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Abstract 14 

The onset, cessation, and length of the rainy season are crucial for global water resources, 15 

agricultural practices, and food security. However, the response of precipitation seasonality to 16 

global warming remains uncertain. In this study, we analyze how global warming levels (GWLs) 17 

of 1.5°C and 2°C could affect the timing of rainfall onset (RODs), rainfall cessation (RCDs), and 18 

the overall duration of the rainy season (LRS) over global land monsoon (GLM) regions using 19 

simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) under the SSP2–20 

4.5 and SSP5–8.5 scenarios. With high model consensus, our results reveal that RODs are 21 

projected to occur later over South Africa (SAF), North Africa (NAF), and South America (SAM) 22 

but earlier over South Asia (SAS) and Australia (AUS) in a warmer climate. The projected early 23 

RODs in AUS are more pronounced at 2°C GWL under the SSP5–8.5 scenario. On the other hand, 24 

early RCDs are projected over SAM and East Asia, while late RCDs are projected over NAF with 25 

high inter-model agreement. These changes are associated with a future decrease in LRS in most 26 

GLM regions. Additionally, we found that continuous warming over 1.5°C will further reduce the 27 

length of the rainy season, especially over the SAM, NAF, and SAF monsoon regions. The findings 28 

underscore the urgent need to mitigate global warming. 29 

Keywords: Rainfall onset, Rainfall cessation, Global land monsoon, Rainy season length, CMIP6 30 

Projections, Global warming levels 31 
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Article Highlights: 35 

● Future RODs over South Africa, North Africa, and South America are likely to be 36 

delayed, while early RCDs are projected over South America. 37 

● Changes in RODs and RCDs are associated with a future decrease in LRS in most 38 

GLM regions. 39 

● Continuous warming over 1.5°C will further reduce LRS, particularly in the 40 

monsoon regions of South America, North Africa, and South Africa. 41 

 42 
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 55 

1. Introduction 56 

The global land monsoon (GLM) system comprises seven major monsoon regions: North America 57 

(NAM), South America (SAM), North Africa (NAF), South Africa (SAF), South Asia (SAS), East 58 

Asia (EAS), and Australia (AUS) (Yim et al., 2014; P. Wang et al., 2017; Wang et al., 2020). 59 

These regions are characterized by a seasonal reversal of wind direction driven by differential 60 

heating between land and ocean surfaces, leading to enhanced moisture transport and a pronounced 61 

increase in precipitation during the local summer season (Akinsanola & Zhou, 2018, 2020; Chen 62 

et al., 2020; Chakraborty and Singhai, 2021). The monsoon system plays a critical role in global 63 

hydrological and energy cycles, directly influencing the livelihoods, water resources, and 64 

agricultural productivity of nearly two-thirds of the world's population (Wang et al., 2012; Kitoh 65 

et al., 2013; Akinsanola & Zhou, 2018; W. Zhang et al., 2018; Wang and Ding, 2008; Zhang & 66 

Zhou, 2019a). However, these regions exhibit high sensitivity to global climate change, as 67 

warming-induced shifts in atmospheric circulation and moisture availability can alter monsoon 68 

intensity, duration, and variability (Seager et al., 2010; Kitoh et al., 2013; Zhang & Zhou, 2019b; 69 

Zhou et al., 2020). Given the profound socioeconomic and ecological consequences of monsoon 70 

variability, robust and reliable projections of GLM precipitation characteristics are essential for 71 

improving climate adaptation and mitigation strategies in these vulnerable regions. 72 

Over the past 30 years, the average global surface temperature has risen by about 0.2°C per decade 73 

due to increased greenhouse gas concentrations, driven mainly by anthropogenic factors (IPCC, 74 

2021). Studies have shown that this warming trend has a major impact on the hydrological cycle 75 

(Donat et al., 2016; Lehmann et al., 2015;  Mishra and Liu, 2014), altering precipitation 76 

characteristics in GLM regions (Vera et al. 2006; Jones & Carvalho, 2013; Kitoh et al. 2013; Ni 77 

and Hsu 2018; Akinsanola & Zhou, 2018; Zhang et al. 2018; Deng et al. 2018; Zhang and Zhou 78 

2019b; Seth et al. 2019; Moon and Ha 2020; Akinsanola & Zhou, 2020; Wang et al. 2020; Chen 79 

et al. 2020; Chang et al., 2022). For example, more frequent severe rainfall extremes have been 80 

documented in the Australian and South American monsoon regions (Wang et al., 2020; Jones & 81 

Carvalho, 2013). Over South Asia, precipitation shows decreased occurrence of low and moderate 82 

intensities triggering meteorological drought (Mishra and Liu, 2014), with an increasing positive 83 

trend in summer monsoon precipitation over the northern parts of India's west coast (Preethi et al., 84 

2017). The summer monsoon rainfall in South Asia has been consistently projected to rise (Menon 85 
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et al., 2013; Sharmila et al., 2015; Kitoh et al., 2013), while in North America, it will likely 86 

decrease (Jin et al., 2020). Regionally, because of the disparity in warming rates between 87 

hemispheres, projected changes in monsoon precipitation show a more significant and consistent 88 

increase in the Northern Hemisphere (NH) compared to the Southern Hemisphere (SH) (Lee & 89 

Wang, 2014). Earlier research has found that, under severe climate scenario pathways, there is a 90 

projected rise in the frequency of floods and droughts in eastern Africa (Ayugi et al. 2021). Future 91 

projections indicate a decrease in precipitation across both North and South Africa, with North 92 

Africa experiencing notably wet years and South Africa facing significantly drier years by the end 93 

of the 21st century (Majdi et al., 2022; Almazroui et al., 2020; Bobde et al., 2024). Given these 94 

significant alterations in precipitation patterns, it is important to draw more attention to the timing 95 

of rainfall onset and cessation, along with the length of the rainy season to enhance our 96 

understanding and preparedness for the resulting hydrological impacts. 97 

Although future GLM changes have received much attention, most studies have focused on 98 

understanding and predicting precipitation characteristics such as mean and extreme rainfall (e.g., 99 

Akinsanola & Zhou, 2019; Jin et al., 2020; Chen et al., 2020; Yao et al., 2021; Liu et al., 2022; 100 

Das et al., 2022; Chang et al., 2022), with limited attention to changes in onset and cessation dates 101 

of the rainy season. However, understanding the impact of global warming on these rainy season 102 

characteristics in GLM regions is vital for developing adaptive strategies in socioeconomic sectors 103 

such as agriculture, water resource management, and disaster preparedness (Turner & Annamalai, 104 

