
This is a repository copy of Deep learning methods for apnoea detection based on pulse 
and oximetry data.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/229106/

Version: Accepted Version

Proceedings Paper:
Yang, D., Zhang, J., Bhargava, E. et al. (3 more authors) (Accepted: 2025) Deep learning 
methods for apnoea detection based on pulse and oximetry data. In: Proceedings of the 
11th IEEE International Conference on Data Science and Systems 2025 (DSS-2025). 11th
IEEE International Conference on Data Science and Systems 2025 (DSS-2025), 13 Aug - 
15 Jul 2025, Exeter, UK. Institute of Electrical and Electronics Engineers (IEEE) (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Deep Learning Methods for Apnoea Detection

Based on Pulse and Oximetry Data

1st Dongjin Yang

School of Electrical & Electronic Eng.

University of Sheffield

Sheffield, United Kingdom

dyang34@sheffield.ac.uk

2nd Jingqiong Zhang

School of Electrical & Electronic Eng.

University of Sheffield

Sheffield, United Kingdom

jingqiong.zhang@sheffield.ac.uk

3rd Eishaan Bhargava

Dept. of Paediatric Otolaryngology

Sheffield Children’s Hospital

Sheffield, United Kingdom

e.bhargava@nhs.net

4th Heather Elphick

Dept. of Paediatric Respirator & Sleep

Medicine, Sheffield Children’s Hospital

Sheffield, United Kingdom

h.elphick@nhs.net

5th Sanja Dogramadzi

School of Electrical & Electronic Eng.

University of Sheffield

Sheffield, United Kingdom

s.dogramadzi@sheffield.ac.uk

6th Lyudmila S. Mihaylova

School of Electrical & Electronic Eng.

University of Sheffield

Sheffield, United Kingdom

l.s.mihaylov@sheffield.ac.uk

Abstract—This paper proposes a deep learning approach for
contactless detection of sleep apnoea using pulse and blood oxy-
gen saturation (SPO2) data. Three convolutional neural network
architectures are adopted for apnoea classification purposes by
fusing different features of the available time series signals. A
conventional convolutional neural network (CNN), a CNN with a
support vector machine (CNN-SVM), and a CNN combined with
a recurrent neural network (CNN-RNN) are compared. The RNN
includes Gated Recurrent Units (GRU) and Bidirectional GRU
(BiGRU). The CNN is utilised to extract features, whilst the SVM
and RNN are used for classification. In addition, we compare
two different fusion methods, signal-level and feature-level fusion.
The performance is validated and evaluated on a public dataset
obtain from St. Vincent University Hospital. The results show
that the concatenation of SPO2 and pulse signal at the signal
level enhances the classification performance compared to using
the individual signal. In addition, the classification sensitivity
with signal-level fusion is higher than that with feature-level
fusion. Overall, the proposed CNN-RNN with GRU (CNN-GRU)
architecture gives the best performance with an accuracy of
85.4%, a sensitivity of 61.5%, a specificity of 91.9%, an F1 score
of 0.64, and a κ score of 0.551 with a dropout rate of 0.5 and a 20-
second overlap. The results demonstrate that the proposed deep
learning approach offers a promising solution for non-invasive
detection of sleep apnoea using affordable physiological signals.

Index Terms—Sleep Apnoea, Deep Learning, Data Fusion,
Convolutional Neural Network, Recurrent Neural Network

I. INTRODUCTION

Sleep apnoea syndrome is a common sleep disorder charac-

terized by repeated breathing interruptions during sleep [1]. It

significantly impacts the cardiovascular, nervous systems and

the quality of life. Current clinical diagnosis mainly relies on

polysomnography (PSG) [2]. However, this method has cost,

comfort, and scalability limitations, and it is challenging to

meet the needs of early screening and home monitoring. In

recent years, advancements in deep learning technology have

prompted researchers to construct automated apnoea detection

models utilising physiological inputs, including blood oxygen

saturation (SPO2) [3], pulse, electroencephalogram (EEG),

and electrocardiogram (ECG) [4].

