
This is a repository copy of Strategy before syntax: a new approach to programming
instruction for science undergraduates.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/229117/

Version: Preprint

Preprint:
Lewis, Alan M orcid.org/0000-0002-3296-7203 Strategy before syntax: a new approach to
programming instruction for science undergraduates. [Preprint] (Submitted)

v0

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution-NoDerivs (CC BY-ND) licence.
This licence allows for redistribution, commercial and non-commercial, as long as it is passed along
unchanged and in whole, with credit to the original authors. More information and the full terms of the licence
here: https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Strategy before syntax: a new approach to

programming instruction for science

undergraduates

Abstract

In most undergraduate science courses, programming teaching follows a “syntax-

first” approach; students are first taught the basics of a programming language,

and only later is programming incorporated into relevant scientific applications.

While this seems a natural approach, it is not without risks: science students may

not see the relevance of learning programming until late in a course and disen-

gage as a result. This risk is more acute for students who initially see themselves

as unable to learn to code; this self-perception is disproportionately preva-

lent in female students. We have investigated a novel “strategy-first” approach,

beginning by exposing students to pre-written code which can be applied to

problems they have seen in other parts of their undergraduate course, and then

breaking down the code into sections for them to modify, teaching the relevant

syntax along the way. This ensures students make connections between program-

ming and scientific concepts and produce an output relevant to their scientific

education from their first introduction to coding. We illustrate “strategy-first”

programming instruction through two case studies, demonstrating how instruc-

tors can implement this approach. We show that these case studies produced

effective learning outcomes, with strong improvements in students’ understand-

ing of both programming and chemistry. We also saw a statistically significant

change in students’ attitudes towards programming, becoming more confident

and less apprehensive; this change is more pronounced in female students. Finally,

we show that students identified a clear connection between their program-

ming instruction and their broader scientific education, a key advantage of the

“strategy-first” approach.

Keywords: programming knowledge; Python; science education, chemistry education;
programming pedagogy

1 Introduction

Undergraduate science programmes around the world are increasingly recognising the
need to incorporate programming teaching into their curricula (Fuchs et al., 2024;
Guzman et al., 2019; Hambrusch et al., 2009; Mears et al., 2025; Ringer McDonald,
2021; Valle & Berdanier, 2012; Weiss, 2017). This reflects the expectation of both

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092

employers and students that science graduates will enter the workforce with some
familiarity and competency with at least one programming language (Bright Network
Research, 2023; Eurostat, 2023; Hooley, 2021; World Economic Forum, 2025).

Although the exact nature of programming teaching varies from institution to
institution, the majority of published material for teaching programming to sci-
ence undergraduates shares a broadly similar approach (Bravenec & Ward, 2023;
Cawthorne, 2021; Cumby et al., 2023; Guzman et al., 2019; Lee et al., 2023; Mecca
et al., 2021; Vallejo et al., 2022; van Staveren, 2022), even when novel delivery meth-
ods are introduced (Margulieux et al., 2020; Sun et al., 2024, 2021). This traditional
approach begins by teaching students the basics of the programming language, defin-
ing variables, simple data structures, loops, if statements, and functions, and then
combines those building blocks into more and more complex programmes until stu-
dents are able to construct a program which can be applied to a scientific problem.
We will call this a “syntax-first” approach, and will return to this terminology in more
detail shortly.

While on first inspection a syntax-first approach appears to be the natural, and
perhaps only, way to teach programming skills, it is not without drawbacks. For exam-
ple, students may not see or understand the relevance of learning programming to their
scientific education1 until very late in a syntax-first course (Cawthorne, 2021), and as
a result may disengage before reaching that point; similar risks are well known when
teaching mathematics to chemistry and physics students (Bain et al., 2018; Haraldsrud
& Odden, 2023; Redish & Kuo, 2015; Sherin, 2001). This risk is more acute for stu-
dents who have previous bad experience of learning programming, or see themselves
as unable to learn programming; this self-perception is disproportionately prevalent
in female students (Koch et al., 2008; Mishkin, 2019). A syntax-first approach can
also limit the number and breadth of scientific applications which can be introduced
during a programming course, if basic syntax is first taught in the absence of sci-
entific context. Therefore, in this paper we will introduce a novel alternative to the
syntax-first approach, designed to avoid or mitigate these drawbacks, which we call a
“strategy-first” approach.

The remainder of the paper is organised as follows: we first introduce some lan-
guage describing programming knowledge, which will aid the comparison of these
approaches, and then more formally describe the syntax-first approach and define our
alternative strategy-first approach. We then describe two case studies in which this
approach has been implemented to teach programming to chemistry undergraduate
students. Finally, we use student surveys and instructor observations from these case
studies to evaluate the effectiveness of strategy-first teaching, both as a tool to teach
programming and chemistry, and in demonstrating strong student engagement and
the relevance of programming teaching to scientific problems.

1For the purposes of this article, computer science students are excluded from the broader group of
“science students”.