2012). Early or delayed onset can significantly affect crop planting schedules and yields, while 105 

premature or prolonged cessation impacts water availability and increases the risk of droughts and 106 

floods (Gadgil & Gadgil, 2006; Dash et al., 2007; Sylla et al., 2016; Singhai et al, 2023). Findings 107 

from studies reveal that higher warming levels could trigger a delayed rainfall onset and early 108 

withdrawal due to variations in atmospheric circulation patterns and gradients of sea surface 109 

temperatures (Kitoh et al., 2013; Khadka et al., 2021). For instance, a projected average delay of 110 

5–10 days in the start of the wet season in West Africa, along with a later onset in South Africa, is 111 

linked to the intensifying Saharan heat low during late summer and a northward shift in the tropical 112 

rain belt from August to December (Dunning et al., 2018). Furthermore, Khadka et al. (2021) 113 

observed that most CMIP5 and CMIP6 models predict a late onset and early retreat for the 114 

Southeast Asian monsoon. However, under a high-emission scenario, CMIP6 models project an 115 

earlier summer monsoon onset over the Arabian Sea and a delayed onset over the Bay of Bengal 116 

and South China Sea, driven by shifts in the northward migration of the equatorial intraseasonal 117 
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oscillation (Wang et al., 2024). Moreover, Cheng et al. (2024) identified a significant correlation 118 

between delayed monsoon onset projections over the Bay of Bengal/South China Sea and western 119 

Pacific sea surface temperature (SST) simulations, prompting adjustments that halved the 120 

projected delay. On the other hand, the projected duration of the Indian summer monsoon (ISM) 121 

shows reduced uncertainty when constrained by observed SST trends in the western Pacific and 122 

surface warming trends over the northern mid-high latitudes, suggesting a 6-day reduction in ISM 123 

duration under a high-emission scenario (Cheng et al., 2025). Additionally, based on observations 124 

and CMIP5 models, Hariadi et al. (2021) showed that the El Niño–Southern Oscillation (ENSO) 125 

influences the monsoon's onset and cessation dates in Southeast Asia, with El Niño events causing 126 

an early onset, and La Niña events leading to a delayed onset. Similarly, more erratic onset and 127 

cessation patterns (Omondi et al., 2014), along with the duration of the rainy season (Sabeerali & 128 

Ajayamohan, 2018), are expected to be more pronounced toward the end of the 21st century.  129 

Despite these significant advances in monsoon research, most studies have focused predominantly 130 

on individual regional monsoon systems, leaving a critical gap in our understanding of how rainy 131 

season characteristics respond to global warming at the broader GLM scale. Specifically, the 132 

response of key monsoon attributes—such as rainfall onset dates (RODs), cessation dates (RCDs), 133 

and the length of the rainy season (LRS)—to future climate scenarios remains insufficiently 134 

explored across all GLM regions. Furthermore, limited research has systematically assessed how 135 

these characteristics evolve under different levels of global warming, particularly the 1.5°C and 136 

2.0°C thresholds outlined in the Paris Agreement. Given the substantial societal and ecological 137 

dependence on monsoon rainfall, it is crucial to comprehensively evaluate the spatially 138 

heterogeneous impacts of climate change on monsoon dynamics. This study builds on previous 139 

studies to provide a comprehensive assessment of projected changes in RODs, RCDs, and LRS 140 

under varying warming scenarios across all GLM regions, offering critical insights for climate 141 

adaptation strategies and water resource management. 142 

CMIP6 models are used to assess changes based on the Shared Socioeconomic Pathway (SSP) 2–143 

4.5 and 5–8.5 scenarios. The rest of this paper is organized as follows: Section 2 details the data 144 

and methods employed in the study. Section 3 assesses how well the model simulates the 145 

climatology of onset dates, cessation dates, and length of the rainy season over GLM regions. 146 

Section 4 investigates projected changes in the onset, cessation, and duration of the rainy season, 147 

along with changes in key rainfall characteristics, including total rainfall, rainfall per rainy day, 148 
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and the number of rainy days. Finally, section 5 presents a summary and conclusions. 149 

2. Data and Methods 150 

This study uses historical and future precipitation datasets from 16 CMIP6 (Coupled Model 151 

Intercomparison Project Phase 6) models (Eyring et al., 2016), as detailed in Table S1. These 152 

datasets encompass the historical period (1995–2014) as defined in the Intergovernmental Panel 153 

on Climate Change (IPCC) Sixth Assessment Report (AR6), and the future (2015–2100). The 154 

study employs the SSP2–4.5 and SSP5–8.5 scenarios, reflecting moderate mitigation and worst-155 

case scenarios. Moderate mitigation efforts are anticipated in the SSP2–4.5 scenario, potentially 156 

limiting global warming to approximately 2.5°C above pre-industrial levels by the end of the 21st 157 

century (O’Neill et al., 2017). Conversely, the SSP5–8.5 scenario, also known as "business as 158 

usual," depicts a future with high fossil fuel use and limited efforts in climate mitigation, resulting 159 

in an approximate 5°C increase in temperature by the close of the 21st century. The first realization 160 

(r1i1p1f1) is used in each model's historical and future projections to maintain consistency in the 161 

analysis. The study also explores the warming thresholds of 1.5°C and 2.0°C compared to pre-162 

industrial levels. These thresholds are identified as the initial year when the 21-year running mean 163 

of the global mean surface temperature (GMST) arrives at 1.5°C and 2.0°C above pre-industrial 164 

levels. Two 10-year periods around each threshold are selected (Hauser et al., 2021; Ayugi et al., 165 

2022). Table 1 presents the timing of reaching 1.5°C and 2.0°C of global warming relative to pre-166 

industrial levels under the SSP2–4.5 and SSP5–8.5 scenarios. The CMIP6 multi-model ensemble 167 

mean approach (referred to here as "EnsMean") is employed to address systematic biases due to 168 

model differences (Akinsanola & Zhou, 2018). The historical performance of the CMIP6 models, 169 

along with their EnsMean, is evaluated using observed daily datasets from the unified gauge-based 170 

analysis of global daily precipitation (CPC) at 0.5°×0.5° resolution (Xie et al., 2010). In addition, 171 

we use CPC data to identify the land areas of the global monsoon (GM) domain. Following Wang 172 

et al.  (2012) and Chen et al. (2020), we defined the GM domain as the area where the precipitation 173 

difference between local summer and winter exceeds 2.0 mm/day, and local summer precipitation 174 

accounts for more than 55% of the annual total precipitation. Summer here refers to May to 175 

September for the Northern Hemisphere (NH) and November to March for the Southern 176 

