

The proof that any SPE yields the Shapley value proceeds similarly to the proof of Theo-

rem 3.1 in Ju and Wettstein (2009) and therefore skipped. ✷

The key feature of Mechanism A in implementing the Shapley value is that it allows

the proposer chosen from the first bidding stage to have the power of making another offer

at stage 4 in case she has been rejected at stage 3. One might argue that the right to make

a second offer should be awarded to the new proposer who is chosen from the remaining

players rather than the original proposer whose offer has been rejected. Such an argument

would lead to a new mechanism, which implements the expected stand-alone value.

Mechanism B. Stages 1, 2 and 3 are the same as in Mechanism A. The difference lies in

stages 4 and 5. Again, the mechanism starts with S = N .

Stages 1, 2, and 3: Same as in Mechanism A.

If the offer made at stage 3 is rejected, all players in S other than is proceed again

through stages 1 to 3 where the set of active players is S\{is}. Meanwhile, player

is waits for the negotiation outcome of S\{is}. Dependent upon whether or not the

player is−1, the proposer of S\{is}, can make his offer be accepted within S\{is},

player is will either be called for renegotiation with is−1 or be left alone. The rene-

gotiation will follow the rules as specified below in stages 4 and 5 of the current

mechanism.

If the offer is accepted, we have to distinguish between two cases where S = N and

S ̸= N . In the case where S = N , the game ends as in Mechanism A. In the case

where S ̸= N , stages 4 and 5 are reached.

Stage 4: Proposer is makes an offer x̃is
is+1

in R to the previously rejected proposer is+1.

(The offer is to pay is+1 this amount for joining in to form the coalition S ∪ {is+1}.)

Stage 5: Player is+1 accepts or rejects the offer and the game ENDS.

The payoffs to all the players in S\{is} are the same independent of whether there was

a rejection or an acceptance at stage 5, and are identical to the payoffs in Mechanism

A.
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The payoffs to all other players depend on whether or not there was an acceptance

at stage 5.

If the offer is accepted then at this stage player is receives w(S∪{is+1}, {S∪{is+1}}∪

[N\(S ∪ {is+1})])− x̃is
is+1

minus the bids and offer he made to the players in S\{is},

while player is+1 receives x̃is
is+1

. The overall payoffs to these two players are given

by adding to these amounts the sum of bids received and made in all the preceding

stages, respectively. Hence, the final payoff to player is is w(S∪{is+1}, {S∪{is+1}}∪

[N\(S∪{is+1})])−x̃is
is+1

−
∑

j∈S\{is}
bisj −

∑
j∈S\{is}

xis
j +
∑n

t=s+1 b
it
is
, and the final payoff

to player is+1 is x̃
is
is+1

−
∑

j∈S b
is+1

j +
∑n

t=s+2 b
it
is+1

. Moreover, all proposers before is+1

receive their stand-alone payoffs in addition to all the payments received and paid

out in the bidding stages they participated in. Hence the final payoff to player im for

m > s+1 is w({im}, {S∪{is+1}}∪[N\(S∪{is+1})])−
∑

l∈N\(∪n

k=m
ik)

biml +
∑n

t=m+1 b
it
im
.

If the offer at stage 5 is rejected then the payoffs of all the players are the same as

specified in Mechanism A.

Before stating the main result about Mechanism B, we show the following lemma. Let

us first define the subgame (N\{i}, w−i) of (N,w) by

w−i(N\{i}, {N\{i}}) = w(N, {N})− w({i}, {N\{i}} ∪ {{i}})

and

w−i(S, pN\{i}) = w(S, pN\{i} ∪ {{i}})

for all (S, pN\{i}) ∈ E(N\{i})\(N\{i}, N\{i}).

Lemma 3.2 For any game w ∈ PGN we have
∑

j∈N\{i}

(
ej(N,w)− ej(N\{i}, w−i)

)
−

∑

j∈N\{i}

(
ei(N,w)− ei(N\{j}, w−j)

)
= 0

for all i, j ∈ N .