A. Related Deep Learning Approaches

Convolutional neural networks (CNN) [5], recurrent neural

networks (RNN) [6] and their hybrid models have shown

promising potential in time series signal analysis [7]. However,

existing methods generally face problems such as model

robustness, strong dependence on a single signal, and difficulty

handling class imbalance, single and ensemble outliers. With

the development of Artificial Intelligence (AI) and automation,

deep learning has gradually been proven to improve the ac-

curacy of sleep analysis. By analysing research published be-

tween 2008 and 2018, Mostafa et al. [8] provided insights into

the effectiveness, advantages, and potential future directions of

deep learning for sleep apnoea detection. Same as [9], although

CNN, RNN, and hybrid models have shown high performance,

they believe that ongoing research needs to focus more on

overcoming data challenges and ensuring clinical implemen-

tation. Most sleep analysis applications nowadays concentrate

on feature extraction and signal processing. Sillaparaya et

al. [10] proposed a deep-learning approach to classify OSA

using snoring sounds. They obtained an accuracy of 85.25% by

using Mel-frequency cepstral coefficients (MFCC) and a three-

layer fully connected network. However, there is still more

work to be done, as demonstrated by the difficulties presented

by feature overlap, class imbalance, and small datasets. Barnes

and his colleagues [11], unlike Sillaparaya and his group,

used a single-channel EEG and created a CNN architecture

with three convolutional layers to detect sleep apnoea. Their

framework was more understandable than others because they

trained a CNN classifier using raw EEG data. This provided

inspiration and evidence for our direct use of signals.

Since this study uses two data types, a two-dimensional

(2D) CNN is the model basis. Jiménez-Garcı́a et al. [12]

published a 2D CNN model to detect sleep apnoea in children



using airflow and oximetry. They used a CNN model with

two convolutional blocks to classify the severity of apnoea in

children. Due to the extreme data imbalance, the classification

results were not perfect. Later, they improved the model by

adding Bidirectional Gated Recurrent Units (BiGRU) as a

prediction model [13]. The authors of [13] pointed out that

BiGRU is used to analyze the temporal patterns of data in

two directions. However, it was not compared with the Gated

Recurrent Units (GRU) model [14]. Our study changes this

model to a GRU model and found that the overall ability to

predict apnoea was better than BiGRU.

In addition to CNN-RNN, the CNN with a support vector

machine (CNN-SVM) hybrid model is a popular classification

model nowadays. Baresary and his colleague apply CNN-

SVM to classify sleep apnoea by using PSG [15]. The perfor-

mance is outstanding. However, they did not give the dataset

conditions, and the details and parameters of the model are

unknown. They simulated noise and added it to the raw data

to get closer to reality. The current trend in apnoea detection

is to use less and less expensive signal data to detect the

disease. Although their research was highly accurate, it was

time-consuming and costly.

B. Main Contributions

The main contributions of this paper are as follows: (1) This

study proposes a deep learning approach for detecting sleep

apnoea using pulse and SPO2 signals. We adopt and compare

three deep learning methods: CNN, a CNN-SVM model, and a

CNN-RNN model. The RNN block includes GRU and BiGRU

structures. (2) The effects of different signal fusion strategies,

dropout probability settings, and window overlap lengths on

detection performance are evaluated. Specifically, two fusion

strategies are compared, signal-level fusion and feature-level

fusion. The signal-level fusion performs better than feature-

level fusion, yielding a higher sensitivity of 61.2% for apnoea

detection. (3) The performance of the proposed approach is

evaluated on a public dataset, St.Vincent University Hospital.

The validation results show that combining the pulse and

SPO2 signals using the proposed CNN-GRU architecture

outperforms the single signal model, yielding satisfactory

performance.

The rest of the paper is as follows: Section II describes

the adopted deep learning algorithms. Section III gives imple-

mentation details of the deep learning architecture. Section IV

presents the validation and performance analysis. Finally,

Section V summarises the conclusions and future work.

II. THE PROPOSED HYBRID CNN-SVM AND CNN-RNN

ARCHITECTURES FOR SLEEP APNOEA DETECTION

Starting with the well-known CNNs [5] and RNNs [6]

architectures, this paper proposes hybrid approaches benefit-

ting from a prediction model CNN-BiGRU [13]. This section

describes the CNN-SVM and CNN-RNN architectures.

A. The CNN-SVM architecture

A hybrid classification approach, CNN-SVM combines

convolutional neural networks (CNN) with support vector

machines (SVM). This method [16] uses CNN to extract

feature representations from raw input data. The extracted

features are then used as input for the SVM classifier. CNN

enables the automated extraction of features in a hierarchical

structure. The SVM method maximises the margins between

various classes to generate appropriate decision limits for

classification tasks. The CNN feature extraction combined

with SVM classification could raise the general performance

of the model for different applications. This hybrid model

efficiently leverages the representational capabilities of CNN

in conjunction with the robust generalisation properties of

SVM.

