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Deep Learning Methods for Apnoea Detection
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Abstract—This paper proposes a deep learning approach for
contactless detection of sleep apnoea using pulse and blood oxy-
gen saturation (SPO2) data. Three convolutional neural network
architectures are adopted for apnoea classification purposes by
fusing different features of the available time series signals. A
conventional convolutional neural network (CNN), a CNN with a
support vector machine (CNN-SVM), and a CNN combined with
a recurrent neural network (CNN-RNN) are compared. The RNN
includes Gated Recurrent Units (GRU) and Bidirectional GRU
(BiGRU). The CNN is utilised to extract features, whilst the SVM
and RNN are used for classification. In addition, we compare
two different fusion methods, signal-level and feature-level fusion.
The performance is validated and evaluated on a public dataset
obtain from St. Vincent University Hospital. The results show
that the concatenation of SPO2 and pulse signal at the signal
level enhances the classification performance compared to using
the individual signal. In addition, the classification sensitivity
with signal-level fusion is higher than that with feature-level
fusion. Overall, the proposed CNN-RNN with GRU (CNN-GRU)
architecture gives the best performance with an accuracy of
85.4%, a sensitivity of 61.5%, a specificity of 91.9%, an F; score
of 0.64, and a « score of 0.551 with a dropout rate of 0.5 and a 20-
second overlap. The results demonstrate that the proposed deep
learning approach offers a promising solution for non-invasive
detection of sleep apnoea using affordable physiological signals.

Index Terms—Sleep Apnoea, Deep Learning, Data Fusion,
Convolutional Neural Network, Recurrent Neural Network

I. INTRODUCTION

Sleep apnoea syndrome is a common sleep disorder charac-
terized by repeated breathing interruptions during sleep [1]. It
significantly impacts the cardiovascular, nervous systems and
the quality of life. Current clinical diagnosis mainly relies on
polysomnography (PSG) [2]. However, this method has cost,
comfort, and scalability limitations, and it is challenging to
meet the needs of early screening and home monitoring. In
recent years, advancements in deep learning technology have
prompted researchers to construct automated apnoea detection
models utilising physiological inputs, including blood oxygen
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saturation (SPO2) [3], pulse, electroencephalogram (EEG),
and electrocardiogram (ECG) [4].

A. Related Deep Learning Approaches

Convolutional neural networks (CNN) [5], recurrent neural
networks (RNN) [6] and their hybrid models have shown
promising potential in time series signal analysis [7]. However,
existing methods generally face problems such as model
robustness, strong dependence on a single signal, and difficulty
handling class imbalance, single and ensemble outliers. With
the development of Artificial Intelligence (Al) and automation,
deep learning has gradually been proven to improve the ac-
curacy of sleep analysis. By analysing research published be-
tween 2008 and 2018, Mostafa et al. [8] provided insights into
the effectiveness, advantages, and potential future directions of
deep learning for sleep apnoea detection. Same as [9], although
CNN, RNN, and hybrid models have shown high performance,
they believe that ongoing research needs to focus more on
overcoming data challenges and ensuring clinical implemen-
tation. Most sleep analysis applications nowadays concentrate
on feature extraction and signal processing. Sillaparaya et
al. [10] proposed a deep-learning approach to classify OSA
using snoring sounds. They obtained an accuracy of 85.25% by
using Mel-frequency cepstral coefficients (MFCC) and a three-
layer fully connected network. However, there is still more
work to be done, as demonstrated by the difficulties presented
by feature overlap, class imbalance, and small datasets. Barnes
and his colleagues [11], unlike Sillaparaya and his group,
used a single-channel EEG and created a CNN architecture
with three convolutional layers to detect sleep apnoea. Their
framework was more understandable than others because they
trained a CNN classifier using raw EEG data. This provided
inspiration and evidence for our direct use of signals.