Proof

By the definition of the expected stand-alone value, it suffices to show that

−|N |ei(N,w) + w({i}, {N\{i}} ∪ {{i}}) +
∑

j∈N\{i}

ei(N\{j}, w−j) = 0

for all i, j ∈ N and i ̸= j. Obviously,

|N |ei(N,w) = w(N, {N})

+
∑

S⊆N\{i}:S ̸=∅

|S|!(|N | − |S| − 1)!

(|N | − 1)!
w({i}, {S} ∪ [N\(S ∪ {i})] ∪ {{i}})

−
∑

k∈N\{i}

∑

S⊆N\{i,k}

|S|!(|N | − |S| − 2)!

(|N | − 1)!
w({k}, [N\(S ∪ {i})] ∪ {S ∪ {i}}).
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and

∑

j∈N\{i}

ei(N\{j}, w−j)

= w(N, {N})−
∑

j∈N\{i}

1

|N | − 1
w({j}, {N\{j}} ∪ {{j}})

+
∑

j∈N\{i}

∑

S⊆N\{i,j}:S ̸=∅

|S|!(|N | − |S| − 2)!

(|N | − 1)!
w({i}, {S} ∪ [N\(S ∪ {i})] ∪ {{i}} ∪ {{j}})

−
∑

j∈N\{i}

∑

k∈N\{i,j}

∑

S⊆N\{i,j,k}

|S|!(|N | − |S| − 3)!

(|N | − 1)!
w({k}, [N\(S ∪ {i})] ∪ {S ∪ {i}} ∪ {{j}}).

Moreover, we know that

∑

S⊆N\{i}:S ̸=∅

|S|!(|N | − |S| − 1)!

(|N | − 1)!
w({i}, {S} ∪ [N\(S ∪ {i})] ∪ {{i}})

=
∑

S=N\{i}:S ̸=∅

|S|!(|N | − |S| − 1)!

(|N | − 1)!
w({i}, {S} ∪ [N\(S ∪ {i})] ∪ {{i}})

+
∑

S⫋N\{i}:S ̸=∅

|S|!(|N | − |S| − 1)!

(|N | − 1)!
w({i}, {S} ∪ [N\(S ∪ {i})] ∪ {{i}})

= w({i}, {N\{i}} ∪ {{i}})

+
∑

j∈N\{i}

∑

S⊆N\{i,j}:S ̸=∅

|S|!(|N | − |S| − 2)!

(|N | − 1)!
w({i}, {S} ∪ [N\(S ∪ {i})] ∪ {{i}} ∪ {{j}})

and similarly,

∑

j∈N\{i}

∑

k∈N\{i,j}

∑

S⊆N\{i,j,k}

|S|!(|N | − |S| − 3)!

(|N | − 1)!
w({k}, [N\(S ∪ {i})] ∪ {S ∪ {i}} ∪ {{j}})

=
∑

k∈N\{i}

∑

S⫋N\{i,k}

|S|!(|N | − |S| − 2)!

(|N | − 1)!
w({k}, [N\(S ∪ {i})] ∪ {S ∪ {i}}).

What remains is clear because

∑

S=N\{i,j}

|S|!(|N | − |S| − 2)!

(|N | − 1)!
w({j}, [N\(S ∪ {i})] ∪ {S ∪ {i}})

=
1

|N | − 1
w({j}, {N\{j}} ∪ {{j}}).

✷

Theorem 3.3 Mechanism B implements the expected stand-alone value of a zero-monotonic

partition function form game (N,w) in SPE.
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Proof The proof is analogous to that of Theorem 3.1. The differences are in the construc-

tion of the SPE strategies and in showing that in any SPE, the final payment received by

each of the players coincides with each player’s expected stand-alone value. Hence, we first

explicitly construct an SPE that yields the expected stand-alone value as an SPE outcome.

To construct an SPE, consider the following strategies.

At stage 1, each player i ∈ N , announces bij = ej(N,w) − ej(N\{i}, w−i), for every

j ∈ N\{i}.

At stage 2, a proposer, player in, offers x
in
j = ej(N\{in}, w

−in) to every j ∈ N\{in}.

At stage 3, any player j ∈ N\{in} accepts any offer which is greater than or equal to

ej(N\{in}, w
−in) and rejects any offer strictly less than ej(N\{in}, w

−in).