Fig. 1 presents the basic architecture of CNN-SVM, which

is also the architecture used in this experiment. Because 2D

CNN is used, the processed signal needs to be reshaped to

meet the high-dimensional output requirements of the CNN.

The detailed setting of the CNN block is in Section III. The

output of the fully connected layer of the CNN block will be

used as the input of the SVM model. SVM can be changed to

any other machine learning method.

B. The CNN-RNN architecture

Recurrent neural networks (RNNs) [6] are deep learning

models that process and convert sequential data inputs into

specific sequential data outputs. Sequential data comprises

sequential components interrelated by complex semantics and

syntax constraints. Examples of sequential data include words,

sentences, and time-series data. A combination of CNN and

RNN models is designed and trained using a dataset of 1-

minute segments of Pulse and SPO2 signals, labelled with

apnoea episodes.

Fig. 2a presents a deep learning architecture for the con-

catenation in the signal stage and the overall CNN+RNN idea.

The data is divided into 1-minute segments. Assuming the the

data with sampling frequency of 8 Hz and the signal length

of 480. If the concatenation is performed at the signal stage,

the input size is 480 × 2. If concatenation is performed at

the CNN feature stage, the architecture should have two input

sizes of 480× 1 (see Fig. 2b). Different from the basic CNN

model [5], in the CNN hybrid model, the dropout layer is

followed by a flatten layer instead of a fully connected layer.

This is because the flattening layer is used to convert a multi-

dimensional tensor into a one-dimensional vector without

doing any additional processing [17]. This operation is a

reshaping function with no learnable parameters.

In a CNN+RNN architecture, features extracted from the

CNN block are usually directly converted into a sequence

format suitable for RNN processing without further mixing

or transformation. The flattening layer translates the multi-

dimensional feature map into a one-dimensional vector free of

parameters, which preserves the original feature information

obtained by CNN. A fully connected layer, on the other hand,

will add more weights and biases and combine and change

features in linear and nonlinear ways. This makes it more

difficult for RNN to get time series information because it



Fig. 1 CNN+SVM architecture

adds more model factors and computational work. It may also

change the original feature structure.

The RNN block contains an RNN layer, a fully connected

layer and a softmax layer. The last two layers are for classi-

fication. Since GRU has the same performance as LSTM and

lower computational cost [13], two layers related to GRU are

selected for the RNN layer, GRU layer and BiGRU layer.

The BiGRU layer integrates the capabilities of GRU with

bidirectional processing, enabling the model to learn past and

future details about the input sequence. The BiGRU layer

has two GRU layers (see Fig. 3), each of which concurrently

processes the input sequence in both forward and backwards

directions [18]. In the forward pass, the LSTM layer captures

information from previous time steps, while the backwards

pass acquires information from subsequent time steps. This

bidirectional processing allows the model to precisely capture

long-term dependencies in the input sequence. Finally, the

outputs are contacted and sent into a fully connected layer

and a softmax layer for classification.

III. IMPLEMENTATION

A. Implementation Details

The parameter settings for the CNN model of each task

are shown in Table I. Adam optimiser is chosen for its good

binary classification. The size of the mini-batch to use for each

training iteration is 128. The maximum number of epochs to

use for training is set to 500. The initial learning rate used for

training is set to 0.001. The experiments are performed using

the Matlab2024b version.

B. Data Preparation

The dataset from St. Vincent’s University Hospital [19] are

used in this experiment. This dataset has 25 cases, and all the

data are split into overlapping one-minute segments. SPO2 and

pulse readings below 50 and above 300 are considered arte-

facts and removed from further considerations. The segments

TABLE I

PARAMETERS SETTING FOR THE CNNS

CNN

Conv2D 1
number 32

size [16,1]
stride [1,1]

Conv2D 2
number 64

size [16,1]
stride [1,1]

Maxpooling 1
size [2,1]

stride [1,1]

Maxpooling 2
size [2,1]

stride [1,1]
dropout probability 0.3

CNN+RNN

Conv2D 1
number 32

size [16,1]
stride [1,1]

Maxpooling 1
size [2,1]

stride [1,1]
dropout probability 0.2

CNN+SVM

Conv2D 1
number 32

size [16,1]
stride [1,1]

Conv2D 2
number 64

size [16,1]
stride [1,1]

Maxpooling 1
size [2,1]

stride [1,1]
dropout probability 0.2

containing apnoea events are classified as ‘apnoea’ while

those without respiratory disturbances are labelled ‘normal’.