2

093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

2 Defining a strategy-first approach to programming

teaching

In their influential article, McGill and Volet provide a framework for describing and
analysing programming teaching and learning (McGill & Volet, 1997). They draw on
three types of programming knowledge introduced by Bayman and Mayer: syntactic,
conceptual, and strategic knowledge (Bayman & Mayer, 1988). These are defined as:

• Syntactic knowledge: knowledge of fundamental features of a programming language
(e.g. how to define a string variable; how to add two integers together).

• Conceptual knowledge: an understanding of how individual pieces of syntax can be
combined to achieve a specified goal.

• Strategic knowledge: the ability to deconstruct a large application into a series of
smaller problems, which can be solved by the application of conceptual knowledge.

McGill and Volet combine these categories of programming knowledge with forms
of knowledge defined in cognitive psychology literature, declarative and procedural
knowledge (Anderson, 1982; Gagné et al., 1993). In doing so, they divide syntactic
knowledge into two subcategories: declarative-syntactic knowledge, which consists of
the ability to recognize basic syntactic facts of a particular programming language,
and procedural-syntactic knowledge, which enables students to write syntactically
correct lines of code (although not necessarily understand the concepts underpin-
ning them). Similarly, conceptual knowledge is divided into declarative-conceptual
knowledge, which allows students to recognize how combinations of programming
statements in pre-written code combine to achieve a larger goal, and procedural-
conceptual knowledge, which enables students to write such code themselves (McGill
& Volet, 1997).

Having introduced this terminology, we can more formally define the idea of a
syntax-first approach to teaching programming as one which expects a student to begin
by learning declarative-syntactic knowledge, applying it to gain procedural-syntactic
knowledge, then to synthesise their syntactic knowledge to develop declarative-
conceptual and procedural-conceptual knowledge, before finally arriving at strategic
knowledge. This is illustrated schematically in Figure 1. While this approach appears
to be widespread, it is not necessarily optimal. Even as they introduced the ideas
of syntactic and conceptual knowledge, Bayman and Mayer noted that teaching con-
ceptual knowledge prior to syntactic knowledge produced significant improvements in
students’ knowledge transfer and problem solving, especially amongst students with a
weaker programming background (Bayman & Mayer, 1988). Indeed, a number of stud-
ies have shown that an overemphasis on syntactic knowledge leads to what has been
described as “fragile” knowledge, particularly among less confident students, resulting
in students not being able to, or not believing that they are able to, apply their syn-
tactic knowledge to solve conceptual problems (Linn & Clancy, 1992; McGill & Volet,
1997; Oliver & Malone, 1993; Snow & Lohman, 1984; Volet & Lund, 1994).

In this paper, we propose taking Bayman and Mayer’s suggestion one step further:
beginning with instruction of strategic knowledge, followed by conceptual and then

3

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

'HFODUDWLYH�V\QWDFWLFDO

7HDFK�6\QWD[

3URFHGXUDO�V\QWDFWLF

$SSO\�6\QWD[

6WUDWHJLF

'HFODUDWLYH�FRQFHSWXDO

6WXGHQWV

NQRZ�V\QWD[

$GG

FRPSOH[LW\

$SSO\�WR�

VFLHQWLILF�SUREOHP

6WXGHQWV�GRQ
W

NQRZ�V\QWD[

6WDUW

Fig. 1 A schematic representation of the syntax-first approach to programming teaching. Blue rect-
angles indicate instructor’s actions; red hexagons are the student’s actions. The lines are labelled
with the category of programming knowledge developed following the action preceding it; italic text
is used indicate the appropriate path at decision points

finally syntactic knowledge, following the diagram shown in Figure 2. This is possi-
ble thanks to the context of the programming instruction being undertaken: we will
be considering scientific topics and concepts which students have already encountered
elsewhere in their undergraduate programme, and introducing programming skills
which can help them better understand and apply these concepts. As a result, stu-
dents already have a measure of strategic knowledge about the problem to be solved,
and some of the steps which must be undertaken to solve it. Therefore, strategy-first
programming instruction focuses first on how these steps can be converted into a form
which a computer can solve (introducing conceptual knowledge), and then finally gives

4

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

%UHDN�GRZQ

VFLHQWLILF�SUREOHP

3URYLGH�SUH�ZULWWHQ

FRGH

7HDFK�6\QWD[

$SSO\�6\QWD[

6WUDWHJLF

3URFHGXUDO�V\QWDFWLF

3URFHGXUDO�V\QWDFWLF

'HFODUDWLYH�V\QWDFWLFDO

'HFODUDWLYH�FRQFHSWXDO

0RYH�WR�D

QHZ�FRQFHSW

'HYHORS

FXUUHQW�FRQFHSW

6WDUW

Fig. 2 A schematic representation of the strategy-first approach to programming teaching. Blue
rectangles indicate instructor’s actions; red hexagons are the student’s actions. The lines are labelled
with the category of programming knowledge developed following the action preceding it; italic text
is used indicate the appropriate path at decision points

students the ability to modify parts of some of these steps to achieve specific goals
(introducing syntactic knowledge). This is achieved by providing students with pre-
written code which solves a simplified version of the scientific problem, and teaching
students how each section of the code solves a particular part of the larger problem
(developing declarative-conceptual knowledge). One or more of these sections are then
discussed in further detail, describing the function of individual lines of code (teaching
declarative-syntactic knowledge), and asking students to modify these lines of code to
change the final output of the program (providing procedural-syntactic knowledge).2

The strategy-first approach allows students to apply programming skills to scientific
problems they are already familiar with from their very first exposure to programming
teaching.

