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Abstract 20 

Machine learning (ML) techniques are increasingly being used to improve disease diagnosis and 21 

treatment. However, the application of these computational approaches to the early diagnosis of age-22 

related hearing loss (ARHL), the most common sensory deficit in adults, remains underexplored. 23 

Here, we demonstrate the potential of ML for identifying early signs of ARHL in adult mice. We 24 

used auditory brainstem responses (ABRs), which are non-invasive electrophysiological recordings 25 

that can be performed in both mice and humans, as a readout of hearing function. We recorded ABRs 26 

from C57BL/6N mice (6N), which develop early-onset ARHL due to a hypomorphic allele of 27 

Cadherin23 (Cdh23ahl), and from co-isogenic C57BL/6NTacCdh23+ mice (6N-Repaired), which do not 28 

harbour the Cdh23ahl allele and maintain good hearing until later in life. We evaluated several ML 29 

classifiers across different metrics for their ability to distinguish between the two mouse strains based 30 

on ABRs. Remarkably, the models accurately identified mice carrying the Cdh23ahl allele even in the 31 

absence of obvious signs of hearing loss at 1 month of age, surpassing the classification accuracy of 32 

human experts. Feature importance analysis using Shapley values indicated that subtle differences in 33 

ABR wave 1 were critical for distinguishing between the two genotypes. This superior performance 34 

underscores the potential of ML approaches in detecting subtle phenotypic differences that may elude 35 

manual classification. Additionally, we successfully trained regression models capable of predicting 36 

ARHL progression rate at older ages from ABRs recorded in younger mice. We propose that ML 37 

approaches are suitable for the early diagnosis of ARHL and could potentially improve the success 38 

of future treatments in humans by predicting the progression of hearing dysfunction. 39 

 40 

 41 

Keywords: age-related hearing loss, auditory brainstem responses, machine learning, diagnosis.  42 

 43 

  44 
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1. Introduction 45 

Progressive hearing loss results in a decrease in hearing sensitivity and ability to understand speech. 46 

Among the different forms of progressive hearing loss, age-related hearing loss (ARHL) is the most 47 

common sensory deficit in humans, affecting communication and leading to social isolation, 48 

depression and diminishing cognitive abilities (Gates & Mills, 2005; Livingston et al. 2024). 49 

Currently, there are no treatments to prevent or cure ARHL (Wang & Puel, 2020). ARHL is a 50 

heterogeneous dysfunction, which results from the cumulative effects of ageing on the auditory 51 

system, such as cellular senescence, as well as additional intrinsic (e.g. genetic predisposition, Ingham 52 

et al. 2019) and extrinsic (e.g. environmental noise) factors. Because of this complex aetiology, the 53 

progression of the disease varies between individuals, resulting in different severity and degree of 54 

progression of hearing loss. Hearing function in clinical and pre-clinical settings can be examined 55 

through a non-invasive electrophysiological test based on the auditory brainstem response (ABR). 56 

However, the effects of hearing loss, other than an obvious increase in auditory thresholds, are often 57 

difficult to detect using ABR tests. Thus, ARHL is normally diagnosed only after patients start losing 58 

key hearing abilities, such as being unable to distinguish words in noisy conditions. This is usually 59 

an indication that some severe or irreversible damage has already happened to the sensory cells or 60 

neurons that send sound information to the brain. Therefore, as we develop therapies to target ARHL, 61 

such as gene-based replacement interventions or small molecules (Lv et al. 2024; Schilder et al. 62 

2024), there is also a pressing need to improve the diagnostic tools to detect and predict the 63 

progression of the dysfunction at an early stage. As with any medical condition, treating a disease in 64 

its early stages increases the likelihood of successful treatment. 65 

Machine learning (ML) techniques are increasingly being explored as tools to improve disease 66 

diagnosis and treatment (Goecks et al. 2020; Sidney-Gibbons & Sidney-Gibbons, 2019). These 67 

techniques leverage advanced algorithms to analyse large datasets, uncovering patterns that may be 68 

elusive even to well-trained experts. By identifying complex features in high-dimensional clinical 69 

data that correlate strongly with patient phenotypes, ML algorithms can be developed to predict the 70 

presence of a disease (Banerjee et al. 2023). In the auditory field, significant progress is being made 71 

in applying ML to hearing healthcare and research (Chen et al. 2021; Shew et al. 2019, Cha et al. 72 

2019, Crowson et al. 2023, Chen et al. 2024), and there is a growing emphasis on the leveraging of 73 

ML-based digital tools to automate hearing assessment (Wasmann et al. 2022). However, the 74 

potential of these computational techniques to develop diagnostic tools for the early detection of 75 

progressive forms of hearing loss remains largely unexplored.  76 

Here, we applied ML to ABR data with the goal of detecting early signs of ARHL in mice and 77 

forecasting its progression. We recorded ABRs from the commonly used C57BL/6N (6N) mouse 78 
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strain and from the co-isogenic strain C57BL/6NTacCdh23+ (6N-Repaired, Mianné et al. 2016) at 1, 3, 79 

6, 9 and 12 months of age. The 6N mice carry a hypomorphic allele in the Cadherin 23 gene (Cdh23ahl, 80 

Johnson et al. 1997; Noben-Trauth et al. 2003), which leads to progressive early-onset hearing loss 81 

starting from about 3-6 months of age. Similar to ARHL in humans (Gates & Mills, 2005), the 82 

progression of hearing loss in 6N mice begins at the higher frequencies and worsens over time, 83 

resulting in profound hearing loss by 15 months of age (Jeng et al. 2020a; 2020b; Jeng et al. 2021). 84 

In contrast, the co-isogenic 6N-Repaired strain, which are corrected for the Cdh23ahl mutation using 85 

CRISPR/Cas9 (Mianné et al. 2016), maintains better hearing than 6N mice into old age, especially 86 

for tone sensitivity for frequencies of 12 kHz and above (Mianné et al. 2016; Jeng et al. 2020b). We 87 

trained ML models through supervised learning using longitudinal ABR data as input features and 88 

genotype (i.e., mouse strain, 6N or 6N-Repaired) as target outputs. We demonstrate that, by 89 

recognising anomalies in the ABRs, the ML models were able to detect the mice with the Cdh23ahl 90 

allele in the very early stages of ARHL. This approach was validated on unseen data of two 91 

independently acquired datasets, demonstrating the broad validity and generalisability of our 92 

conclusions. Finally, we used ML to forecast the future progression of the hearing capabilities of 93 

young adult mice up to 1 year of age. This work highlights the benefit of using ML for the early 94 

diagnosis of ARHL, providing a foundation for future studies exploring its applicability to human 95 

datasets.  96 
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2. Methods 97 

2.1. Ethical Statement 98 

The animal work was licensed by the UK Home Office under the Animals (Scientific Procedures) 99 

Act 1986 (Sheffield: PCC8E5E93 and PP1481074; King’s College London: P053FFC4C) and was 100 

approved by the relevant Ethical Review Committees (University of Sheffield: 180626_Mar). Mice 101 

had unlimited access to food and water. For the in vivo recording of auditory brainstem responses 102 

(ABRs), mice were anaesthetised using intraperitoneal injection of ketamine (100 mg/Kg body 103 

weight, Fort Dodge Animal Health, Fort Dodge, USA) and xylazine (10 mg/Kg, Rompun 2%, Bayer 104 

HealthCare LLC, NY, USA). At the end of the in vivo recordings, mice were either culled by cervical 105 

dislocation or recovered from anaesthesia with intraperitoneal injection of atipamezole (1 mg/Kg). 106 

