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Abstract 013

In most undergraduate science courses, programming teaching follows a “syntax- 014

first” approach; students are first taught the basics of a programming language, 015

and only later is programming incorporated into relevant scientific applications. 016

While this seems a natural approach, it is not without risks: science students may 017

not see the relevance of learning programming until late in a course and disen- 018

gage as a result. This risk is more acute for students who initially see themselves 019

as unable to learn to code; this self-perception is disproportionately preva- 020
lent in female students. We have investigated a novel “strategy-first” approach,

beginning by exposing students to pre-written code which can be applied to 021

problems they have seen in other parts of their undergraduate course, and then 022

breaking down the code into sections for them to modify, teaching the relevant 023

syntax along the way. This ensures students make connections between program- 024

ming and scientific concepts and produce an output relevant to their scientific 025

education from their first introduction to coding. We illustrate “strategy-first” 026

programming instruction through two case studies, demonstrating how instruc- 027

tors can implement this approach. We show that these case studies produced 028

effective learning outcomes, with strong improvements in students’ understand- 029

ing of both programming and chemistry. We also saw a statistically significant 030

change in students’ attitudes towards programming, becoming more confident 031
and less apprehensive; this change is more pronounced in female students. Finally,

we show that students identified a clear connection between their program- 032

ming instruction and their broader scientific education, a key advantage of the 033

“strategy-first” approach. 034

035
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1 Introduction 041

042

Undergraduate science programmes around the world are increasingly recognising the 43

need to incorporate programming teaching into their curricula (Fuchs et al., 2024; 044

Guzman et al., 2019; Hambrusch et al., 2009; Mears et al., 2025; Ringer McDonald, 045
2021; Valle & Berdanier, 2012; Weiss, 2017). This reflects the expectation of both (6
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employers and students that science graduates will enter the workforce with some
familiarity and competency with at least one programming language (Bright Network
Research, 2023; Eurostat, 2023; Hooley, 2021; World Economic Forum, 2025).

Although the exact nature of programming teaching varies from institution to
institution, the majority of published material for teaching programming to sci-
ence undergraduates shares a broadly similar approach (Bravenec & Ward, 2023;
Cawthorne, 2021; Cumby et al., 2023; Guzman et al., 2019; Lee et al., 2023; Mecca
et al., 2021; Vallejo et al., 2022; van Staveren, 2022), even when novel delivery meth-
ods are introduced (Margulieux et al., 2020; Sun et al., 2024, 2021). This traditional
approach begins by teaching students the basics of the programming language, defin-
ing variables, simple data structures, loops, if statements, and functions, and then
combines those building blocks into more and more complex programmes until stu-
dents are able to construct a program which can be applied to a scientific problem.
We will call this a “syntax-first” approach, and will return to this terminology in more
detail shortly.

While on first inspection a syntax-first approach appears to be the natural, and
perhaps only, way to teach programming skills, it is not without drawbacks. For exam-
ple, students may not see or understand the relevance of learning programming to their
scientific education® until very late in a syntax-first course (Cawthorne, 2021), and as
a result may disengage before reaching that point; similar risks are well known when
teaching mathematics to chemistry and physics students (Bain et al., 2018; Haraldsrud
& Odden, 2023; Redish & Kuo, 2015; Sherin, 2001). This risk is more acute for stu-
dents who have previous bad experience of learning programming, or see themselves
as unable to learn programming; this self-perception is disproportionately prevalent
in female students (Koch et al., 2008; Mishkin, 2019). A syntax-first approach can
also limit the number and breadth of scientific applications which can be introduced
during a programming course, if basic syntax is first taught in the absence of sci-
entific context. Therefore, in this paper we will introduce a novel alternative to the
syntax-first approach, designed to avoid or mitigate these drawbacks, which we call a
“strategy-first” approach.

The remainder of the paper is organised as follows: we first introduce some lan-
guage describing programming knowledge, which will aid the comparison of these
approaches, and then more formally describe the syntax-first approach and define our
alternative strategy-first approach. We then describe two case studies in which this
approach has been implemented to teach programming to chemistry undergraduate
students. Finally, we use student surveys and instructor observations from these case
studies to evaluate the effectiveness of strategy-first teaching, both as a tool to teach
programming and chemistry, and in demonstrating strong student engagement and
the relevance of programming teaching to scientific problems.