At stage 4, a proposer withinN\{in}, player in−1, makes an offer x̃
in−1

in
= w({in}, {N\{in}}∪

{{in}}) to in.

At stage 5, player in, the “waiting” proposer for the set of players N , accepts any offer

greater than or equal to w({in}, {N\{in}}∪{{in}}) and rejects any offer strictly less than it.

One can readily verify that these strategies yield the expect stand-alone value for any

player and constitute an SPE.

Next we show that in any SPE the final payment received by each of the players coincides

with each player’s expected stand-alone value. We note that if i is the proposer, her final

payoff will be w(N, {N})− (w(N, {N})− w({i}, {N\{i}} ∪ {{i}}))−
∑

j ̸=i b
i
j, whereas if

j ̸= i is the proposer, i will get final payoff ei(N\{j}, w−j) + b
j
i . Hence the sum of the

payoffs to player i over all possible choices is (note that all net bids are zero)

w(N, {N})− (w(N, {N})− w({i}, {N\{i}} ∪ {{i}}))−
∑

j ̸=i

bij

+
∑

j ̸=i

(
ei(N\{j}, w−j) + b

j
i

)

= w({i}, {N\{i}} ∪ {{i}}) +
∑

j ̸=i

ei(N\{j}, w−j),

which, by Lemma 3.2, equals n · ei(N, v). Since the payoffs are the same regardless of who

is the proposer we see that the payoff of each player in any equilibrium must coincide with

the expected stand-alone value. ✷

The result of Theorem 3.3 is intriguing in two aspects. One is that the corresponding

Mechanism B also takes coalitional effects into account, but the final equilibrium out-
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come, i.e., the expected stand-alone value, only involves the externalities on stand-alone

coalitions. That is, by shifting the power to make a renegotiation offer from the rejected

proposer to the current proposer, we see a striking difference in equilibrium outcomes be-

tween Mechanism A and Mechanism B. The underlying key intuition is that Mechanism

B allows the proposer who has the power to offer in renegotiation to capture the resid-

ual surplus by offering the corresponding stand-alone payoffs to the rejected proposers.

The other interesting aspect is that, unlike the result of Theorem 3.2 in Ju and Wettstein

(2009), here Mechanism B implements the expected stand-alone value e(w) instead of

Ei(w) = w({i}, [N ]) + 1
|N |

(
w(N, {N})−

∑
j∈N w({j}, [N ])

)
which is a direct extension

of the equal surplus value for TU games. To see this, we offer the following observation.

Differing from a classical TU game without externalities, the environment that Mechanism

B lies in involves coalitional externalities. Suppose now player i has formed a coalition S

containing herself and has the power to make an offer in the renegotiation stage. When

she renegotiates with player j, who is the previously rejected proposer, j′s reservation

value at this moment is a stand-alone payoff w({j}, {S} ∪ [N\S]). This holds true for any

such renegotiation stage. Hence, in equilibrium, all such stand-alone payoffs resulting from

coalitional externalities will have to be considered.

The above mechanisms A and B take extreme and opposite treatments in case an offer

is rejected, which give a priori full power to either the rejected proposer or the proposer

chosen from the set of remaining players to make a second offer. A less biased option

would be giving equal power to the two proposers to make a second offer. That is, let the

two compete (by bidding) for the role of being the proposer to make a further offer when

they engage in renegotiation. This mechanism as formally described below implements the

consensus value for partition function form games.

Mechanism C. The rules of stages 1, 2 and 3 are the same as before. Below we will

mainly describe stages 4 and 5 where the difference from mechanisms A and D lies in. The

mechanism starts with S = N .

Stages 1, 2, and 3: Same as in Mechanism A.

Note that if the offer made at stage 3 is rejected, all players in S other than is proceed

again through stages 1 to 3 where the set of active players is S\{is}. In the current

mechanism, players in S\{is} actually compete for becoming the proposer is−1 so as

to win the right of renegotiating with is. The renegotiation between is−1 and is is in

fact a 2-player bidding game, where both of them simultaneously make bids at stage

4 and the winner will have the right to make a new offer to the other player at stage

5 while the other player accepts or rejects the offer.
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Stage 4: Players is and is+1 bid for the right to take the role of the proposer. Players is

and is+1 simultaneously submit bids b̃isis+1
and b̃

is+1

is
in R. The player with the larger

net bid pays the bid to the other player and assumes the role of the proposer. In

case of identical bids either of the two players is chosen as the proposer with equal

probability.