2Procedural-conceptual knowledge is the hardest for students to acquire, and can usually only be learned
over the course of multiple teaching sessions; this is true for both syntax-first and strategy-first approaches
(Kwon, 2017; McGill & Volet, 1997).

5

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

3 Case Studies of Strategy-First Teaching

To illustrate how strategy-first teaching can be implemented in practice, in this section
we will describe two workshops designed to follow the approach illustrated in Figure
2. These workshops were delivered to second- and third-year Chemistry students at
the author’s University. The focus here is how the practice of the workshop aligns with
the pedagogical approach outlined in the previous section; as such some details and
background are omitted. The interested reader can find all of the workshop materials
at the author’s github page.

3.1 Case study 1: Atmospheric chemistry

This workshop is designed to help students apply theoretical knowledge recently
acquired from a lecture course on atmospheric chemistry to a real-world dataset:
hourly measurements of the concentration of three pollutants, NO, NO2 and O3, in
the centre of Stoke, UK, between 2017 and 2020. This data is publicly available from
the UK-AIR database (Department for Environment, Food and Rural Affairs, 2024).
The goal of the workshop is to create a series of graphs plotting the concentrations of
each of these pollutants, and for students to use their chemical knowledge to interpret
the related changes in concentration of each pollutant revealed by those graphs.

At the start of the workshop students are provided with both the complete dataset
and a Python script which initially produces a single graph. The students are encour-
aged to run the code, and to use the code structure and comments, the information
provided in the dataset, and the graph produced by the code to deduce what they
can about the overall purpose of the code. In doing so, they develop strategic knowl-
edge: they can apply their chemical knowledge to understand the problem in general,
and can begin to see how that is broken down into programming tasks (loading data,
processing data, plotting a graph).

After obtaining their first graph, students are guided through a series of modi-
fications to the script to produce more complex graphs using different parts of the
dataset. At each stage, the same pattern was followed: the instructor identifies the
part of the Python script relevant to the modification (teaching declarative-conceptual
knowledge), and explains any new syntax the student would need to make these
modifications (teaching declarative-syntactical knowledge). The students then make
the appropriate modifications to the code, and run it to obtain a new or improved
graph (developing procedural syntactic knowledge). Later in the workshop, less input
is required from the instructor, as students become more able to identify the parts
of the code they need to modify as their declarative-conceptual knowledge develops,
and increasingly possess the declarative-syntactical knowledge needed to make the
necessary modifications.

In the course of the workshop, students complete the following tasks, with each
task introduced and completed following the pattern described above:

1. Identifying lines of code which decorate the plot, and modifying them to include
axis labels describing the dependent and independent variables and their units.

2. Adding new data series corresponding to different pollutants to the plots, using
existing code as a template.

6

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

3. Using a for loop to calculate averaged concentrations of pollutants over a number
of days, and plotting the averaged data.

4. Using array indexing to access broader parts of the pollutant dataset, to plot and
rationalise the impact of COVID on the concentration of pollutants.

After each task is completed, students are encouraged to consider the chemical impli-
cations and explanations for the data they have just plotted. In doing so, the focus
of the workshop is always brought back to reinforcing chemistry knowledge they are
already familiar with, and demonstrating the value of the programming skills they are
learning to their chemical education.

3.2 Case study 2: Hückel theory

This workshop introduces third-year students to Hückel theory (Hückel, 1931; Nagaoka
et al., 2018), which they are not expected to have encountered before, as a method
of calculating molecular orbital coefficients and energies, which we expect students to
have a strong understanding of from previous lecture courses. This workshop is deliv-
ered using a Jupyter notebook through Google Colaboratory (Kluyver et al., 2016),
allowing the straightforward integration of chemistry and programming teaching notes
into a single document; this is common practice in Python-based chemistry instruction
(Bravenec & Ward, 2023; Heras-Domingo & Garay-Ruiz, 2024; Menke, 2020; Vallejo
et al., 2022; van Staveren, 2022).

The workshop begins by describing the assumptions and mathematics of Hückel
theory. Since this is a topic students are less familiar with, the strategic knowl-
edge development, namely how useful chemical information can be obtained from the
assumptions of Hückel theory, is more instructor-led than is suggested in Figure 2.
However, it is still critical that students understand how the overall problem is broken
down into component tasks before beginning the programming portion of the work-
shop, to enable them to identify sections of code which correspond to each task, and
because the component tasks relate more closely to scientific concepts with which they
are familiar (in this case molecular orbitals and their energies). Having established
in principle the steps which must be taken to solve a problem using Hückel theory,
the workshop then moves straight to an application, providing students with code
which executes a Hückel theory calculation producing molecular orbital energies and
coefficients for a particular molecule, 1,3-butadiene.