1For the purposes of this article, computer science students are excluded from the broader group of
“science students”.



2 Defining a strategy-first approach to programming
teaching

In their influential article, McGill and Volet provide a framework for describing and
analysing programming teaching and learning (McGill & Volet, 1997). They draw on
three types of programming knowledge introduced by Bayman and Mayer: syntactic,
conceptual, and strategic knowledge (Bayman & Mayer, 1988). These are defined as:

® Syntactic knowledge: knowledge of fundamental features of a programming language
(e.g. how to define a string variable; how to add two integers together).

® Conceptual knowledge: an understanding of how individual pieces of syntax can be
combined to achieve a specified goal.

® Strategic knowledge: the ability to deconstruct a large application into a series of
smaller problems, which can be solved by the application of conceptual knowledge.

McGill and Volet combine these categories of programming knowledge with forms
of knowledge defined in cognitive psychology literature, declarative and procedural
knowledge (Anderson, 1982; Gagné et al., 1993). In doing so, they divide syntactic
knowledge into two subcategories: declarative-syntactic knowledge, which consists of
the ability to recognize basic syntactic facts of a particular programming language,
and procedural-syntactic knowledge, which enables students to write syntactically
correct lines of code (although not necessarily understand the concepts underpin-
ning them). Similarly, conceptual knowledge is divided into declarative-conceptual
knowledge, which allows students to recognize how combinations of programming
statements in pre-written code combine to achieve a larger goal, and procedural-
conceptual knowledge, which enables students to write such code themselves (McGill
& Volet, 1997).

Having introduced this terminology, we can more formally define the idea of a
syntax-first approach to teaching programming as one which expects a student to begin
by learning declarative-syntactic knowledge, applying it to gain procedural-syntactic
knowledge, then to synthesise their syntactic knowledge to develop declarative-
conceptual and procedural-conceptual knowledge, before finally arriving at strategic
knowledge. This is illustrated schematically in Figure 1. While this approach appears
to be widespread, it is not necessarily optimal. Even as they introduced the ideas
of syntactic and conceptual knowledge, Bayman and Mayer noted that teaching con-
ceptual knowledge prior to syntactic knowledge produced significant improvements in
students’ knowledge transfer and problem solving, especially amongst students with a
weaker programming background (Bayman & Mayer, 1988). Indeed, a number of stud-
ies have shown that an overemphasis on syntactic knowledge leads to what has been
described as “fragile” knowledge, particularly among less confident students, resulting
in students not being able to, or not believing that they are able to, apply their syn-
tactic knowledge to solve conceptual problems (Linn & Clancy, 1992; McGill & Volet,
1997; Oliver & Malone, 1993; Snow & Lohman, 1984; Volet & Lund, 1994).

In this paper, we propose taking Bayman and Mayer’s suggestion one step further:
beginning with instruction of strategic knowledge, followed by conceptual and then
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Fig. 1 A schematic representation of the syntax-first approach to programming teaching. Blue rect-
angles indicate instructor’s actions; red hexagons are the student’s actions. The lines are labelled
with the category of programming knowledge developed following the action preceding it; italic text
is used indicate the appropriate path at decision points

finally syntactic knowledge, following the diagram shown in Figure 2. This is possi-
ble thanks to the context of the programming instruction being undertaken: we will
be considering scientific topics and concepts which students have already encountered
elsewhere in their undergraduate programme, and introducing programming skills
which can help them better understand and apply these concepts. As a result, stu-
dents already have a measure of strategic knowledge about the problem to be solved,
and some of the steps which must be undertaken to solve it. Therefore, strategy-first
programming instruction focuses first on how these steps can be converted into a form
which a computer can solve (introducing conceptual knowledge), and then finally gives
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Fig. 2 A schematic representation of the strategy-first approach to programming teaching. Blue
rectangles indicate instructor’s actions; red hexagons are the student’s actions. The lines are labelled

with the category of programming knowledge developed following the action preceding it; italic text
is used indicate the appropriate path at decision points

students the ability to modify parts of some of these steps to achieve specific goals
(introducing syntactic knowledge). This is achieved by providing students with pre-
written code which solves a simplified version of the scientific problem, and teaching
students how each section of the code solves a particular part of the larger problem
(developing declarative-conceptual knowledge). One or more of these sections are then
discussed in further detail, describing the function of individual lines of code (teaching
declarative-syntactic knowledge), and asking students to modify these lines of code to
change the final output of the program (providing procedural-syntactic knowledge).?
The strategy-first approach allows students to apply programming skills to scientific
problems they are already familiar with from their very first exposure to programming
teaching.