Hemisphere (SH). 177 

To compare all datasets, we remap them using first-order conservative remapping onto a common 178 

spatial grid of 2.81° × 2.81°, adhering to the lowest model resolution following Faye & Akinsanola 179 
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(2021) and Akinsanola et al. (2024, 2025). Next, the metrics (e.g., onset date) are calculated for 180 

each model and averaged to obtain the EnsMean of the models. Assessing model performance in 181 

simulating historical precipitation is crucial for identifying uncertainty sources and enhancing 182 

confidence in future projections. Here, CMIP6 models are evaluated against observations using 183 

the percentage bias (Eq.1), normalized root mean square error (NRMSE: Eq.2), pattern correlation 184 

coefficient (PCC: Eq.3), and Taylor skill score (TSS: Eq.4). Results are summarized through 185 

portrait diagrams, providing a clear comparison of model performance across all monsoon regions 186 

(Akinsanola et al., 2021; Taguela et al., 2025). 187 

             %𝐵𝐼𝐴𝑆 ൌ ∑ ሺெ೔ିை೔ሻ೙೔సభ∑ ை೔೙೔సభ ൈ 100                                                       (1)   188 

             𝑁𝑅𝑀𝑆𝐸 ൌ ටభ೙∑ ሺெ೔ିை೔ሻమ೙೔సభభ೙∑ ை೔೙೔సభ                                                           (2) 189 

             𝑃𝐶𝐶ሺ𝑀, 𝑂ሻ ൌ ௖௢௩ሺெ,ைሻඥ௏௔௥ሺெሻൈ௏௔௥ሺைሻ                                                     (3) 190 

            𝑇𝑆𝑆 ൌ ସሺଵା௉஼஼ሻమቀ഑ಾ഑ೀା഑ೀ഑ಾቁమሺଵା௉஼஼బሻమ                                                           (4) 191 

where “O” and “M” are observation and reference model means, respectively; “cov” stands for 192 

covariance while “var” is variance; and “𝑛” is the total number of time steps. The standard 193 

deviation is denoted by σ, while PCC0 represents the highest possible value of PCC, set to 1. The 194 

TSS varies between 0 and 1, indicating no match or a perfect match between the model and the 195 

observations. Numerous studies have employed TSS to evaluate model performance (e.g., Faye 196 

and Akinsanola, 2021;  Bobde et al., 2024). 197 

 198 

Table 1: Timing of each CMIP6 model for reaching 1.5°C and 2.0°C GWLs under the SSP2–4.5 199 
and SSP5–8.5 scenarios (Hauser et al., 2021). 200 
 201 

 
 
Model Name 

SSP2–4.5 SSP5–8.5 

GWL 1.5°C GWL 2.0°C GWL 1.5°C GWL 2.0°C 

ACCESS-CM2 2019-2038 2031-2050 2016/2035 2029-2048 
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ACCESS-ESM1-5 2020-2039 2036-2055 2018-2037 2030-2049 
CanESM5 2004-2023 2015-2034 2003-2022 2013-2032 

CESM2-WACCM 2015-2034 2030-2049 2011-2030 2024-2043 
CMCC-CM2-SR5 2016-2035 2029-2048 2012-2031 2024-2043 

CMCC-ESM2 2021-2040 2031-2050 2020-2039 2030-2049 
EC-Earth3 2013-2032 2035-2054 2015-2034 2026-2045 

INM-CM4-8 2026-2045 2054-2073 2021-2040 2037-2056  
INM-CM5-0 2028-2047 2063-2082 2021-2040 2037-2056 

IPSL-CM6A-LR 2009-2028 2024-2043 2009-2028 2025-2044 
MIROC6 2037-2056 2064-2083 2031-2050  2044-2063 

MPI-ESM1-2-HR 2028-2047 2054-2073 2024-2043 2040-2059 
MPI-ESM1-2-LR 2027-2046 2048-2067 2025-2044 2039-2058 

MRI-ESM2-0 2021-2040 2040-2059 2017-2036 2029-2048 
NESM3 2015-2034 2033-2052 2011-2030 2024-2043 

TaiESM1 2022-2041 2034-2053 2019-2038 2027-2046 

 202 

The onset and cessation dates are determined using the approach outlined by Liebmann and 203 

Marengo (2001), with adjustments introduced by Bombardi et al. (2019). The method uses only 204 

precipitation data and has been applied across the global monsoon region by Wainwright et al. 205 

(2021) and Bombardi and Boos (2021). The daily accumulation of precipitation anomalies (S), 206 

beginning from the dry season, is used to detect onset and cessation dates. Based on the region's 207 

climatology, S defines a threshold that accounts for the persistence of precipitation leading up to 208 

these dates. The onset date is identified when S reaches a local minimum, while the cessation date 209 

is determined retrospectively by applying the same calculation from the year's end backward. S is 210 

calculated using Equation 5. 211 

𝑆 ൌ ∑ ൫𝑃௜ െ 𝑃൯௜ୀ௧బ                                                (5) 212 

where 𝑃௜  represents the amount of precipitation measured daily on day 𝑖 ; 𝑃  denotes the mean 213 

annual precipitation rate over a long term, measured in mm/day; and 𝑡଴ marks the beginning date 214 

for the computations. It should be noted that this method does not consider areas with two or three 215 

wet seasons annually. This is achieved by analyzing the proportion of variance explained by the 216 

initial three harmonics of the mean annual precipitation cycle. If the second or third harmonic 217 

accounts for as much variance as the first harmonic or more, it suggests a pronounced bimodal or 218 
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trimodal precipitation regime, leading to the region being masked (Bombardi et al., 2019). The 219 

duration of the rainy season is defined as the period between the start and end dates of rainfall. We 220 

also assess potential future changes in the frequency and intensity of rainfall during the season, 221 

defining a rainy day as having more than 1 mm of precipitation, in line with the criteria used in 222 

CLIMDEX indices (Zhang et al., 2011). The average precipitation during these wet days is then 223 

computed to represent the intensity of heavy rainfall (Dunning et al. 2018). 224 

The projected changes are determined by comparing the 20-year time slice from the projection 225 

(see Table 1 for the period) with the historical period (1995–2014), and future changes are deemed 226 

robust when a minimum of 70% of individual models align on the direction or sign of the ensemble 227 

mean. To evaluate the possibility of mitigating the effects of reaching 2.0°C above pre-industrial 228 

levels, the avoided impacts caused by an extra 0.5°C increase in warming are calculated using 229 

equation (6): 230 

Avoided Impacts = ቀீௐమ.బିீௐభ.ఱீௐమ.బ ቁ ൈ 100%                                               (6) 231 

GW1.5 and GW2.0 represent the changes associated with 1.5°C and 2.0°C warming compared to the 232 

historical period. This method has been employed in several recent studies (e.g., Wang et al., 2020; 233 