Stage 5: Depending on whether the proposer is is+1 or is, the game proceeds as in Mech-

anism A (when is+1 is the proposer) or Mechanism B (when is is the proposer). The

payoffs are adjusted by taking into account the bidding at stage 4.

Lemma 3.4 For any game w ∈ PGN we have

|N |ei(N,w)

= w({i}, {N\{i}} ∪ {{i}})

+
∑

j∈N\{i}

w(N, {N})− w(N\{j}, {N\{j}} ∪ {{j}})− w({j}, {N\{j}} ∪ {{j}})

|N | − 1

+
∑

j∈N\{i}

ei(N\{j}, w|N\{j})

for all i ∈ N .

Proof The proof can be constructed along the same line as that for Lemma 3.2. ✷

Theorem 3.5 Mechanism C implements the consensus value of a zero-monotonic partition

function form game (N,w) in SPE.

Proof The proof is again similar to that of Theorem 3.1. The differences are once more in

the construction of the SPE strategies and in claiming that payoffs must coincide with the

consensus value. To explicitly construct an SPE that yields the consensus value, consider

the following strategies.

At stage 1, each player i ∈ N announces bij = γj(N, v) − γj(N\{i}, ŵ−i),6 for every

j ∈ N\{i}.

At stage 2, a proposer, player in, offers x
in
j = γj(N\{in}, ŵ

−i) to every j ∈ N\{in}.

6The game (N\{i}, ŵ−i) is formally defined by ŵ−i(N\{i}, {N\{i}}) = w(N\{i}, {N\{i}} ∪ {{i}}) +
w(N,{N})−w(N\{i},{N\{i}}∪{{i}})−w({i},{N\{i}}∪{{i}})

2 and ŵ−i(S, pN\{i}) = w(S, pN\{i} ∪ {{i}}), for all

(S, pN\{i}) ∈ E(N\{i})\(N\{i}, N\{i}).
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At stage 3, any player j ∈ N\{in} accepts any offer which is greater than or equal to

γj(N\{in}, ŵ
−in) and rejects any offer strictly less than γj(N\{in}, ŵ

−in).

At stage 4, player in announces

b̃inin−1
= w(N\{in}, {N\{in}} ∪ {{in}})

+
w(N, {N})− w(N\{in}, {N\{in}} ∪ {{in}})− w({in}, {N\{in}} ∪ {{in}})

2
− w(N\{in}, {N\{in}} ∪ {{in}})

=
w(N, {N})− w(N\{in}, {N\{in}} ∪ {{in}})− w({in}, {N\{in}} ∪ {{in}})

2

while player in−1 announces

b̃
in−1

in
= w({in}, {N\{in}} ∪ {{in}})

+
w(N, {N})− w({in}, {N\{in}} ∪ {{in}})− w(N\{in}, {N\{in}} ∪ {{in}})

2
− w({in}, {N\{in}} ∪ {{in}})

=
w(N, {N})− w({in}, {N\{in}} ∪ {{in}})− w(N\{in}, {N\{in}} ∪ {{in}})

2
.

At stage 5, player in makes an offer x̃in
in−1

= w(N\{in}, {N\{in}} ∪ {{in}}) to in−1

and player in−1 makes an offer x̃
in−1

in
= w({in}, {N\{in}} ∪ {{in}}) to in. Moreover,

in accepts any offer greater than or equal to w({in}, {N\{in}} ∪ {{in}}) and rejects

any offer strictly less than it. Similarly, in−1 accepts any offer greater than or equal to

w(N\{in}, {N\{in}} ∪ {{in}}) and rejects any offer strictly less than it.

One can readily verify that these strategies yield the consensus value for partition function

form games for any player and constitute an SPE.