Since this study uses two data types, a two-dimensional
(2D) CNN is the model basis. Jiménez-Garcia et al. [12]
published a 2D CNN model to detect sleep apnoea in children



using airflow and oximetry. They used a CNN model with
two convolutional blocks to classify the severity of apnoea in
children. Due to the extreme data imbalance, the classification
results were not perfect. Later, they improved the model by
adding Bidirectional Gated Recurrent Units (BiGRU) as a
prediction model [13]. The authors of [13] pointed out that
BiGRU is used to analyze the temporal patterns of data in
two directions. However, it was not compared with the Gated
Recurrent Units (GRU) model [14]. Our study changes this
model to a GRU model and found that the overall ability to
predict apnoea was better than BiGRU.

In addition to CNN-RNN, the CNN with a support vector
machine (CNN-SVM) hybrid model is a popular classification
model nowadays. Baresary and his colleague apply CNN-
SVM to classify sleep apnoea by using PSG [15]. The perfor-
mance is outstanding. However, they did not give the dataset
conditions, and the details and parameters of the model are
unknown. They simulated noise and added it to the raw data
to get closer to reality. The current trend in apnoea detection
is to use less and less expensive signal data to detect the
disease. Although their research was highly accurate, it was
time-consuming and costly.

B. Main Contributions

The main contributions of this paper are as follows: (1) This
study proposes a deep learning approach for detecting sleep
apnoea using pulse and SPO2 signals. We adopt and compare
three deep learning methods: CNN, a CNN-SVM model, and a
CNN-RNN model. The RNN block includes GRU and BiGRU
structures. (2) The effects of different signal fusion strategies,
dropout probability settings, and window overlap lengths on
detection performance are evaluated. Specifically, two fusion
strategies are compared, signal-level fusion and feature-level
fusion. The signal-level fusion performs better than feature-
level fusion, yielding a higher sensitivity of 61.2% for apnoea
detection. (3) The performance of the proposed approach is
evaluated on a public dataset, St.Vincent University Hospital.
The validation results show that combining the pulse and
SPO2 signals using the proposed CNN-GRU architecture
outperforms the single signal model, yielding satisfactory
performance.

The rest of the paper is as follows: Section II describes
the adopted deep learning algorithms. Section III gives imple-
mentation details of the deep learning architecture. Section IV
presents the validation and performance analysis. Finally,
Section V summarises the conclusions and future work.

II. THE PROPOSED HYBRID CNN-SVM AND CNN-RNN
ARCHITECTURES FOR SLEEP APNOEA DETECTION

Starting with the well-known CNNs [5] and RNNs [6]
architectures, this paper proposes hybrid approaches benefit-
ting from a prediction model CNN-BiGRU [13]. This section
describes the CNN-SVM and CNN-RNN architectures.

A. The CNN-SVM architecture

A hybrid classification approach, CNN-SVM combines
convolutional neural networks (CNN) with support vector

machines (SVM). This method [16] uses CNN to extract
feature representations from raw input data. The extracted
features are then used as input for the SVM classifier. CNN
enables the automated extraction of features in a hierarchical
structure. The SVM method maximises the margins between
various classes to generate appropriate decision limits for
classification tasks. The CNN feature extraction combined
with SVM classification could raise the general performance
of the model for different applications. This hybrid model
efficiently leverages the representational capabilities of CNN
in conjunction with the robust generalisation properties of
SVM.

Fig. 1 presents the basic architecture of CNN-SVM, which
is also the architecture used in this experiment. Because 2D
CNN is used, the processed signal needs to be reshaped to
meet the high-dimensional output requirements of the CNN.
The detailed setting of the CNN block is in Section III. The
output of the fully connected layer of the CNN block will be
used as the input of the SVM model. SVM can be changed to
any other machine learning method.

B. The CNN-RNN architecture

Recurrent neural networks (RNNs) [6] are deep learning
models that process and convert sequential data inputs into
specific sequential data outputs. Sequential data comprises
sequential components interrelated by complex semantics and
syntax constraints. Examples of sequential data include words,
sentences, and time-series data. A combination of CNN and
RNN models is designed and trained using a dataset of 1-
minute segments of Pulse and SPO2 signals, labelled with
apnoea episodes.