Chen et al., 2020; Ayugi et al., 2022). 234 

3. Mean climatology of onset, cessation, and length of the rainy season 235 

We begin by evaluating the capability of CMIP6 models to reproduce the climatological mean of 236 

RODs, RCDs, and LRS across GLM regions by comparing model outputs with CPC observations 237 

(Figure 1). Observations indicate that RODs typically occur during boreal (austral) spring, whereas 238 

RCDs generally take place during boreal (austral) fall (Figure 1a,d) in the Northern (Southern) 239 

Hemisphere. This seasonal pattern is driven primarily by the latitudinal migration of the 240 

Intertropical Convergence Zone (ITCZ), which modulates convection throughout the year 241 

(Nicholson, 2018; Daron et al., 2019). However, mesoscale circulations, orographic influences, 242 

and land-use changes also contribute to regional variations in the timing of rainfall onset and 243 

cessation (Mugalavai et al., 2008; Atiah et al., 2021; Amekudzi et al., 2015; Omay et al., 2023; 244 

Mwangi et al., 2024). While some monsoonal regions exhibit significant spatial variability in 245 

RODs and RCDs, others display more consistent seasonal characteristics. For example, in the NAF 246 

monsoon region, RODs exhibit a zonally consistent northward progression, beginning along the 247 
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coast in late March (Julian Day ~90) and reaching ~18°N by mid-June (Julian Day ~170) (Figure 248 

1a). This pattern aligns with that found by Kumi and Abiodun (2018), who analyzed the historical 249 

RODs, RCDs, and LRS over West Africa using CHIRPS (Hazard Group Infrared Precipitation 250 

with Stations) and ARC2 (African Rainfall Climatology version 2) observations. Although 251 

moisture transport in this region also originates from the Mediterranean and the Indian Ocean 252 

(Adeyeri et al., 2024), the northward progression of RODs is driven primarily by the northward 253 

transport of moisture by the West African Monsoon, which advects moisture from the Gulf of 254 

Guinea into the subcontinent (Omotosho et al., 2000; Sylla et al., 2013; Akinsanola and Zhou, 255 

2020). In contrast, the spatial distribution of RODs and RCDs is more homogeneous across NAM 256 

and EAS (Figure 1a,d), except in the southeastern part of EAS, where RODs occur significantly 257 

earlier than in other parts of the region (Figure 1a).  258 

EnsMean generally captures the key spatial climatology of RODs (Figure 1b) and RCDs (Figure 259 

1e) across GLM regions. However, compared to observations, EnsMean exhibits a systematic 260 

delay in RODs of approximately 20–30 days over SAS and 10–20 days over eastern SAM and 261 

northern NAM, while advancing RODs by 20–30 days over NAF and EAS (Figure 1c). In contrast, 262 

the simulated RCDs show lower biases than the RODs (Figure 1f), with an advance of about 10–263 

15 days over NAF and NAM and a delay of approximately 10 days over AUS. 264 

Regarding LRS, observations indicate that among the monsoon regions, SAM experiences the 265 

longest LRS (>160 days), while SAS has the shortest (<90 days) (Figure 1g). This spatial pattern 266 

is relatively well captured by EnsMean (Figure 1h), though biases in duration remain (Figure 1i). 267 

Specifically, EnsMean overestimates LRS by up to 30 days over eastern NAF, primarily due to 268 

earlier RODs (Figure 1c). Additionally, a positive bias of about 15 days is observed over EAS, 269 

while SAS exhibits a negative bias of approximately 10 days. A distinct dipole bias emerges in the 270 

SAM region, with LRS overestimated by roughly 20 days in the western part and underestimated 271 

by a similar margin in the eastern part. 272 
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Figure 1: The climatological mean (1995–2014) for (a-c) rainfall onset dates (RODs), (d-f) 273 
rainfall cessation dates (RCDs), and (g-i) length of the rainy season (LRS), measured in Julian 274 
days. The figures represent (a, d, g) observational data, (b, e, h) the CMIP6 EnsMean, and (c, f, i) 275 
biases of EnsMean relative to observations (measured in days). Areas with stippling in (c, f, i) are 276 
regions where differences are statistically significant at the 95% confidence level according to the 277 
Student’s t-test. The black contour line outlines the GLM domains, including North America 278 
(NAM), North Africa (NAF), South America (SAM), South Africa (SAF), East Asia (EAS), South 279 
Asia (SAS), and Australia (AUS). 280 

 281 

Additionally, we evaluate the performance of individual models in reproducing the mean 282 

climatology of RODs, RCDs, and LRS across each monsoon region, and the results are presented 283 

using portrait diagrams illustrating the percentage bias, NRMSE, PCC, and TSS. These metrics 284 

measure the differences between the climatological mean of the observations and models (Figure 285 

2). Previous studies have demonstrated the effectiveness of these diagrams (e.g., Akinsanola et al., 286 

2021; Taguela et al., 2020; Bobde et al., 2024). A desirable outcome is to have a low percentage 287 

bias and NRMSE, along with high values for PCC and TSS (Bobde et al., 2024; Akinsanola et al., 288 

2024). Figure 2 shows that, across the GLM regions, CMIP6 models have difficulty simulating 289 

RODs (Figure 2a) compared to RCDs (Figure 2b). This is indicated by the higher percentage bias 290 

values for RODs relative to RCDs, with values as large as -26% in the NAF region for models 291 

such as INM-CM5-0 (Figure 2a), leading to a high LRS percentage bias of 25% (Figure 2c). The 292 

models' NRMSE values (Figure 2d-f) are relatively low across most monsoon regions, except over 293 

AUS, where the NRMSE values for RODs, RCDs, and LRS are higher, with most models showing 294 

values between 0.5 and 0.7. Positive PCC values are generally observed (Figure 2g-i), with most 295 

models reaching up to 0.8–0.9 in SAS for RODs and RCDs, and in NAF and AUS for LRS. The 296 
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TSS for RODs, RCDs, and LRS indicates regional variations across models (Figure 2j-l). AUS 297 

exhibits the lowest scores for RODs (Figure 2j) and the highest for LRS (Figure 2l), while SAS 298 

shows the highest scores for RCDs, reaching 0.9 for most models (Figure 2k). Overall, while some 299 

individual models display significant biases, EnsMean consistently outperforms most individual 300 

models across all variables (RODs, RCDs, and LRS) and evaluation metrics (percentage bias, 301 

NRMSE, PCC, and TSS). This highlights EnsMean as a more reliable choice for further analysis 302 

and discussion over GLM regions. 303 

Figure 2: Portrait diagrams showing the (a-c) percentage bias (unit: day), (d-f) normalized root 304 
mean square error (NRMSE), (g-i) pattern correlation coefficient (PCC; %), and (j-l) Taylor skill 305 
score (TSS) of the (a, d, g, j) rainfall onset dates (RODs), (b, e, h, k) rainfall cessation dates (RCD), 306 
and (c, f, i, l) rainy season length (LRS) in each GLM region for individual models, along with the 307 
CMIP6 EnsMean compared with CPC during the 1995-2014 period. 308 
 309 
 310 
4. Changes in rainy season characteristics 311 