When an apnoea event spanned two consecutive segments,

fine-scale classification was applied. Respiratory disturbances

lasting less than five seconds in any segment are classified as

’normal,’ as such brief interruptions do not significantly affect

the overall respiratory pattern. If disturbances surpass this

duration in any segment, it is classified as ’apnoea’, signifying

a substantial interruption in respiratory function. This method

guarantees accurate classification of each minute according to

the intensity and length of interruptions. The detail of the data

in different overlaps (ovlp) is shown in Table II. The data is



(a) Signal-level fusion architecture

(b) Feature-level fusion architecture

Fig. 2 An overview of CNN+RNN architecture

Fig. 3 The BiGRU architecture

TABLE II

DETAIL OF THE DATA IN DIFFERENT OVERLAPS(OVLP)

apnoea normal

0 ovlp 2569 7406

10 ovlp 2882 9094

20 ovlp 3289 11674

30 ovlp 3820 16137

divided into a training set and a test set in a ratio of 8:2. Since

the convolutional layer used is a convolutional 2D layer, the

data must be reshaped into four-dimensional data to meet the

model input requirements. The training data is divided into

2000 segments and one segment has 480 samples. The input

data can be expressed as [480 2000]. In order to meet the

input conditions of CNN, the input matrix is reshaped in the

order of [S C B T ] to become 4-D data [480 1 1 2000]. These

four numbers represent samples, channels, batches, and time,

respectively.

C. Feature Map from CNN

Figure 4a shows the maximum activation values of the 32

convolution kernels of the CNN model for the apnoea and nor-

mal classes. Each box plot shows the statistical characteristics

of the maximum response value of the convolution kernel to

the input sequence of the two classes. The central line in the

boxplot means the median, while the two edges of the box

mean the interquartile range. Distinct disparities exist in the

activation distribution for some convolution kernels between

the two classes, which means that these kernels effectively

capture the temporal structural attributes associated with ap-

noea and significantly influence the classification decision of

the model.

Figure 4b shows how the kernel 21 captures the local

structure of the original input signal at its maximum response

position. The figure shows the signal pattern within a specific

range before and after the response position. It can be observed

from the figure that in the apnoea sample, the kernel tends

to detect local structures with downward trends in SPO2 and

upward trend patterns in pulse. These patterns may correspond

to the sudden change in flow before apnoea.



(a) Max responses of all kernels/filters (apnoea vs no apnoea). The red line means median. The blue box is the data range.

(b) Data around the strongest activation location in the input

Fig. 4 Feature map visualisation from CNN block

IV. RESULTS AND DISCUSSION

This section mainly gives the results of different models

based on CNN. The left side of the table represents different

inputs, for example, ’SPO2 30’ means the input data is SPO2

signal in 30 seconds overlap. ’Feature’ here means feature

concatenation. ’SigConcate’ means signal concatenation. The

difference between these two is the location of the concate-

nation. Concatenation at the full-connection layer is feature

concatenation, while signal concatenation is concatenated at

the signal stage. ’F1-N’ and ’F1-A’ mean the F1 score of the

normal class and the F1 score of the apnoea class. Since this

experiment is a medical classification, the sensitivity (sens) is

mainly used to evaluate the model.