Fig. 2a presents a deep learning architecture for the con-
catenation in the signal stage and the overall CNN+RNN idea.
The data is divided into 1-minute segments. Assuming the the
data with sampling frequency of 8 Hz and the signal length
of 480. If the concatenation is performed at the signal stage,
the input size is 480 x 2. If concatenation is performed at
the CNN feature stage, the architecture should have two input
sizes of 480 x 1 (see Fig. 2b). Different from the basic CNN
model [5], in the CNN hybrid model, the dropout layer is
followed by a flatten layer instead of a fully connected layer.
This is because the flattening layer is used to convert a multi-
dimensional tensor into a one-dimensional vector without
doing any additional processing [17]. This operation is a
reshaping function with no learnable parameters.

In a CNN+RNN architecture, features extracted from the
CNN block are usually directly converted into a sequence
format suitable for RNN processing without further mixing
or transformation. The flattening layer translates the multi-
dimensional feature map into a one-dimensional vector free of
parameters, which preserves the original feature information
obtained by CNN. A fully connected layer, on the other hand,
will add more weights and biases and combine and change
features in linear and nonlinear ways. This makes it more
difficult for RNN to get time series information because it
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Fig. 1 CNN+SVM architecture
adds more model factors and computational work. It may also TABLE 1
.. PARAMETERS SETTING FOR THE CNNS
change the original feature structure.

The RNN block contains an RNN layer, a fully connected number 32
layer and a softmax layer. The last two layers are for classi- Conv2D_1 si;izge [[116’11]]
fication. Since GRU has the same performance as LSTM and number i
lower computational cost [13], two layers related to GRU are Conv2D_2 size [16,1]
selected for the RNN layer, GRU layer and BiGRU layer. CNN S;?Zie EH

The BiGRU layer integrates the capabilities of GRU with Maxpooling_l stride [1:1]
bidirectiona.l processing, e.nabling the model to 162.11”11 past and Maxpooling_2 ii;g ﬁﬂ
future details about the input sequence. The BiGRU layer 1 STice. d

| X ropout probability 0.3

has two GRU layers (see Fig. 3), each of which concurrently number 3
processes the input sequence in both forward and backwards Conv2D_1 size [16,1]
directions [18]. In the forward pass, the LSTM layer captures CNN+RNN Sglz‘ie gi }
information from previous time steps, while the backwards Maxpooling_1 stride (11]
pass acquires information from subsequent time steps. This dropout probability 0.2
bidirectional processing allows the model to precisely capture ComvaD | ““;;Zer [ 1?521]
long-term dependencies in the input sequence. Finally, the - stride [L1]

outputs are contacted and sent into a fully connected layer number 64
and a softmax layer for classification. CNN+SVM | Conv2D_2 size 116,1]
stride [1,1]

. i 2.1

III. IMPLEMENTATION Maxpooling_1 | 7v [P

dropout probability 0.2

A. Implementation Details

The parameter settings for the CNN model of each task
are shown in Table I. Adam optimiser is chosen for its good
binary classification. The size of the mini-batch to use for each
training iteration is 128. The maximum number of epochs to
use for training is set to 500. The initial learning rate used for
training is set to 0.001. The experiments are performed using
the Matlab2024b version.

B. Data Preparation

The dataset from St. Vincent’s University Hospital [19] are
used in this experiment. This dataset has 25 cases, and all the
data are split into overlapping one-minute segments. SPO2 and
pulse readings below 50 and above 300 are considered arte-
facts and removed from further considerations. The segments

containing apnoea events are classified as ‘apnoea’ while
those without respiratory disturbances are labelled ‘normal’.
When an apnoea event spanned two consecutive segments,
fine-scale classification was applied. Respiratory disturbances
lasting less than five seconds in any segment are classified as
‘normal,” as such brief interruptions do not significantly affect
the overall respiratory pattern. If disturbances surpass this
duration in any segment, it is classified as apnoea’, signifying
a substantial interruption in respiratory function. This method
guarantees accurate classification of each minute according to
the intensity and length of interruptions. The detail of the data
in different overlaps (ovlp) is shown in Table II. The data is
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TABLE 11
DETAIL OF THE DATA IN DIFFERENT OVERLAPS(OVLP)
apnoea | normal
0_ovlp | 2569 7406
10_ovip | 2882 9094
20_ovlp | 3289 11674
30_ovlp | 3820 16137

divided into a training set and a test set in a ratio of 8:2. Since
the convolutional layer used is a convolutional 2D layer, the
data must be reshaped into four-dimensional data to meet the
model input requirements. The training data is divided into
2000 segments and one segment has 480 samples. The input
data can be expressed as [480 2000]. In order to meet the
input conditions of CNN, the input matrix is reshaped in the
order of [S C B T to become 4-D data [480 1 1 2000]. These

four numbers represent samples, channels, batches, and time,
respectively.