4.1 Projected changes in the onset, cessation, and length of the rainy season 312 

The projected changes in RODs, RCDs, and LRS over GLM regions under the SSP2–4.5 and 313 

SSP5–8.5 scenarios are shown in Figure 3 for different global warming levels. Earlier RODs are 314 

projected over EAS (about 4 days earlier at 2.0°C under the SSP2–4.5 scenario). Projected RODs 315 

in EAS align with results from Ha et al. (2020). However, across most GLM regions, regardless 316 
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of scenario or warming level (Figure 3a, d, g, j), EnsMean generally projects a delay in future 317 

RODs. This agrees with findings from Dwyer et al. (2014), Dunning et al. (2018), and Wainwright 318 

et al. (2021). The delays in future RODs could be attributed to reduced latent heat fluxes linked to 319 

negative soil moisture anomalies (Collini et al. 2008). These delays increase with continuous 320 

warming, reaching 4-5 days under SSP2–4.5 and 6-7 days under SSP5–8.5 in NAF, SAF, and 321 

SAM at the 2.0°C global warming level (Figure 3j). The projected delay in RODs is particularly 322 

robust over SAM and SAF, with at least 70% of the models agreeing on the sign of the change in 323 

EnsMean across these regions. Additionally, models show relatively low uncertainty in the 324 

projected changes in RODs across SAM, with spreads ranging from -1 to 5 days under the 2°C 325 

warming level for both scenarios (Figure 4b, 5b, and S3b). The highest uncertainties in the 326 

projected RODs (±15 days) are observed over AUS (Figure S3g), where EnsMean projects 327 

advanced RODs under both scenarios (Figure 3a, d, g, j). This advancement is more pronounced 328 

under 2.0°C global warming, reaching up to 10 days under the SSP5–8.5 scenario (Figure 3j). For 329 

projected changes in RCDs (Figure 3b, e, h, k), delays (advancements) are observed under all 330 

scenarios and warming levels over NAF (SAM), reaching 5 to 6 (4 to 5) days under SSP5–8.5 at 331 

the 2.0°C warming level (Figure 3k). These delays in RCDs are robust over NAF, with strong 332 

model consensus. All scenarios also project an advancement of approximately 5 days (2 days) over 333 

NAM (AUS). However, the highest uncertainties in projected RCDs are found over NAM, with 334 

model spreads between -10 and 10 days (Figures 4a, 5a, S1a-S3a), while the lowest uncertainties 335 

are over EAS, with spreads between -3 and 3 days (Figures 4f, 5f, S1f-S3f). 336 

 337 
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Figure 3: Future changes in rainfall onset dates (RODs), rainfall cessation dates (RCDs), and 338 
length of the rainy season (LRS) across GLM regions, compared to the 1995-2014 period based 339 
on the CMIP6 EnsMean under the SSP2–4.5 and SSP5–8.5 scenarios at various global warming 340 
levels. (a–c) SSP2–4.5/1.5ºC, (d–f) SSP2–4.5/2.0°C, (g–i) SSP5–8.5/1.5°C, and (j–l) SSP5–341 
8.5/2.0°C. Stippling marks areas where at least 70% of the models concur on the direction of 342 
change in EnsMean. 343 
 344 

Under the combined impacts of changes in RODs and RCDs, LRS is expected to decrease 345 

over SAM and SAF under both the SSP2–4.5 and SSP5–8.5 scenarios (Figure 3c, f, i, and l), with 346 

a pronounced decrease (>8 days) under 2.0°C global warming in each scenario. This is likely 347 

related to the projected delays in RODs in these regions (Figure 3a, d, g, j). Although the shortening 348 

in LRS over SAF shows strong model consensus only under 2.0°C warming in each scenario 349 

(Figure 3f and 3l), the decrease over SAM is robust under both 1.5°C and 2.0°C warming in both 350 

scenarios. Although some studies suggest a rise in LRS of the East Asian monsoon (Kitoh et al., 351 

2013; Lee & Wang, 2014; Moon & Ha, 2020), consistent with Sabeerali & Ajayamohan (2018) 352 

and except at 2°C under SSP2–4.5, a projected decrease in LRS is also observed over SAS and 353 

EAS. Sabeerali & Ajayamohan (2018) attributed this decrease primarily to the warming of the 354 

western Indian Ocean, which reduces the upper-tropospheric temperature gradient and 355 

consequently reduces LRS. Uncertainties in the projected LRS are highest over EAS (Figure S3c) 356 

and lowest over AUS (Figure S3g). 357 

 358 
 359 
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 360 

Figure 4: Annual rainfall cycle from observations (1995-2014, CPC: black line), CMIP6 361 
EnsMean for the historical period (1995-2014: green line), and future projections under SSP2–362 
4.5 at 1.5°C GWL (yellow line). Vertical dashed and dotted black lines indicate observed rainfall 363 
onset and cessation dates, while solid blue and red lines represent the CMIP6 historical EnsMean 364 
for these dates. Projected onset and cessation dates are shown with dashed blue and red lines, 365 
respectively, with light shading in corresponding colors representing model spread. The annual 366 
cycles are smoothed representations of the long-term daily means, derived using the first harmonic 367 
of Fourier analysis. 368 
 369 
 Figures S4 and 6 explore the effect of an additional 0.5°C global warming climate on RODs, 370 

RCDs, and LRS over GLM regions under the Paris Agreement’s proposed warming level of 1.5°C 371 

(COP21, 2015). The additional effects resulting from 2.0°C warming lead to further delay in RODs 372 

over NAF, SAF, SAS, and SAM, while earlier RODs are projected over AUS (Figure S4a, d). 373 

Over NAF (SAM), the delay is more substantial under SSP2–4.5 (SSP5–8.5) compared to SSP5–374 

8.5 (SSP2–4.5). However, limiting the warming to below 1.5°C rather than 2.0°C will lead to 375 

positive avoided impacts on RODs in most GLM regions ,such as SAS (18%) and SAM (41%) 376 

under the SSP2–4.5 and SSP5–8.5 scenarios, respectively (Figure 6a,b). In contrast, the increase 377 

in warming from 1.5°C to 2.0°C further advances RODs by more than 6 days over AUS under the 378 