1) Results with CNN architecture: Table III shows the re-

sults of the CNN model. In this table, the signal concatenation

data with a 20-second overlap performs well. The feature

TABLE III

RESULTS WITH CNN MODEL

acc sens spec F1-N F1-A κ

SPO2 0 82.1% 53.7% 91.4% 0.88 0.60 0.48

SPO2 10 82.3% 56.1% 90.2% 0.89 0.59 0.48

SPO2 20 84.3% 57.9% 91.8% 0.90 0.61 0.51

SPO2 30 85.6% 52.4% 93.3% 0.91 0.58 0.49

Pulse 0 69.4% 30.7% 84.0% 0.80 0.36 0.16

Pulse 10 71.8% 30.0% 85.0% 0.82 0.34 0.16

Pulse 20 74.2% 28.3% 87.6% 0.84 0.33 0.18

Pulse 30 78.2% 25.8% 91.8% 0.87 0.33 0.21

Featrue 0 80.5% 60.2% 87.2% 0.87 0.61 0.48

Feature 10 81.4% 56.2% 89.1% 0.88 0.59 0.47

Feature 20 84.0% 55.7% 92.0% 0.90 0.61 0.51

Feature 30 84.7% 53.5% 92.4% 0.91 0.58 0.49

SigConcate 0 80.5% 56.7% 88.7% 0.87 0.60 0.47

SigConcate 10 82.0% 58.3% 89.7% 0.88 0.61 0.50

SigConcate 20 84.0% 60.1% 90.4% 0.90 0.61 0.51

SigConcate 30 85.0% 53.4% 92.3% 0.91 0.57 0.48



concatenation with no overlap has 60.2% sensitivity, but the κ

value is not as good as signal concatenation. Compared to the

same 20-second overlap input, the sensitivity of the connection

is higher than that of the single signal result. However, there

is still room for improvement in the overall performance,

which can be achieved by optimising network parameters or

enhancing data preprocessing.

TABLE IV

RESULTS WITH CNN-SVM MODEL

acc sens spec F1-N F1-A κ

SPO2 0 79.0% 45.1% 90.9% 0.87 0.53 0.40

SPO2 10 83.4% 47.9% 94.3% 0.90 0.58 0.48

SPO2 20 84.1% 45.6% 95.5% 0.90 0.57 0.48

SPO2 30 85.0% 40.4% 96.2% 0.91 0.52 0.44

Pulse 0 68.0% 28.0% 82.0% 0.79 0.31 0.11

Pulse 10 74.8% 18.8% 92.3% 0.85 0.26 0.14

Pulse 20 76.8% 16.2% 93.4% 0.86 0.23 0.12

Pulse 30 79.0% 14.9% 95.0% 0.88 0.22 0.13

SigConcate 0 81.4% 50.7% 92.2% 0.88 0.59 0.47

SigConcate 10 83.8% 54.7% 92.9% 0.90 0.62 0.52

SigConcate 20 83.5% 58.8% 90.2% 0.90 0.60 0.50

SigConcate 30 84.7% 51.1% 93.1% 0.91 0.57 0.48

2) Results with CNN+SVM : Table IV shows the results

of the CNN-SVM model. In this model, using a single

signal as input is unsatisfactory, but the fusion of two signals

performs relatively well. Based on previous studies, SPO2 has

always performed well in apnoea classification. This is because

apnoea directly affects oxygen intake, which means the oxygen

content in the blood [20]. However, in this CNN-SVM model,

the classification sensitivity of the SPO2 signal is less than

50%. This may be due to the unbalanced signal and may also

be due to the parameter setting.

3) Results with CNN+RNN: Based on different RNN mod-

els, this experiment designed two CNN-RNN models, the

CNN-GRU and the CNN-BiGRU models. Table V shows the

results of the CNN-GRU model. The results show that based

on the CNN-GRU model, the comprehensive performance

of the signal concatenation fusion input with a 20-second

overlap is better than that of other inputs. However, due to

the randomness of the experiment (such as the existence of

the dropout layer), the experimental parameters can be further

optimized to obtain better performance.

Table VI shows the results of the CNN-BiGRU model.

The overall trend of this result is similar to that of CNN-

GRU. However, a 10-second overlap is more suitable for this

model. By comparing the detection results after fusion of

the two stages, the results of fusion in the signal stage are

slightly higher than the others. These four tables show that

the blood oxygen signal can directly detect apnoea, while

the pulse signal is slightly insufficient. This may be due to

the limitation of the pulse signal for apnoea classification.

Although the pulse signal also changes when apnoea occurs,

the pulse signal still has limitations in diagnosing apnoea.