To show that in any SPE each player’s final payoff coincides with her consensus value, we

note that if i is the proposer her final payoff is given by

w(N, {N})− w(N\{i}, {N\{i}} ∪ {{i}})

−
w(N, {N})− w(N\{i}, {N\{i}} ∪ {{i}})− w({i}, {N\{i}} ∪ {{i}})

2
−
∑

j ̸=i

bij

whereas if j ̸= i is the proposer, the final payoff of i is γi(N\{j}, ŵ−j) + b
j
i .

Hence the sum of payoffs to player i over all possible choices of the proposer is (again note

that all net bids are zero)

w(N, {N})− w(N\{i}, {N\{i}} ∪ {{i}})
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−
w(N, {N})− w(N\{i}, {N\{i}} ∪ {{i}})− w({i}, {N\{i}} ∪ {{i}})

2
−
∑

j ̸=i

bij

+
∑

j ̸=i

(
γi(N\{j}, ŵ−j) + b

j
i

)

=
w(N, {N})− w(N\{i}, {N\{i}} ∪ {{i}}) + w({i}, {N\{i}} ∪ {{i}})

2

+
∑

j ̸=i

(
1

2
φi(N\{j}, ŵ−j) +

1

2
ei(N\{j}, ŵ−j)

)

=
w(N, {N})− w(N\{i}, {N\{i}} ∪ {{i}}) + w({i}, {N\{i}} ∪ {{i}})

2

+
1

2

∑

j ̸=i

(
φi(N\{j}, w|N\{j}) +

w(N,{N})−w(N\{j},{N\{j}}∪{{j}})−w({j},{N\{j}}∪{{j}})
2

n− 1

)

+
1

2

∑

j ̸=i

(
ei(N\{j}, w|N\{j}) +

w(N,{N})−w(N\{j},{N\{j}}∪{{j}})−w({j},{N\{j}}∪{{j}})
2

n− 1

)

=
1

2

(
w(N, {N})− w(N\{i}, {N\{i}} ∪ {{i}}) +

∑

j ̸=i

φi(N\{j}, w|N\{j})

)

+
1

2
w({i}, {N\{i}} ∪ {{i}})

+
1

2

∑

j ̸=i

(
w(N, {N})− w(N\{j}, {N\{j}} ∪ {{j}})− w({j}, {N\{j}} ∪ {{j}})

n− 1

)

+
1

2

∑

j ̸=i

ei(N\{j}, w|N\{j}),

which, since w(N, {N})−w(N\{i}, {N\{i}}∪{{i}})+
∑

j ̸=i φi(N\{j}, w|N\{j}) = nφi(N,w)

and by Lemma 3.4, equals n
(
1
2
φi(N,w) + 1

2
ei(N,w)

)
, and then yields nγi(N,w). Since the

payoffs are the same regardless of who is the proposer, the payoff of each player in any

equilibrium must coincide with the consensus value. ✷

Mechanism C can be generalized in a natural way by treating the players asymmet-

rically: bids made by one player are “worth more” than those made by the other. Such

a mechanism implements the generalized consensus value of a zero-monotonic partition

function form game.

Finally, we present the mechanism to implement the extended Shapley value for par-

tition function form games (McQuillin (2009)). The challenging part in this task is to

construct a reasonable bargaining protocol to well balance the two seemingly conflicting

forces: the incentive for all players to form the grand coalition N in order to achieve the
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extended Shapley value payoff versus the temptation posed to the rejected players to form

a coalition rather than singletons that is underlying the extended Shapley value. These

two forces seem to work in opposite directions since if the former dominates the latter the

threatening effect to constrain the payoff of S by N\S would be impossible, whereas if the

latter dominates the former the grand coalition would not be formed.

Mechanism D. The rules of stages 1, 2 and 3 are the same as before. We proceed to

describe stages 4 and 5.

Stage 4: The first rejected proposer in proposes a vector of payments yink ∈ R to any other

rejected proposer k ∈ {is+1, ..., in−1}.

Stage 5: Players is+1, ..., in−1, sequentially, either accept or reject the proposal made by

in at stage 4.