SSP5–8.5 scenario (Figure S4d). For the projected RCDs under SSP2–4.5, additional warming 379 
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above 1.5°C causes a slight delay of about 2 days over NAF, while a more pronounced delay of 380 

about 4 days is projected under SSP5–8.5 (Figure S4b, e). The effect of an additional 0.5°C global 381 

warming will advance (delay) RCDs by approximately 6 days (5 days) over the western part of 382 

SAS under SSP2–4.5 (SSP5–8.5) (Figure S4c, f). Under a warmer climate, LRS is projected to be 383 

longer by about 5 days over SAS for SSP2–4.5 compared to SSP5–8.5. In both scenarios, a further 384 

decrease in LRS is projected over SAM and SAF with model consensus, and the shortest LRS is 385 

expected under the SSP5–8.5 scenario (Figure S4c, f). Limiting the warming to below 1.5°C rather 386 

than 2.0°C will avoid 34% of the impact on the projected LRS in SAF under SSP2–4.5 (Figure 387 

6a,b). These findings suggest that a warming climate leads to a reduced likelihood of LRS, which 388 

could result in dry conditions over regions such as SAM and SAF. 389 

Figure 5: Annual rainfall cycle from observations (1995-2014, CPC: black line), CMIP6 390 
EnsMean for the historical period (1995-2014: green line), and future projections under SSP5–391 
8.5 at 1.5°C GWL (yellow line). Vertical dashed and dotted black lines indicate observed rainfall 392 
onset and cessation dates, while solid blue and red lines represent the CMIP6 historical EnsMean 393 
for these dates. Projected onset and cessation dates are shown with dashed blue and red lines, 394 
respectively, with light shading in corresponding colors representing model spread. The annual 395 
cycles are smoothed representations of the long-term daily means, derived using the first harmonic 396 
of Fourier analysis. 397 
 398 
 399 
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Figure 6: Avoided Impact of 0.5ºC warmer climate relative to the 1.5 ºC warming target over 400 
GLM regions (unit: %) for rainfall onset dates (RODs), rainfall cessation dates (RCDs), and 401 
length of the rainy season (LRS) based on the CMIP6 EnsMean under the (a) SSP2–4.5 and (b) 402 
SSP5–8.5 scenarios. Projected changes are computed relative to the 1995-2014 historical period, 403 
and the error bars (vertical lines) represent 95% confidence interval based on the spread across 404 
all CMIP6 models. 405 
 406 
4.2  Future changes in precipitation characteristics within the rainy season 407 

  This section investigates how precipitation characteristics during the rainy season will be 408 

affected by 1.5°C and 2.0°C increases in global temperatures under the SSP2–4.5 and SSP5–8.5 409 

scenarios across GLM regions. Results show a projected increase in total precipitation over WAF, 410 

SAS, and EAS (Figure 7a, d, g, j), with the increase stronger under 2.0°C GWL in both scenarios 411 

(Figure 7d, j) and higher increases (> 80 mm) over NAF (Figures 7j and 8a). The projected increase 412 

in precipitation over NAF agrees with findings from Almazroui et al. (2020) and Dosio et al. (2021). 413 

The model consensus observed over NAF in both scenarios and at both GWLs (Figure 7a, d, g, j) 414 

further indicates the robustness of the change in that region. The projected rise in precipitation 415 

could be linked to greater surface evaporation and intensified convergence of atmospheric 416 

moisture, as reported by Akinsanola and Zhou (2019). Conversely, although less robust, a 417 

projected decrease in total precipitation is observed over SAM, as also highlighted by Hodnebrog 418 

et al. (2021) and Almazroui et al. (2021). The decrease reaches -30 mm under SSP5–8.5 (Figure 419 

7g, j). For both global warming levels, total precipitation is projected to increase under SSP2–4.5 420 

and decrease under SSP5–8.5 in NAM (Figures 7a, d, g, j, and 8a). However, that region has large 421 

model uncertainties at 2.0°C GWL under the SSP5–8.5 scenario (Figure 8a). For the projected 422 

amount of rainfall per day, an increase is expected in all regions (Figure 7b, e, h, k). The projected 423 

increase is stronger at 2.0°C GWL in both scenarios, with the highest (> 0.6 mm/day) and more 424 

robust increase projected over NAF under SSP5–8.5 (Figure 7k). Conversely, the projected 425 
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number of rainy days is expected to decrease in most monsoon regions (Figure 7c, f, i, l). The 426 

highest decrease is expected over SAM and SAF and is more pronounced (> 10 days) at 2.0°C 427 

GWL in both scenarios (Figure 7f, l), with high model consensus. However, large uncertainties 428 

exist over SAM at 2.0°C GWL under the SSP5–8.5 scenario (Figure 8c). Notably, NAF exhibits 429 

the highest increase in the projected number of rainy days, reaching up to 8 days under the SSP5–430 

8.5 scenario at 2.0°C GWL. 431 

 432 

Figure 7: Future changes in total rainfall during the rainy season (mm), daily rainfall amounts 433 
(mm/day), and number of rainy days (days) across GLM regions relative to the 1995-2014 period 434 
for the CMIP6 EnsMean under the SSP2–4.5 and SSP5–8.5 scenarios at different GWLs. (a–c) 435 
SSP2–4.5 under 1.5ºC, (d–f) SSP2–4.5 under 2.0°C, (g–i) SSP5–8.5 under 1.5°C, and (j–l) SSP5–436 
8.5 under 2.0°C. Stippling marks areas where at least 70% of the models concur on the direction 437 
of change in EnsMean. 438 
 439 
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Figure 8: : Projected changes in the area averaged: (a) the total rainfall during the rainy season 440 
(mm), (b) daily rainfall amounts (mm/.day−1), and (c) the number of rainy days (days) under the 441 
SSP2–4.5 and SSP5–8.5 scenarios at various GWLs compared to the period 1995-2014 across 442 
different monsoon regions. Box-and-whisker plots illustrate the 10th, 25th, 50th, 75th, and 90th 443 
percentiles. 444 
 445 

Figure 9 explores the relationship between changes in total rainy season rainfall (TRSR) 446 

and changes in RODs as well as RCDs. While results vary across regions, the correlation between 447 

TRSR and RCDs is generally stronger. In SAF, under SSP2–4.5 at 1.5°C, the correlation between 448 

TRSR and RCDs reaches 0.59. Figure S5 also illustrates the statistical relationships between TRSR 449 

and the rainfall per rainy day (RPRD), as well as the relationships between TRSR and the number 450 

of rainy days (NORD) across the 16 CMIP6 models. TRSR generally exhibits a stronger 451 

correlation with RPRD across all regions at both global warming levels and under both scenarios, 452 

with the highest correlation coefficients observed in EAS, reaching up to 0.95 at a 1.5°C global 453 

warming level under the SSP2–4.5 scenario (Figure S5). This suggests that, in many regions, the 454 

rise in RPRD might have a greater impact on TRSR than the changes in the number of rainy days. 455 