The remainder of the workshop follows the same repeating pattern described in
Section 3.1. Students are asked to make a series of small modifications to the pro-
vided code to achieve some specific goals. To enable them to do this, the instructor
first conveys declarative-conceptual knowledge, which in this context primarily means
identifying how specific parts of the code correspond to the mathematical formal-
ism of Hückel theory. They then provide declarative-syntactical knowledge, explaining
enough syntax to enable students to achieve the set tasks. Students apply this syntax
to complete these tasks, in so doing developing their procedural-syntactic knowledge.
Following this pattern, students are expected to:

1. Use array indexing to print and manipulate orbital energies of 1,3-butadiene.

7

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

2. Use array indexing to print and interpret molecular orbital coefficients of 1,3-
butadiene.

3. Use a for loop to calculate energetic properties of a series of linear conjugated
hydrocarbons.

4. Create graphs to illustrate the trends in these energetic properties.
5. Extension material: Modify the provided code to produce a function which

constructs a Hückel Hamiltonian for cyclic molecules, rather than linear ones.

The emphasis of the workshop remains on the chemical application of the results
obtained from programming. For example, following task 2 students are encouraged
to think about how their results related to the selectivity of an organic reaction they
are familiar with from previous undergraduate lecture courses. This enables them to
see the physical reason behind a reactivity “rule” which they have previously been
taught, reinforcing the potential value of programming for a chemistry undergraduate.

4 Evaluating strategy-first teaching

The workshops described in the preceding case studies were used to evaluate the
effectiveness of strategy-first teaching. To help determine this, students completed
a survey measuring their attitudes towards programming and their aptitude in the
topics covered in the workshop both immediately before and immediately after the
workshop. The two-hour workshops were delivered to one quarter of a year group at
a time (between 30 and 40 students) in a dedicated PC classroom, with the relevant
software pre-installed on all machines to ensure a uniform programming environment.

These workshops were introduced at a time when programming teaching in the
chemistry programme at the author’s University was very limited: the students
involved in the study had only attended one or two programming workshops in their
previous year of study, which had introduced basic mathematical operations and sim-
ple data structures in Python in the context of analysing first-order kinetics and
predicting isotope patterns of ionic fragments in mass spectrometry. As such, students
entered these workshops with a wide range of abilities and interest in programming,
depending on their previous educational background. With this in mind, the objectives
of the workshops were to:

1. Demonstrate an application of programming relevant to chemistry.
2. Familiarise students with the operation of Python scripts/notebooks.
3. Teach students some basic Python syntax.
4. Enable students to modify Python code informed by their chemical knowledge to

produce new outputs.

In turn, the primary objectives of this study are to:

1. Establish whether the pedagogical objectives described above were met.
2. Determine whether a strategy-first approach produces a measurable difference in

students’ attitudes towards programming.

Three approaches were used to evaluate the impact of these workshops: instruc-
tor perceptions from both the author and independent observers, a brief assessment

8

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

of students’ knowledge, and an analysis of the students’ perceptions of and attitudes
towards the workshop. The majority of survey questions were common to both work-
shops. The surveys were completed during the workshops, and response rates amongst
the third-year students, who took the Hückel theory workshop, were very high, with 74
of the 78 students registered in attendance responding (95%); response rates amongst
the second-year students, who took the atmospheric chemistry workshop, were signifi-
cantly lower, with only 41 responses from 122 attending students (34%). Each question
on the survey was optional, resulting in lower response rates for some survey questions.

4.1 Instructor observations

Students’ engagement with the chemistry aspects of the workshops was very positive,
with a clear interest and desire to progress with the programming activity in order
to understand the chemical implications of the output they obtained. In particular,
many students experienced a moment of realisation and satisfaction when they con-
nected output from the code they were writing to chemistry they had learned in other
lecture courses. In the atmospheric chemistry workshop they were able to interpret
real-world data they had plotted using the simple reaction models covered in their
atmospheric chemistry lectures, and in the Hückel theory workshop they used molec-
ular orbital coefficients they had calculated to predict selectivity of simple organic
reactions. Students’ pleasure in making these connections was reflected in a number
of their responses when asked in the survey what they enjoyed about the workshop:
“writing code can be used to find out information about molecules and applying it to
real chemistry examples”; “Learning how to use python in more advanced chemistry”;
“I liked learning more about how programming can be applied to chemical contexts”.

However, students were often initially reluctant to attempt programming problems,
feeling unable to apply the examples of syntax provided to the problem they were
attempting to solve. This is a potential weakness of the strategy-first approach: stu-
dents lack the confidence, and in some cases the conceptual knowledge, to go through
the process of trial and error sometimes needed to apply newly introduced syntax
to the problem to be solved. After encouragement, their confidence grew throughout
the workshop and they made much faster progress; this observation is consistent with
students’ reported self-perceptions, which are discussed later.