If at least one player rejects it, then the proposal is rejected. In this case the game

ends with the final partition of N being {S} ∪ [N\S]. That is, all the rejected

proposers is+1, ..., in will form singleton coalitions. The payoff to each j ∈ S\{is}

is given by
(∑n

t=s b
it
j

)
+ xis

j , the payoff to is is given by
(∑n

t=s+1 b
it
is

)
+ w(S, {S} ∪

[N\S]) −
∑

j∈S\{is}
bisj −

∑
j∈S\{is}

xis
j , the payoff to any im, m ∈ {s + 1, ..., n − 1}

is
∑n

t=m+1 b
it
im

+ w({im}, {S} ∪ [N\S]) −
∑

j∈N\{im,...,in}
bimj , and the payoff to in is

w({in}, {S} ∪ [N\S])−
∑

j∈N\{in}
binj .

If the proposal is accepted by all these players, then all the rejected proposers

is+1, ..., in form a coalition N\S and the game ends with the final partition of N

being {S} ∪ {N\S}. The payoff to each j ∈ S\{is} is the same as above, i.e.,(∑n

t=s b
it
j

)
+ xis

j , the payoff to is is given by
(∑n

t=s+1 b
it
is

)
+ w(S, {S} ∪ {N\S}) −∑

j∈S\{is}
bisj −

∑
j∈S\{is}

xis
j , the payoff to any im, m ∈ {s+1, ..., n−1} is

∑n

t=m+1 b
it
im
+

yinim−
∑

j∈N\{im,...,in}
bimj , and the payoff to in is w(N\S, {S}∪{N\S})−

∑n−1
m=s+1 y

in
im
−∑

j∈N\{in}
binj .

The following theorem shows that for any partition function form game (N,w) satisfying

zero-monotonicity, for all S ⊆ N and i ∈ S, the subgame perfect equilibrium (SPE)

outcomes of Mechanism D coincide with the payoff vector φ(N,w) as prescribed by the

extended Shapley value defined by McQuillin (2009).

Theorem 3.6 Mechanism D implements the extended Shapley value defined by McQuillin

(2009) of a zero-monotonic partition function form game (N,w) in SPE.

To better understand how this mechanism would lead to the outcome, it is worth pro-

viding an intuitive explanation of the reasoning underlying the behavior of the rejected
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proposers. Firstly, it is easy to see that stage 5 is essentially an ultimatum game where

any rejected proposer im, m ∈ {s + 1, ..., n − 1} will accept an offer if it is no worse than

his stand-alone payoff w({im}, {S} ∪ [N\S]). Hence, were he rejected, due to the zero-

monotonicity condition, there is sufficient incentive for in to make an acceptable proposal

as such to unite all these rejected proposers to form a coalition N\S. This has an impact

on is when making offers to players in S as she would know that the coalitional payoff of S

will indeed be constrained by N\S to be w(S, {S} ∪ {N\S}), which is the one underlying

the extended Shapley value. Next, we shall observe that, while the threat of N\S to S

is credible and therefore affects all the offers, given the zero-monotonicity, any proposer

im, m ∈ {s + 1, ..., n − 1}, would not have any incentive to make an offer be rejected to

end up with a stand-alone payoff. Thus, although the first rejected proposer, in, seemingly

has a big advantage to potentially gain a lot at the take-it-or-leave-it stage, it is actually

impossible for her to exploit it as she would be able to deduce that any subsequent proposer

will make an offer to be accepted. Reasoning backwards, the first proposer in, if her offer

is rejected by N\{in}, will in fact end up with her stand-alone payoff, too. Consequently,

in equilibrium, in will also make an offer that is accepted by all players in N\{in}.

Proof (of Theorem 3.6) The proof is an adaption of the above argument, preserving the

similar lines as that of Theorem 3.1. Thus, we omit most of it but explicitly construct an

SPE that yields the extended Shapley value. Consider the following strategies.

At stage 1, each player i ∈ N announces bij = φ
MQ
j (N, v)−φ

MQ
j (N\{i}, w̃−i),7 for every

j ∈ N\{i}.

At stage 2, a proposer, player in, offers x
in
j = φ

MQ
j (N\{in}, w̃

−i) to every j ∈ N\{in}.