This aligns with the findings of Piao et al. (2023) over East Asia, who reported a high correlation 456 

between TRSR and the rainfall per rainy season. However, TRSR is also closely associated with 457 

the number of rainy days over SAS, with correlation coefficient values of 0.75 at 2.0°C GWL 458 

under SSP2–4.5 and 0.75 at 1.5°C GWL under SSP5–8.5 (Figure S5). 459 
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Figure 9: Scatterplots and correlation coefficients showing the relationship between changes in 460 
total rainy season rainfall (TRSR; mm) and changes in rainfall onset dates (RODs; day) (blue) as 461 
well as rainfall cessation dates (RCDs; days) (red) under the SSP2–4.5 and SSP5–8.5 scenarios 462 
at various global warming levels (GWLs) relative to the period 1995-2014 for each monsoon 463 
region across the 16 CMIP6 ensemble members. Shading indicates 95% confidence intervals. 464 
 465 
  From 1.5°C to 2.0°C GWL, under both scenarios, there is a significant rise in TRSR and 466 

RPRD across most areas (Figures 10 and S6). Over NAF (SAS), TRSR increases by more than 30 467 

mm under SSP5–8.5 (SSP2–4.5), while the increase is less significant under SSP2–4.5 (SSP5–8.5) 468 

(Figure 10a,d). For corresponding changes in RPRD, the increase is also more significant under 469 

SSP5–8.5 scenario in most regions, with the largest increase (>0.4 mm/day) observed west of the 470 

SAS region (Figure 10b,e). However, for both TRSR and RPRD, the impact of 2.0°C over 1.5°C 471 

generally shows larger uncertainties under SSP5–8.5 scenario (Figure S6a,b). With additional 472 

warming of 0.5°C, rainy days decreases in all regions except SAS and EAS under SSP2–4.5 473 

scenario (Figure 10c,f). The highest decrease of about 5 days is observed over SAM. Conversely, 474 

NAF and AUS exhibit an increase in the number of rainy days under SSP5–8.5 scenario. 475 

 476 

Page 20 of 47

https://mc03.manuscriptcentral.com/aasiap

Advances in Atmospheric Sciences

in 
pre

ss



For Review
 O

nly

21 

Figure 10:  Projected changes in total rainfall during the rainy season (mm), the daily rainfall 477 
rate (mm/day), and the number of rainy days (days) across GLM regions relative to the 1995-2014 478 
period for the CMIP6 EnsMean models under GWL2.0 compared to GWL1.5 for the (a–c) SSP2–479 
4.5 and (d–f) SSP5–8.5 scenarios. Stippling marks areas where at least 70% of the models concur 480 
on the direction of change in EnsMean. 481 
 482 
5. Summary and conclusion 483 

Exceeding the 1.5°C and 2.0°C global warming thresholds is projected to induce profound 484 

changes in global monsoon systems, with potentially devastating consequences for billions of 485 

people. This study addresses the critical question of how global land monsoon (GLM) rainfall 486 

patterns such as onset dates (RODs), cessation dates (RCDs), and the length of the rainy season 487 

(LRS) will change in the future by analyzing historical and projected precipitation data from 16 488 

CMIP6 models under the SSP2–4.5 and SSP5–8.5 scenarios. 489 

Our results indicate that the CMIP6 ensemble mean (EnsMean) generally captures the basic 490 

spatial features of RODs and RCDs, albeit with some biases. For example, EnsMean delays RODs 491 

by about 20–30 days over South Asia and 10–20 days over northern North America while 492 

advancing them by 20–30 days over North Africa and East Asia. EnsMean shows less bias in 493 

simulated historical RCDs than RODs, with about 10–15 days of advance over North Africa and 494 

North America. Additionally, LRS is reasonably well represented. However, there are biases in 495 

the number of days, particularly in eastern North Africa and South Asia. Individual models 496 

generally struggle more with simulating RODs than RCDs, with higher percentage bias values for 497 

RODs across most regions. Except over EAS and AUS, future changes project a delay in RODs 498 

under the SSP2–4.5 and SSP5–8.5 scenarios in most monsoon regions, particularly under the 2.0°C 499 

global warming level. The delays are more robust over regions like South America, with models 500 

showing relatively low uncertainties. Conversely, under both scenarios, RCDs are projected to 501 

advance in some regions, such as North America and Australia. The combined effects of changes 502 
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in RODs and RCDs indicate a shortening of LRS over South America and South Africa, implying 503 

an intensification of dry conditions in a warming climate. Additionally, the study finds that total 504 

precipitation and the intensity of rainfall per day within the rainy season are projected to increase 505 

over most regions, particularly under the SSP5–8.5 scenario. This increase is accompanied by a 506 

decrease in rainy days, suggesting a shift toward more intense but less frequent rainfall events. 507 

These findings underscore the importance of limiting global warming to below 2.0°C to mitigate 508 

adverse impacts on precipitation patterns and the length of the rainy season. 509 

Changes in the timing of the rainy season can have significant implications for various 510 

sectors, particularly agriculture. For instance, the projected delays in the onset of the rainy season 511 

in SAM can disrupt planting schedules, reducing crop yields. Farmers rely on predictable rainfall 512 

patterns to time their planting, and any deviation can result in crops not reaching maturity before 513 

the end of the rainy season. Also, delayed onset affects water availability for irrigation and other 514 

uses. This can strain water resources, especially in regions already facing water scarcity. The 515 

timing of rainy season cessation also carries critical implications. For example, the projected early 516 

cessation over NAM and SAF can reduce the growing season, preventing crops from reaching full 517 

maturity and reducing yields. This is particularly detrimental for crops that require longer growing 518 

periods. Also, an early end to the rainy season can increase the risk of drought, affecting agriculture 519 

and water supply for domestic and industrial use. The overall length of the rainy season, 520 

determined by the onset and cessation dates, has profound implications. As projected in most GLM 521 

regions, a shortened rainy season can lead to insufficient crop water, reducing yields and 522 

potentially leading to food shortages. Also, changes in the length of the rainy season can alter the 523 

balance between flood and drought periods. However, in North Africa, the projected increase in 524 

the total rainy season rainfall, along with the rainfall per rainy day, might mitigate drought risks 525 

but increase flooding incidents, damaging infrastructure, homes, and livelihoods, particularly in 526 

urban areas with poor drainage systems. Therefore, understanding the projected changes in rainfall 527 

characteristics is crucial for developing effective climate adaptation strategies. These include 528 

rainwater harvesting, improved irrigation techniques, and developing drought-resistant crop 529 

varieties. 530 

 531 

 532 
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 855 
Figure S1: Annual rainfall cycle from observations (1995-2014, CPC: black line), CMIP6 856 
EnsMean for the historical period (1995-2014: green line), and future projections under SSP2–857 
4.5 at 2.0°C GWL (yellow line). Vertical dashed and dotted black lines indicate observed rainfall 858 
onset and cessation dates, while solid blue and red lines represent the CMIP6 historical EnsMean 859 
for these dates. Projected onset and cessation dates are shown with dashed blue and red lines, 860 
respectively, with light shading in corresponding colors representing model spread. The annual 861 
cycles are smoothed representations of the long-term daily means, derived using the first harmonic 862 
of Fourier analysis. 863 
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 881 