2Procedural-conceptual knowledge is the hardest for students to acquire, and can usually only be learned
over the course of multiple teaching sessions; this is true for both syntax-first and strategy-first approaches
(Kwon, 2017; McGill & Volet, 1997).
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3 Case Studies of Strategy-First Teaching

To illustrate how strategy-first teaching can be implemented in practice, in this section
we will describe two workshops designed to follow the approach illustrated in Figure
2. These workshops were delivered to second- and third-year Chemistry students at
the author’s University. The focus here is how the practice of the workshop aligns with
the pedagogical approach outlined in the previous section; as such some details and
background are omitted. The interested reader can find all of the workshop materials
at the author’s github page.

3.1 Case study 1: Atmospheric chemistry

This workshop is designed to help students apply theoretical knowledge recently
acquired from a lecture course on atmospheric chemistry to a real-world dataset:
hourly measurements of the concentration of three pollutants, NO, NOy and Og, in
the centre of Stoke, UK, between 2017 and 2020. This data is publicly available from
the UK-AIR database (Department for Environment, Food and Rural Affairs, 2024).
The goal of the workshop is to create a series of graphs plotting the concentrations of
each of these pollutants, and for students to use their chemical knowledge to interpret
the related changes in concentration of each pollutant revealed by those graphs.

At the start of the workshop students are provided with both the complete dataset
and a Python script which initially produces a single graph. The students are encour-
aged to run the code, and to use the code structure and comments, the information
provided in the dataset, and the graph produced by the code to deduce what they
can about the overall purpose of the code. In doing so, they develop strategic knowl-
edge: they can apply their chemical knowledge to understand the problem in general,
and can begin to see how that is broken down into programming tasks (loading data,
processing data, plotting a graph).

After obtaining their first graph, students are guided through a series of modi-
fications to the script to produce more complex graphs using different parts of the
dataset. At each stage, the same pattern was followed: the instructor identifies the
part of the Python script relevant to the modification (teaching declarative-conceptual
knowledge), and explains any new syntax the student would need to make these
modifications (teaching declarative-syntactical knowledge). The students then make
the appropriate modifications to the code, and run it to obtain a new or improved
graph (developing procedural syntactic knowledge). Later in the workshop, less input
is required from the instructor, as students become more able to identify the parts
of the code they need to modify as their declarative-conceptual knowledge develops,
and increasingly possess the declarative-syntactical knowledge needed to make the
necessary modifications.

In the course of the workshop, students complete the following tasks, with each
task introduced and completed following the pattern described above:

1. Identifying lines of code which decorate the plot, and modifying them to include
axis labels describing the dependent and independent variables and their units.

2. Adding new data series corresponding to different pollutants to the plots, using
existing code as a template.



3. Using a for loop to calculate averaged concentrations of pollutants over a number
of days, and plotting the averaged data.

4. Using array indexing to access broader parts of the pollutant dataset, to plot and
rationalise the impact of COVID on the concentration of pollutants.

After each task is completed, students are encouraged to consider the chemical impli-
cations and explanations for the data they have just plotted. In doing so, the focus
of the workshop is always brought back to reinforcing chemistry knowledge they are
already familiar with, and demonstrating the value of the programming skills they are
learning to their chemical education.

3.2 Case study 2: Hiickel theory

This workshop introduces third-year students to Hiickel theory (Hiickel, 1931; Nagaoka
et al., 2018), which they are not expected to have encountered before, as a method
of calculating molecular orbital coefficients and energies, which we expect students to
have a strong understanding of from previous lecture courses. This workshop is deliv-
ered using a Jupyter notebook through Google Colaboratory (Kluyver et al., 2016),
allowing the straightforward integration of chemistry and programming teaching notes
into a single document; this is common practice in Python-based chemistry instruction
(Bravenec & Ward, 2023; Heras-Domingo & Garay-Ruiz, 2024; Menke, 2020; Vallejo
et al., 2022; van Staveren, 2022).