C. Feature Map from CNN

Figure 4a shows the maximum activation values of the 32
convolution kernels of the CNN model for the apnoea and nor-
mal classes. Each box plot shows the statistical characteristics
of the maximum response value of the convolution kernel to
the input sequence of the two classes. The central line in the
boxplot means the median, while the two edges of the box
mean the interquartile range. Distinct disparities exist in the
activation distribution for some convolution kernels between
the two classes, which means that these kernels effectively
capture the temporal structural attributes associated with ap-
noea and significantly influence the classification decision of
the model.

Figure 4b shows how the kernel 21 captures the local
structure of the original input signal at its maximum response
position. The figure shows the signal pattern within a specific
range before and after the response position. It can be observed
from the figure that in the apnoea sample, the kernel tends
to detect local structures with downward trends in SPO2 and
upward trend patterns in pulse. These patterns may correspond
to the sudden change in flow before apnoea.
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IV. RESULTS AND DISCUSSION
TABLE III
This section mainly gives the results of different models RESULTS WITH CNN MODEL
based on CNN. The left side of the table represents different ace sens spec | AN | F1A P
inputs, for example, ’SPO2_30’ means the input data is SPO2 SPO2_0 82.1% | 53.7% | 91.4% | 088 | 0.60 [ 0.48
signal in 30 seconds overlap. ’Feature’ here means feature SPO2_10 82.3% | 56.1% 1 90.2% | 0.89 | 0.59 | 048
. e s . 1 . Th SPO2_20 84.3% | 57.9% | 91.8% 0.90 0.61 0.51
c.oncatenatlon. 1gConcate rnfaans signa 'concatenatlon. e SPO2_30 85.6% | 524% | 933% | 0091 058 1 049
difference between these two is the location of the concate- Pulse_0 694% | 30.7% | 84.0% | 080 | 036 | 0.16
nation. Concatenation at the full-connection layer is feature Pulse_10 71.8% | 300% | 85.0% | 0.82 | 034 | 0.16
. . . . . Pulse_20 742% | 283% | 87.6% 0.84 0.33 0.18
conce.ltenatlon, W}nle s1,gnal (:,oncat,enatlon is concatenated at Pulse 30 T22% 1 258% | 915% | 087 033 021
the signal stage. ’FI-N’ and ’F1-A’ mean the F} score of the Featrue_0 805% | 602% 1 872% | 087 | 061 1 048
normal class and the F} score of the apnoea class. Since this Feature_10 81.4% | 56.2% | 89.1% | 0.88 | 0.59 | 0.47
experiment is a medical classification, the sensitivity (sens) is Feature_20 84.0% | 55.7% | 92.0% | 090 | 061 | 0.51
inl dt luate th del Feature_30 84.7% | 53.5% | 92.4% 0.91 0.58 0.49
mainly used o evaluate the model. SigConcate 0 | 805% | 56.7% | 88.7% | 0.87 | 0.60 | 047
1) Results with CNN architecture: Table III shows the re- SigConcate_10 | 82.0% | 58.3% | 89.7% | 0.88 | 0.61 | 0.50
sults of the CNN model. In this table, the signal concatenation | SigConcate 20 | 84.0% | 60.1% | 90.4% | 0.90 | 0.61 | 0.51
SigConcate_30 | 85.0% | 53.4% | 92.3% 0.91 0.57 0.48

data with a 20-second overlap performs well. The feature




concatenation with no overlap has 60.2% sensitivity, but the s
value is not as good as signal concatenation. Compared to the