Mice under recovery from anaesthesia were returned to their cage, placed on a thermal mat and 107 

monitored over the following 2-5 hrs.  108 

 109 

2.2. Auditory brainstem responses 110 

Two independent datasets of auditory brainstem responses (ABRs) from different mouse cohorts 111 

were used in this study. ABRs from the primary cohort were collected at the University of Sheffield 112 

from 104 female mice (50 6N and 54 6N-Repaired mice). For all the mice, ABR recordings were 113 

performed at 1 month of age, and for some, recordings were also performed at 3, 6, 9 and 12 months 114 

of age. These mice were born over a period of 5 months and were housed in the same room within 115 

the animal facilities at the University of Sheffield, thus experiencing similar levels of noise exposure 116 

throughout the duration of the study. ABRs from the replication cohort were collected at King’s 117 

College London from both males and females at 1 month of age (85 6N and 103 6N-Repaired mice).  118 

Following the onset of anaesthesia (see Ethics statement above) and the loss of the retraction reflex 119 

with a toe pinch, mice were placed onto a heat mat (37oC) in a soundproof chamber (MAC-3 acoustic 120 

chamber, IAC Acoustic, UK). Subdermal electrodes were placed under the skin behind the pinna of 121 

each ear (reference and ground electrode) and on the vertex of the mouse (active electrode) as 122 

previously described (Ingham et al. 2019; Ingham et al. 2011). Sound stimuli were delivered to the 123 

ear by calibrated loudspeakers (MF1-S, Multi Field Speaker, Tucker-Davis Technologies, USA) 124 

placed directly in front of the mouse 10 cm (Sheffield) or 20 cm (King’s College London) from the 125 

nose. Sound pressure was calibrated with a low-noise microphone probe system (ER10B+, Etymotic, 126 

USA). Experiments were performed using a customised software (Ingham et al. 2011) driving an 127 

RZ6 auditory processor (Tucker-Davis Technologies). Auditory thresholds were estimated from the 128 

resulting ABR waveform and defined as the lowest sound pressure level (measured in decibel, dB 129 

SPL) where any recognisable feature of the waveform was visible. Responses were measured for 130 



6 

 

 

clicks (which cover a broad range of frequencies, 0.01 ms duration) and pure tones at frequencies of 131 

3, 6, 12, 18, 24, 30, 36 and 42 kHz (5 ms duration, 1 ms rise/fall time). Stimulus sound pressure levels 132 

were typically 0-95 dB SPL, presented in steps of 5 dB SPL. The brainstem response signal was 133 

averaged over 256 repetitions. Tone bursts were 5 ms in duration with a 1 ms on/off ramp time, which 134 

was presented at a rate of 42.6/sec. The order of sound stimulus presentation was consistent for all 135 

ABR recordings. Responses to click stimuli were recorded first (0 to 95 dB), followed by pure tones 136 

from 15 dB to 95 dB at 3 kHz and 6 kHz. Finally, stimuli at varying frequency from high (42 kHz) 137 

to low (12 kHz) were presented. This process was repeated in 5 dB increments from 15 dB to 95 dB.   138 

Wave 1 amplitudes and latencies were measured using a semiautomatic approach using custom 139 

software (doi:10.5281/zenodo.12606227). Automatic identification was manually reviewed and, if 140 

required, adjusted to the correct peak. Wave 1 amplitude was calculated as the difference between 141 

the amplitude of the first peak and the first trough of the ABR waveform; the latency was calculated 142 

as the delay of the Wave 1 peak from the beginning of the recording. 143 

To evaluate the models on a dataset different from the one it was trained on, we found that an 144 

alignment procedure was required to maximise model accuracies. This alignment required the shifting 145 

of the ABR waveforms from the replication cohort to the left by 0.55 ms. This was likely due to the 146 

different distances between mouse and the speaker (~10 cm, accounting for 0.29 ms time difference) 147 

and variations in hardware (e.g., differences in electrical delays and timing of sound delivery). The 148 

alignment was achieved by removing 54 timepoints at the beginning of the replication cohort trace 149 

and at the end of the primary cohort trace (to maintain the same number of features between the two 150 

datasets). This procedure, which did not alter the shape and time course of the ABR waveforms, was 151 

sufficient to align waveform peaks between the two cohorts. The parameters for feature shifting were 152 

determined from ABRs of 6N-Repaired mice from the training datasets from the two cohorts. Note 153 

that this transformation, while ensuring correspondence of the features in the two datasets, does not 154 

eliminate latency differences between the two strains, as both are shifted by the same amount. 155 

 156 

2.3. Implementation and evaluation of machine learning models 157 

We developed ML models to address two different tasks: 1) identifying which mice carried the 158 

Cdh23ahl mutation from their ABRs (classification task) and 2) forecasting the future progression of 159 

hearing function in mice (regression task). For the classification task, we used six different classifiers 160 

as the basis of our models: Random Convolutional Kernel Transform (ROCKET), Hierarchical Vote 161 

Collective of Transformation-based Ensembles V2 (HIVE COTE V2.0), Extreme Gradient Boosting 162 

(XGBoost), Random Forest (RF), multilayer perceptron (MLP) and Support Vector Machine (SVM) 163 

classifier.  164 
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The ROCKET algorithm (Dempster et al. 2020) classifies time series by applying numerous 165 

random filters to the data, extracting key values from the resulting feature maps, and using these 166 

values to train a simple, efficient model. This approach is both fast and accurate, transforming 167 

complex time series into an easy-to-handle format for effective classification. HIVE COTE V2.0 is a 168 

heterogeneous meta ensemble for time series classification (Middlehurst et al. 2021) that builds on 169 

the ROCKET. This algorithm is more computationally expensive but has shown very high levels of 170 

accuracy when utilised to classify other time series data. XGBoost (Extreme Gradient Boosting, Chen 171 

et al. 2016) and Random Forest are ensemble models that use decision trees as base learners which 172 

are widely used due to their accuracy and interpretability. They have proven successful in the 173 

classification of electrophysiological data (Edla et al. 2018) for a range of applications. Along with 174 

these machine learning algorithms the MLP classifier was selected as a simple neural network option 175 

to explore.  Finally, we selected the SVM classifier as a good base classifier which has been proven 176 

to work effectively with minimal computational cost in a wide range of applications. For the 177 

regression task, we trained random forest regressor models to predict the outcome of three continuous 178 

parameters at different ages (see below). Some of the hyperparameters were tuned using 5-fold grid 179 

search cross validation applied to the training set, optimising for F1 score (classification task) or the 180 

negative mean squared error (regression task). The hyperparameters of the models are summarised in 181 

S6 Table.  182 

Models were implemented using the scikit-learn (Random Forest classifier and regressor, SVM, 183 

Multi-layer perceptron, Pedregosa et al. 2011), xgboost (XGBoost, Chen et al. 2016) and sktime 184 

(HIVE COTE V2.0, ROCKET, Löning et al. 2019) python packages. Different ABR waveforms 185 

resulting from stimulation with individual intensities/frequencies combinations were concatenated in 186 

a single univariate trace and used as input features for the ML models (Fig 1b, Fig 3a, Fig 5a, Fig 187 

8d).  188 

For the classification task, ML algorithms were trained through supervised learning using the 189 

concatenated ABR waveforms of 1-month old animals as input features and the genotype (6N vs 6N-190 

Repaired) as labels. In all analyses, the “6N” class (i.e., “mice with early-onset ARHL”) was treated 191 

as the positive class. All classifiers were preceded by an ANOVA F-test feature selection step, which 192 

retained 10% of the features (i.e., ABR timepoints). In this step, the F-statistics scores were calculated 193 

between the two classes for every input feature and ranked, and only the 10% top scoring features 194 

were preserved as model inputs. By reducing the dimensionality of the dataset, focusing on the most 195 

relevant predictors, this method is effective in improving training time and reducing overfitting. 196 