At stage 3, any player j ∈ N\{in} accepts any offer which is greater than or equal to

φ
MQ
j (N\{in}, w̃

−in) and rejects any offer strictly less than φ
MQ
j (N\{in}, w̃

−in).

At stage 4, after the offer of is is accepted by players in S, player in announces yink =

w({k}, {S} ∪ [N\S]) to every k ∈ (N\S)\{in}.

At stage 5, player k, where k ∈ (N\S)\{in}, accepts any offer that is greater than or

equal to w({k}, {S} ∪ [N\S]) and rejects any offer strictly less than it. ✷

It is helpful to compare8 Mechanism A and Mechanism D to highlight the strategic dif-

ference between the externality-free Shapley value and the extended Shapley value. When

7The game (N\{i}, w̃−i) is formally defined by w̃−i(S, pN\{i}) = w(S, {S}∪{N\S}) for all (S, pN\{i}) ∈

E(N\{i}).
8We thank the anonymous referee for suggesting this comparison.
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at least one player rejects in’s proposal at stage 5 in Mechanism D, in’s proposal is re-

jected, and then all the players is+1, ..., in will receive their stand-alone payoffs. The same

happens in Mechanism A when is+1’s proposal is rejected, all the players is+1, ..., in will

receive their stand-alone payoffs. However, the two mechanisms differ significantly in the

case of acceptance. In Mechanism D, when in’s proposal is accepted at stage 5, all the

players is+1, ..., in−1 will receive the respective payoffs that are offered by in (in equilibrium,

these will be their stand-alone payoffs), but player in receives a large surplus that is, in

equilibrium, w(N \ S, {S} ∪ {N \ S}) −
∑n−1

m=s+1 w({im}, {S} ∪ [N \ S]). In Mechanism

A, when a player, say, is+1’s offer is accepted by is at stage 5, this player will receive

v(S ∪ {is+1}, {S ∪ {is+1}} ∪ [N \ (S ∪ {is+1})])− x̃
is+1

is
, which, in equilibrium, will be equal

to his marginal contribution to S. Moreover, acceptance at stage 5 in Mechanism D im-

plies coalition N \ S is formed, whereas in Mechanism A, the acceptance at stage 5 means

coalition S ∪ {is+1} is formed.

Obviously, to have the externality-free Shapley value would require the coalition struc-

ture of the non-coalitional players to be singletons, i.e., [N \ S]. On the contrary, the

extended Shapley value requires the coalition structure of the non-coalitional players to be

{N \ S}. Thus, these two values lie at the two extremes of coalition structures that may

be formed by the non-coalitional players. Naturally, one may ask whether we can capture

a situation in between.9 Since Mechanism A and Mechanism D differ in the roles assumed

by the rejected proposers in their further negotiations, we cannot follow the logic leading

to Mechanism C, which implemented a middle-ground value given by the consensus value.

However, one can construct a hybrid mechanism with an exogenous “flip a coin” stage

after stage 3 so that either Mechanism A or D is equally likely to follow stage 3. One can

readily check that this hybrid mechanism will implement the average of the externality-free

Shapley value and the extended Shapley value in subgame perfect equilibria.

4 Discussion and future research

By using a class of bidding mechanisms that differ in the power awarded to the proposer

chosen through a bidding process, this paper provided a strategic approach to several well-

studied axiomatic solution concepts for partition function form games. It highlights the

different non-cooperative rationales of the normative standards applied to environments

with externalities. The fact that the equilibria yield outcomes coinciding with these val-

ues exactly shows the power of the strategic approach, which provides additional insights

underlying the axiomatic values.

The only condition we imposed thus far on the partition function form games is a

9We thank the anonymous referee for raising this question.
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zero-monotonicity formulation that works for all the implementation mechanisms we have

constructed. Technically, this condition can be slightly weakened by specifying a specific

coalition structure for {N\S}. Considering the externality-free value, since the worth of

a coalition is defined by having all the other players form a singletons coalition, we can

introduce a weaker zero-monotonicity condition using only singleton coalitions, that is,

w(S, {S} ∪ [N\ S]) > w(S\{i}, {S\{i}} ∪ [N\ (S\{i})]) +w({i}, {S\{i}} ∪ [N\ (S\{i})])

for all S ⊆ N and i ∈ S, with which Mechanism A still implements the externality-

free value. By contrast, for the extended Shapley value, the weakened zero-monotonicity

would have {N\S} replacing [N\S]. Given that this paper aims to provide a general

framework for implementing and comparing different solution concepts, we used a single

zero-monotonicity condition rather than tailor-made variants for various solutions.