The workshop begins by describing the assumptions and mathematics of Hiickel
theory. Since this is a topic students are less familiar with, the strategic knowl-
edge development, namely how useful chemical information can be obtained from the
assumptions of Hiickel theory, is more instructor-led than is suggested in Figure 2.
However, it is still critical that students understand how the overall problem is broken
down into component tasks before beginning the programming portion of the work-
shop, to enable them to identify sections of code which correspond to each task, and
because the component tasks relate more closely to scientific concepts with which they
are familiar (in this case molecular orbitals and their energies). Having established
in principle the steps which must be taken to solve a problem using Hiickel theory,
the workshop then moves straight to an application, providing students with code
which executes a Hiickel theory calculation producing molecular orbital energies and
coeflicients for a particular molecule, 1,3-butadiene.

The remainder of the workshop follows the same repeating pattern described in
Section 3.1. Students are asked to make a series of small modifications to the pro-
vided code to achieve some specific goals. To enable them to do this, the instructor
first conveys declarative-conceptual knowledge, which in this context primarily means
identifying how specific parts of the code correspond to the mathematical formal-
ism of Hiickel theory. They then provide declarative-syntactical knowledge, explaining
enough syntax to enable students to achieve the set tasks. Students apply this syntax
to complete these tasks, in so doing developing their procedural-syntactic knowledge.
Following this pattern, students are expected to:

1. Use array indexing to print and manipulate orbital energies of 1,3-butadiene.
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2. Use array indexing to print and interpret molecular orbital coefficients of 1,3-
butadiene.

3. Use a for loop to calculate energetic properties of a series of linear conjugated
hydrocarbons.

4. Create graphs to illustrate the trends in these energetic properties.

5. Extension material: Modify the provided code to produce a function which
constructs a Hiickel Hamiltonian for cyclic molecules, rather than linear ones.

The emphasis of the workshop remains on the chemical application of the results
obtained from programming. For example, following task 2 students are encouraged
to think about how their results related to the selectivity of an organic reaction they
are familiar with from previous undergraduate lecture courses. This enables them to
see the physical reason behind a reactivity “rule” which they have previously been
taught, reinforcing the potential value of programming for a chemistry undergraduate.

4 Evaluating strategy-first teaching

The workshops described in the preceding case studies were used to evaluate the
effectiveness of strategy-first teaching. To help determine this, students completed
a survey measuring their attitudes towards programming and their aptitude in the
topics covered in the workshop both immediately before and immediately after the
workshop. The two-hour workshops were delivered to one quarter of a year group at
a time (between 30 and 40 students) in a dedicated PC classroom, with the relevant
software pre-installed on all machines to ensure a uniform programming environment.

These workshops were introduced at a time when programming teaching in the
chemistry programme at the author’s University was very limited: the students
involved in the study had only attended one or two programming workshops in their
previous year of study, which had introduced basic mathematical operations and sim-
ple data structures in Python in the context of analysing first-order kinetics and
predicting isotope patterns of ionic fragments in mass spectrometry. As such, students
entered these workshops with a wide range of abilities and interest in programming,
depending on their previous educational background. With this in mind, the objectives
of the workshops were to:

1. Demonstrate an application of programming relevant to chemistry.

2. Familiarise students with the operation of Python scripts/notebooks.

3. Teach students some basic Python syntax.

4. Enable students to modify Python code informed by their chemical knowledge to
produce new outputs.

In turn, the primary objectives of this study are to:

1. Establish whether the pedagogical objectives described above were met.
2. Determine whether a strategy-first approach produces a measurable difference in
students’ attitudes towards programming.

Three approaches were used to evaluate the impact of these workshops: instruc-
tor perceptions from both the author and independent observers, a brief assessment



of students’ knowledge, and an analysis of the students’ perceptions of and attitudes
towards the workshop. The majority of survey questions were common to both work-
shops. The surveys were completed during the workshops, and response rates amongst
the third-year students, who took the Hiickel theory workshop, were very high, with 74
of the 78 students registered in attendance responding (95%); response rates amongst
the second-year students, who took the atmospheric chemistry workshop, were signifi-
cantly lower, with only 41 responses from 122 attending students (34%). Each question
on the survey was optional, resulting in lower response rates for some survey questions.