These perceptions were supported by the observing instructors, who provided writ-
ten feedback on the same day as the workshop, noting that “students were very much
engaged”, and “even those who seemed relatively disengaged and uninterested at the
start of the sessions seemed to get more engaged as the session progressed”. One
instructor attributed this to the strategy-first approach, noting that the “accessible
nature of the material enabled even those who see themselves as ‘not being good at
computers’ to see progress”. Another observed the significant “challenge in carrying
out the programming task at the same time as understanding chemistry”, and that
this challenge is often overcome by “effective interaction with students, through ask-
ing well-directed and thoughtful questions”; while this will always be a necessary part
of programming education, it would be beneficial to improve the workshop design to
reduce the need for intensive one-to-one interactions, to allow staff to interact with
more students during the workshop.

9

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

Table 1 The average and change in students’ marks awarded for the
programming and chemistry questions, along with the associated Cohen’s d value.
Marks were given on a scale from zero to four. In the column headings, the values
of n refer to the number of responses to the programming and chemistry questions,
respectively. Responses which were missing an answer to the post-workshop
question were excluded

Atmospheric chemistry
(n=27/26)

Hückel theory
(n = 57/56)

Programming

Pre-workshop average 0.59 1.30
Post-workshop average 1.56 2.39
Change 0.96 1.08
Cohen’s d 1.09 1.02

Chemistry

Pre-workshop average 2.15 0.77
Post-workshop average 2.5 2.46
Change 0.34 1.17
Cohen’s d 0.29 1.15

4.2 Assessing students’ knowledge

To assess what students had learned during each workshop, students were asked one
question about programming and one about chemistry as part of the survey, with the
same question asked both before and after the workshop. To analyse these responses,
we subsequently “marked” students’ answers between zero and four, where zero indi-
cates no meaningful response is given, four is a perfect answer, and partially correct
answers were scored in between. Table 1 summarizes the responses to these questions,
with the effect of the workshop described by Cohen’s d statistic for paired samples
(Cohen, 2013). This reveals a “large” effect (d > 0.8)(Sawilowsky, 2009) on stu-
dents’ understanding of both the programming and chemistry content covered in the
workshop, with the exception of their understanding of the chemistry content of the
atmospheric chemistry workshop. The smaller (but still positive) effect observed here
is not surprising, given this workshop related to more familiar chemistry, as evidenced
by the high pre-workshop average score for this question. Overall, these results sug-
gest that the workshops are effective in achieving the pedagogical objectives described
above.

4.3 Evaluating students’ perceptions of programming

Finally, we investigated how students’ perceptions of programming were impacted
by the workshops, and in particular how gender affected these perceptions. For this
analysis, the data from both workshops were combined (n = 115). The gender makeup
of the respondents is shown in Figure 3; for clarity and to protect the anonymity of
respondents the following histograms exclude non-binary respondents or those who
preferred not to provide information about their gender, due to the small sample sizes
from these groups.

10

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

Female

55.7%

Male

34.8%

Prefer not to say
6.1%

Non-Binary3.5%

Fig. 3 The gender make-up of the respondents to the survey across all workshops (n = 115)

Students were asked to score their feelings towards using Python as a tool before
and after the workshop on a seven-point Likert scale, with one corresponding to “Con-
fident” and seven corresponding to “Apprehensive” (Figure 4). Prior to the workshop,
participants were apprehensive, with the median score of female students being six
and the median score of male students being five. After the workshop, students were
significantly more confident, with the median score of both male and female students
decreasing to four; the mean response fell from 4.95 to 4.06, indicating a significant
increase in the confidence of the students after the workshop (p < 10−5).

Interestingly, this shift was much more pronounced amongst female students: prior
to the workshop, female students were much more likely to respond with a score of
six or seven than male students, whereas after the workshop this trend was reversed.
One possible explanation for this observation is that female students were much more
likely than male students to strongly agree with the statement “I was able to connect
today’s workshop to chemistry topics I have studied before” (Figure 5). This aligns
with one motivation for introducing strategy-first programming teaching for science
undergraduates - students’ motivation to learn programming, and their confidence
in their ability to write code, is enhanced when they can clearly see the value of
programming to the rest of their undergraduate programme.