TABLE V
RESULTS WITH CNN-GRU MODEL

same 20-second overlap input, the sensitivity of the connection acc sens spec | Fi-N | Fi-A | K
is higher than that of the single signal result. However, there SPO2_0 81.1% | 553% | 90.2% | 0.88 | 0.60 | 0.48
. . . . SPO2_10 81.3% | 56.0% 89.2% 0.88 0.59 0.47
is still room for improvement in the overall performance, SPO2_20 33.4% 1 583% 1 915% | 090 1 061 T 031
which can be achieved by optimising network parameters or SPO2_30 852% | 51.6% | 93.0% | 0.91 | 0.57 | 048
enhancing data preprocessing. Pulse_0 70.5% 24.8% 86.1% 0.81 0.30 0.12
Pulse_10 72.7% 20.5% 88.6% 0.83 0.26 0.11
TABLE IV Pulse_20 73.5% 19.7% 88.6% 0.84 0.25 0.10
RESULTS WITH CNN-SVM MODEL Pulse_30 76.1% | 200% | 90.0% | 0.86 | 0.25 | 0.12
Featrue_0 81.3% | 54.5% | 90.6% 0.88 0.60 0.48
acc sens spec Fi-N | Fi-A K Feature_10 82.3% 55.9% 90.7% 0.89 0.60 0.49
SPO2_0 79.0% | 45.1% | 90.9% 0.87 0.53 0.40 Feature_20 85.4% | 57.7% | 92.9% 0.91 0.63 0.54
SPO2_10 83.4% | 47.9% | 94.3% 0.90 0.58 0.48 Feature_30 83.7% | 53.8% | 91.0% 0.90 0.56 0.46
SPO2_20 84.1% | 45.6% | 95.5% 0.90 0.57 0.48 SigConcate_0 80.2% | 50.3% | 90.7% 0.87 0.57 0.44
SPO2_30 85.0% | 404% | 96.2% 0.91 0.52 0.44 SigConcate_10 | 829% | 57.0% | 91.0% 0.89 0.61 0.51
Pulse_0 68.0% | 28.0% | 82.0% | 0.79 0.31 0.11 SigConcate_20 | 83.6% | 61.2% | 89.7% 0.90 0.61 | 0.51
Pulse_10 748% | 18.8% | 92.3% 0.85 0.26 0.14 SigConcate_30 | 852% | 50.5% | 93.0% 0.91 0.56 0.47
Pulse_20 76.8% | 16.2% | 93.4% 0.86 0.23 0.12
Pulse_30 79.0% | 14.9% | 95.0% 0.88 0.22 0.13 TABLE VI
SigConcate_0 81.4% | 50.7% | 92.2% 0.88 0.59 0.47 REsSULTS WITH CNN-BIGRU MODEL
SigConcate_10 | 83.8% | 54.7% | 92.9% 0.90 0.62 0.52
SigConcate_20 | 83.5% | 58.8% | 90.2% 0.90 0.60 0.50 acc sens spec Fi-N | Fi-A K
SigConcate_30 | 84.7% | 51.1% | 93.1% 0.91 0.57 0.48 SPO2_0 80.6% | 51.0% | 90.1% 0.88 0.56 0.44
SPO2_10 81.6% | 55.0% | 90.6% 0.88 0.60 0.48
2) Results with CNN+SVM : Table IV shows the results e | e L oo | o
of the CNN-SVM model. In this model, using a single Pulse 0 703% [ 268% | 848% T 08T T 03T 013
signal as input is unsatisfactory, but the fusion of two signals Pulse_10 712% | 23.0% | 86.4% | 0.82 | 028 | O.11
performs relatively well. Based on previous studies, SPO2 has guise_ég ;zigﬂ ;Z?ZD ZS;Z ggé 8% 8:2
. . . L ulse 470 A7 D70 . . .
always p§rf0nned well in apnoea clasmﬁcgtlon. This is because Featrs 0 209% T 567% T 593% 057 061 048
apnoea directly affects oxygen intake, which means the oxygen Feature 10 332% 1 561% 1 91.6% | 089 | 061 | 031
content in the blood [20]. However, in this CNN-SVM model, Feature_20 824% | 549% | 89.8% | 0.89 | 0.57 | 0.46
the classification sensitivity of the SPO2 signal is less than Feature 30 | 83.7% | 35.5% | 90.7% | 090 | 0.58 | 048
. . SigConcate_0 79.8% | 54.3% 88.8% 0.87 0.58 0.45
50%. This may be due to thé unbalanced signal and may also SigConcate 10 | 81.7% | 56.2% | 89.0% | 0.88 | 0.60 | 0.49
be due to the parameter setting. SigConcate_20 | 83.6% | 58.4% | 91.8% | 0.90 | 0.61 | 0.51
3) Results with CNN+RNN: Based on different RNN mod- SigConcate_30 | 84.1% | 57.4% | 90.6% | 090 | 0.58 | 0.49