4.1 Instructor observations

Students’ engagement with the chemistry aspects of the workshops was very positive,
with a clear interest and desire to progress with the programming activity in order
to understand the chemical implications of the output they obtained. In particular,
many students experienced a moment of realisation and satisfaction when they con-
nected output from the code they were writing to chemistry they had learned in other
lecture courses. In the atmospheric chemistry workshop they were able to interpret
real-world data they had plotted using the simple reaction models covered in their
atmospheric chemistry lectures, and in the Hiickel theory workshop they used molec-
ular orbital coefficients they had calculated to predict selectivity of simple organic
reactions. Students’ pleasure in making these connections was reflected in a number
of their responses when asked in the survey what they enjoyed about the workshop:
“writing code can be used to find out information about molecules and applying it to
real chemistry examples”; “Learning how to use python in more advanced chemistry”;
“I liked learning more about how programming can be applied to chemical contexts”.

However, students were often initially reluctant to attempt programming problems,
feeling unable to apply the examples of syntax provided to the problem they were
attempting to solve. This is a potential weakness of the strategy-first approach: stu-
dents lack the confidence, and in some cases the conceptual knowledge, to go through
the process of trial and error sometimes needed to apply newly introduced syntax
to the problem to be solved. After encouragement, their confidence grew throughout
the workshop and they made much faster progress; this observation is consistent with
students’ reported self-perceptions, which are discussed later.

These perceptions were supported by the observing instructors, who provided writ-
ten feedback on the same day as the workshop, noting that “students were very much
engaged”, and “even those who seemed relatively disengaged and uninterested at the
start of the sessions seemed to get more engaged as the session progressed”. One
instructor attributed this to the strategy-first approach, noting that the “accessible
nature of the material enabled even those who see themselves as ‘not being good at
computers’ to see progress”. Another observed the significant “challenge in carrying
out the programming task at the same time as understanding chemistry”, and that
this challenge is often overcome by “effective interaction with students, through ask-
ing well-directed and thoughtful questions”; while this will always be a necessary part
of programming education, it would be beneficial to improve the workshop design to
reduce the need for intensive one-to-one interactions, to allow staff to interact with
more students during the workshop.
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Table 1 The average and change in students’ marks awarded for the
programming and chemistry questions, along with the associated Cohen’s d value.
Marks were given on a scale from zero to four. In the column headings, the values
of n refer to the number of responses to the programming and chemistry questions,
respectively. Responses which were missing an answer to the post-workshop
question were excluded

Atmospheric chemistry  Hiickel theory

(n=27/26) (n = 57/56)
Pre-workshop average 0.59 1.30
p . Post-workshop average 1.56 2.39
rogramming - oange 0.96 1.08
Cohen’s d 1.09 1.02
Pre-workshop average 2.15 0.77
. Post-workshop average 2.5 2.46
Chemistry Change 0.34 1.17
Cohen’s d 0.29 1.15

4.2 Assessing students’ knowledge

To assess what students had learned during each workshop, students were asked one
question about programming and one about chemistry as part of the survey, with the
same question asked both before and after the workshop. To analyse these responses,
we subsequently “marked” students’ answers between zero and four, where zero indi-
cates no meaningful response is given, four is a perfect answer, and partially correct
answers were scored in between. Table 1 summarizes the responses to these questions,
with the effect of the workshop described by Cohen’s d statistic for paired samples
(Cohen, 2013). This reveals a “large” effect (d > 0.8)(Sawilowsky, 2009) on stu-
dents’ understanding of both the programming and chemistry content covered in the
workshop, with the exception of their understanding of the chemistry content of the
atmospheric chemistry workshop. The smaller (but still positive) effect observed here
is not surprising, given this workshop related to more familiar chemistry, as evidenced
by the high pre-workshop average score for this question. Overall, these results sug-
gest that the workshops are effective in achieving the pedagogical objectives described
above.