5 Conclusions

In this work we have introduced an alternative approach to programming instruction
for science undergraduates. This strategy-first approach begins not from the funda-
mentals of programming syntax, but from working code which tackles a scientific
problem familiar to undergraduate students from other parts of their undergraduate
studies, and breaks it down into programming concepts and then specific syntactic
knowledge which students need to use to modify the code to achieve the goals of the
workshop. We have provided a template of a pedagogical approach too rarely adopted

11

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

1 2 3 4 5 6 7
1 = Confident, 7 = Apprehensive

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

Pre-workshop
Female
Male

1 2 3 4 5 6 7
1 = Confident, 7 = Apprehensive

0.0

0.1

0.2

0.3

D
en

si
ty

Post-workshop

Fig. 4 Histograms showing the response of students to the question “How would you describe
your feelings about using Python as a tool?” on a seven-point Likert scale, with one corresponding
to “Confident” and seven corresponding to “Apprehensive”. Above: responses collected before the
workshop. Below: responses collected after the workshop. In total, there are 64 female respondents,
and 40 male respondents

in the science education literature; even those workshops which do follow a problem-
oriented structure are usually not intended for use by programming novices (De Haan
et al., 2021; Hirschi et al., 2023; Menke, 2020), notwithstanding a small number of
exceptions (Valle & Berdanier, 2012). The assumption that participants already have
syntactic knowledge excludes these studies from being truly strategy-first approaches.
We hope that the outline and cases studies of strategy-first teaching described here
will equip other educators to adopt this approach.

We have provided evidence from student surveys that the strategy-first work-
shops introduced here are effective in educating students about both programming

12

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

1 2 3 4 5 6 7
1 = Strongly Disagree, 7 = Strongly Agree

0.00

0.05

0.10

0.15

0.20

0.25

0.30
D
en

si
ty

Female
Male

Fig. 5 Histogram showing the agreement of students to the statement “I was able to connect today’s
workshop to chemistry topics I have studied before” on a seven-point Likert scale, with one corre-
sponding to “Strongly Disagree” and seven corresponding to “Strongly Agree”. In total, there are 64
female respondents, and 40 male respondents

and chemistry, and in developing students’ confidence with programming and engag-
ing them with the workshops. Students highlighted being able to make connections
between programming and chemistry as a part of the workshop they particularly
enjoyed, which is one of the key goals of the strategy-first approach, and stands in
direct contrast to traditional syntax-first approaches to introductory programming
teaching. We found that female students in particular responded well to this style
of workshop, with female students being more likely than males students to describe
themselves as apprehensive about programming before the workshop, but less likely to
do so after the workshop. While much has been written about the gendered attitudes
towards programming (Koch et al., 2008; Mishkin, 2019), it appears that very little
evidence has been collected about gendered perceptions of programming education
specifically in a science context. Therefore, future work will investigate in more detail
the gendered impact of the strategy-first approach to programming-based chemistry
education. In addition, further strategy-first workshops will be developed; for exam-
ple, this approach will enable us to introduce machine learning concepts to students
with limited programming experience.

13

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

6 Declarations

6.1 Availability of data and materials

All of the teaching materials and survey questions described in this article can be
found at the author’s github page. Survey data is not publicly available to protect the
anonymity of respondents; queries about the survey data should be directed to the
corresponding author.

6.2 Funding

This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

References

Anderson, J.R. (1982). Acquisition of Cognitive Skill. Psychological Review , 89 (4),
369–406, https://doi.org/10.1037/0033-295x.89.4.369

Bain, K., Rodriguez, J.-M.G., Moon, A., Towns, M.H. (2018, April). The charac-
terization of cognitive processes involved in chemical kinetics using a blended
processing framework. Chemistry Education Research and Practice, 19 (2),
617–628, https://doi.org/10.1039/C7RP00230K

Bayman, P., & Mayer, R.E. (1988). Using Conceptual Models to Teach BASIC
Computer Programming. Journal of Educational Psychology , 80 (3), 291–298,
https://doi.org/10.1037/0022-0663.80.3.291

Bravenec, A.D., & Ward, K.D. (2023, February). Interactive Python Notebooks for
Physical Chemistry. Journal of Chemical Education, 100 (2), 933–940, https://
doi.org/10.1021/acs.jchemed.2c00665

Bright Network Research (2023). What do graduates want? Retrieved 2025-01-14,
from https://employers.brightnetwork.co.uk/sites/default/files/2024-
02/BN%20Research%20Report%202023%20digital.pdf

Cawthorne, L. (2021, October). Invited viewpoint: Teaching programming to stu-
dents in physical sciences and engineering. Journal of Materials Science, 56 (29),
16183–16194, https://doi.org/10.1007/s10853-021-06368-1

Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences (2nd ed.).
New York: Routledge.

14

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

Cumby, J., Degiacomi, M.T., Erastova, V., Güven, J.J., Hobday, C.L., Mey, A.S.J.S.,
. . . Szabla, R. (2023, May). Course Materials for an Introduction to Data-Driven
Chemistry. Journal of Open Source Education, 6 (63), 192, https://doi.org/
10.21105/jose.00192

De Haan, D.O., Schafer, J.A., Gillette, E.I. (2021, October). Using a Modular
Approach to Introduce Python Coding to Support Existing Course Learning
Outcomes in a Lower Division Analytical Chemistry Course. Journal of Chemical

Education, 98 (10), 3245–3250, https://doi.org/10.1021/acs.jchemed.1c00456

Department for Environment, Food and Rural Affairs (2024). Data Archive - Defra,

UK. Retrieved 2025-01-08, from https://uk-air.defra.gov.uk/data/

Eurostat (2023). ICT specialists - statistics on hard-to-fill vacancies in enterprises.