Sleep apnoea is mainly caused by airway obstruction or central

nervous system abnormalities. However, the pulse signal does

not directly indicate the occurrence of apnoea like the airflow

sensor but is indirectly inferred through the secondary effects

TABLE V

RESULTS WITH CNN-GRU MODEL

acc sens spec F1-N F1-A κ

SPO2 0 81.1% 55.3% 90.2% 0.88 0.60 0.48

SPO2 10 81.3% 56.0% 89.2% 0.88 0.59 0.47

SPO2 20 83.4% 58.3% 91.5% 0.90 0.61 0.51

SPO2 30 85.2% 51.6% 93.0% 0.91 0.57 0.48

Pulse 0 70.5% 24.8% 86.1% 0.81 0.30 0.12

Pulse 10 72.7% 20.5% 88.6% 0.83 0.26 0.11

Pulse 20 73.5% 19.7% 88.6% 0.84 0.25 0.10

Pulse 30 76.1% 20.0% 90.0% 0.86 0.25 0.12

Featrue 0 81.3% 54.5% 90.6% 0.88 0.60 0.48

Feature 10 82.3% 55.9% 90.7% 0.89 0.60 0.49

Feature 20 85.4% 57.7% 92.9% 0.91 0.63 0.54

Feature 30 83.7% 53.8% 91.0% 0.90 0.56 0.46

SigConcate 0 80.2% 50.3% 90.7% 0.87 0.57 0.44

SigConcate 10 82.9% 57.0% 91.0% 0.89 0.61 0.51

SigConcate 20 83.6% 61.2% 89.7% 0.90 0.61 0.51

SigConcate 30 85.2% 50.5% 93.0% 0.91 0.56 0.47

TABLE VI

RESULTS WITH CNN-BIGRU MODEL

acc sens spec F1-N F1-A κ

SPO2 0 80.6% 51.0% 90.1% 0.88 0.56 0.44

SPO2 10 81.6% 55.0% 90.6% 0.88 0.60 0.48

SPO2 20 83.6% 56.6% 91.1% 0.90 0.60 0.50

SPO2 30 84.6% 52.7% 92.2% 0.91 0.57 0.48

Pulse 0 70.3% 26.8% 84.8% 0.81 0.31 0.13

Pulse 10 71.2% 23.0% 86.4% 0.82 0.28 0.11

Pulse 20 73.2% 27.5% 86.7% 0.83 0.32 0.16

Pulse 30 76.4% 24.1% 88.5% 0.86 0.28 0.14

Featrue 0 80.9% 56.7% 89.3% 0.87 0.61 0.48

Feature 10 83.2% 56.1% 91.6% 0.89 0.61 0.51

Feature 20 82.4% 54.9% 89.8% 0.89 0.57 0.46

Feature 30 83.7% 55.5% 90.7% 0.90 0.58 0.48

SigConcate 0 79.8% 54.3% 88.8% 0.87 0.58 0.45

SigConcate 10 81.7% 56.2% 89.0% 0.88 0.60 0.49

SigConcate 20 83.6% 58.4% 91.8% 0.90 0.61 0.51

SigConcate 30 84.1% 57.4% 90.6% 0.90 0.58 0.49

of the cardiovascular system [21]. This means that if some

short or mild apnoea does not cause an obvious heart rate

response, the pulse signal may not have an apparent change,

which may cause missed events. The result after signal fusion

is still better than that of a single signal, which shows that

pulse signal is still helpful in indirectly detecting apnoea.

A. Performance Comparison and Discussion

Table VII presents results from different models based on

signal concatenation with 20-second overlap. In addition to

the CNN model introduced in this paper, there is also the

CUSUM algorithm for change point detection [22]. CNN-

GRU shows the best performance among these models. Given

TABLE VII

CNN RESULTS BASED ON CONCATENATED DATA

acc sens spec F1-N F1-A κ

CNN 84.0% 60.1% 90.4% 0.90 0.61 0.51

CNN+SVM 83.5% 58.8% 90.2% 0.90 0.60 0.50

CNN+GRU 83.6% 61.2% 89.7% 0.90 0.61 0.51

CNN+BiGRU 83.6% 58.4% 91.8% 0.90 0.61 0.51

CUSUM [22] 51.1% 72.3% 45.1% 0.59 0.39 0.11

that the outcomes of the CNN model closely resemble those of



Fig. 5 Diagnostic performance of CNN and CNN + RNN

architectures for different numbers of dropout probabilities.