We trained and tested the models on data from two laboratories (primary and replication cohorts) 197 

either separately or combined. In every instance, the datasets were randomly split into train and test 198 
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data, with the training data containing 75% of the mice and the test the remaining 25%. For tasks 199 

which involved evaluating the models on data of different laboratories, the whole primary and 200 

replication cohort datasets were used either for training or testing (see Results).  201 

We provided two separate evaluations of the models. First, in order to ensure models were working 202 

correctly, we performed repeated 5-fold cross validation on the training set collecting 4 different 203 

metrics:  204 

• recall (also called sensitivity, or true positive rate), defined as 
True positives

True positives+False negatives
, i.e. the 205 

ability of a classifier to correctly identify the positive class (6N); 206 

• specificity (or true negative rate), defined as 
True negatives

True negatives+False positives
, i.e. the ability of a classifier 207 

to correctly identify the negative class (6N-Repaired); 208 

• precision, defined as 
True positivesTrue positives+False positives, a measure of the accuracy of positive predictions; 209 

• receiver operating characteristic area under the curve (ROC AUC), i.e. the area under the false 210 

positive rate (1-specificity) vs. recall curve, which offers a threshold-independent measure of a 211 

model’s performance.  212 

For all classifiers, the threshold for distinguishing between the two classes was set to a probability 213 

of 50%. Models were then trained on the whole training set and confusion matrices were calculated 214 

on the test set. We opted to include both cross validation and test set assessment as the relatively 215 

small size of the test set limits our ability to draw strong conclusions from its performance alone. 216 

However, it allows for comparison with manual classification on the same set of mice.  217 

For the regression task, ML algorithms were trained through supervised learning using the 218 

concatenated click ABR waveforms recorded at 1 month and 3 months of age as input features and 219 

three different parameters measured at 6, 9 or 12 months of age (see Results) as targets. For wave 1 220 

latency prediction, values for waveforms below the auditory threshold were imputed using the highest 221 

latency measured for click stimuli for each mouse. For one mouse for which no detectable ABR signal 222 

was present at 12 months of age, missing latency values were imputed using the highest latency for 223 

click stimuli observed across all other mice in the dataset. For wave 1 amplitude prediction, values 224 

for waveforms below the auditory thresholds were set to zero. Similarly to the classification task, 225 

regression models were preceded by a feature selection step based on univariate linear regression 226 

tests, which return F-statistics and p-values, and only the 10% top scoring features were preserved as 227 

model inputs. The datasets were randomly split into train and test data, with the training data 228 

containing 75% of the mice and the test the remaining 25%. Performances of regression models were 229 

evaluated as mean absolute error (MAE) averaged across the results of a repeated 5-fold cross 230 
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validation step on the training set (5 repeats). Moreover, the coefficient of determination (R2) and 231 

MAE were calculated on predictions made on the test set.  232 

The Shapley Additive explanations (SHAP) method implemented in the shap python module was 233 

used for Shapley value estimation (Lundberg & Lee, 2017). The TreeSHAP method was used to 234 

estimate Shapley values for tree-based models (Random forest and XGBoost), while KernelSHAP 235 

was used for the SVM model. Shapley values were calculated on the test set, using the training set as 236 

the background distribution. Feature importances were calculated by averaging the absolute Shapley 237 

values computed across all train instances. Feature importances were smoothed with a Savitzky-238 

Golay filter with polynomial order equal to 1 and window size of 0.42 ms (“Global” models) and 0.22 239 

ms (“Click” models) for visualisation purposes. 240 

Machine learning model implementation, data analysis and figure plotting were conducted using 241 

python (version 3.11.8) primarily utilising the scikit-learn (version 1.4.1) and sktime (0.27.0) 242 

modules. Computations were performed on a MacBook Pro with M1 processor and 16 GB of RAM 243 

(MacOS 15.0, kernel Darwin 24.0.0), and on a workstation equipped with an Intel Xeon Silver 4210R 244 

CPU and 256 GB of RAM (Windows 11 Pro for workstations).  245 

 246 

2.4. Comparison between ML and manual classification 247 

Three human annotators were asked to blindly label the ABR dataset for comparison with the ML 248 

models. Each annotator reviewed ABR data for all samples in both the training and test sets and 249 

categorized each instance according to the mouse strain. Annotators were presented with randomised 250 

ABR stacks containing responses to click and pure tones (Fig 3) or clicks alone (Fig 5). Individual 251 

ABR waveforms were shown to human experimenters without additional overlays or statistical 252 

summaries. Annotators assessed auditory thresholds as part of the classification. Each of the three 253 

annotators was an expert in mouse ABR recording and analysis, with specific knowledge of the 254 

progressive high frequency hearing loss phenotype of 6N mice compared to 6N-Repaired mice. 255 

Predictions on the test set ABRs alone were directly compared to those of the six “Global” and 256 

“Click” models (Fig 3f, Fig 5f). For the “Global” dataset, average predictions (±SD) of the three 257 

annotators on the whole (train and test) set were as follows: recall 66.7% ± 13.6%; specificity 82.7% 258 

± 18.9%; precision 81.9% ± 14.1%. Average predictions for the “Click” dataset on the whole (train 259 

and test) set were: recall 44.7% ± 8.3%; specificity 67.9% ± 7.4%; precision 56.4% ± 1.7%. The 260 

results from the three annotators were subsequently evaluated for inter-rater reliability using Fleiss’ 261 

Kappa, a statistical measure of agreement among multiple raters. 262 

 263 

2.5. Statistical analysis 264 
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Statistical analysis of experimental data was conducted using either the Aligned Rank Transform 265 

(ART) ANOVA, followed by Wilcoxon rank-sum tests with Holm-Bonferroni correction for pairwise 266 

post-hoc comparisons, or standard ANOVA with Tukey's Honestly Significant Difference post-hoc 267 

test. For model performance comparisons on the primary cohort, cross validation metrics were 268 

evaluated using the Friedman test followed by the Nemenyi post-hoc test. To compare model 269 

performances across different datasets (primary cohort/replication cohort/combined or 270 

“Global”/“Click”) and model types, we used mixed-effects linear models with model type and dataset 271 

as fixed effects and the cross-validation splits as random effects to account for non-independence 272 

within repeated measures. A significance level of P < 0.05 was used to determine statistical 273 

significance.  274 
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3. Results 275 

To demonstrate the possibility of ML to detect early signs of a progressive form of deafness, we 276 

first acquired ABRs using standardised protocols from a cohort of 1-month-old 6N (n = 50) and 6N-277 

Repaired (n = 54) mice (primary cohort, Fig 1a). To avoid the impact of sex variability in the 278 

progression and severity of age-related hearing loss (Nolan, 2020), only female mice were included 279 

in the primary cohort. A subset of these mice was aged up to 1 year and ABRs were recorded at 280 

regular intervals (3, 6, 9 and 12 months). This approach allowed us to test the efficacy of ML models 281 

in learning to distinguish between the two mouse strains based solely on ABRs of 1-month-old mice 282 

(classification task). Moreover, we tested whether it was possible to predict the progression and 283 

degree of hearing loss at older ages based on ABR data from young adult mice (regression task). To 284 

achieve this, we trained several ML algorithms through supervised learning using: 1) ABR data of 1-285 

month old animals as input features and the genotype as labels (classification task) and 2) ABR data 286 

recorded at 1 and 3 months of age as input features and ABR characteristics at older ages as target 287 

(regression task, Fig 1b). 288 

 289 

3.1. Auditory thresholds of 6N and 6N-Repaired mice between 1 and 12 months of age 290 

We first determined the progression of hearing loss of our primary cohort of 50 6N and 54 6N-291 

Repaired female mice (Fig 2). We found that at 1 month of age both mouse strains showed similar 292 