Retrieved 2025-04-16, from https://ec.europa.eu/eurostat/statistics-
explained/index.php?title=ICT specialists - statistics on hard-to-
fill vacancies in enterprises

Fuchs, W., McDonald, A.R., Gautam, A., Kazerouni, A.M. (2024, August). Rec-
ommendations for Improving End-User Programming Education: A Case Study
with Undergraduate Chemistry Students. Journal of Chemical Education,
101 (8), 3085–3096, https://doi.org/10.1021/acs.jchemed.4c00219

Gagné, E.D., Yekovich, C.W., Yekovich, F.R. (1993). The Cognitive Psychology of

School Learning. HarperCollins College Publishers.

Guzman, L.M., Pennell, M.W., Nikelski, E., Srivastava, D.S. (2019, December).
Successful Integration of Data Science in Undergraduate Biostatistics Courses
Using Cognitive Load Theory. CBE—Life Sciences Education, 18 (4), ar49,
https://doi.org/10.1187/cbe.19-02-0041

Hambrusch, S., Hoffmann, C., Korb, J.T., Haugan, M., Hosking, A.L. (2009, March).
A multidisciplinary approach towards computational thinking for science majors.
SIGCSE Bull., 41 (1), 183–187, https://doi.org/10.1145/1539024.1508931

Haraldsrud, A., & Odden, T.O.B. (2023, May). From Integrated Rate Laws to Inte-
grating Rate Laws: Computation as a Conceptual Catalyst. Journal of Chemical

Education, 100 (5), 1739–1750, https://doi.org/10.1021/acs.jchemed.2c00881

Heras-Domingo, J., & Garay-Ruiz, D. (2024, November). Pythonic Chemistry: The
Beginner’s Guide to Digital Chemistry. Journal of Chemical Education, 101 (11),

15

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

4883–4891, https://doi.org/10.1021/acs.jchemed.4c00840

Hirschi, J.S., Bashirova, D., Zuehlsdorff, T.J. (2023, November). Opening the Density
Functional Theory Black Box: A Collection of Pedagogic Jupyter Notebooks.
Journal of Chemical Education, 100 (11), 4496–4503, https://doi.org/10.1021/
acs.jchemed.3c00535

Hooley, T. (2021). A mixed bag: Employer perspectives on graduate

skills. Retrieved 2025-01-14, from https://luminate.prospects.ac.uk/a-mixed-
bag-employer-perspectives-on-graduate-skills

Hückel, E. (1931, March). Quantentheoretische Beiträge zum Benzolproblem.
Zeitschrift für Physik , 70 (3), 204–286, https://doi.org/10.1007/BF01339530

Kluyver, T., Ragan-Kelley, B., Perez, F., Granger, B., Bussonnier, M., Frederic, J., . . .
Willing, C. (2016). Jupyter Notebooks – a publishing format for reproducible
computational workflows. Positioning and Power in Academic Publishing:

Players, Agents and Agendas (pp. 87–90). IOS Press.

Koch, S.C., Müller, S.M., Sieverding, M. (2008, December). Women and computers.
Effects of stereotype threat on attribution of failure. Computers & Education,
51 (4), 1795–1803, https://doi.org/10.1016/j.compedu.2008.05.007

Kwon, K. (2017, October). Novice programmers’ misconception of programming
reflected on problem-solving plans. International Journal of Computer Science

Education in Schools , 1 (4), 14–24, https://doi.org/10.21585/ijcses.v1i4.19

Lee, H.-Y., Lin, C.-J., Wang, W.-S., Chang, W.-C., Huang, Y.-M. (2023, August). Pre-
cision education via timely intervention in K-12 computer programming course
to enhance programming skill and affective-domain learning objectives. Inter-

national Journal of STEM Education, 10 (1), 52, https://doi.org/10.1186/
s40594-023-00444-5

Linn, M.C., & Clancy, M.J. (1992, March). The case for case studies of programming
problems. Communications of the ACM , 35 (3), 121–132, https://doi.org/
10.1145/131295.131301

Margulieux, L.E., Morrison, B.B., Decker, A. (2020, May). Reducing withdrawal and
failure rates in introductory programming with subgoal labeled worked examples.
International Journal of STEM Education, 7 (1), 19, https://doi.org/10.1186/

16

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

s40594-020-00222-7

McGill, T.J., & Volet, S.E. (1997, March). A Conceptual Framework for Analyzing
Students’ Knowledge of Programming. Journal of Research on Computing in

Education, 29 (3), 276–297,

Mears, M., Dash, L., Galloway, R., Karpenko, C., Labrosse, N., Mason, V., Quinn,
M. (2025, April). Mixed-Methods Study of First-Year Physics Students: Soft
Barriers to Coding. Journal of Science Education and Technology , 34 (2), 420–
435, https://doi.org/10.1007/s10956-025-10198-0

Mecca, G., Santoro, D., Sileno, N., Veltri, E. (2021, March). Diogene-CT: Tools
and methodologies for teaching and learning coding. International Journal of

Educational Technology in Higher Education, 18 (1), 12, https://doi.org/10
.1186/s41239-021-00246-1

Menke, E.J. (2020, October). Series of Jupyter Notebooks Using Python for an
Analytical Chemistry Course. Journal of Chemical Education, 97 (10), 3899–
3903, https://doi.org/10.1021/acs.jchemed.9b01131

Mishkin, A. (2019, February). Applying Self-Determination Theory towards Motivat-
ing Young Women in Computer Science. Proceedings of the 50th ACM Technical

Symposium on Computer Science Education (pp. 1025–1031). New York, NY,
USA: Association for Computing Machinery.