the CNN-GRU model, we choose to perform a more detailed

evaluation based on different dropout values. Table VIII and

TABLE VIII

CNN MODEL RESULTS WITH DIFFERENT DROPOUT

Dropout acc sens spec F1-N F1-A κ

0.1 82.5% 58.7% 88.9% 0.89 0.59 0.4750

0.2 83.4% 57.9% 90.3% 0.90 0.60 0.4919

0.3 84.0% 60.1% 90.4% 0.90 0.61 0.5131

0.4 84.0% 57.9% 91.1% 0.90 0.61 0.5058

0.5 84.7% 57.3% 92.1% 0.90 0.61 0.5184

TABLE IX

CNN-GRU RESULTS WITH DIFFERENT DROPOUT

Dropout acc sens spec F1-N F1-A κ

0.1 83.7% 54.1% 91.7% 0.90 0.59 0.4857

0.2 84.5% 56.5% 92.1% 0.90 0.61 0.5127

0.3 83.6% 61.2% 89.7% 0.90 0.61 0.5100

0.4 84.6% 59.0% 91.5% 0.90 0.62 0.5221

0.5 84.3% 61.0% 90.6% 0.90 0.62 0.5247

Table IX show results from the CNN and the CNN-GRU

models based on different dropout probabilities, using signal

concatenation with a 20-second overlap as input. According to

these results both models perform well when the probability

is 0.5. CNN-GRU is the best among them, which can be

shown in Fig. 5. figure 5 shows the κ values obtained on

the validation set for different dropout values using CNN and

CNN-GRU. The maximum performance on the validation set

was κ = 0.5247 with dropout probability = 0.5 and the

CNN-GRU model. The other configurations performed slightly

lower, so the best model was ultimately chosen to continue

evaluating the test data.

Fig. 6 shows the κ values obtained in the validation set using

different numbers NG of neurons in the GRU layer for CNN

and RNN. The maximum performance in the validation set

is κ = 0.5510 with NG = 4, this is higher than previous

research results, indicating that the CNN-GRU model has

TABLE X

CNN-GRU RESULTS BASED ON A DIFFERENT NG

NG acc sens spec F1-N F1-A κ

1 85.5% 53.4% 94.3% 0.91 0.61 0.5258

2 85.2% 56.3% 93.1% 0.91 0.62 0.5290

4 85.4% 61.5% 91.9% 0.91 0.64 0.5510

8 84.3% 60.2% 90.8% 0.90 0.62 0.5219

16 84.2% 56.6% 91.8% 0.90 0.61 0.5080

32 85.0% 60.7% 91.7% 0.91 0.63 0.5407

64 84.3% 61.0% 90.6% 0.90 0.62 0.5247

Fig. 6 Diagnostic performance of CNN + RNN architectures

for different numbers of neurons in the GRU layer (NG).

higher consistency and reliability. The optimal NG = 4
was low, indicating that modelling the detection of apnoea

in large clusters using 1-min segments does not require high

complexity. Table X shows that with NG = 4, the model

sensitivity reaches 61.5%, and F1 score of the apnoea category

is 0.64, which is the highest value in all experiments. The

results obtained under different GRU unit sizes and dropout

rates show minimal variation, indicating that the proposed

CNN-GRU architecture exhibits stable performance across

various parameter settings.

V. CONCLUSION AND FUTURE WORK

This study proposes a deep learning architecture for con-

tactless detection of sleep apnoea using pulse and SPO2

signals. Three deep learning models, CNN, CNN-SVM, and

CNN-RNN (with GRU and BiGRU variants), are designed,

compared and evaluated on the public data from St. Vincent’s

University Hospital. The key design of the detection frame-

work in this paper is that two feature fusion strategies are

used, among which the result of signal-level fusion is better

than that of feature-level fusion. The experimental results show

that signal-level fusion of pulse and SPO2 signals can improve

classification performance, compared to single-signal models.

Among all model configurations, the CNN-GRU model with

20-second overlap and 0.5 dropout achieves the highest accu-

racy of 85.4%, sensitivity of 61.5%), specificity of 91.9%,

and κ score of 0.551. In addition, the overall stability of



the CNN-GRU architecture across different GRU units and

dropout settings confirms its robustness and suitability for the

classification task, without requiring extensive hyperparameter

tuning. These results confirm the effectiveness of the pro-

posed deep learning approach for low-cost, non-invasive sleep

apnoea screening using physiological signals. The approach

proposed in this paper is not only applicable to sleep apnoea

detection, but can also be extended to other disease detection

tasks based on physiological signals, such as arrhythmia

detection, epileptic seizure prediction, and abnormal blood

pressure monitoring. These tasks similarly involve the joint

modelling of multimodal time series and are characterized by

challenges such as non-linear feature relationships and strong

temporal dependencies.

Future work will focus on multi-classification to include

other sleep disorder categories, such as hypopnea. Moreover,

the data imbalance problem can be addressed through

techniques such as class-weighted loss function and targeted

resampling to improve the detection sensitivity of all sleep

disorder types.
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