ABR thresholds (Fig 2a) and waveforms across most sound stimuli (S1 Fig), except for a small 293 

increase in the median threshold of 6N mice at the two highest frequencies tested (36 kHz and 42 294 

kHz, P < 0.0001, pairwise Wilcoxon rank-sum test, ART ANOVA, Fig 2a). Difference between the 295 

audiograms of the two strains became progressively more evident at older ages (Fig 2b-e, S2 Fig). 296 

At 3 months, several 6N mice had undetectable ABRs at all intensities for stimuli of 36 and 42 kHz 297 

(36 kHz: 19 6N mice out of 50; 42 kHz: 29 mice out of 50) and significantly raised threshold at 30 298 

kHz compared with 6N-Repaired mice (Fig 2b). Between 6 and 12 months, ABR thresholds were 299 

significantly different between the two strains for all stimuli except the lowest frequency tested (3 300 

kHz) at 6 and 9 months (Fig 2c-e). As previously shown (Jeng et al. 2020), we found that the 301 

progression of hearing loss was variable in 6N mice (Fig 2f), with threshold differences between 302 

individual mice of up to 75 dB from 6 months onwards (Fig 2c-e). 303 

 304 

3.2. Using ML models to predict the presence of the Cdh23ahl allele from ABRs of young mice 305 

We then sought to train ML models through supervised learning to classify ABR recordings taken 306 

at the earliest timepoint (1 month) based on mouse strain (6N or 6N-Repaired), thereby predicting the 307 

presence of the ARHL-linked Cdh23ahl allele. To demonstrate the generalisability of this approach, 308 
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we tested six different ML models: four commonly used classifiers (random forest, XGBoost, support 309 

vector machine (SVM) and multi-layer perceptron (MLP)) and two time-series-specific classifiers 310 

(HIVE-COTE V2.0 and ROCKET) (see Methods for a description of each model and hyperparameter 311 

tuning procedure). All classifiers were preceded by an ANOVA F-test feature selection step, which 312 

retained 10% of the features (i.e., ABR timepoints, Fig 3a, Fig 4, see Methods). We randomly split 313 

the dataset into a train/validation set and a test set (78 and 26 mice respectively, Fig 3a). In all 314 

analyses, the “6N” strain (i.e., “mice with early-onset ARHL”) was treated as the positive class, as it 315 

represents our primary outcome of interest in evaluating model performance.  316 

Initially, we trained the models using ABRs for the full set of sound stimuli (click and pure tones 317 

from 3 to 42 kHz) of 1-month-old mice from the primary cohort (“global” models). As input features, 318 

we concatenated the ABR waveforms recorded at various stimulus intensities and frequencies, 319 

forming a single univariate time series (Fig 1b). We first evaluated the model performances through 320 

repeated k-fold cross-validation on the 78 mice within the training set (k=5 folds and 5 repeats, for a 321 

total of 25 splits). Final scores were then calculated by averaging the results of individual splits (see 322 

Methods). We found that all tested models showed strong overall performances across recall, 323 

specificity, precision and receiver operating characteristic area under the curve (ROC AUC) metrics 324 

(Fig 3b-e, S1 Table). When focusing on recall (i.e., the true positive rate or sensitivity, reflecting the 325 

capability of the models to identify “pathological” cases), there was no significant differences among 326 

most pairs of models, except between those with the highest score (SVM) and the two tree-based 327 

models (S2 Table). Moreover, no significant differences were found in the specificity (i.e., true 328 

negative rate) and precision scores of the six models (P=0.0724 and P=0.0844 respectively, Friedman 329 

test, S2 Table). All models achieved relatively high average ROC AUC scores (Fig 3e), 330 

demonstrating strong overall discrimination ability between the classes. These results suggest that all 331 

models were generally effective in distinguishing between classes, with some models achieving 332 

higher discrimination performance on average. 333 

The models were then trained on the whole training set (78 mice) and evaluated on the test set (26 334 

mice, the same train/test split was kept for all models). We found that the models based on the HIVE 335 

COTE V2.0 and ROCKET classifiers showed the best performance and were able to correctly 336 

determine the strain of all the 26 mice from their ABR waveforms (100% accuracy: Fig 3f). Tree-337 

based models (random forest and XGBoost) were slightly less accurate compared to the other four 338 

models and misclassified 4 out of 26 test mice (~15%, Fig 3f). In comparison, manual blind dataset 339 

labelling by three experimenters demonstrated varied accuracy, with each annotator mislabelling 340 

between 5 and 8 mice out of the 26 in the test set, corresponding to an error rate between ~19% and 341 

~31%, with moderate agreement between annotators (Fleiss' Kappa: 0.58).  342 
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When evaluated on the entire dataset (104 mice), manual classification resulted in a recall of 66.7% 343 

± 13.6%, specificity of 82.7% ± 18.9%, and precision of 81.9% ± 14.1% (n = 3 annotators). The lower 344 

performance of manual classification can be attributed to its reliance on differences in high-frequency 345 

ABRs between the two genotypes. However, at the early age considered, the substantial overlap 346 

between the two genotypes reduces the reliability of human-extracted features for accurate genotype 347 

differentiation. Notably, at 1 month of age, 25 out of 50 6N mice (50%) had thresholds at 42kHz that 348 

were superimposed to Repaired mice (35 to 60 dB SPL, Fig 2a). Moreover, there was substantial 349 

overlap in the distribution of wave amplitudes and latencies (see Fig. 6 below). Therefore, human-350 

extracted features may not sufficiently capture the subtle differences between genotypes at this early 351 

age since, unlike classification algorithms, manual classification is limited to lower-dimensional 352 

representations of the data. 353 

To gain an insight into the ML algorithm decision process, we determined the contribution of 354 

individual features to the classification task by calculating the mean absolute Shapley values 355 

(Lundberg & Lee, 2017). We selected the random forest and XGBoost classifier for this task, as 356 

calculating Shapley values was computationally prohibitive for the other four models. We found that 357 

features corresponding to higher frequency stimuli (36 and 42 kHz) were the most influential for the 358 

classification task (Fig 4, S3 Fig). Additionally, features corresponding to click responses had 359 

Shapley value elevated across different sound levels, suggesting that subtler differences between the 360 

two genotypes may exist in the ABR waveforms associated with these stimuli (Fig 4). 361 

Overall, these results highlight the potential of ML models to outperform human experts in 362 

identifying differences in ABRs due to ARHL, offering an accurate tool for its early detection. 363 

 364 

3.3. Click ABRs are sufficient to predict the presence of the Cdh23ahl allele 365 

To assess the robustness of the models under more challenging conditions, we aimed to restrict the 366 

number of input features, simulating a scenario often encountered in clinical settings where higher-367 

frequency tone sensitivity (above 8 kHz, called the extended high frequencies, or EHF) is typically 368 

not performed (Hunter et al. 2020). Specifically, we asked whether the click ABR alone, which does 369 

not display any significant threshold shift until 6 months of age (Fig 2d), contained enough 370 

information to differentiate between the two mouse strains at 1 month using ML. To test this, we re-371 

trained the six models described above using only the click responses from 1-month-old mice as input 372 

features (“Click” models, Fig 5a). We found that all the models tested retained good performances 373 

across several metrics (Fig 5b-e, S3 Table, S4 Table). No significant difference was found in the 374 

recall of “Global” and “Click” models (P=0.2150, mixed-effects linear model), albeit the former were 375 

associated with higher sensitivity and precision (P < 0.0001 for both metrics) and ROC-AUC score 376 
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(P=0.0330, mixed-effects linear models). When evaluated on the test set, models misclassified 377 

between 2 to 5 out of 26 mice (error rate between ~8%, MLP and ~19%, random forest) from their 378 

click ABR waveforms (Fig 5f). These results were consistent with those obtained for the “Global” 379 

models that included all frequencies tested (Fig 3). In contrast, manual annotation from the three 380 

experimenters was much less accurate when the information about high-frequency tones was 381 

removed, with each annotator mislabelling between 10 and 12 mice out of the 26 from the test set 382 