els, this experiment designed two CNN-RNN models, the
CNN-GRU and the CNN-BiGRU models. Table V shows the
results of the CNN-GRU model. The results show that based
on the CNN-GRU model, the comprehensive performance
of the signal concatenation fusion input with a 20-second
overlap is better than that of other inputs. However, due to
the randomness of the experiment (such as the existence of
the dropout layer), the experimental parameters can be further
optimized to obtain better performance.

Table VI shows the results of the CNN-BiGRU model.
The overall trend of this result is similar to that of CNN-
GRU. However, a 10-second overlap is more suitable for this
model. By comparing the detection results after fusion of
the two stages, the results of fusion in the signal stage are
slightly higher than the others. These four tables show that
the blood oxygen signal can directly detect apnoea, while
the pulse signal is slightly insufficient. This may be due to
the limitation of the pulse signal for apnoea classification.
Although the pulse signal also changes when apnoea occurs,
the pulse signal still has limitations in diagnosing apnoea.
Sleep apnoea is mainly caused by airway obstruction or central
nervous system abnormalities. However, the pulse signal does
not directly indicate the occurrence of apnoea like the airflow
sensor but is indirectly inferred through the secondary effects

of the cardiovascular system [21]. This means that if some
short or mild apnoea does not cause an obvious heart rate
response, the pulse signal may not have an apparent change,
which may cause missed events. The result after signal fusion
is still better than that of a single signal, which shows that
pulse signal is still helpful in indirectly detecting apnoea.

A. Performance Comparison and Discussion

Table VII presents results from different models based on
signal concatenation with 20-second overlap. In addition to
the CNN model introduced in this paper, there is also the
CUSUM algorithm for change point detection [22]. CNN-
GRU shows the best performance among these models. Given

TABLE VII
CNN RESULTS BASED ON CONCATENATED DATA

acc sens spec F1-N | F1-A K
CNN 84.0% | 60.1% | 90.4% 0.90 0.61 0.51
CNN+SVM 83.5% | 58.8% | 90.2% 0.90 0.60 | 0.50
CNN+GRU 83.6% | 61.2% | 89.7% 0.90 0.61 0.51
CNN+BiGRU | 83.6% | 58.4% | 91.8% 0.90 0.61 0.51
CUSUM [22] | 51.1% | 723% | 45.1% 0.59 0.39 0.11

that the outcomes of the CNN model closely resemble those of
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the CNN-GRU model, we choose to perform a more detailed
evaluation based on different dropout values. Table VIII and

TABLE VIII
CNN MODEL RESULTS WITH DIFFERENT DROPOUT
Dropout acc sens spec F1-N | Fi-A K
0.1 82.5% | 58.7% | 88.9% 0.89 0.59 0.4750
0.2 834% | 57.9% | 90.3% 0.90 0.60 0.4919
0.3 84.0% | 60.1% | 90.4% 0.90 0.61 0.5131
0.4 84.0% | 57.9% | 91.1% 0.90 0.61 0.5058
0.5 84.7% | 57.3% | 92.1% 0.90 0.61 0.5184
TABLE IX
CNN-GRU RESULTS WITH DIFFERENT DROPOUT
Dropout acc sens spec F1-N | Fi-A K
0.1 83.7% | 54.1% | 91.7% 0.90 0.59 0.4857
0.2 84.5% | 56.5% | 92.1% 0.90 0.61 0.5127
0.3 83.6% | 61.2% | 89.7% 0.90 0.61 0.5100
0.4 84.6% | 59.0% | 91.5% 0.90 0.62 0.5221
0.5 84.3% | 61.0% | 90.6% 0.90 0.62 0.5247