4.3 Evaluating students’ perceptions of programming

Finally, we investigated how students’ perceptions of programming were impacted
by the workshops, and in particular how gender affected these perceptions. For this
analysis, the data from both workshops were combined (n = 115). The gender makeup
of the respondents is shown in Figure 3; for clarity and to protect the anonymity of
respondents the following histograms exclude non-binary respondents or those who
preferred not to provide information about their gender, due to the small sample sizes
from these groups.

10



Female

Non-Binary

Prefer not to say

Male

Fig. 3 The gender make-up of the respondents to the survey across all workshops (n = 115)

Students were asked to score their feelings towards using Python as a tool before
and after the workshop on a seven-point Likert scale, with one corresponding to “Con-
fident” and seven corresponding to “Apprehensive” (Figure 4). Prior to the workshop,
participants were apprehensive, with the median score of female students being six
and the median score of male students being five. After the workshop, students were
significantly more confident, with the median score of both male and female students
decreasing to four; the mean response fell from 4.95 to 4.06, indicating a significant
increase in the confidence of the students after the workshop (p < 107?).

Interestingly, this shift was much more pronounced amongst female students: prior
to the workshop, female students were much more likely to respond with a score of
six or seven than male students, whereas after the workshop this trend was reversed.
One possible explanation for this observation is that female students were much more
likely than male students to strongly agree with the statement “I was able to connect
today’s workshop to chemistry topics I have studied before” (Figure 5). This aligns
with one motivation for introducing strategy-first programming teaching for science
undergraduates - students’ motivation to learn programming, and their confidence
in their ability to write code, is enhanced when they can clearly see the value of
programming to the rest of their undergraduate programme.

5 Conclusions

In this work we have introduced an alternative approach to programming instruction
for science undergraduates. This strategy-first approach begins not from the funda-
mentals of programming syntax, but from working code which tackles a scientific
problem familiar to undergraduate students from other parts of their undergraduate
studies, and breaks it down into programming concepts and then specific syntactic
knowledge which students need to use to modify the code to achieve the goals of the
workshop. We have provided a template of a pedagogical approach too rarely adopted
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0.25- WM Female
I Male

Density
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Fig. 4 Histograms showing the response of students to the question “How would you describe
your feelings about using Python as a tool?” on a seven-point Likert scale, with one corresponding
to “Confident” and seven corresponding to “Apprehensive”. Above: responses collected before the
workshop. Below: responses collected after the workshop. In total, there are 64 female respondents,
and 40 male respondents

in the science education literature; even those workshops which do follow a problem-
oriented structure are usually not intended for use by programming novices (De Haan
et al., 2021; Hirschi et al., 2023; Menke, 2020), notwithstanding a small number of
exceptions (Valle & Berdanier, 2012). The assumption that participants already have
syntactic knowledge excludes these studies from being truly strategy-first approaches.
We hope that the outline and cases studies of strategy-first teaching described here
will equip other educators to adopt this approach.

We have provided evidence from student surveys that the strategy-first work-
shops introduced here are effective in educating students about both programming



0.30- W= Female
pm Male

1 2 3 4 5 6 7

1 = Strongly Disagree, 7 = Strongly Agree
Fig. 5 Histogram showing the agreement of students to the statement “I was able to connect today’s
workshop to chemistry topics I have studied before” on a seven-point Likert scale, with one corre-

sponding to “Strongly Disagree” and seven corresponding to “Strongly Agree”. In total, there are 64
female respondents, and 40 male respondents

and chemistry, and in developing students’ confidence with programming and engag-
ing them with the workshops. Students highlighted being able to make connections
between programming and chemistry as a part of the workshop they particularly
enjoyed, which is one of the key goals of the strategy-first approach, and stands in
direct contrast to traditional syntax-first approaches to introductory programming
teaching. We found that female students in particular responded well to this style
of workshop, with female students being more likely than males students to describe
themselves as apprehensive about programming before the workshop, but less likely to
do so after the workshop. While much has been written about the gendered attitudes
towards programming (Koch et al., 2008; Mishkin, 2019), it appears that very little
evidence has been collected about gendered perceptions of programming education
specifically in a science context. Therefore, future work will investigate in more detail
the gendered impact of the strategy-first approach to programming-based chemistry
education. In addition, further strategy-first workshops will be developed; for exam-
ple, this approach will enable us to introduce machine learning concepts to students
with limited programming experience.
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