(error rates between ~38% and ~46%) with very poor agreement between annotators (Fleiss' Kappa: 383 

-0.09). 384 

As done previously for the “Global” models (Fig 4), we sought to interpret the “Click” models by 385 

calculating the mean absolute Shapley values for the three algorithms for which the computation was 386 

feasible on our hardware (random forest, SVM and XGBoost). We found that the mean absolute 387 

Shapley values corresponding to wave 1 and wave 2 of the click ABR waveforms were consistently 388 

elevated across the higher sound intensities (Fig 5g, S3 Fig), indicating the importance of these 389 

features for the identification of early-onset ARHL mice. Wave 1, which reflects the activity of the 390 

auditory afferent fibres, was consistently selected by the ANOVA F-test feature selection step across 391 

most intensities. This suggests that, even in the absence of an auditory threshold difference, 392 

significant variations in the output of the cochlea caused by the Cdh23ahl allele may be present at an 393 

early age.  394 

Overall, these findings indicate that ABR wave 1 features could enable ML models to distinguish 395 

between the two mouse strains at an early stage, before threshold differences emerge. 396 

 397 

3.4. Differences in ABR wave 1 in 1-month-old 6N and 6N-Repaired mice 398 

Next, we tested whether the importance of features in wave 1, which were used by some models to 399 

identify 6N and 6N-Repaired mice, were underpinned by differences in the average wave 1 amplitude 400 

and latency between the two strains. Using ABR click responses from 1-month-old mice, we found 401 

that both wave 1 amplitude and latency differed significantly between the two mouse strains, despite 402 

substantial overlap in their distributions (Fig 6a,d,e). The difference in average amplitude was 403 

maximal at 95 dB SPL (1.6 µV, 18.4%), while the difference in average latency was maximal at 70 404 

dB SPL (56 µs, 3.9%). Significant differences were also found in latency and amplitude in the 405 

individual tone responses (e.g., 18 kHz: Fig 6b,f,g and 42 kHz Fig 6c,h,i, see also S4 Fig). These 406 

results indicate that, in a mouse model of early onset progressive hearing loss, ABR waveforms may 407 

undergo subtle changes well before a more obvious threshold shift appears. These changes can be 408 

detected by ML models, potentially identifying early hallmarks of the dysfunction. 409 
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To further investigate the role of these features in classification, we compared the performance of a 410 

support vector machine (SVM) when trained on only wave 1 latencies and amplitudes or auditory 411 

thresholds, compared to when the full ABR waveform was used as input (S5 Fig). This analysis was 412 

performed on both a “Global” dataset (including wave 1 parameters and thresholds for all click and 413 

pure-tone stimuli) and a “Click” dataset (i.e., using only waveforms, thresholds, wave 1 amplitudes 414 

and latencies from “Click” ABRs). We found that using the full ABR trace led to significantly higher 415 

recall and ROC-AUC scores, reflecting both improved sensitivity in detecting mice carrying the 416 

ARHL-linked allele and better discrimination between the two classes across different probability 417 

thresholds. Moreover, the full-trace model consistently outperformed wave 1 and threshold-based 418 

models on the test dataset, with all models trained using the same train/test split and cross-validation 419 

folds (S5 Fig). Taken together, these findings indicate that allowing the model to autonomously 420 

determine the most relevant features may offer advantages over hypothesis-driven feature selection, 421 

leading to improved classification performance. 422 

 423 

3.5. ML models performances on heterogeneous datasets 424 

To test the ability of the models to generalise to a similar set of ABR data obtained from a different 425 

experimental setting, we replicated the previous analysis incorporating into the training/testing data 426 

an independently acquired ABR dataset (replication cohort, Fig 7). This dataset contained 188 click 427 

ABRs of 1-month-old mice (85 6N and 103 6N-Repaired) and, differently from the primary cohort 428 

dataset (Figs 1-6), was obtained from mice of both sexes.  429 

We first tested whether the general approach described above was also applicable to the replication 430 

cohort by retraining the ML models using either the primary or the replication cohort datasets, or the 431 

two sets combined for training/validation (Fig 7a-d, S5 Table). As the replication cohort dataset 432 

contained ABRs for stimuli up to 85 dB SPL, we retrained the models from Fig 5 using only this 433 

subset of sound intensities from the primary cohort dataset to allow for comparison. Across the main 434 

four metrics (recall, sensitivity, precision, and ROC AUC), no statistically significant differences 435 

were found between datasets (primary, replication, or combined cohorts, P > 0.1 for all comparisons, 436 

mixed-effect linear model, Fig 7a-d). Moreover, feature importance analysis using Shapley values 437 

highlighted similar features in the primary and replication cohorts (both alone and combined), roughly 438 

corresponding to wave 1 and wave 2 (Fig 7e) as previously shown (Fig 5g). Overall, this result 439 

highlights the generalisability of our ML-based approach in capturing relevant patterns in ABR data 440 

for the identification of early hallmarks of Cdh23ahl-related ARHL. 441 

Next, we measured the performance of one of the models (ROCKET) in making predictions on a 442 

dataset different from the one it was trained on (Fig 7f). We found that the accuracy greatly decreased 443 
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when making predictions on a different set. A model trained on the primary cohort dataset correctly 444 

classified only 101 out of 188 mice (54%) from the replication cohort (recall: 67%, specificity: 43%), 445 

while a model trained on 75% of the replication cohort dataset correctly predicted the genotype of 63 446 

out of 104 mice (61%) from the primary cohort (recall: 94%, specificity: 30%, Fig 7f). In contrast, 447 

accuracy on held out test data of either cohort remained higher when the model was trained on a 448 

combined dataset (Fig 7f). These findings suggest that incorporating data from multiple sources 449 

during training is essential to maintain a high prediction accuracy. 450 

 451 

3.6. ML based prediction of the progression of hearing function in mice 452 

We next examined whether ABR waveforms from young adult mice contained information to 453 

predict the future progression of their hearing function. To do so, we used data from the 63 mice (45 454 

6N and 18 6N-Repaired mice) from the primary cohort for which ABR measurements were collected 455 

at 1, 3, 6, 9 and 12 months of age. ABRs of 6N-Repaired mice were included in the training set to 456 

expose the models to data from “good hearing” mice, thus providing a wider range of targets. We 457 

sought to train models to predict three parameters: the shift in average thresholds across all stimuli 458 

(Fig 8a), and wave 1 amplitude (Fig 8b) and latency (Fig 8c) for click stimuli at three different sound 459 

pressure levels (55, 75 and 95 dB SPL). These parameters showed significant age-dependent changes 460 

in 6N mice (shift in average threshold: P < 0.0001, one-way ANOVA; wave 1 amplitude and latency: 461 

P < 0.0001 for both, two-way ANOVA). For example, the average threshold increased by 38.0 ± 5.9 462 

dB SPL from 1 to 12 months in 6N mice, compared to an increase of only 4.2 ± 4.3 dB SPL in 6N-463 

Repaired mice (Fig 8a). Moreover, substantial variability in the progression of these parameters was 464 

observed across 6N mice (Fig 8 a-c, see also S6 Fig). 465 

We trained regression models through supervised learning using click ABR waveforms from 1- and 466 

3-month-old mice as input features, while the values of the parameters mentioned above at 6, 9 and 467 

12 months were used as targets (Fig 8d). We randomly divided the dataset into a train/validation set 468 

and a test set (47 and 16 mice respectively; the same training and test mice were kept across all 469 

models). As above, we first evaluated model performances through repeated k-fold cross-validation 470 

by averaging the mean absolute error (MAE) across splits (k=5 folds and 5 repeats, totalling 25 splits, 471 