Table IX show results from the CNN and the CNN-GRU
models based on different dropout probabilities, using signal
concatenation with a 20-second overlap as input. According to
these results both models perform well when the probability
is 0.5. CNN-GRU is the best among them, which can be
shown in Fig. 5. figure 5 shows the x values obtained on
the validation set for different dropout values using CNN and
CNN-GRU. The maximum performance on the validation set
was k£ = 0.5247 with dropout probability = 0.5 and the
CNN-GRU model. The other configurations performed slightly
lower, so the best model was ultimately chosen to continue
evaluating the test data.

Fig. 6 shows the « values obtained in the validation set using
different numbers NG of neurons in the GRU layer for CNN
and RNN. The maximum performance in the validation set
is kK = 0.5510 with NG = 4, this is higher than previous
research results, indicating that the CNN-GRU model has

TABLE X
CNN-GRU RESULTS BASED ON A DIFFERENT NG

NG acc sens spec F1-N | Fi-A K
1 85.5% | 53.4% | 94.3% 0.91 0.61 0.5258
2 85.2% | 56.3% | 93.1% 0.91 0.62 0.5290
4 85.4% | 61.5% | 91.9% 0.91 0.64 0.5510
8 84.3% | 60.2% | 90.8% 0.90 0.62 0.5219
16 84.2% | 56.6% | 91.8% 0.90 0.61 0.5080
32 85.0% | 60.7% | 91.7% 0.91 0.63 0.5407
64 84.3% | 61.0% | 90.6% 0.90 0.62 0.5247

Kappa value vs GRU units (NG)
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Fig. 6 Diagnostic performance of CNN + RNN architectures
for different numbers of neurons in the GRU layer (NG).

higher consistency and reliability. The optimal NG = 4
was low, indicating that modelling the detection of apnoea
in large clusters using 1-min segments does not require high
complexity. Table X shows that with NG = 4, the model
sensitivity reaches 61.5%, and F) score of the apnoea category
is 0.64, which is the highest value in all experiments. The
results obtained under different GRU unit sizes and dropout
rates show minimal variation, indicating that the proposed
CNN-GRU architecture exhibits stable performance across
various parameter settings.

V. CONCLUSION AND FUTURE WORK

This study proposes a deep learning architecture for con-
tactless detection of sleep apnoea using pulse and SPO2
signals. Three deep learning models, CNN, CNN-SVM, and
CNN-RNN (with GRU and BiGRU variants), are designed,
compared and evaluated on the public data from St. Vincent’s
University Hospital. The key design of the detection frame-
work in this paper is that two feature fusion strategies are
used, among which the result of signal-level fusion is better
than that of feature-level fusion. The experimental results show
that signal-level fusion of pulse and SPO2 signals can improve
classification performance, compared to single-signal models.
Among all model configurations, the CNN-GRU model with
20-second overlap and 0.5 dropout achieves the highest accu-
racy of 85.4%, sensitivity of 61.5%), specificity of 91.9%,
and « score of 0.551. In addition, the overall stability of



the CNN-GRU architecture across different GRU units and
dropout settings confirms its robustness and suitability for the
classification task, without requiring extensive hyperparameter
tuning. These results confirm the effectiveness of the pro-
posed deep learning approach for low-cost, non-invasive sleep
apnoea screening using physiological signals. The approach
proposed in this paper is not only applicable to sleep apnoea
detection, but can also be extended to other disease detection
tasks based on physiological signals, such as arrhythmia
detection, epileptic seizure prediction, and abnormal blood
pressure monitoring. These tasks similarly involve the joint
modelling of multimodal time series and are characterized by
challenges such as non-linear feature relationships and strong
temporal dependencies.

Future work will focus on multi-classification to include
other sleep disorder categories, such as hypopnea. Moreover,
the data imbalance problem can be addressed through
techniques such as class-weighted loss function and targeted
resampling to improve the detection sensitivity of all sleep
disorder types.
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