Nagaoka, S.-i., Kokubo, T., Teramae, H., Nagashima, U. (2018, September). Practical
Training in Simple Hückel Theory: Matrix Diagonalization for Highly Symmet-
ric Molecules and Visualization of Molecular Orbitals. Journal of Chemical

Education, 95 (9), 1579–1586, https://doi.org/10.1021/acs.jchemed.8b00244

Oliver, R., & Malone, J. (1993, June). The Influence of Instruction and Activity on
the Development of Semantic Programming Knowledge. Journal of Research on

Computing in Education, 25 (4), 521–533, https://doi.org/10.1080/08886504
.1993.10782071

Redish, E.F., & Kuo, E. (2015, July). Language of Physics, Language of Math:
Disciplinary Culture and Dynamic Epistemology. Science & Education, 24 (5),
561–590, https://doi.org/10.1007/s11191-015-9749-7

17

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

Ringer McDonald, A. (2021, July). Teaching programming across the chemistry cur-
riculum: A revolution or a revival? Teaching programming across the chemistry

curriculum (Vol. 1387, pp. 1–11). American Chemical Society.

Sawilowsky, S.S. (2009, November). New Effect Size Rules of Thumb. Journal of

Modern Applied Statistical Methods , 8 , 597–599, https://doi.org/10.56801/
10.56801/v8.i.452

Sherin, B.L. (2001, December). How Students Understand Physics Equations.
Cognition and Instruction, 19 (4), 479–541, https://doi.org/10.1207/
S1532690XCI1904 3

Snow, R.E., & Lohman, D.F. (1984). Toward a theory of cognitive aptitude for
learning from instruction. Journal of Educational Psychology , 76 (3), 347–376,
https://doi.org/10.1037/0022-0663.76.3.347

Sun, D., Boudouaia, A., Zhu, C., Li, Y. (2024, February). Would ChatGPT-
facilitated programming mode impact college students’ programming behaviors,
performances, and perceptions? An empirical study. International Journal

of Educational Technology in Higher Education, 21 (1), 14, https://doi.org/
10.1186/s41239-024-00446-5

Sun, D., Ouyang, F., Li, Y., Zhu, C. (2021, September). Comparing learners’
knowledge, behaviors, and attitudes between two instructional modes of com-
puter programming in secondary education. International Journal of STEM

Education, 8 (1), 54, https://doi.org/10.1186/s40594-021-00311-1

Valle, D., & Berdanier, A. (2012). Computer Programming Skills for Environmental
Sciences. The Bulletin of the Ecological Society of America, 93 (4), 373–389,
https://doi.org/10.1890/0012-9623-93.4.373

Vallejo, W., Dı́az-Uribe, C., Fajardo, C. (2022, March). Google Colab and Virtual
Simulations: Practical e-Learning Tools to Support the Teaching of Thermody-
namics and to Introduce Coding to Students. ACS Omega, 7 (8), 7421–7429,
https://doi.org/10.1021/acsomega.2c00362

van Staveren, M. (2022, July). Integrating Python into a Physical Chemistry Lab.
Journal of Chemical Education, 99 (7), 2604–2609, https://doi.org/10.1021/
acs.jchemed.2c00193

18

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

Volet, S.E., & Lund, C.P. (1994, June). Metacognitive Instruction in Introductory
Computer Programming: A Better Explanatory Construct for Performance than
Traditional Factors. Journal of Educational Computing Research, 10 (4), 297–
328, https://doi.org/10.2190/9A08-Y2Q0-6AER-6KLQ

Weiss, C.J. (2017, September). Perspectives: Teaching chemists to code. C&EN Global

Enterprise, 95 (35), 30–31, https://doi.org/10.1021/cen-09535-scitech2

World Economic Forum (2025). The Future of Jobs Report 2025. Retrieved 2025-04-16,
from https://www.weforum.org/publications/the-future-of-jobs-report-2025/in-
full/3-skills-outlook/

19

	Introduction
	Defining a strategy-first approach to programming teaching
	Case Studies of Strategy-First Teaching
	Case study 1: Atmospheric chemistry
	Case study 2: Hückel theory

	Evaluating strategy-first teaching
	Instructor observations
	Assessing students’ knowledge
	Evaluating students’ perceptions of programming

	Conclusions
	Declarations
	Availability of data and materials
	Funding