Fig 8e-g, see Methods). We found that the wave 1 latency model (Fig 8g) was the most accurate in 472 

predicting the target values (the average MAE was between 3.9% and 7.9% of the mean wave 1 473 

latency values at the corresponding age and sound levels, Fig 8c). When evaluated on the test set, the 474 

models exhibited similar MAE to those calculated in cross-validation, with a coefficient of 475 

determination (R2) ranging from 0.45 to 0.69 (Fig 8h-j).  476 

477 
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4. Discussion  478 

The application of machine learning (ML) to large biomedical datasets is expected to drive profound 479 

changes in clinical diagnosis, delivery of precision medicine and health monitoring (Goecks et al., 480 

2020). In this study, we applied ML to identify early signs of hearing loss and to predict its 481 

progression in mice using ABR waveforms as input data. We tested six different ML algorithms on 482 

the task of classifying which mice carried Cdh23ahl (6N) compared to co-isogenic Cdh23 repaired 483 

mice (6N-Repaired), at a time when hearing thresholds are similar between the two mouse strains 484 

(Johnson et al. 1997; Noben-Trauth et al. 2003; Mianné et al. 2016; Jeng et al. 2020a; 2020b). We 485 

tested both widely used classifiers (e.g., random forest and SVM) and state-of-the-art algorithms 486 

specialised for time series classification (HIVE-COTE V2.0 and ROCKET). The models we 487 

implemented retained very good performances even when a restricted set of data (click ABRs) was 488 

used instead of the full range of information (pure tone ABRs). This indicates that ML algorithms 489 

were able to identify key features associated with hearing loss even in the absence of differences in 490 

ABR thresholds, which can more easily be identified by trained experimentalists. None of the six 491 

models tested demonstrated a clear advantage in the classification task. Time-series specific 492 

classifiers like HIVE COTE V2.0 and ROCKET were the most consistent across different tasks, albeit 493 

with longer computational analysis time compared to the other models. In contrast, tree-based models 494 

(Random Forest and XGBoost) were less effective, despite offering easier interpretability of their 495 

decision processes. Overall, even simpler models, like the one based on the SVM classifier, 496 

performed reasonably well in the classification task, suggesting that more complex models might not 497 

provide a substantial improvement over simpler ones. However, the consistency of results across 498 

different models strengthens the validity of our approach and supports its robustness. 499 

Interpretation of the models’ decision process for the identification of mice carrying the Cdh23ahl 500 

allele revealed that the most important features were associated with wave 1, in agreement with the 501 

mutation being located in a gene expressed in the cochlear hair cells. Indeed, wave 1 was consistently 502 

selected by the ANOVA F-test feature selection step preceding the classifiers, and its amplitude and 503 

latency were significantly different between the two genotypes already at one month of age.  We 504 

validated our ML approach by applying it to a second, more heterogeneous, ABR dataset acquired by 505 

another laboratory. We also demonstrated that ML models are well suited to predict the future 506 

trajectory of hearing capabilities in mice from early timepoints.  507 

 508 

4.1. Early hallmarks of progressive hearing loss in mice with Cdh23ahl 509 

In mammals, acoustic information travelling within the cochlear partition is transduced into a 510 

receptor potential in the sensory hair cells by the mechanical displacement of the stereociliary bundles 511 
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projecting from their apical surface (Fettiplace, 2017). Within each hair bundle, individual stereocilia 512 

are interconnected by several extracellular linkages (Tilney et al. 1992; Goodyear et al. 2005). One 513 

of these linkages, the tip link, is formed by cadherin 23 and protocadherin 15 (Siemens et al. 2004; 514 

Ahmed et al. 2006; Kazmierczak et al. 2007). Tip links transmit force generated during sound-515 

induced displacement of the hair bundles to open mechanoelectrical transducer (MET) channels 516 

located at the tips of the shorter rows of stereocilia (Beurg et al. 2009). MET channel opening leads 517 

to the depolarization of hair cells, and fusion of glutamate-filled synaptic vesicles at ribbon synapse 518 

active zones, which allow high-rate synaptic transmission onto the auditory afferent fibres (Glowatzki 519 

& Fuchs, 2002; Keen & Hudspeth, 2006; Goutman & Glowatzki, 2007). 520 

The widely used C57BL/6 mice have a single-nucleotide polymorphism in exon7 of the gene 521 

encoding cadherin 23, which affects splicing and leads to skipping of exon 7 (Cdh23ahl, Johnson et 522 

al. 2017; Noben-Trauth et al. 2003). Cdh23ahl has been shown to cause hearing loss starting in the 523 

high-frequency cochlear region by about 3 months of age, and then progressing towards the low-524 

frequency, so that C57BL/6 mice become almost completely deaf by 12-18 months of age (Johnson 525 

et al. 1997; Jeng et al. 2020a; Jeng et al. 2020b; Jeng et al. 2021; Kane et al. 2012; Peineau et al. 526 

2021). Sensitive high frequency ABR thresholds are maintained into old age in co-isogenic repaired 527 

C57BL/6 mice (6N-Repaired), in which the Cdh23ahl allele was repaired with targeted CRISPR/Cas9 528 

gene editing (Mianné et al. 2016). The progression of hearing loss of C57BL/6N mice used in this 529 

study is consistent with the above previous investigations when using a similar ABR threshold 530 

detection approach. However, the larger sample size of our dataset used to train ML algorithms 531 

allowed us to identify small differences in the ABR waveform of 6N compared to 6N-Repaired mice 532 

already at 1 month of age, which is a time when both mouse strains are considered to have normal 533 

hearing (Fig 6). These differences included a significant decrease in the amplitude and increase in the 534 

latency of wave 1, which is determined by the synchronous activity of auditory nerve fibres, and it is 535 

generally interpreted as a measure of the neural output of the cochlea. Our results are therefore 536 

consistent with the idea that a reduction in cochlear output is an early sign of the auditory decline 537 

associated with ARHL, preceding threshold elevation (Sergeyenko et al. 2013). Moreover, this work 538 

indicates that age-related changes to hair cell function in mice harbouring the Cdh23ahl allele may 539 

occur earlier than previously observed based on changes in synapse count and morphology (Jeng et 540 

al. 2020b; Peineau et al. 2021; Stamataki et al. 2006). Further investigations will be required to 541 

determine the physiological correlates of this reduction.  542 

 543 

 544 

 545 
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4.2. Wave 1 as an early predictor of progressive hearing loss due to cochlear impairment 546 

The close correspondence between wave 1 and synaptic survival (Kujawa & Liberman 2009) 547 

indicates that non-invasive measures of cochlear neural responses, such as the one provided by ABR 548 

tests, are a suitable method for early diagnosis of hearing loss even in the presence of normal 549 

thresholds, as previously suggested (hidden hearing loss, Sergeyenko et al. 2013). Our work 550 

demonstrates that ML algorithms can “learn” to single out early differences in ABR data without any 551 

a-priori hypothesis of the features that are indicative of hearing loss. The number of features extracted 552 

by computational algorithms far exceed those that can be identified by trained 553 

experimenters/clinicians (e.g., thresholds, absolute amplitudes and latencies, wave 5/1 ratio and 554 

interwave 1-5 latency, Verhulst et al. 2016). Moreover, our work demonstrates that feature selection 555 

approaches that rely on predefined parameters, such as wave 1 amplitudes and latencies or auditory 556 

thresholds, can be less sensitive in identifying early-onset ARHL cases. Conversely, a data-driven 557 

approach, in which the model autonomously determines the most relevant features, improves 558 

classification performance compared to hypothesis-driven feature selection. Our findings align with 559 

prior work showing the potential of machine learning to enhance the objectivity and accuracy of ABR 560 

waveform classification (McKearney & MacKinnon 2019). Moreover, ML applications are recently 561 

making significant progress in hearing healthcare and research (Lesica et al. 2021; Chen et al. 2021; 562 