Even though zero-monotonicity only excludes a relatively small number of games, i.e.,

those where a player joining a coalition may not generate higher payoffs than keeping the

two parties apart, it is still worth investigating how to deal with arbitrary cooperative

environments. A possible way of handling this problem may follow the spirit of Pérez-

Castrillo and Wettstein (2001). Consider implementing the externality-free Shapley value

for partition function form games, for example. We now require a proposer to make a

proposal consisting of two components: a coalition structure and a vector of offers. Then,

if the proposal is accepted, all players will form the coalition structure (rather than only

a coalition as in Mechanism A) as specified by the proposer, and the proposer will pay

every player the promised offer. The proposer will receive all the payoffs generated by

each coalition in the coalition structure. Such a modified mechanism generates an efficient

coalition structure, and implements the Shapley value of the superadditive cover of the

game.

As we see, introducing the option of renegotiation can result in different equilibrium

outcomes and therefore implement various values. Throughout the paper we require a

renegotiation between a coalition S and the outside players to happen only when S has

already reached an agreement. We do not allow these outside players to play the same

bidding mechanism applied to S as that would usually lead to a cycle where no equilib-

rium may exist. However, this restriction can be weakened to a certain degree by imposing

alternative rules (except for the completely laissez-faire case) on renegotiation. Proceeding

in this manner might lead to alternative equilibrium outcomes, hence new values for parti-

tion function form games. Further interesting directions of research indeed lie in deriving

alternative equilibrium outcomes by reasonably modifying the bargaining protocols.

As an example, Borm, Ju and Wettstein (2015) successfully adopts such a bid-offer-

renegotiation approach to construct alternative mechanisms that give rise to new solution

concepts for partition function form games, namely the rational belief Shapley values.
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In contrast to the current paper, where the four solution concepts implemented rely on

concrete and fixed coalition structures (e.g., singleton coalition structure for the externality-

free Shapley value) when defining the worth of a coalition, the rational belief Shapley values

do not necessarily have a fixed coalition structure. Thus, in equilibrium, the corresponding

mechanisms induce the relevant players to form “rational” coalition structures appropriate

to various solution concepts. In the current paper, a coalition structure is not arbitrarily

chosen by any player but has been modeled into the negotiation protocols and will emerge

through bargaining.

While renegotiation opens up different ways of modeling the strategic bargaining pro-

cedures and serves as a standard building block to study all four solution concepts, we

acknowledge that the description of the related extensive form games can be cumbersome.

Developing new ideas to construct alternative implementation mechanisms could be very

relevant and meaningful. They may not necessarily share the same construct so long as

the distinct bargaining protocols can well shed light on the underlying strategic elements

of the value concepts and, ideally, be more succinct and straightforward.

Finally, we note that the results obtained in this paper can shed light on many concrete

economic and political situations characterized by externalities and cooperative interests

and conflicts, such as reaching environmental agreements, coordinating market behavior of

firms, the provision of public goods, cost sharing10 and resolving compensation disputes.
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Macho-Stadler, I., D. Pérez-Castrillo and D. Wettstein (2018), Values for Environments

with Externalities - The Average Approach, Games and Economic Behavior 108:

49-64.

Maskin, E. (2003), Bargaining, Coalitions and Externalities, Presidential Address to the

Econometric Society, Institute for Advanced Study, Princeton, US.

McQuillin, B. (2009), The Extended and Generalized Shapley Value: Simultaneous Con-

sideration of Coalitional Externalities and Coalitional Structure, Journal of Economic

Theory 144: 696-721.

Myerson, R.B. (1977), Values for Games in Partition Function Form, International Journal

of Game Theory, 6: 23-31.

Myerson, R.B. (1980), Conference Structures and Fair Allocation Rules, International

Journal of Game Theory 9: 169-182.
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