Figure S2: Same as Figure S1 for SSP5–8.5 at 2.0°C 882 
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 902 
 903 
Figure S3:  Projected changes in the area-average rainfall onset dates (RODs) and cessation dates 904 
(RCDs), as well as the length of the rainy season (LRS), under SSP2–4.5 and SSP5–8.5 scenarios 905 
at various GWLs compared to the historical period (1995-2014) across different monsoon regions. 906 
Box-and-whisker plots illustrate the 10th, 25th, 50th, 75th, and 90th percentiles. 907 
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 927 
 928 
 929 

 930 
 931 
Figure S4: Projected changes in the rainfall onset dates (RODs) and cessation dates (RCDs), as 932 
well as the length of the rainy season (LRS), over GLM regions relative to the 1995-2014 period 933 
for the CMIP6 EnsMean at GWL2.0 compared to GWL1.5 under (a–c) SSP2–4.5 scenario and (d–934 
f) SSP5–8.5 scenario. Stippling marks areas where at least 70% of the models agree on the 935 
direction of change in the EnsMean. 936 
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 960 
 961 
Figure S5: Scatterplots and correlation coefficients showing the relationship between changes in 962 
total rainy season rainfall (TRSR; mm) and changes in rainfall per rainy day (RPRD; mm/day) 963 
(red) as well as the number of rainy days (NORD; days) (blue) under SSP2–4.5 and SSP5–8.5 964 
scenarios at various global warming levels (GWLs) relative to the period 1995-2014 for each 965 
monsoon region across the 16 CMIP6 ensemble members. Shadings indicate 95% confidence 966 
intervals. 967 
 968 
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 988 
 989 
Figure S6: Changes in the area-averaged in (a) total rainfall during the rainy season (unit: mm), 990 
(b) daily rainfall rate (mm/day), and (c) number of rainy days (day) under SSP2–4.5 and SSP5–991 
8.5 scenarios at different GWLs relative to the historical period (1995-2014) in each monsoon 992 
region. Box-and-whisker plots illustrate the 10th, 25th, 50th, 75th, and 90th percentiles. 993 
 994 
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 999 
 1000 
 1001 
 1002 
 1003 
 1004 
 1005 
Table S1: CMIP6 model names, institution, horizontal resolution, and reference 1006 

Model Name Institution Resolution 
(°lon ×°lat) 

Reference 

ACCESS-CM2 
Commonwealth Scientific and 

Industrial Research 
Organisation, Australia 

1.88 × 1.25 
Dix et al (2019a),  
Dix et al (2019b),  
Dix et al (2019c) 

ACCESS-ESM1-
5 

Commonwealth Scientific and 
Industrial Research 

Organisation, Australia 
1.88 × 1.24 

Ziehn et al (2019a),  
Ziehn et al (2019b),  
Ziehn et al (2019c) 

Page 39 of 47

https://mc03.manuscriptcentral.com/aasiap

Advances in Atmospheric Sciences

in 
pre

ss



For Review
 O

nly

40 

CanESM5 Canadian Earth System Model 2.81 × 2.81 
Swart et al (2019a),  
Swart et al (2019b),  
Swart et al (2019c) 

CESM2-
WACCM 

National Center for Atmospheric 
Research (NCAR), USA 

1.25 × 0.94 
Danabasoglu (2019a), 
Danabasoglu (2019b), 
Danabasoglu (2019c) 

CMCC-CM2-
SR5 

Euro-Mediterranean Centre on 
Climate Change coupled climate 

model, Italy 
1.25 × 0.94 

Lovato and Peano (2020a), 
Lovato and Peano (2020b), 
Lovato and Peano (2020c) 

CMCC-ESM2 
Euro-Mediterranean Centre on 

Climate Change coupled climate 
model, Italy 

1.25 × 0.94 
Lovato and Peano (2021a), 
Lovato and Peano (2021b), 
Lovato and Peano (2021c) 

EC-Earth3 EC-EARTH consortium 0.70 × 0.70 
EC-Earth (2019a), 
EC-Earth (2019b),  
EC-Earth (2019c) 

INM-CM4-8 
Institute of Numerical 

Mathematics of the Russian 
Academy of Sciences, Russia 

2.00 × 1.50 
Volodin et al (2019a), 
Volodin et al (2019b), 
Volodin et al (2019c) 

INM-CM5-0 
Institute of Numerical 

Mathematics of the Russian 
Academy of Sciences, Russia 

2.00 × 1.50 
Volodin et al (2019d), 
Volodin et al (2019e), 
Volodin et al (2019f) 

IPSL-CM6A-LR 
Institute Pierre-Simon Laplace 

(IPSL) 
2.50 × 1.26 

Boucher et al (2018),  
Boucher et al (2019a), 
Boucher et al (2019b) 

MIROC6 Japanese Modeling Community 1.41 × 1.41 
Tatebe and Watanabe (2018), 

Shiogama et al (2019a), 
Shiogama et al (2019b) 

MPI-ESM1-2-HR Max Planck Institute 0.94 × 0.94 
Jungclaus et al (2019), 

Schupfner et al (2019a), 
Schupfner et al (2019b) 

MPI-ESM1-2-LR Max Planck Institute 1.88 × 1.88 
Wieners et al (2019a), 
Wieners et al (2019b), 
Wieners et al (2019c) 

MRI-ESM2-0 
Meteorological Research 

Institute (MRI) 
1.13 × 1.13 

Yukimoto et al (2019a), 
Yukimoto et al (2019b), 
Yukimoto et al (2019c) 

NESM3 
Nanjing University of 

Information Science and 
Technology, Nanjing, China 

1.88 × 1.88 
Cao and Wang (2019),  

Cao (2019a), 
Cao (2019c) 

TaiESM1 

Research Center for 
Environmental Changes, 

Academia Sinica, Nankang, 
Taipei, Taiwan 

0.94 × 1.25 
Lee and Liang (2020a), 
Lee and Liang (2020b), 
Lee and Liang (2020c) 
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