Shew et al. 2019, Cha et al. 2019, Crowson et al. 2023, Chen et al. 2024).  563 

One shortcoming of our approach is that our models demonstrated poor performance when tested on 564 

mice from a different cohort, highlighting a key limitation in generalizability and indicating a 565 

tendency to overfit to the specific domain used for training. The poor performances are likely linked 566 

to variations in equipment and techniques used in ABR recordings, such as electrode placement, 567 

mouse position in respect to the speakers, variations in preprocessing pipelines or subtle differences 568 

in task execution by the experimenters, leading to a distribution shift between the two datasets. 569 

However, we found that incorporating labelled data from the target cohort (Combined dataset) in the 570 

training phase was sufficient to maintain classification performance. In the absence of labelled data 571 

from the target cohort, transfer learning techniques (e.g. Azab et al. 2019; Azab et al. 2020, Giles et 572 

al. 2022) could be used to merge knowledge from data collected in different settings to boost model 573 

performance across different data sets. For example, domain adaptation techniques such as Domain-574 

Adversarial Neural Networks (DANN, Ganin et al. 2016) or CORAL (Sun et al. 2017), could help 575 

mitigating this issue by aligning feature distributions across datasets, potentially improving model 576 

robustness. However, these methods rely on neural networks and are therefore likely to require larger 577 

datasets than those used in this study.   578 
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Furthermore, the models were trained exclusively on mice carrying the Cdh23ahl allele and co-579 

isogenic controls, limiting their generalizability to other pathologies affecting ABR waveforms, 580 

including other forms of progressive hearing loss. In order to improve the robustness and applicability 581 

of the model, future work should focus on expanding the dataset to include a broader cohort of mice, 582 

encompassing different ages and genetic backgrounds. Transfer learning techniques could also 583 

facilitate the extension of models to the diagnosis of other hearing pathologies associated with 584 

changes in ABR waveforms (e.g. Schaette & McAlpine 2011). A potential approach to further 585 

improve model robustness could involve using individual ABR trials rather than averaged waveforms 586 

to train/test models, as done in the present work. Resampling individual trials could also provide a 587 

more in-depth assessment of the performance of the models under varying conditions.  588 

We demonstrated that ML is able not only to identify early signs of hearing loss due to the Cdh23ahl 589 

allele, but also forecasting the future progression of hearing loss in mice. Interestingly, forecasting 590 

the progression of hearing loss was recently applied to a longitudinal study with patients affected with 591 

GJB2-related sensorineural hearing loss (Chen et al. 2024). However, translating this approach to 592 

humans with unknown mutations linked to hearing loss would face numerous challenges. Variability 593 

in ABR waveforms is notably higher in human data than in controlled animal models. Moreover, 594 

amplitudes and latencies can vary significantly, both within a single clinic and even more so across 595 

different clinics. Electrode montage around the patient head and head size are also known factors 596 

influencing ABR measurement in humans (King & Sininger 1992; Mitchell et al. 1989). These 597 

challenges could be overcome by developing a ABR testing pipeline that will allow the acquisition 598 

of high-quality, standardised, well curated ABR datasets. Moreover, wave 1 is usually small and more 599 

difficult to identify in humans than in mice (Bramhall 2021). Therefore, other non-invasive 600 

measurements of auditory nerve activity, such as the auditory nerve compound action potential 601 

recorded with an extra-tympanic electrode (Eggermont 2017) could be used to develop ML-based 602 

diagnostic tools. Finally, multimodal machine learning models that integrate both structured (e.g., 603 

age, gender (Jerger & Johnson, 1988)) and unstructured data (e.g., clinical notes) may be required to 604 

achieve reliable predictions. 605 

An ML-based approach could also be applied to the identification of new genes involved in 606 

progressive auditory dysfunction in large-scale screening studies, which often rely on thresholds as 607 

the primary metric (Bowl et al. 2017; Ingham et al 2019). These, however, are relatively insensitive 608 

to primary neuronal degeneration without hair cell loss (Kujawa & Liberman 2009). By contrast, an 609 

ML-based approach could provide a more sensitive tool that does not depend on human-labelled 610 

parameters indicative of hearing loss, potentially enabling the discovery of new genes implicated in 611 

ARHL.  612 
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Overall, our findings demonstrate the potential of machine learning applied to ABR data for early 613 

detection of hearing loss, providing a framework for developing more sensitive, comprehensive 614 

diagnostic tools. While our study focused on a controlled mouse dataset, future work will be necessary 615 

to assess the applicability of this approach to human data, where ABR variability across clinics and 616 

individuals presents additional challenges.617 
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Figure legends 784 

 785 

Fig 1. Schematic representation of the work. 786 

(a) Auditory brainstem responses (ABRs) were recorded from a cohort of 1-month-old 6N (50 mice) 787 

and 6N-Repaired mice (54 mice). Some mice were also tested at 3, 6, 9 and 12 months of age. 788 

Anaesthetised animals were presented with auditory stimuli comprising clicks and pure tones of 789 

frequencies ranging from 3 to 42 kHz and stimulus intensities ranging from 15 dB SPL to 95 dB SPL 790 

in 5 dB SPL increments. Bottom panel shows an example of an ABR recording from a 6N mouse. 791 

Each of the traces in the matrix lasts 10 ms and represents a response to one combination of stimulus 792 

intensity and click/tone frequency. (b) Responses to individual intensities/frequencies combinations 793 

were concatenated in a single trace and used as input features for the machine learning (ML) models.  794 

 795 

Fig 2. Age-dependent change in ABR thresholds in 6N and 6N-Repaired mice. 796 

(a-e) ABR thresholds for click and pure tone stimuli at different ages. Solid points represent median 797 

± median absolute deviation, while individual lines represent audiograms of individual mice. The 798 

number of mice for each genotype is indicated in parenthesis. The same mice cohort was repeatedly 799 

tested at different ages. Note that not all mice were investigated at all age timepoints. Significant 800 

differences between the two genotypes are indicated next to the data points (*: P < 0.0001, pairwise 801 

Wilcoxon rank-sum test, ART ANOVA). At 1 month of age, auditory thresholds were already 802 

significantly different between the two strains (P < 0.0001, ART ANOVA). (f) Rasterplots showing 803 

auditory thresholds as a function of age for four different stimuli (click, 18, 30, 42 kHz) in the 63 804 

mice (45 6N mice and 18 6N-Repaired mice) that were evaluated at all ages tested. Note the 805 

progressive increase in auditory thresholds of 6N mice (red band) compared to 6N-Repaired mice 806 

(blue band). 807 

       808 

Fig 3. ML models can accurately predict the presence of the Cdh23ahl allele from ABR 809 

waveforms early on.  810 

(a) Data flow of the ML training/ testing process. The ABR dataset from 1-month old mice in the 811 

primary cohort was randomly split into a train/validation set (75% of mice) and a test (hold-out) set 812 

(25% of mice). The same train/test split was consistently used across all the models. The models 813 

consisted of an ANOVA feature selection step, where the 10% top scoring features (timepoints) were 814 

selected (see Methods), followed by one of six classifiers. Models were initially evaluated using 815 

repeated stratified k-fold cross-validation (k = 5 splits and 5 repeats). The 25 scores produced by this 816 

step were averaged to provide a measure of the overall performances of the models. Finally, the 817 
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models were trained on the entire training/validation set from the primary cohort and final scores 818 

were obtained by testing predictions on the held-out test set. (b-e) Average metrics of the six models 819 

trained on the whole ABR (click and 8 tones) as estimated in the 5×5 cross-validation step. Solid dots 820 

represent the mean ± SD. Smaller dots indicate the scores from individual folds in the cross-validation 821 

step (25 scores per model, see also S1 Table and S2 Table for statistical comparisons). (f) Confusion 822 

matrices highlighting the performances of the models trained on the whole ABR (click and 8 tones) 823 

on the final test set. HC: HiveCoteV2.0; MLP: multilayer perceptron. RF: random forest; Rckt: 824 

ROCKET; SVM: support vector classifier; XGB: XGBoost. Rep: 6N-Repaired. NPV: negative 825 

predictive value. 826 

 827 

Fig 4. Most important features for Cdh23ahl prediction highlighted by the models. 828 

Matrix of average ABR waveforms (104 mice in the primary cohort at 1-month-old from both the 6N 829 

and 6N-Repaired strains). Note that the y-axis scale is adjusted independently to the minimum and 830 

maximum for each trace. The part of the traces in blue indicates parts of the ABR selected by the 831 

ANOVA F-test feature selection step preceding the classifiers. Each trace is superimposed to a colour-832 

coded raster plot representing the normalised mean absolute Shapley values. Higher Shapley values 833 

indicate the most influential features for model prediction. The displayed raster plots were calculated 834 

as averages of the normalised Shapley values for the random forest (RF) and XGBoost (XGB) models 835 

(see S3 Fig for the Shapley values of the two individual models). Shapley values were calculated on 836 

the test set, using the training set as background distribution. This analysis indicated that responses 837 

to higher frequencies (36 and 42 kHz) at high sound levels are the most important features for these 838 

two models, followed by features associated to click stimuli.  839 

 840 

Fig 5. Click responses alone are sufficient for predicting the presence of Cdh23ahl from ABRs 841 

(a) Input features for “Click” models. The greyed-out trace (i.e., tone ABRs) indicates features not 842 

used for training/testing the models (compared to “Global” models, Fig 1b, Fig 3a). (b-e) Average 843 

performances of the six models trained on the click ABR alone as estimated in the cross-validation 844 

step. Solid dots represent the mean ± SD. Smaller dots indicate the score of individual folds in the 845 

cross-validation step (25 scores per model, see also S3 Table and S4 Table for statistical 846 

comparisons). (f), Confusion matrices highlighting the performances of the models trained on the 847 

click ABR on the test set. HC: HiveCoteV2.0; MLP: multilayer perceptron. RF: random forest; Rckt: 848 

ROCKET; SVM: support vector classifier; XGB: XGBoost. Rep: 6N-Repaired. NPV: negative 849 

predictive value. (g) Average click ABR waveform (104 mice from 1-month-old of both 6N and 6N-850 

Repaired strains) superimposed to a colour-coded raster plot representing the normalised mean 851 
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absolute Shapley values. Shapley values from three different models (random forest, SVM and 852 

XGBoost) were normalised and averaged (see S3 Fig for the Shapley values of the individual 853 

models). The part of the traces in blue indicates parts of the ABR selected by the ANOVA F-test 854 

feature selection step preceding the classifiers. This analysis highlighted parts of wave 1 and wave 2 855 

at sound intensities above 50 dB SPL as the features with the highest importance for model 856 

predictions.  857 

 858 

Fig 6. Differences in ABR Wave 1 in 1-month-old 6N and 6N-Repaired mice. 859 

(a-c) Comparisons of average ABR waveforms from 50 6N and 54 6N-Repaired mice for click stimuli 860 

(a), 18 kHz (b) and 42 kHz (c) tones at 95 dB SPL. The traces on the right provide a magnified view 861 

of the dashed in the traces on the left, highlighting the subtle differences in wave 1 between the 862 

average waveforms of the two genotypes (arrows in panel a). (d-i), Average wave 1 amplitude (d,f,h) 863 

and latency (e,g,i) as a function of sound level for 6N and 6N-Repaired mice for click, 18 kHz and 864 

42 kHz sound stimuli. Significant differences between the two mouse strains: P < 0.0001 (for the 865 

three stimuli for both amplitude and latency, two-way ANOVA, panels d-i). Solid lines represent the 866 

mean ± SD, while lighter traces show individual mice. 867 

 868 

Fig 7. ML model performances decrease when predicting an external dataset. 869 

(a-d) Average metrics of the six models trained on click ABR as estimated in the cross-validation 870 

step. Models were trained and validated on each of two independently acquired datasets (primary and 871 

replication cohort) or on a combined dataset from one-month-old mice. To align with the acquisition 872 

protocols of the two datasets, only sound intensities from 15 dB SPL to 85 dB SPL were used. Solid 873 

dots represent the mean ± SD while the smaller dots indicate the scores from individual folds in the 874 

cross-validation step (25 scores per model per dataset, see also S5 Table). (e) Average click ABR 875 

waveforms from three datasets (primary cohort, replication cohort, combined) superimposed to a 876 

colour-coded raster plot representing the normalised mean absolute Shapley values. The values of 877 

three different models (random forest, SVM and XGBoost) were normalised and averaged. Models 878 

were trained and tested on either the primary cohort dataset (left), replication cohort dataset (center) 879 

or both datasets combined (right). This analysis consistently identified parts of wave 1/ wave 2 as the 880 

features with the highest importance for model predictions across datasets. Primary cohort: 50 6N 881 

and 54 6N-Repaired (Rep.) mice; replication cohort: 85 6N and 103 6N-Repaired mice. (f) Array of 882 

confusion matrices displaying performances of ROCKET models with different combination of the 883 

three datasets used for training and/or testing. For tasks which involved evaluating the models on data 884 

from different laboratories (i.e. training on replication cohort/testing on primary cohort or vice versa), 885 

the whole primary and replication cohort datasets were used either for training or testing. Note that 886 
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results for training/testing on primary cohort data (top left confusion matrix) are slightly different 887 

from the same model in Fig 5f due to the difference in input features between the two (15-95 dB SPL 888 

click ABRs vs 15-85 dB SPL click ABRs). HC: HiveCoteV2.0; MLP: multilayer perceptron. RF: 889 

random forest; Rckt: ROCKET; SVM: support vector classifier; XGB: XGBoost. Rep: 6N-Repaired. 890 

NPV: negative predictive value.  891 

 892 

Fig 8. ML approach to predict the progression of hearing function in mice. 893 

(a-c) Change in ABR properties over time for 6N (top panels) and 6N-Repaired (bottom panels) 894 

mice (45 6N and 18 6N-Repaired mice). Panel (a) displays the change in average threshold, calculated 895 

as the difference between the average thresholds for click and eight tones relative to the value at 1 896 

month of age. Wave 1 amplitude and latency for click stimuli at three different sound levels (55 dB, 897 

blue; 75 dB, orange and 95 dB, green) are shown in panels (b) and (c), respectively. (d) Scheme of 898 

the regression model. The models included an ANOVA feature selection step, selecting 10% of 899 

timepoints as features (see Methods), followed by a random forest regression model. The input of 900 

the models consisted of concatenated click ABRs at 1 and 3 months of age, while the targets were the 901 

values of the three ABR parameters described in panels (a-c) at 6, 9 and 12 months of age. 902 

Training/cross validation set: 47 mice; test (hold-out) set: 16 mice. The same 903 

training/validation/testing split was kept for all the models. (e-g) Mean absolute error (MAE) of the 904 

regression models for changes in average thresholds (e), wave 1 amplitude (f) and latency (g) of click 905 

stimuli, as estimated in the cross-validation step. The target age is indicated on the x axis. Filled dots 906 

represent the mean ± SD. Smaller dots show the score of individual folds in the cross-validation step 907 

(5 folds, 5 repeats, 25 scores per age and sound level). (h-j) scatter plots displaying predicted versus 908 

real values for the change in average threshold (h) and wave 1 amplitudes (i) and latencies (j) at the 909 

indicated sound levels for the test set (16 mice). Each triplet of connected symbols represents an 910 

individual mouse in the test set. The coefficient of determination (R2) and the mean absolute error 911 

(MAE) of each model are indicated at the top. The dashed grey lines represent ideal predictions.912 
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